37 research outputs found

    A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Get PDF
    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    The Nonsubsampled Contourlet Transform Based Statistical Medical Image Fusion Using Generalized Gaussian Density

    Get PDF
    We propose a novel medical image fusion scheme based on the statistical dependencies between coefficients in the nonsubsampled contourlet transform (NSCT) domain, in which the probability density function of the NSCT coefficients is concisely fitted using generalized Gaussian density (GGD), as well as the similarity measurement of two subbands is accurately computed by Jensen-Shannon divergence of two GGDs. To preserve more useful information from source images, the new fusion rules are developed to combine the subbands with the varied frequencies. That is, the low frequency subbands are fused by utilizing two activity measures based on the regional standard deviation and Shannon entropy and the high frequency subbands are merged together via weight maps which are determined by the saliency values of pixels. The experimental results demonstrate that the proposed method significantly outperforms the conventional NSCT based medical image fusion approaches in both visual perception and evaluation indices

    Multimodal Medical Image Fusion by Adaptive Manifold Filter

    Get PDF
    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images

    Spatial Stimuli Gradient Based Multifocus Image Fusion Using Multiple Sized Kernels

    Get PDF
    Multi-focus image fusion technique extracts the focused areas from all the source images and combines them into a new image which contains all focused objects. This paper proposes a spatial domain fusion scheme for multi-focus images by using multiple size kernels. Firstly, source images are pre-processed with a contrast enhancement step and then the soft and hard decision maps are generated by employing a sliding window technique using multiple sized kernels on the gradient images. Hard decision map selects the accurate focus information from the source images, whereas, the soft decision map selects the basic focus information and contains minimum falsely detected focused/unfocused regions. These decision maps are further processed to compute the final focus map. Gradient images are constructed through state-ofthe-art edge detection technique, spatial stimuli gradient sketch model, which computes the local stimuli from perceived brightness and hence enhances the essential structural and edge information. Detailed experiment results demonstrate that the proposed multi-focus image fusion algorithm performs better than the other well known state-of-the-art multifocus image fusion methods, in terms of subjective visual perception and objective quality evaluation metrics

    A multimodal fusion method for Alzheimer’s disease based on DCT convolutional sparse representation

    Get PDF
    IntroductionThe medical information contained in magnetic resonance imaging (MRI) and positron emission tomography (PET) has driven the development of intelligent diagnosis of Alzheimer’s disease (AD) and multimodal medical imaging. To solve the problems of severe energy loss, low contrast of fused images and spatial inconsistency in the traditional multimodal medical image fusion methods based on sparse representation. A multimodal fusion algorithm for Alzheimer’ s disease based on the discrete cosine transform (DCT) convolutional sparse representation is proposed.MethodsThe algorithm first performs a multi-scale DCT decomposition of the source medical images and uses the sub-images of different scales as training images, respectively. Different sparse coefficients are obtained by optimally solving the sub-dictionaries at different scales using alternating directional multiplication method (ADMM). Secondly, the coefficients of high-frequency and low-frequency subimages are inverse DCTed using an improved L1 parametric rule combined with improved spatial frequency novel sum-modified SF (NMSF) to obtain the final fused images.Results and discussionThrough extensive experimental results, we show that our proposed method has good performance in contrast enhancement, texture and contour information retention
    corecore