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Introduction: The medical information contained in magnetic resonance

imaging (MRI) and positron emission tomography (PET) has driven the

development of intelligent diagnosis of Alzheimer’s disease (AD) and

multimodal medical imaging. To solve the problems of severe energy loss,

low contrast of fused images and spatial inconsistency in the traditional

multimodal medical image fusion methods based on sparse representation.

A multimodal fusion algorithm for Alzheimer’ s disease based on the discrete

cosine transform (DCT) convolutional sparse representation is proposed.

Methods: The algorithm first performs a multi-scale DCT decomposition of

the source medical images and uses the sub-images of different scales as

training images, respectively. Different sparse coefficients are obtained by

optimally solving the sub-dictionaries at different scales using alternating

directional multiplication method (ADMM). Secondly, the coefficients of

high-frequency and low-frequency subimages are inverse DCTed using an

improved L1 parametric rule combined with improved spatial frequency novel

sum-modified SF (NMSF) to obtain the final fused images.

Results and discussion: Through extensive experimental results, we show

that our proposed method has good performance in contrast enhancement,

texture and contour information retention.
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disease with concealed onset and incurable in the elderly.
In clinical, AD is characterized by general dementia such
as cognitive decline and memory loss (Dubois et al., 2021).
Advanced multimodal neuroimaging techniques, such as
magnetic resonance imaging (MRI) (Thung et al., 2014; Liu M.
et al., 2016; Lian et al., 2018; Fan et al., 2019) and positron
emission tomography (PET) (Chetelat et al., 2003; Liu M. et al.,
2017) use different imaging mechanisms to reflect the location
of organs or lesions from different angles, and can clearly
show human tissue or metabolism and blood flow of organs.
This technique has the complementarity and irreplaceability of
medical information, which provides a good prospect for the
early diagnosis of AD (Perrin et al., 2009; Mohammadi-Nejad
et al., 2017; Wang et al., 2021).

Medical image fusion includes image decomposition, fusion
rules, and image reconstruction. The main purpose of image
decomposition is to extract the feature information from the
image. The effectiveness of feature extraction determines the
quality of fusion results. The current image fusion algorithms
can be divided into three categories. The first kind of image
fusion is based on wavelet and pyramid transform (Da Cunha
et al., 2006; Yang et al., 2010; Miao et al., 2011; Liu S. et al.,
2017; Liu X. et al., 2017). Among them, the Laplace pyramid
transform has the best robustness in the sampling operator.
Wang and Shang (2020) proposed a fast image fusion method
based on discrete cosine transform (DCT), which decomposes
each source image into a base layer and a detail layer for image
fusion. And optimize the calculation method of the base layer
to better preserve the structure of the image. In addition, non-
subsampled shear wave transforms (NSST) (Kong et al., 2014)
are also widely used in AD diagnosis because of their translation
invariance and multidirectional. The second kind of image
fusion is based on edge-preserving filtering (Farbman et al.,
2008; Xu et al., 2011; He et al., 2012; Hu and Li, 2012; Zhang
et al., 2014; Kou et al., 2015). This method can filter the image
while erasing the details and retaining its strong edge structure.
It can decompose the input image into smooth layers and detail
layers. The smooth layer contains the main energy information
of the image; the detail layer contains texture features. The third
type is the feature selection method based on sparse learning,
for example, the multiplier alternating directional multiplication
method (ADMM) algorithm (Liu and Yan, 2011) organizes the
whole learning and decomposition process into vectors, and
iterates with a sliding window to achieve the convergence effect.

Sparse representation (SR) is a widely used image
representation theory. It deals with the natural sparsity of
signals according to the physiological characteristics of the
human visual system. It is widely used in image classification
(He et al., 2019), image recognition (Liu H. et al., 2016), image
feature extraction (Liu et al., 2014), and multimodal image

fusion (Zhu et al., 2016). The fusion method based on SR and
dictionary learning is widely used in image fusion proposed by
compressed sensing theory (Donoho, 2006), and it is generally
better than most traditional fusion methods (Zhang and Patel,
2017). It usually represents the source image in the form of a
linear combination of overcomplete dictionaries and sparse
coefficients. Because the weighted coefficients obtained are
sparse, the significant information of the source image can
be represented by a small number of non-zero elements in
the sparse coefficients. In the methods based on SR, sparse
coding is usually based on local image blocks. Yang and Li
(2009) first introduces SR into image fusion. This method
uses sliding window technology to make the fusion process
robust to noise and registration errors. Because the adjacent
image blocks overlap each other, the result of each pixel is
multi-valued. Ideally, multiple values of each pixel should
be equal to maintain the consistency of overlapping image
blocks (Gu et al., 2015). However, sparse coding is performed
independently on each image block. The correlation between
image pixels is ignored, resulting in multiple unequal values for
each pixel. At the same time, most fusion methods adopt the
strategy of aggregation and averaging to obtain the final value
of each pixel, which will cause the image details to be smoothed
or even lost in fusion (Rong et al., 2017). Yin et al. (2016)
obtained a joint dictionary by using the source image as training
data and then fused the image using the maximum weighted
multi-norm fusion rule. But the problem of missing details still
exists. Zong and Qiu (2017) proposed a fusion method based
on classified image blocks, which uses directional gradient
histogram (HOG) features to classify image blocks to establish
a sub-dictionary. Although the problem of loss of details has
been reduced, it still inevitably leads to some details being
smoothed. Zhang and Levine (2016) proposed an improved
fusion method of multitasking robust SR combined with spatial
context information. Like most methods based on SR, this
method encodes for local image blocks rather than for the
whole image. As a result, it can still lead to poor preservation of
details. And usually, the fusion methods based on sparse coding
use only one dictionary to represent the different morphological
parts of the source image, which is easy to cause the loss of
image information.

Therefore, we propose a multimodal fusion method for
Alzheimer’s disease based on DCT convolution SR to solve the
above problems. It was evaluated on the neuroimaging database
of Alzheimer’s disease (ADNI) (Veitch et al., 2022), and its
effectiveness was verified by experiments.

The contribution of this paper has the following three
aspects:

1. An improved multiscale decomposition method of DCT
is proposed. Firstly, the M× N size image is divided into blocks
of 8 × 8 size, and then the DCT transform is applied to each
small block separately. The DCT coefficients of each image block
are normalized separately and their low-order DCT coefficients
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are calculated. The ratio of the energy of the higher-order DCT
coefficients to the energy of the lower-order DCT coefficients is
used as the focus evaluation function. To solve the problem of
fused image capability loss and contrast reduction.

2. A convolutional SR method is proposed to solve
the problem of spatial inconsistency of multimodal image
fusion by combining the high-frequency and low-frequency
components obtained from the multiscale decomposition and
adopting the improved rules of spatial frequency and L1

parametric combination according to the characteristics of AD
multimodal images.

3. To address the problem of limited detail preservation
capability of medical image fusion methods based on SR and
the lack of expression capability of single dictionary, the detail
texture and contour of the fused image are enhanced by
constructing multiple sub-dictionaries, and finally the fused
detail layer image is fused and reconstructed with the fused base
layer image to obtain the fused image. The fused AD medical
information features are preserved.

2. Materials and methods

In the process of image fusion, the most important thing is
how to extract low-high-frequency coefficients and the fusion
criteria of low-high-frequency coefficients. First of all, the DCT
transform is used to decompose the MRI image in multi-
scale; the DCT coefficients of each image block are normalized
respectively, and its low-order DCT coefficients are calculated.
The ratio of the energy of the higher-order DCT coefficient to
that of the lower-order DCT coefficient is used as the focusing
evaluation function. Then, the sub-images on each scale are
convoluted sparsely encoded, and the sparse coefficients of
different sub-images are obtained. The high-frequency sub-
image coefficients are combined with the improved L1 norm
and the novel sum-modified SF (NMSF), and the low-frequency
sub-images are fused with the improved L1 norm and regional
energy. Finally, the fused low-frequency sub-band and high-
frequency sub-band are transformed by inverse DCT transform
to get the final fused image. The principle of the image fusion
algorithm based on DCT transform is shown in Figure 1:

2.1. DCT decomposition

2.1.1. Low-frequency component
The most important part of information for vision is

concentrated in the low frequencies of the image. Low
frequencies represent the slow variation between image pixels.
It is the large flat area of the image that describes the main part
of the image and is a comprehensive measure of the intensity
of the whole image. In order to maintain the visibility of the
image, the low-frequency part of the image is preserved, and

changes in the low-frequency part may cause large changes in
the image. The low-frequency coefficients of the fused image
based on the DCT transform are averaged, assuming that there
are p multi-exposure images, which can be defined as:

G(i, j) =
p∑

k=1

wkGk(i, j) (1)

p∑
k=1

wk = 1 (2)

w1 = w2 = · · · = wn = · · ·wp = 1/p (3)

where Gk(i, j) is the low-frequency coefficients extracted from
the source image after DCT transformation; G(i, j) is the fused
low-frequency coefficients; and wk is the weighting factor.

2.1.2. High-frequency component
The high-frequency coefficients correspond to detailed

information in the image, such as edges, and are extracted
from the 8 × 8 chunked image after the DCT transform. The
standard deviation of the high-frequency coefficients D

(
i, j
)

in
the

(
2k+ 1

)
×
(
2k+ 1

)
neighborhood centered on pixel

(
i, j
)

is
calculated separately.

C(i, j) =

√√√√√√ i+k∑
m=i−k

j+k∑
n=j−k
[D(m, n)− M̄(m, n)]2

d − 1
(4)

where, D is the number of pixel points in the region(
2k+ 1

)
×
(
2k+ 1

)
; D is the value of the high frequency

coefficient corresponding to the (m, n) point; M(m, n) is the
average value of pixels in the region, which can be defined as:

M(i, j) =
1
d

i+k∑
m=i−k

j+k∑
n−j−k

D(m, n) (5)

The regional standard deviation of the high-frequency
coefficients for each of the P multi-exposure images is[
C1
(
i, j
)
,C2

(
i, j
)
, . . . ,Cp

(
i, j
)]

, then the weight coefficients
corresponding of the extracted high-frequency coefficient is:

wk(i, j) =
Ck(i, j)∑p
k=1 Ck(i, j)

(6)

where, the weights of the P multi-exposure images are compared
to them, the fused high-frequency coefficient D

(
i, j
)

is the high-
frequency coefficient corresponding to the largest weighting
factor.

wk(i, j) = max
[
w1(i, j),w2(i, j), · · · ,wk(i, j), · · · ,wp(i, j)

]
(7)

D(i, j) = Dk(i, j) (8)
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2.2. Sparse representation

The medical image fusion method consists of the following
four parts: (1) Multi-scale dictionary learning to train sub-
dictionaries on different scales of sub-images as training images.
(2) Convolutional sparse coding of the dictionaries at different
scales to find their convolutional sparse coefficients. (3) Low-
frequency sub-band coefficient fusion rules for low-frequency
sub-images are fused according to the set fusion rules. (4) High-
frequency sub-band coefficient fusion rules fuse high-frequency
sub-images at different scales.

2.2.1. Multi-scale dictionary learning
The source images A and B are firstly decomposed by l-level

DCT to obtain their decomposition coefficients
{
Hl,k
A , LA

}
and{

Hl,k
B , LB

}
, respectively. Where, Hl,k

A and Hl,k
B denote the high-

frequency sub-band coefficients of source images A and B at
decomposition scale l and orientation k. LA and LB are the low-
frequency sub-band coefficients of images A and B, respectively.
The sub-band images of each scale are used as training images to
train the corresponding convolutional sparse sub-dictionaries.
The different convolutional sparse sub-dictionaries capture the

FIGURE 1

Flowchart of image fusion algorithm for discrete cosine transform (DCT) transform.

FIGURE 2

Flow chart of multi-scale dictionary learning.
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features of the sub-images at different scales. Finally, the low-
frequency and high-frequency sub-dictionaries are formed by
combining the sub-dictionaries at different scales. The high-
frequency first-scale images Hl,k

A and Hl,k
B of source images

A and B are used as training images
{
ym
}M
m=1, and the

corresponding convolutional sparse dictionary learning models
are built. The formula is as follows:

arg min
d,x

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

M∑
m=1

K∑
k=1

∣∣∣∣xm,k∣∣∣∣1
(9)

where, xm,k is the sparse coefficient corresponding to the mth
training image; dk is the corresponding filter; ∗ denotes the
two-dimensional convolution operation; λ is the regularization
parameter; and ||·||1 denotes the l1 parametric number, which
represents the sum of the absolute values of the elements.

(1) Dictionary update phase. By keeping the sparse
coefficients constant, each filter is optimally updated with the
following equation:

arg min
dk

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

(10)

To optimize the filter in the discrete Fourier domain, the
filter dk needs to be zero-filled to the same size as xm,k . Taking
into account the normalization of dk with zero padding, the
formula is as follows:

arg min
{dm},{gm}

1
2

∑
k

∣∣∣∣∣
∣∣∣∣∣∑
m

xm,k × dm − sk

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∑
m

lCPN

(
gm
)

(11)

The ADMM algorithm shows that
CPN =

{
x ∈ RN :

(
I − PPT

)
x = 0, ||x||2 = 1

}
represents the

FIGURE 3

CT-MRI fusion images obtained by five fusion methods. (A) Computed tomography (CT) source image; (B) magnetic resonance imaging (MRI)
source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion result; (E) guided
filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed method.
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constraint range, the indicator function is defined as

ls(X) =

{
0 if X ∈ S
∞ if X /∈ S

, and gm is an auxiliary variable

introduced to facilitate optimal derivation. The resulting
updated convolution filter dk can be obtained.

(2) Convolutional sparse coefficient update phase. Update
the coefficients by keeping the filter unchanged:

arg min
xm,k,zm,k

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

M∑
m=1

K∑
k=1

∣∣∣∣zm,k∣∣∣∣1
(12)

where, zm,k is the introduced auxiliary variable. We obtain
the updated convolutional sparse coefficients by alternating
iterative solutions.

In Figure 2, the cyclic execution of the dictionary and the
convolutional sparse coefficients are updated to a predetermined
maximum number of cycles or a set parameter threshold to
stop. The convolutional sub-dictionary D1 for the first scale of
the high-frequency sub-image is output. The second and third
scales of the high-frequency sub-images are dictionary learned
separately to obtain the convolutional sub-dictionaries D2, D3.
By combining each high-frequency sub-dictionary, and the
high-frequency dictionary Dh = [D1,D2,D3] is obtained. The
low-frequency sub-images are subjected to dictionary learning,
and the low-frequency dictionary Dl is obtained.

2.2.2. Convolutional sparse coding
To better capture the detailed texture information of

medical images and reduce the influence of artifacts, a high-
frequency dictionary Dh and a low-frequency dictionary Dl are
obtained by learning. Convolutional sparse coding is performed
on the decomposition coefficients

{
Hl,k
A , LA

}
of the source

image A. The TV regularization is then incorporated into the
convolutional sparse coding model. The formula is as follows:

arg min
{xk}

1
2

∣∣∣∣∣
∣∣∣∣∣s−∑

k

dk × xk

∣∣∣∣∣
∣∣∣∣∣
2

2

+λ
∑
k

||xk||1 + λ1TV

( K∑
k=1

dk ∗ xk

)
(13)

where, TV(X) =
∣∣∣∣g0 × x

∣∣∣∣
1 +

∣∣∣∣g0 × x
∣∣∣∣

1, g0 and g1 are the filters
used to calculate the gradients along the rows and columns of
the image, respectively. The sparsity coefficients

{
xAm,L, x

A
m,l,k,H

}
and

{
xBm,L, x

B
m,l,k,H

}
of the coefficients in the sub-bands of the

source images A and B, respectively, are obtained by optimal
solution in the discrete Fourier domain. Where, m denotes the
number of filters and convolutional sparse coefficient maps; L
denotes the low frequency image; Hdenotes the high frequency
image; and l and k denote the scale and orientation of the
corresponding sub-bands, respectively.

2.2.3. Low-frequency coefficient fusion rules
After DCT decomposition, the energy information of the

image is contained in the low-frequency sub-bands LA and
LB of the source images A and B, which are displayed as
basic information such as the contour and brightness of the
image. The averaging strategy generally used for low-frequency
coefficient fusion tends to lead to a reduction in the contrast of
the image. In the case of fusion using the Max− L1 rule with SR,
the reduction of contrast can be effectively avoided. However, it
can lead to the problem of spatial inconsistency of the image. At
the same time, because the region energy can better reflect the
energy and significant features of the image, and the convolution
sparse coefficients of the L1 parameter averaging strategy can
effectively reduce the effect of misalignment. Therefore, a
combination of region energy and averaged L1 parameter is used
to fuse the low-frequency sparse coefficients.

LF =
M∑

m=1

dlm × xFm,L (14)

2.2.4. High-frequency coefficient fusion rules
The high frequency sub-bands Hl,k

A and Hl,k
B of the source

images A and B contain a large amount of information such as
texture details of the images. The convolutional SR of the fusion
method has good performance in preserving detail information,
and the improved spatial frequency and can well reflect the
gradient changes of the image texture. Therefore, the improved
spatial frequency combined with the average L1 parameter
strategy is used to fuse the high frequency sparse coefficients.

Hl,k
F =

M∑
m=1

dhm × xFm,l,k,H (15)

2.2.5. Multimodal medical image fusion
The problem of spatial inconsistency in multimodal images

is caused when the L1 parametric maximum fusion rule is
used in traditional SR-based fusion methods. Therefore, we
decompose the source image by performing DCT on it. Different
sub-dictionaries are trained for features of different scales.
A rule combining region energy and activity coefficients is
used for fusion of the low frequency component coefficients,
and a modified rule combining spatial frequency and activity

TABLE 1 Average values of index evaluation of different fusion
methods for CT-MRI.

Methods SF SD RMSE GSM VIF

NSCT 23.5217 1.4275 0.1617 0.9631 0.2376

NSST 23.3269 1.4729 0.1678 0.9620 0.2582

GFF 23.8825 1.4681 0.1604 0.9715 0.2265

ReLP 24.2733 1.4953 0.1539 0.9743 0.2674

Proposed 25.1246 1.5203 0.1482 0.9776 0.2743

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.1100812
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1100812 December 30, 2022 Time: 10:17 # 7

Zhang et al. 10.3389/fnins.2022.1100812

coefficients is used for fusion of the high frequency component
coefficients. The problems of reduced contrast, blurred details
and inadequate information extraction are avoided. The specific
steps are as follows:

(1) The DCT decomposition of source images A and B is
performed to obtain the respective decomposition coefficients{
Hl,k
A , LA

}
and

{
Hl,k
B , LB

}
.

(2) In the dictionary learning stage, the images at different
scales corresponding to the multimodal source images are
used as training sets, and the sub-dictionaries D0, D1, D2,
D3 corresponding of each scale is derived. The low-frequency
dictionary is Dl = D0. The high-frequency dictionary is
Dh = [D1,D2,D3 ].

(3) Sparse coding stage. Convolutional sparse coding is
performed on the sub-images of different orientations at
each scale to obtain the corresponding convolutional sparse{
xAm,L, x

A
m,l,k,H

}
and

{
xBm,L, x

B
m,l,k,H

}
.

(4) Low-frequency component fusion stage. The regional
energies EA and EB of LA and LB, and the active level maps
ᾱA and ᾱB are calculated. The convolution sparsity coefficients

xFm,L are obtained after fusion. Finally, the convolution sparse
coefficients are reconstructed with the low-frequency dictionary
convolution to obtain the low-frequency sub-band image LF .

(5) High-frequency component fusion stage. The fused
convolutional sparse coefficients C are obtained by calculating
the improved spatial frequencies ofHl,k

A andHl,k
B . Then the high-

frequency sub-band images Hl,k
F are obtained by convolutional

fusion with the high-frequency dictionary Dh.
(6) Finally, the fused image F is obtained by performing

inverse DCT on the fused sub-band image
{
H
′,k
F , LF

}
.

3. Results and discussion

3.1. Data set and training parameter
settings

(1) Experimental settings
All our experiments are conducted on a computer with Intel

Core i7-10750H CPU 2.60 GHz, 16 GB RAM, NVIDIA GeForce

FIGURE 4

MRI-PET fusion images obtained by five methods in Paras1. (A) Magnetic resonance imaging (MRI) source image; (B) positron emission
tomography (PET) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion
result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed method.
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FIGURE 5

MRI-PET fusion images of five methods in Paras2. (A) Positron emission tomography (PET) source image; (B) magnetic resonance imaging (MRI)
source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion result; (E) guided
filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) is the fusion result of the proposed method.

TABLE 2 Average values of index evaluation of different fusion methods for MRI-PET.

CT-MRI Methods MI SF AG EI NIQE TMQI

Paras1 NSCT 3.7269 15.2214 6.1476 45.3264 4.5158 0.8123

NSST 3.8261 15.3842 6.1842 47.8139 4.5927 0.8546

GFF 4.1027 16.7253 6.0878 46.9367 4.5231 0.7712

ReLP 4.1503 17.2636 6.2913 48.4811 4.6080 0.8582

Proposed 4.2018 17.3059 6.3682 50.6531 4.6675 0.8654

Paras2 NSCT 3.6535 16.1356 6.0631 46.6235 4.6825 0.7403

NSST 3.7282 16.8575 6.0051 45.3315 4.7057 0.6790

GFF 3.7451 17.2243 6.2527 46.8728 4.6817 0.7052

ReLP 3.7871 17.7991 6.3517 46.3297 4.7354 0.7106

Proposed 3.8010 18.1052 6.4063 47.2031 4.7521 0.7149

GTX 3090 Ti. We train the convolutional sparse and low-rank
dictionary with sliding step size set to 1, sliding window size set
to 8× 8, dictionary size set to 64× 512, error set to E = 0.03,
and decomposition level set to 3.

(2) Data sets and comparison methods

To validate the performance of the proposed method. We
selected 136 sets of aligned AD brain medical images (image
size of 256× 256 pixels) as the source images to be fused.
All image slices were obtained from the Harvard Whole Brain
Atlas database (Johnson and Becker, 2001), and the three AD
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medical image types included 42 sets of CT-MRI images; 42 sets
of MRI-PET images; and 52 sets of MRI-SPECT images. Four
contrast algorithms were adopted for comparison, including
nonsubsampled contourlet (NSCT) (Li and Wang, 2011), NSST
(Kong et al., 2014), guided filter ng fusion (GFF) (Li et al., 2013),
and Laplacian redecomposition (ReLP) (Li et al., 2020).

(3) Objective evaluation metrics
We selected 10 metrics for objective index evaluation and

analysis: mutual information (MI) (Xydeas and Petrovic, 2000),
natural image quality evaluator (NIQE) (Mittal et al., 2012),
average gradient (AG) (Du et al., 2017), edge intensity (EI)
(Wang et al., 2012), tone-mapped image quality index (TMQI)
(Yeganeh and Wang, 2012), spatial frequency (SF) (Eskicioglu
and Fisher, 1995), SD (Li et al., 2008), root mean square error
(RMSE) (Zhang et al., 2018), gradient similarity mechanism
(GSM) (Liu et al., 2011), and VIF (Sheikh and Bovik, 2006).
SF is the spatial frequency, which is a measure of the richness
of image detail and reflects the sharpness of image detail.
A larger value means that the image detail is richer. SD is the
standard deviation, which measures the contrast of the image;

a larger value indicates a better contrast of the image. RMSE
is the root mean square error, which measures the difference
between the fused image and the source image; a smaller value
indicates that the fused image information is closer to the
source image. GSM measures the gradient similarity between
images; a larger value indicates that the gradient information
of the fused image is closer to the source image. NIQE index,
the smaller the value, the smaller the distortion. VIF is an
image information measure that quantifies the information
present in the fused image; larger values indicate better fusion.
NIQE measures the simple distance between the model statistic
and the distorted image statistic. AG indicates the average
gradient, which is used to extract the contrast and texture
change features of the image. EI reflects the sharpness of
the edges. TMQI index measures the significant features of
brightness and contrast between the reference image and the
fused image, and measures the structural fidelity of the fused
image. Larger values of MI, SF, AG, EI, and TMQI indexes
indicate better fusion.

FIGURE 6

MRI-SPECT fusion images of the five methods in Paras1. (A) Single photon emission computed tomography (SPECT) source image; (B) magnetic
resonance imaging (MRI) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST)
fusion result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed
method.
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FIGURE 7

MRI-SPECT fusion images of the five methods in Paras2. (A) Single photon emission computed tomography (SPECT) source image; (B)
magnetic resonance imaging (MRI) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave
transform (NSST) fusion result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result
of the proposed method.

TABLE 3 Average values of index evaluation of different fusion methods for MRI-SPECT.

MRI-SPECT Methods MI SF AG EI NIQE TMQI

Paras1 NSCT 3.6302 16.4106 6.2750 46.6732 4.2038 0.7931

NSST 3.6231 15.8942 6.1773 47.0792 4.3107 0.7785

GFF 3.7047 16.5378 6.2035 47.6470 4.2619 0.8063

ReLP 3.8503 17.0346 6.3106 48.5718 4.3250 0.8307

Proposed 3.8826 17.2069 6.4209 49.5014 4.4030 0.8526

Paras2 NSCT 3.6057 15.7431 6.1821 47.1003 4.3717 0.7352

NSST 3.6183 15.7215 6.1040 46.6993 4.4602 0.7075

GFF 3.6903 15.4903 6.2183 47.2854 4.3736 0.7202

ReLP 3.7681 16.3107 6.3608 48.5810 4.4071 0.7464

Proposed 3.7916 16.5012 6.4112 48.7106 4.5306 0.7503

3.2. CT-MRI fusion results comparison

In Figure 3, we used 42 sets of CT-MRI fused images and
randomly selected seven fused images for comparison. From

the figure, we can see that the images fused by NSCT and GFF
algorithms are too dark. The images fused by NSST are not only
darker but also distorted. The images fused by ReLP algorithm
have better brightness but not enough texture details. Our fusion
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FIGURE 8

Comparison of running time.

algorithm performs best in terms of brightness, detail texture
and edge contour.

The mean values of objective evaluation metrics for fusion
results corresponding to different rules are given in Table 1,
where bold indicates that the method ranks best in the metrics.
NSCT is low in SD in terms of metrics, indicating insufficient
image contrast. NSST is lowest in SF in terms of metrics, with
poor image details. ReLP is less distorted with our method
in terms of RMSE and GSM. Our proposed method performs
better performance in terms of color retention, contrast, and
detail retention, and achieves the optimum.

3.3. MRI-PET fusion results comparison

Figures 4, 5 use 42 sets of MRI-PET images from MRI-
PET datasets Paras1 and Paras2, respectively. We randomly
selected eight fused images. From Figure 4, it can be seen that
NSCT and GFF show severe distortion, and the fused images of
NSST and ReLP algorithms are too dark and have loss of detail
information. In Figure 5, NSCT and NSST have dark luminance
and GFF has distortion, while ReLP and our fusion algorithm
have better visual effect.

In Table 2, by comparing 42 sets of fused images on the
MRI-PET dataset, our proposed algorithm has the best mean
value in objective evaluation metrics. Higher contrast, sharper
edges and finer details were obtained. The subjective results of
the fused images of the two algorithms, NSCT and GFF, were not
satisfactory. NSCT and GFF had more color distortion. NSST
showed abnormal brightness. ReLP performed better and was
close to our average value. So far, it is easy to see that the
multi-objective evaluation index of the integrated information
is consistent with the conclusions of the subjective analysis.
Our proposed algorithm significantly outperforms the average

of all algorithms. In summary, we have a more comprehensive
advantage over existing algorithms in the evaluation of objective
metrics.

3.4. MRI-SPECT fusion results
comparison

Figures 6, 7 we used MRI-SPECT datasets Paras1 and
Paras2, respectively 52 sets of AD MRI-PET image fusion images
for comparison. It can be seen from the figures that NSCT
shows severe distortion, NSST fused images are too dark, GFF
shows brightness anomalies, and ReLP does not perform well in
terms of detail texture. Our fusion algorithm performs best in
brightness, detail texture and edge contour.

InTable 3, we use 52 sets of fused images on the MRI-SPECT
dataset for comparison, and our proposed DCT multiscale
decomposition obtains sharper edges and finer details. The
improved NMSF fusion rule obtains better brightness and
contrast. The superiority of our method over other algorithms
is demonstrated.

To compare the advantages of the proposed methods
more comprehensively, we calculate the running times of the
comparison methods on the same pair of images of 256× 256
size. Figure 8 shows the line graphs of the average running
times of our method and the four comparison methods. The
ReLP method has the longest running time and GFF has the
shortest running time. From the line graph, it can be seen that
our fusion method has the second best running speed than most
of the other algorithms. However, medical image fusion is used
to assist in diagnosis and treatment, and the effectiveness of the
proposed method is demonstrated from objective and subjective
evaluations. Therefore, the proposed method guarantees the
quality of fusion results within an acceptable time consumption.
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3.5. Comparison of subjective
evaluation

Computed tomography (CT) or MRI unimodal imaging
can no longer meet the demand for precise diagnosis in
neurosurgery. A multimodality imaging technique that can
clearly, visually, and holistically show AD brain atrophy and its
association with surrounding cerebral vessels, nerves, and brain
tissues can only accommodate the development of neurosurgical
precision surgery. Quality assessment of multimodal fusion
requires additional medical expertise. Therefore, we invited six
chief neurosurgeons with more than 5 years of experience,
and we randomly selected a test sample of 10 groups, each
group including five fusion images. The subjective evaluation
criteria were double stimulus continuous quality scale (DSCQS)
including contrast, detail and invariance and acceptability scores
of [1 (worst) to 5 (best)]. 1 indicates a non-diagnostic image
and 5 indicates a good quality diagnostic image. Pathological
invariance was scored as 0 (change) or 1 (no change). Table 4
shows the ratings of six clinicians, and the optimal values are
shown in bold.

In Table 4, the subjective physician evaluations of CT-
MRI and MRI-SPECT fusion are presented. The NSCT and
GFF contrast and brightness were insufficient and therefore
rated low. The GFF showed the worst distortion acceptability
evaluation. The ReLP was very close to our evaluation among the
four evaluation metrics. Our algorithm has the best performance
in edge detail, luminance, contrast and spatial coherence, and
received the best physician evaluation.

4. Conclusion

Multimodal neuroimaging data have high dimensionality
and complexity, and seeking efficient methods to extract
valuable features in complex datasets is the focus of current
research. To address the shortcomings of AD multimodal
fusion images such as contrast reduction, detail blurring and
color distortion, we propose a multimodal fusion algorithm
for Alzheimer’s disease based on DCT convolutional SR. The
DCT multi-scale decomposition of the source medical image is
performed to obtain the basic layer, local average energy layer
and texture layer of the input image, and then the sub-images
of different scales are used as training images respectively.
The sub-dictionaries at different scales are optimally solved
using the ADMM algorithm, and then convolutional sparse
coding is performed, and the inverse DCT transform of
the subimage coefficients is performed using a combination
of improved L1 parameters and improved NMSF rules to
obtain the multimodal fusion images. We experimentally
demonstrate that the algorithm has sharper edge details,
better color and spatial consistency than other algorithms by
fusing medical images in three modalities, CT-MRI, MRI-PET,
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and MRI-SPECT. This proves that our algorithm outperforms
existing state-of-the-art algorithms. In the future, we will
use deep learning models for medical image multimodality
classification and prediction, and apply them to early clinical
diagnosis of AD.
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