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We propose a novel medical image fusion scheme based on the statistical dependencies between coefficients in the nonsubsampled
contourlet transform (NSCT) domain, in which the probability density function of the NSCT coefficients is concisely fitted using
generalized Gaussian density (GGD), as well as the similarity measurement of two subbands is accurately computed by Jensen-
Shannon divergence of two GGDs. To preserve more useful information from source images, the new fusion rules are developed to
combine the subbands with the varied frequencies.That is, the low frequency subbands are fused by utilizing two activity measures
based on the regional standard deviation and Shannon entropy and the high frequency subbands are merged together via weight
maps which are determined by the saliency values of pixels. The experimental results demonstrate that the proposed method
significantly outperforms the conventional NSCT based medical image fusion approaches in both visual perception and evaluation
indices.

1. Introduction

Multimodal medical image fusion (MIF) is a process of
extracting complementary information from different source
images and integrating them into a resultant image. The
integration of multimodality medical images can provide
more comprehensive pathological information for doctors,
which greatly helps their diagnosis and treatment. For exam-
ple, the fusion of computed tomography (CT) and magnetic
resonance imaging (MRI) may simultaneously provide dense
structures like bones and pathological soft tissue informa-
tion. The combination of single-photon emission computed
tomography (SPECT) and MRI image not only displays
anatomical information, but also provides functional and
metabolic information. Additionally, combining CT and the
positive electron tomography (PET) image can concurrently
visualize anatomical and physiological characteristics of the
human body, the result of which is used to view tumor
activity in oncology and discern tumor boundaries in organ
diagnosis. Therefore, MIF technique can effectively provide
support for medical diagnostic and healthcare.

Nowadays, multiresolution decomposition (MSD) based
MIF has been recognized as an effective work, which can
extract more abundant information from source images of
different modalities. This technique has had a fast develop-
ment and extensive application in the past decades. For exam-
ple, Qu et al. [1] have utilized wavelet transform to fuse med-
ical images. Ali et al. performed the combination of CT and
MRI by the curvelet transform in [2] and Yang et al. proposed
a fusion algorithm for multimodal medical images based
on contourlet transform (CT) [3]. Li and Wang employed
the nonsubsampled contourlet transform (NSCT) for the
combination ofMRI and SPECT in [4]. Comparedwith other
multiscale decomposition,NSCTproposed by daCunha et al.
[5] is a more prominent tool and it has been successfully used
in image denoising [6] and image enhancement [7]. Because
of its properties of multiscale, multidirection, and the full
shift-invariance, when it is used for image decomposition,
it can capture the higher dimensional singularities such as
edges and contours that cannot be effectively represented
by the wavelets and avoid pseudo-Gibbs phenomena that
presents in the contourlet transform. Specifically, when it
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Figure 1: The schematic diagram of the proposed medical image fusion method.

is used for image fusion, the impacts of misregistration on
the fused results can also be reduced effectively [8] and the
correspondence between different subbands is easily found.
Therefore, NSCT is more suitable for medical image fusion.
Although medical image fusion methods based NSCT have
achieved good results [9–13], most existing fusion methods
neglect the dependencies between subband coefficients at the
interscale and intrascale.However, the dependencies between
decomposition coefficients commonly exist. What’s more,
the characteristics show non-Gaussian distribution and have
the heavy tailed phenomenon. Thus making full use of the
statistical dependencies between subband coefficients will
effectively improve fusion performance.

In this paper, we present a novel NSCT based statistical
multimodalMIF scheme,which utilizes generalizedGaussian
density (GGD) to fit the marginal distributions of the high
frequency coefficients and quantify the similarity measure-
ment between two subbands by the symmetric Jensen-
Shannon divergence (JSD) [14, 15] of two GGDs. Combining
the relationships between subband coefficients, the high fre-
quency coefficients are updated and finally fused.The general
framework is shown in Figure 1. The main contributions of
the proposed method are summarized as follows:

(1) This study proposes a novel MIF method, which
explores the dependencies between subband coeffi-
cients in NSCT domain.

(2) GGD and JSD based statistical model is developed to
nicely fitmarginal distributions of the NSCT subband
coefficients.

(3) Thenew fusion rules are developed to fuse coefficients
with the low frequency and high frequency, respec-
tively.

The rest of this paper is organized as follows. In Section 2,
related studies are reviewed. In Section 3, we first give a brief
introduction of NSCT and then analyze the characteristics
between subband coefficients in NSCT domain and compute
their dependencies. The novel fusion rules are developed to
fuse the low frequency subbands and high frequency sub-
bands in Section 4. Section 5 provides experimental results
and discussion. Conclusions are drawn in the last section.

2. Related Research

A plethora of MIF methods based on NSCT assume that
the coefficients of decomposition subbands are statistically
independent; namely, there are no dependencies between
subband coefficients across scales and within scale. Thus this
kind of methods usually results in loss of some information
of the source images. However, for a decomposition image
using NSCT, there really exist the dependencies between
subbands in different levels and different orientations at
the same scale. Several famous statistical models based on
multiresolution analysis have been proposed to characterize
the dependencies of subband coefficients across scales. For
example, the statistical models integrating Hidden Markov
Tree (HMT) with the discrete wavelet transform (DWT) or
the contourlet transform have been applied in the image
denosing [16–18]. Moreover, the model of combining HMT
and DWT is successfully applied in image segmentation [19].
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Figure 2: An illustration of the NSCT: the decomposition levels correspond to the first and second level and the number of directions of
NSDFB is set to [2, 3], respectively.

As two recent examples, Wang et al. proposed two statistical
models in the shift invariant shearlet transform domain, one
combines the HMT [20] and the other utilizes GGD [21].
Although the statistical model based on HMT has successful
applications, it contains some defects such as the low fitting
precision, the high dependency for convergence of function,
the lack of flexibility for the quad-tree structure itself, and so
on.

In this paper, we present a novel statistical model to
measure the dependencies of subband coefficients in NSCT
domain. The advantage of the model is that one parent node
may have any number of child leaves, instead of having
limitation of one to four as HMTmodel. Our work seemingly
shares some themes with literatures [21, 22], where the
probability density function (PDF) of each decomposition
subband is modeled with the GGD, and the similarity mea-
surement between subbands is computed by the Kullback-
Leibler distance (KLD) of twoGGDs. However, our statistical
model focuses on the statistics of the NSCT coefficients,
and we evaluate the similarity of subbands across scales by
the JSD rather than KLD. In addition, different fusion rules
are, respectively, developed to combine components with low
frequency and high frequency.

3. The Proposed Algorithm

3.1. Overview of NSCT. NSCT, as a shift invariant version of
contourlet, is an overcomplete transform with flexible multi-
scale, multidirectional expansion for images [5]. The decom-
position process of the NSCT is divided into two phases, that
is, the nonsubsampled pyramids (NSP) and the nonsubsam-
pled directional filter bank (NSDFB). The former performs
multiscale decomposition and the later provides direction
decomposition. The NSP divides image into a low frequency
subband and a high frequency subband in each level. Given
that the decomposition level is 𝑘, NSP will generate 𝑘+1 sub-
band images, which consist of one low frequency image and 𝑘

high frequency images. The subsequent NSDFB decomposes

the high frequency subbands from NSP in each level. As
for a specific subband, let the number of decomposition
directions be 𝑙; then 2

𝑙 directional subbands are obtained,
whose sizes are all the same as the source image. After the
low frequency component is decomposed iteratively by the
same way, an image is finally decomposed into one low
frequency subimage and a series of high frequency directional
subband images (∑

𝑘

𝑗=1
2
𝑙𝑗), wherein 𝑙𝑗 denotes the number

of decomposition directions at the 𝑗 scale. Figure 2 shows
an intuitive example of NSCT. The diagram only enumerates
the first two decomposition levels and the number of NSDFB
directions is set to [2, 3] from coarser to finer scale.

3.2. Characteristics of the NSCT Subband Coefficients.
Figure 3 plots the conditional distributions of the NSCT
coefficients, which characterizes the correlations between
subband coefficients of the MRI image in Figure 2, wherein
Figures 3(a) and 3(b) are probability distribution between
two subband coefficients at different scales and Figures
3(c) and 3(d) are probability distribution between two
subband coefficients with different directions at the same
scale. Mathematically, the conditional distributions can be
described as 𝑃(𝑋 | 𝑃𝑋 = 𝑝𝑥) and 𝑃(𝑋 | 𝐶𝑋 = 𝑐𝑥); here,
𝑝𝑥 and 𝑐𝑥 show the coefficients of parents and cousins.
As shown in Figure 3, the relationships between subband
coefficients demonstrate the nonlinear and interlaced
aliasing on the whole, which illustrates that there exist
interdependencies between subband coefficients in NSCT
domain. Simultaneously, there is approximately independent
or the slight correlation between subband coefficients with
different directions at the same scale (cousin-cousin), while
there is stronger correlation between subband coefficients
at different scales (parents-children). Thus, the relationships
of the NSCT coefficients mainly exist between parents and
children.

Figure 4 corresponds to the histograms of four subimages
in Figure 3. Obviously, all the characteristic diagrams have
similar features with a very sharp peak at the zero amplitude
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Figure 3: The conditional distribution between subband coefficients of the MRI image in Figure 2: (a) and (b) are the distribution
characteristics between subband coefficients at different scales; (c) and (d) are distribution characteristics of subband coefficientswith different
directions at the same scale.

and the extended tails in both sides of the peak, which
indicates that the NSCT coefficients are sparse and the
majority of coefficients are close to zero. Further, the kurtosis
of each map is, respectively, measured as 20.74, 8.32, 10.44,
and 20.55 (corresponding to (a), (b), (c), and (d) of the first
row of Figure 4 in order). Clearly, these values are much
larger than the kurtosis of Gaussian distribution (kurtosis
is about 3.0). What is more, through a large number of
experiments, the coefficient characteristics (sparse and heavy
tailed phenomenon) are similar for other NSCT subbands. So
there exists a fact that the NSCT coefficients are sparse and
highly non-Gaussian.

How to quantify the dependencies between NSCT coef-
ficients by a statistical model is a subject worthy of study.
Inspired by the earlier statistical model of MSD coefficients
of image [23–26], in which the PDFs of coefficients across

scales and within scale are nicely fitted by the GGD function,
we fit the distribution characteristics by the same way and
calculate the dependencies of the NSCT coefficients. Figure 5
provides four PDFs of theNSCTcoefficients togetherwith the
curves of the fitted GGDs (as shown purple curves). It can be
seen that these fitted curves are very close to the actual case.
Therefore, the statistical model can be applied to describe the
spatial distribution characteristics of the NSCT coefficients.

3.3. Statistics of the NSCT Coefficients. The GGD model has
been extensively applied to describe the marginal density
of subband coefficients due to its flexible parametric form,
which adapts to a large family of distributions from super-
Gaussian to sub-Gaussian. Accordingly, the approximation of
the marginal density for the particular NSCT coefficient may
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Figure 4: Histograms of four distribution maps in Figure 3 (the first row) and the curves fitted with GGDs (the second row).
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Figure 5: The fusion results of different fusion methods for the first set of CT and MRI images: (a), (b) Source images; fused images by (c)
DWT, (d) GP, (e) PCA, (f) GF, (g) CT, (h) NSCT-1, (i) NSCT-2, and (j) the proposed method.

be achieved by varying two parameters of the GGD, which is
defined as

𝑃 (𝑥; 𝛼, 𝛽) =
𝛽

2𝛼Γ (1/𝛽)
𝑒
−(|𝑥|/𝛼)

𝛽

, (1)

where Γ(⋅) is the Gamma function, 𝛼 is the scale parameter
(width of the PDF peak), and 𝛽 is the shape parameter
which tunes the decay rate of the density function. Normally,

the parameters 𝛼 and 𝛽 are computed by the maximum
likelihood (ML) estimator, which has shown to be the desired
estimator [27]. As for each subband, the likelihood function
of the sample 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is defined as

𝐿 (𝑥; 𝛼, 𝛽) = log
𝑛

∏

𝑖=1

𝑝 (𝑥𝑖; 𝛼, 𝛽) . (2)
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In this case, 𝛼 and 𝛽 are parameters that need to be
estimated. We can obtain the unique root by the likelihood
equations below; here Ψ(⋅) denotes the digamma function:

𝜕𝐿 (𝑥; 𝛼, 𝛽)

𝜕𝛽
= −

𝐿

𝛼
+

𝑁

∑

𝑖=1

𝛽
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
𝛽
𝛼
−𝛽

𝛼
= 0, (3)

𝜕𝐿 (𝑥; 𝛼, 𝛽)

𝜕𝛽
=

𝐿

𝛽
+

𝐿Ψ (1/𝛽)

𝛽2

−

𝑁

∑

𝑖=1

(

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨

𝛼
)

𝛽

log(
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨

𝛼
) = 0.

(4)

Let 𝛽 be fixed and 𝛽 > 0; then (4) has the unique solution,
which is the real and positive value:

𝛼̂ = (
𝛽

𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨
𝛽
)

1/𝛽

. (5)

Combining (4) and (5), the shape parameter 𝛽 can be
solved by the following transcendental equation:

1 +
Ψ (1/𝛽)

𝛽
−

∑
𝑁

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨
𝛽 log 󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨

∑
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
𝛽

+

log((𝛽/𝑁)∑
𝑁

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨
𝛽
)

𝛽
= 0.

(6)

In (6), the determination of 𝛽 can be effectively solved
using Newton-Raphson iterative procedure [26, 28] and the
algorithm is detailedly described in [22].Therefore, with only
two parameters, we can accurately characterize the marginal
distribution of the NSCT coefficients.

3.4. The Dependency of Different NSCT Subbands. The KLD
is a common and justified way of measuring the distance
between two distributions.𝐷KL(𝑃 ‖ 𝑄) is applied to describe
the deficiency of using one distribution 𝑞 to represent the true
distribution 𝑝, which is generally used for comparing two
related distributions. The KLD between two distributions for
𝑃,𝑄, the PDFs of which are, respectively, denoted as 𝑝(𝑋; 𝜃1),
𝑝(𝑋; 𝜃2), is defined as

𝐷KL (𝑃 ‖ 𝑄) = 𝐷 (𝑝 (𝑥; 𝜃1) ‖ 𝑝 (𝑥; 𝜃2))

= ∫𝑝 (𝑥; 𝜃1) log
𝑝 (𝑥; 𝜃1)

𝑝 (𝑥; 𝜃2)
𝑑𝑥,

(7)

where 𝜃1 and 𝜃2 are a set of estimated parameters. Given
two GGD distributions of NSCT subbands, the similarity
between two GGDs for NSCT subbands can be defined by
the parameters 𝛼 and 𝛽. Substitute (1) into (7) and after some

manipulations, the KLD between two PDFs can be expressed
as

𝐷KL (𝑃 ‖ 𝑄) = 𝐷KL (𝑝 (⋅; 𝑎1, 𝛽1) ‖ 𝑝 (⋅; 𝛼2, 𝛽2))

= log(
𝛽1𝛼2Γ (1/𝛽2)

𝛽2𝛼1Γ (1/𝛽1)
)

+ (
𝛼1

𝛼2

)

𝛽2 Γ ((𝛽2 + 1) /𝛽1)

Γ (1/𝛽1)
−

1

𝛽1

.

(8)

However, there are some deficiencies with the KLD,
which makes it less ideal. First, the KLD is asymmetric;
that is, (𝐷KL(𝑃 ‖ 𝑄)) is different from (𝐷KL(𝑄 ‖ 𝑃)).
Second, if 𝑞(𝑥) = 0 and 𝑝(𝑥) ̸= 0 for any 𝑥, then
𝐷KL(𝑃 ‖ 𝑄) is undefined. Third, the KLD does not offer
any nice upper bounds [14]. On the other hand, the JSD
has the characteristics of nonnegativity, finiteness, symmetry,
and boundedness [15, 29]. So we use the symmetric JSD to
measure the similarity between two NSCT subbands in this
study. The JSD between GGDs is derived from the KLD;
mathematically, it is defined as

𝐷JS (𝑃 ‖ 𝑄) = 𝐷JS (𝑄 ‖ 𝑃)

=
1

2
(𝐷KL (𝑃 ‖ 𝑀) + 𝐷KL (𝑄 ‖ 𝑀)) ,

𝑀 =
𝑃 + 𝑄

2
.

(9)

4. The Proposed Image Fusion Technique

4.1. Fusion of the Low Frequency Coefficients. The low fre-
quency subbands represent the approximation components
of the source images. The simplest way to combine subband
coefficients is the averaging method. However, this method
easily leads to the low contrast and blurred result. To extract
more useful information from the source images, for the
low frequency coefficients, we employ the fusion rule based
on two activity level measurements, which consists of the
regional standard deviation and Shannon entropy. In prin-
ciple, the local texture features of an image are related with
the variation of the coefficients around neighborhood. On
the other hand, the entropy indicates how much information
an image contains. Thus, combining the two together can
extract more complementary information present in the
source images. The process is listed as follows:

(1) Computing the regional standard deviation𝐷𝜆(𝑥, 𝑦)

𝐷𝜆 (𝑥, 𝑦)

= √ ∑

𝑚∈𝑀,𝑛∈𝑁

𝜔 (𝑚, 𝑛) × [𝐶𝜆 (𝑥 + 𝑚, 𝑦 + 𝑛) − 𝑆𝜆 (𝑥, 𝑦)]
2
.
(10)

(2) Calculating the normalized Shannon entropy

𝐸𝜆 (𝑥, 𝑦) =
1

|𝑅|
∑

𝑖,𝑗

(𝐶
𝜆

0
(𝑖, 𝑗))

2

log (𝐶𝜆
0
(𝑖, 𝑗))

2

. (11)
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(3) Computing the weights (𝛿𝜆, 𝜉𝜆) of the standard
deviation 𝐷𝜆(𝑥, 𝑦) and the information entropy 𝐸𝜆(𝑥, 𝑦),
respectively,

𝛿𝜆 =

󵄨󵄨󵄨󵄨𝐷𝜆 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
𝛼

󵄨󵄨󵄨󵄨𝐷𝐴 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
𝛼
+
󵄨󵄨󵄨󵄨𝐷𝐵 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨
𝛼 ;

𝜉𝜆 =
𝐸𝜆 (𝑥, 𝑦)

𝐸𝐴 (𝑥, 𝑦) + 𝐸𝐵 (𝑥, 𝑦)
,

(12)

where the parameter 𝛼 is a constant, which tunes the
sharpness of fused image by adjusting the value of parameter;
it is set to 1.2 in our experiment.

Let 𝐶
𝜆

0
(𝑥, 𝑦) denote the low frequency subband coeffi-

cient at location (𝑥, 𝑦);𝜆 is input image𝐴,𝐵. Finally, the fused
image can be obtained by

𝐶
𝐹

0
(𝑥, 𝑦) = ∑

𝜆=𝐴,𝐵

[𝛿𝜆𝐶
𝜆

0
(𝑥, 𝑦) + 𝜉𝜆𝐶

𝜆

0
(𝑥, 𝑦)] . (13)

4.2. Fusion of the High Frequency Coefficients. High fre-
quency subbands correspond to detailed information in these
regions such as edges, lines, and corners. Because different
imaging modalities contain redundant and complementary
information of each other, the purpose of selection rule is
mainly to capture salient information of the source images
as much as possible. Maximum selection rule is not suitable
for medical image fusion, because it works well on this
premise that only an original image provides good pixel
at each corresponding location; thus vast complementary
information will be lost when it is used for MIF. To improve
the fusion performance, for the high frequency subbands, we
propose the fusion scheme based on weight maps which are
determined by the saliency maps. According to the fact that
there exist dependencies between the NSCT coefficients, the
high frequency coefficients are first updated by utilizing the
relationships between NSCT subbands and then combining
together by using weight maps. The process is described as
follows.

(1) Updating of the High Frequency Subband Coefficients.
First, we calculate the horizontal dependency 𝑗𝑠𝑑

𝑙,𝜃,ℎ
between

coefficients with different directions at the same scale 𝑙 as

𝑗𝑠𝑑
𝑙,𝜃,ℎ

(𝑥, 𝑦) =

𝐾

∑

𝑗=1,𝑗 ̸=𝑖

𝐷JS (𝐶𝑙,𝜃𝑖 (𝑥, 𝑦) , 𝐶𝑙,𝜃𝑗 (𝑥, 𝑦)) , (14)

where𝐾 is the total of the subbands at the 𝑙th scale.
Then we calculate the vertical dependency 𝑗𝑠𝑑

𝑙,𝜃,V
between the specified subband’s (for instance subband 𝑖)
parents and children

𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦) =

𝐾

∑

𝑗=1

𝐷JS (𝐶𝑙,𝜃𝑖 (𝑥, 𝑦) , 𝐶𝑙−1,𝜃𝑗 (𝑥, 𝑦))

+ 𝐷JS (𝐶𝑙,𝜃𝑖 (𝑥, 𝑦) , 𝐶𝑙+1,𝜃𝑗 (𝑥, 𝑦)) .

(15)

Further, the horizontal and vertical dependency compo-
nents are normalized, respectively,

𝑗𝑠𝑑
𝑙,𝜃,ℎ

(𝑥, 𝑦) =
𝑗𝑠𝑑
𝑙,𝜃,ℎ

(𝑥, 𝑦)

𝑗𝑠𝑑
𝑙,𝜃,ℎ

(𝑥, 𝑦) + 𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦)

,

𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦) =

𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦)

𝑗𝑠𝑑
𝑙,𝜃,ℎ

(𝑥, 𝑦) + 𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦)

.

(16)

Finally, the high frequency NSCT coefficients are revised
as

𝐶𝑙,𝜃 (𝑥, 𝑦)

= 𝐶𝑙,𝜃 (𝑥, 𝑦)
√1 + 𝑗𝑠𝑑

𝑙,𝜃,ℎ
(𝑥, 𝑦)

2
+ 𝑗𝑠𝑑
𝑙,𝜃,V (𝑥, 𝑦)

2
.

(17)

(2) Construction of Weight Maps. Weight maps are derived
from the saliency maps, which describe each pixel by the
saliency level of salient information. We apply Gaussian
filter to each high pass subband, which tends to assign a
high weight value to important elements such as edges and
corners. A saliency map is constructed by the local average of
the absolute value of the filter response

𝑆𝑙,𝜃 (𝑥, 𝑦) =
󵄨󵄨󵄨󵄨𝐶𝑙,𝜃 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ∗ 𝑔𝑟𝑔 ,𝜃𝑔
(𝑥, 𝑦) , (18)

where𝑔(⋅) is a Gaussian low pass filter, whose size is (2𝑟𝑔+1)×
(2𝑟𝑔 + 1), and the parameters 𝑟𝑔 and 𝜃𝑔 are set to 5. Next, the
weight maps are determined by comparison of the saliency
maps (𝑆𝑛

𝑙,𝜃
(𝑥, 𝑦), 𝑛 ∈ [𝐴, 𝐵])

𝑊
𝑛

𝑙,𝜃
(𝑥, 𝑦)

=
{

{

{

1 if 𝑆𝑛
𝑙,𝜃

(𝑥, 𝑦) = max (𝑆𝐴
𝑙,𝜃

(𝑥, 𝑦) , 𝑆
𝐵

𝑙,𝜃
(𝑥, 𝑦))

0 otherwise.

(19)

Finally, the fused subband coefficients 𝐶
𝐹

𝑙,𝜃
(𝑥, 𝑦) can be

obtained by the weighted summation

𝐶
𝐹

𝑙,𝜃
(𝑥, 𝑦) = 𝑊

𝐴

𝑙,𝜃
(𝑥, 𝑦) 𝐶

𝐴

𝑙,𝜃
(𝑥, 𝑦)

+ 𝑊
𝐵

𝑙,𝜃
(𝑥, 𝑦) 𝐶

𝐵

𝑙,𝜃
(𝑥, 𝑦) .

(20)

5. Experimental Results and Discussion

Five different data sets of human brain images are used
and the source images consist of two different modalities,
including CT/MRI, MRI/PET, and MRI/SPECT images. All
the images have the size of 256 × 256 pixels, which have
been registered by some kind of registration method as [30].
To verify the effectiveness and applicability of the proposed
fusion scheme, the results produced by the proposed method
are, respectively, compared with results of other state-of-the-
art schemes, such as discrete wavelet transform (DWT) [1],
gradient pyramid (GP) [31], principal component analysis
(PCA) [32], Intensity, Hue, and Saturation color model (IHS)
[33], guided filtering (GF) [34], the contourlet transform
(CT) [3], NSCT, the shearlet transform (ST) [35], and
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(f) (g) (h) (i) (j)

Figure 6: The fusion results of different fusion methods for the second set of CT and MRI images: (a), (b) Source images; fused images by
(c) DWT, (d) GP, (e) PCA, (f) GF, (g) CT, (h) NSCT-1, (i) NSCT-2, and (j) the proposed method.

the nonsubsampled shearlet transform (NSST) based meth-
ods. For simplicity, MIF method [12] based on pulse-coupled
neural network and modified spatial frequency in NSCT
domain is denoted as NSCT-1. NSCT based MIF method in
the scheme [36] is denoted as NSCT-2. The fusion method
[37] based on neighborhood characteristic and regionaliza-
tion in NSCT domain and NSCT based MIF method [10]
in 𝑙, 𝛼, 𝛽 color space are denoted as NSCT-3 and NSCT-
4, respectively. Accordingly, NSST based MIF method using
GGD model [21] is termed as NSST-1. NSST based fusion
scheme of the literature [38] and MIF method [39] by
utilizing the features in NSST domain are termed as NSST-2
andNSST-3, respectively. NSST based statisticalMIFmethod
[20] using HMT model is termed as NSST-4. For the NSCT
and NSST methods, we adopt the average-maximum fusion
scheme; namely, the low frequency coefficients are fused by
the average of the corresponding coefficients and the high
frequency coefficients are fused by using absolute maximum.
For allMSDmethods, the original images are all decomposed
into 4 levels with the number of the directions 2, 2, 3,
3. Additionally, the quantitative comparison based on five
image fusion quality metrics is also employed to demonstrate
the fusion performance of different methods.

5.1. Experiments on CT-MRI Image Fusion. Figure 5 shows
a fusion experiment of CT and MRI image. It can be seen
that PCA based method gives poor result relative to the other
algorithms, in which the bone structure of original CT image
is almost invisible. For the GP based method, the final image
is darker and has lower contrast, some detail information is
unclear. The results from Figures 5(c), 5(f), 5(g), 5(h), and
5(i) have some improvement to various degrees and produce

better visual effect on bone structures; however, the details
of the soft tissue regions from these methods still retain
unsharpness. By contrast, the proposed method can well
preserve the detailed features of the original images without
producing visible artifacts. Figure 6 is another example of
CT and MRI image fusion. As seen from Figures 6(c), 6(d),
6(e), and 6(f), their results have low contrast and lose a lot
of details. What is worse, there are undesirable artifacts on
the edges of these final images (see regions labeled by the red
ellipses in Figure 6). Accordingly, CT based method, other
NSCT based methods, and the proposed method provide
better visual effects with good contrast; the abundant infor-
mation of the source images can be successfully transferred to
the fused image. Both tests imply that the proposed method
is suitable for fusion of CT and MRI images.

5.2. Experiments onMRI-PET andMRI-SPECT Image Fusion.
In this section, a case of MRI and PET fusion for a 70-
year-old man affected with Alzheimer’s disease is shown. In
Figure 7, the source MRI image shows that the hemispheric
sulci is widened andmore prominent in the parietal lobes; the
corresponding PET shows that regional cerebral metabolism
is abnormal and hypometabolism heavily happens in anterior
temporal and posterior parietal regions; meanwhile the right
hemisphere is slightly more affected than the left. Here,
the proposed method is compared with other seven fusion
schemes. Obviously, the results of Figures 7(d) and 7(e) have
disadvantages with serious color distortion and low contrast.
Although the results of Figures 7(c) and 7(f) improve the
fusion performance to some extent, they are not saturated in
brightness, so that some parts are unidentifiable. Addition-
ally, for the contrast and color fidelity, the results fromFigures
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Figure 7: The fusion results of different fusion methods for the MRI and PET images: (a), (b) Source images; fused images by (c) DWT, (d)
PCA, (e) IHS, (f) GP, (g) CT, (h) NSST, (i) NSST-1, and (j) the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: The fusion results of different fusion methods for the first set of MRI and SPECT images: (a), (b) Source images; fused images by
(c) DWT, (d) GP, (e) IHS, (f) NSST-2, (g) NSST-3, (h) NSCT-3, (i) NSCT-4, and (j) the proposed method.

7(g), 7(h), and 7(i) have better fusion performance than these
methods mentioned above, but the structural information of
theMRI image is not successfully transferred to fused images.
Through the comparison of these fused results, it is found
that the proposed method can well extract the structural
and functional information from the source images and fuse
them with much less information distortion. As illustrated
in these regions highlighted by red arrows and ellipses in
Figure 7, the proposed method well preserves complemen-
tary information of different modal medical images and
achieves the best visual effect in terms of contrast, clarity, and
color fidelity.

Figure 8 is a fusion experiment of MRI and SPECT
images. The source MRI image demonstrates that tumors are
located in the left temporal region, as shown in the high signal
intensity region (the white region labeled by the right red
arrow in Figure 8(a)). From Figures 8(e), 8(f), and 8(h), the
results produced by IHS based methods are distinctly color
distortion in the lesion region. The results produced by the
DWT andGP basedmethods cannot well inherit PET image’s
functional information and produce the low contrast images
(see Figures 8(c) and 8(d)). By comparison, Figures 8(g) and
8(i) gain better results in terms of contrast and color fidelity.
However, for the spatial details, the fused result obtained by
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Figure 9: The fusion results of different fusion methods for the second set of MRI and SPECT images: (a), (b) Source images; fused images
by (c) DWT, (d) GP, (e) IHS, (f) ST, (g) CT, (h) NSST-4, (i) NSCT, and (j) the proposed method.

the proposedmethod ismore close to the originalMRI image
(see the region labeled by the left red arrow), and the spectral
features are also natural. Figure 9 provides another example
of MRI and SPECT image fusion. In this test, the proposed
method is specifically compared with the typical schemes
[20], which is the MIF method based on the statistical
dependencies between coefficients in NSST domain. From
all the fused results, it is easily observed that the proposed
method not only inherits the salient information existing in
both the original images but also hardly causes the problemof
color distortion. Through the above examples, it can be seen
that the proposed method can be extended to combine the
anatomical and functional medical images and achieves good
visual effects.

5.3. Objective Evaluation and Analysis. In addition to the
visual analysis, five fusion quality metrics, namely, mutual
information (MI) [40], entropy (EN) [41], spatial frequency
(SF), 𝑄

𝐴𝐵/𝐹 [42], and the uniform intensity distribution
(UID) [43], are employed to test the validity of the proposed
method. They reflect the fusion performance from clarity,
contrast, color distortions, and the amount of information.
MI, as an information measure for evaluating image fusion
performance, represents how much information is obtained
from the source images. The higher value of EN shows the
fused image has more information contents and the higher
value of SF indicates the final image is clearer. The index
𝑄
𝐴𝐵/𝐹 measures the amount of information transferred from

source images to the fused image, and the UID is used for the
description of uniform intensity and color distribution and
the higher UID means better color information.

The quantitative comparisons are listed in Tables 1, 2, and
3. It can be seen that, for all the indices, the proposedmethod
has a stable performance (most of values rank the first and
only a few rank the second). It shows that the objective

results based on these quality metrics also coincide with the
subjective visual perception. Particularly, for theMI values of
all tests, the proposed scheme all gets the largest value. It is
confirmed that the proposed statistical model can transform
more detailed information from the source images into the
final image by exploiting dependencies between the NSCT
coefficients. Therefore, it can be concluded that the proposed
method is effective and is suitable for medical image fusion.

5.4. Computational Complexity Analysis. To investigate the
computational complexity of different schemes, we record
the running time of different fusion algorithms used in
Figure 5 (see Table 4). All the tests are implemented by
Matlab 2014a on a PC with double Intel core i7-3770k CPU
@3.5GHz, 8GB RAM. As shown in Table 4, among all fusion
methods, the consumption time of PCA based algorithm is
the lowest, the reason of which is that it does not involve
multiscale decomposition. Additionally, DWT, GP, GF, and
CT basedmethods have also low time consumption (less than
0.08 s). However, their performance is poor. Relatively, three
methods based on NSCT are slower, which is also a common
problem of the algorithms based on NSCT. Due to using the
complex neural network and mechanism of NSCT, NSCT-
1 needs the most time (about 34 s). The proposed method
and NSCT-2 consume the similar time (17.13 s and 15.29 s).
Actually, the decomposition and reverse construction almost
cost 9/10 of the total time. Without exception, the proposed
method increases the cost of computational complexity with
utilizing NSCT tool, yet it achieves the better effect than
previous methods.

6. Conclusions

In this paper, we propose a novel NSCT based statistical
multimodal medical image fusion method, which utilizes
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Table 1: Objective evaluation results of the four different metrics for CT and MRI images.

Index DWT GP PCA GF CT NSCT-1 NSCT-2 Proposed

Figure 5

MI 1.274 1.279 1.365 1.279 1.324 1.450 1.490 1.891
EN 5.008 4.843 4.050 5.107 5.183 4.978 5.371 5.675
SF 33.22 31.08 20.52 29.83 27.67 23.52 33.41 34.86

𝑄
𝐴𝐵/𝐹 0.509 0.577 0.369 0.592 0.592 0.568 0.593 0.596

Figure 6

MI 3.077 2.521 3.663 2.729 3.831 3.916 3.949 3.962
EN 5.125 4.851 4.340 5.578 6.300 6.414 6.473 6.469
SF 22.79 19.84 19.04 20.29 29.87 30.15 30.27 31.41

𝑄
𝐴𝐵/𝐹 0.618 0.694 0.665 0.682 0.682 0.694 0.699 0.703

Table 2: Objective evaluation results of the five different metrics for MRI and PET images.

Index DWT PCA IHS GP CT NSST NSST-1 Proposed

Figure 7

MI 2.278 2.841 2.656 2.280 2.108 2.174 2.513 2.853
EN 4.573 3.707 3.125 4.561 4.242 4.148 5.080 4.768
SF 30.21 31.14 16.03 30.12 31.30 31.15 32.21 33.73

𝑄
𝐴𝐵/𝐹 0.525 0.498 0.483 0.526 0.551 0.584 0.617 0.607
UID 0.752 0.737 0.725 0.753 0.789 0.797 0.836 0.814

Table 3: Objective evaluation results of the five metrics for MRI and SPECT images.

Index DWT GP IHS NSST-2 NSST-3 NSCT-3 NSCT-4 Proposed

Figure 8

MI 2.167 2.028 2.255 2.399 2.688 2.376 2.520 2.695
EN 4.424 3.973 4.105 4.870 4.507 3.533 4.499 4.531
SF 31.89 29.57 35.06 35.28 40.17 34.79 39.78 41.20

𝑄
𝐴𝐵/𝐹 0.487 0.481 0.512 0.499 0.556 0.507 0.536 0.576
UID 0.802 0.812 0.711 0.724 0.817 0.765 0.813 0.826
Index DWT GP IHS ST CT NSST-4 NSCT Proposed

Figure 9

MI 2.485 2.113 2.872 2.480 2.532 3.076 2.784 3.083
EN 4.277 4.050 4.202 4.561 4.426 4.594 4.202 4.668
SF 31.24 29.48 31.26 35.47 40.69 39.45 40.87 41.76

𝑄
𝐴𝐵/𝐹 0.518 0.506 0.502 0.537 0.536 0.538 0.519 0.540
UID 0.793 0.679 0.714 0.783 0.799 0.806 0.801 0.817

Table 4: Computational complexity comparison of different fusion methods for CT-MRI dataset shown in Figure 5.

Methods DWT GP PCA GF CT NSCT-1 NSCT-2 Proposed
Running time (s) 0.021 0.019 0.003 0.075 1.976 33.79 15.29 17.13

GGD to fit nicely marginal distributions of the high fre-
quency coefficients and accurately measures the similarity
between two NSCT subbands by the JSD of two GGDs. The
proposed fusion rules make full use of the dependencies
between the coefficients and transfer them to the final image.
Experimental results demonstrate that the proposed algo-
rithm can effectively extract the salient information from the
source images and well combine them. Note that the fusion
methods based on NSCT lack the competitive advantage in
time consumption because of multilevel decomposition and
reconstruction process. Fast image multiscale transform tool
is the subject of future research.
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