14 research outputs found

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    Localization for mobile robots using panoramic vision, local features and particle filter

    Get PDF
    In this paper we present a vision-based approach to self-localization that uses a novel scheme to integrate feature-based matching of panoramic images with Monte Carlo localization. A specially modified version of Lowe’s SIFT algorithm is used to match features extracted from local interest points in the image, rather than using global features calculated from the whole image. Experiments conducted in a large, populated indoor environment (up to 5 persons visible) over a period of several months demonstrate the robustness of the approach, including kidnapping and occlusion of up to 90% of the robot’s field of view

    The Evaluation of Provided Methods in SLAM Problem and a Method Development in Order to Use in Multi Robot

    Full text link

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Towards Robust Place Recognition for Robot Localization

    Get PDF
    Localization and context interpretation are two key competences for mobile robot systems. Visual place recognition, as opposed to purely geometrical models, holds promise of higher flexibility and association of semantics to the model. Ideally, a place recognition algorithm should be robust to dynamic changes and it should perform consistently when recognizing a room (for instance a corridor) in different geographical locations. Also, it should be able to categorize places, a crucial capability for transfer of knowledge and continuous learning. In order to test the suitability of visual recognition algorithms for these tasks, this paper presents a new database, acquired in three different labs across Europe. It contains image sequences of several rooms under dynamic changes, acquired at the same time with a perspective and omnidirectional camera, mounted on a socket. We assess this new database with an appearance based algorithm that combines local features with support vector machines through an ad-hoc kernel. Results show the effectiveness of the approach and the value of the databas

    Map Building and Monte Carlo Localization Using Global Appearance of Omnidirectional Images

    Get PDF
    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images

    Appearance-Based Mobile Robot Localization and Map-Building in Unstructured Environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore