891 research outputs found

    Few-Shot Malware Detection Using A Novel Adversarial Reprogramming Model

    Get PDF
    The increasing sophistication of malware has made detecting and defending against new strains a major challenge for cybersecurity. One promising approach to this problem is using machine learning techniques that extract representative features and train classification models to detect malware in an early stage. However, training such machine learning-based malware detection models represents a significant challenge that requires a large number of high-quality labeled data samples while it is very costly to obtain them in real-world scenarios. In other words, training machine learning models for malware detection requires the capability to learn from only a few labeled examples. To address this challenge, in this thesis, we propose a novel adversarial reprogramming model for few-shot malware detection. Our model is based on the idea to re-purpose high-performance ImageNet classification model to perform malware detection using the features of malicious and benign files. We first embed the features of software files and a small perturbation to a host image chosen randomly from ImageNet, and then create an image dataset to train and test the model; after that, the model transforms the output into malware and benign classes. We evaluate the effectiveness of our model on a dataset of real-world malware and show that it significantly outperforms baseline few-shot learning methods. Additionally, we evaluate the impact of different pre-trained models, different data sizes, and different parameter values. Overall, our results suggest that the proposed adversarial reprogramming model is a promising direction for improving few-shot malware detection

    Malware Triage Approach using a Task Memory based on Meta-Transfer Learning Framework

    Full text link
    To enhance the efficiency of incident response triage operations, it is not cost-effective to defend all systems equally in a complex cyber environment. Instead, prioritizing the defense of critical functionality and the most vulnerable systems is desirable. Threat intelligence is crucial for guiding Security Operations Center (SOC) analysts' focus toward specific system activity and provides the primary contextual foundation for interpreting security alerts. This paper explores novel approaches for improving incident response triage operations, including dealing with attacks and zero-day malware. This solution for rapid prioritization of different malware have been raised to formulate fast response plans to minimize socioeconomic damage from the massive growth of malware attacks in recent years, it can also be extended to other incident response. We propose a malware triage approach that can rapidly classify and prioritize different malware classes to address this concern. We utilize a pre-trained ResNet18 network based on Siamese Neural Network (SNN) to reduce the biases in weights and parameters. Furthermore, our approach incorporates external task memory to retain the task information of previously encountered examples. This helps to transfer experience to new samples and reduces computational costs, without requiring backpropagation on external memory. Evaluation results indicate that the classification aspect of our proposed method surpasses other similar classification techniques in terms of performance. This new triage strategy based on task memory with meta-learning evaluates the level of similarity matching across malware classes to identify any risky and unknown malware (e.g., zero-day attacks) so that a defense of those that support critical functionality can be conducted

    CNS-Net: Conservative Novelty Synthesizing Network for Malware Recognition in an Open-set Scenario

    Full text link
    We study the challenging task of malware recognition on both known and novel unknown malware families, called malware open-set recognition (MOSR). Previous works usually assume the malware families are known to the classifier in a close-set scenario, i.e., testing families are the subset or at most identical to training families. However, novel unknown malware families frequently emerge in real-world applications, and as such, require to recognize malware instances in an open-set scenario, i.e., some unknown families are also included in the test-set, which has been rarely and non-thoroughly investigated in the cyber-security domain. One practical solution for MOSR may consider jointly classifying known and detecting unknown malware families by a single classifier (e.g., neural network) from the variance of the predicted probability distribution on known families. However, conventional well-trained classifiers usually tend to obtain overly high recognition probabilities in the outputs, especially when the instance feature distributions are similar to each other, e.g., unknown v.s. known malware families, and thus dramatically degrades the recognition on novel unknown malware families. In this paper, we propose a novel model that can conservatively synthesize malware instances to mimic unknown malware families and support a more robust training of the classifier. Moreover, we also build a new large-scale malware dataset, named MAL-100, to fill the gap of lacking large open-set malware benchmark dataset. Experimental results on two widely used malware datasets and our MAL-100 demonstrate the effectiveness of our model compared with other representative methods.Comment: 16 pages, 8 figure

    MDENet: Multi-modal Dual-embedding Networks for Malware Open-set Recognition

    Full text link
    Malware open-set recognition (MOSR) aims at jointly classifying malware samples from known families and detect the ones from novel unknown families, respectively. Existing works mostly rely on a well-trained classifier considering the predicted probabilities of each known family with a threshold-based detection to achieve the MOSR. However, our observation reveals that the feature distributions of malware samples are extremely similar to each other even between known and unknown families. Thus the obtained classifier may produce overly high probabilities of testing unknown samples toward known families and degrade the model performance. In this paper, we propose the Multi-modal Dual-Embedding Networks, dubbed MDENet, to take advantage of comprehensive malware features (i.e., malware images and malware sentences) from different modalities to enhance the diversity of malware feature space, which is more representative and discriminative for down-stream recognition. Last, to further guarantee the open-set recognition, we dually embed the fused multi-modal representation into one primary space and an associated sub-space, i.e., discriminative and exclusive spaces, with contrastive sampling and rho-bounded enclosing sphere regularizations, which resort to classification and detection, respectively. Moreover, we also enrich our previously proposed large-scaled malware dataset MAL-100 with multi-modal characteristics and contribute an improved version dubbed MAL-100+. Experimental results on the widely used malware dataset Mailing and the proposed MAL-100+ demonstrate the effectiveness of our method.Comment: 14 pages, 7 figure

    Neural malware detection

    Get PDF
    At the heart of today’s malware problem lies theoretically infinite diversity created by metamorphism. The majority of conventional machine learning techniques tackle the problem with the assumptions that a sufficiently large number of training samples exist and that the training set is independent and identically distributed. However, the lack of semantic features combined with the models under these wrong assumptions result largely in overfitting with many false positives against real world samples, resulting in systems being left vulnerable to various adversarial attacks. A key observation is that modern malware authors write a script that automatically generates an arbitrarily large number of diverse samples that share similar characteristics in program logic, which is a very cost-effective way to evade detection with minimum effort. Given that many malware campaigns follow this paradigm of economic malware manufacturing model, the samples within a campaign are likely to share coherent semantic characteristics. This opens up a possibility of one-to-many detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique to the campaign in order to detect these seemingly diverse but identically rooted variants. To address these issues, this dissertation proposes novel deep learning models, including generative static malware outbreak detection model, generative dynamic malware detection model using spatio-temporal isomorphic dynamic features, and instruction cognitive malware detection. A comparative study on metamorphic threats is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over convolutional network with global average pooling is introduced as a fundamental deep learning framework for malware detection, which captures highly complex non-linear metamorphism through translation invariancy and local variation insensitivity. Generative Adversarial Network (GAN) used as a part of the framework enables oneshot training where semantically isomorphic malware campaigns are identified by a single malware instance sampled from the very initial outbreak. This is a major innovation because, to the best of our knowledge, no approach has been found to this challenging training objective against the malware distribution that consists of a large number of very sparse groups artificially driven by arms race between attackers and defenders. In addition, we propose a novel method that extracts instruction cognitive representation from uninterpreted raw binary executables, which can be used for oneto- many malware detection via one-shot training against frequency spectrum of the Transformer’s encoded latent representation. The method works regardless of the presence of diverse malware variations while remaining resilient to adversarial attacks that mostly use random perturbation against raw binaries. Comprehensive performance analyses including mathematical formulations and experimental evaluations are provided, with the proposed deep learning framework for malware detection exhibiting a superior performance over conventional machine learning methods. The methods proposed in this thesis are applicable to a variety of threat environments here artificially formed sparse distributions arise at the cyber battle fronts.Doctor of Philosoph

    Developing a Siamese Network for Intrusion Detection Systems

    Get PDF
    Machine Learning (ML) for developing Intrusion Detection Systems (IDS) is a fast-evolving research area that has many unsolved domain challenges. Current IDS models face two challenges that limit their performance and robustness. Firstly, they require large datasets to train and their performance is highly dependent on the dataset size. Secondly, zero-day attacks demand that machine learning models are retrained in order to identify future attacks of this type. However, the sophistication and increasing rate of cyber attacks make retraining time prohibitive for practical implementation. This paper proposes a new IDS model that can learn from pair similarities rather than class discriminative features. Learning similarities requires less data for training and provides the ability to flexibly adapt to new cyber attacks, thus reducing the burden of retraining. The underlying model is based on Siamese Networks, therefore, given a number of instances, numerous similar and dissimilar pairs can be generated. The model is evaluated using three mainstream IDS datasets; CICIDS2017, KDD Cup'99, and NSL-KDD. The evaluation results confirm the ability of the Siamese Network model to suit IDS purposes by classifying cyber attacks based on similarity-based learning. This opens a new research direction for building adaptable IDS models using non-conventional ML techniques.</p
    • …
    corecore