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Abstract
Machine Learning (ML) for developing Intrusion Detection
Systems (IDS) is a fast-evolving research area that has many
unsolved domain challenges. Current IDS models face two
challenges that limit their performance and robustness. Firstly,
they require large datasets to train and their performance
is highly dependent on the dataset size. Secondly, zero-day
attacks demand that machine learning models are retrained
in order to identify future attacks of this type. However, the
sophistication and increasing rate of cyber attacks make re-
training time prohibitive for practical implementation. This
paper proposes a new IDSmodel that can learn from pair sim-
ilarities rather than class discriminative features. Learning
similarities requires less data for training and provides the
ability to flexibly adapt to new cyber attacks, thus reducing
the burden of retraining. The underlying model is based on
Siamese Networks, therefore, given a number of instances,
numerous similar and dissimilar pairs can be generated. The
model is evaluated using three mainstream IDS datasets;
CICIDS2017, KDD Cup’99, and NSL-KDD. The evaluation re-
sults confirm the ability of the Siamese Networkmodel to suit
IDS purposes by classifying cyber attacks based on similarity-
based learning. This opens a new research direction for build-
ing adaptable IDS models using non-conventional ML tech-
niques.
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1 Introduction
The number of cyber attacks is increasing at an exponential
rate [23], hence, new, non-traditional techniques are required
to cope with the increasing volume and variety of attacks.
IDS development is comprised of three stages; statistical,
knowledge-based, and ML [5, 7]. In all of these stages, large
datasets are required as a building block. However, the lack
of dataset availability and the difficulty of recording real-life
scenarios hinders the advancement of IDS.

One approach to overcome the dataset availability problem
is to build synthetic datasets with up-to-date attacks. How-
ever, this is a challenging task as it requires a considerable
amount of time to find suitable representable environments
and parameters. A second approach is to collect real-life
datasets; however, this requires preprocessing, anonymiza-
tion, and attack labelling as discussed in [20, 30].
In this paper, a new learning approach, based on One-

Shot Learning - is proposed for designing and building IDS
that can lean based on pairs similarity. To the best of the
authors’ knowledge, this approach has not been introduced
for IDS before. A few attempts have been made at apply-
ing One-Shot for malware detection based on transforming
malware to image-like structure and leveraging image-based
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models [9, 31, 33]. One-Shot learning - unlike traditional
learning techniques - requires few samples from each class
to train on, therefore, overcoming the need for large datasets.
The proposed model is designed based on ‘Siamese Network’.
Based on the Siamese Network learning paradigm, it is well
suited as a One-Shot learning technique. Siamese Networks
are trained to learn pair similarities rather than distinctive
features for each class. A pair is composed of two instances
and a similar or dissimilar label. Wang et. al define a training
pair as “constituted by an exemplar and an instance, and
response ground-truth” [36]. The presented architecture is
evaluated based on how accurately the model can classify
attacks based solely on similarity. This opens a research direc-
tion that leverages similarity-based learning to build flexible
IDS. Three IDS benchmark datasets are used for evaluation.

The contributions of this paper are threefold:

• We propose a novel IDS approach based on One-Shot
Learning, which to the best of the authors’ knowledge,
is the first application for IDS.

• We utilise a Siamese Network model to classify cy-
ber attacks based on similarities. Therefore, this will
reduce the dataset generation burden and help in de-
veloping IDSs that can cope with the new attack pace.

• We evaluate the proposed Siamese Network model on
three benchmark IDS datasets; CICIDS2017, NSL-KDD
and KDD Cup’99.

The rest of the paper is organised as follows; Section 2
explains the ML background to this manuscript, Section 3
discusses the proposedmodel architecture. Section 4 presents
the experimental findings and analysis of the results. The key
takeaways, limitations, and recommendations are presented
in Section 5. Finally, the paper concludes in Section 6.

2 Related Work
ML techniques dominated the IDS research in the past decade.
MLmodels can be supervised, unsupervised, or semi-supervised.
ML models are trained for an intended use-case. For exam-
ple, ML models can be trained to predict a certain output,
classify classes, etc. ML relies on mathematical models for
this training process. For this training process to be effective,
large datasets are required.

Resolving the relation between the ML model size and the
required amount of data has been a prominent research area
in the past decade. This problem affects the development of
robust and up-to-date IDS. Given the fact that publicly avail-
able datasets offer limited attack coverage, IDS development
has suffered.

Datasets are often depicted as the bottleneck for develop-
ing robust ML models due to the following reasons [25]:

1. Gathering large realistic datasets is a complex task and
requires a lot of manual labour.

2. Using synthetic or deprecated datasets makes it diffi-
cult for the developed model to fit in real-life deploy-
ments.

3. Training classical ML models with small datasets ex-
poses the models to over-fitting problems.

4. Continuous generation of datasets to cope with emerg-
ing attacks.

To overcome the need to build new datasets for detect-
ing unknown attacks, Sun et al. [29] proposed a Bayesian
probabilistic model to detect Zero-Day attack paths. They
visualised attacks in a graph-like structure and introduced a
prototype to identify Zero-Day attacks. Lake et al. [14] pro-
posed the use of probabilistic induction to generalise image
learning techniques. The idea is based on mimicking human
behaviour and their ability to generalise from one example.

Li et. al [15] discuss the large dataset requirements and the
difficulty to obtain such datasets. Furthermore, traditional
approaches require an extensive amount of time to train a
single model. Online Learning provides a potential solution
for these problems and focuses on reducing the computation
time needed to adapt the model by updating the last layer
weights [26], however, caution must be taken when utilising
these approaches as models could shift to undesirable states.
While viable, online learning is not suitable to learn from
limited datasets, nor detect unknown attacks.
One-Shot learning focuses on learning new classes from

only one - or few - examples. In this work, a One-Shot learn-
ing is applied to the intrusion detection problem and pro-
posed a model that uses Siamese Networks to learn attack
instance similarities.
One of the most popular ML techniques, and a building

block of other ML models including Siamese Netowkes, is
Artificial Neural Network (ANN). ANN is inspired by the
human brain, thus its building block is the artificial neurons.
An artificial neuron is composed of three (a) input, (b) output,
and (c) activation function [37]. Typically, an ANN is com-
posed of an input layer, an output layer, and zero or more
hidden layers. Each of these layers is composed of multiple
neurons. Neurons in each layer are connected to the ones in
the following layer using connections called ‘weights’.

An ANN is trained (the weights are adjusted) to best min-
imise the loss. Once the ANN is trained, the input neurons
values are propagated using weights/connections and acti-
vation functions to correspond to the desired output [37].
Siamese Networks, as further discussed in Section 3, are
built using two ANN networks. The two networks are called
‘Twin’ networks, which can be visualised in Figure 1-B.

Siamese Network usage has advanced in various domains.
For example, Koch et al. [13] and Jiao et al. [11] developed it
for image processing usage. Although Image and Video pro-
cessing has been the prominent domain, Siamese Networks
are used in the medical domain [1] and Natural Language
Processing (NLP) domain [22, 38]. They have been used for
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reducing dimensionality by Moustakidis and Karlsson [19].
To the best of the authors knowledge, this is the first pro-
posed work using Siamese Networks to build IDS.

3 Proposed IDS Model
The proposed model leverages similarity-based learning and
relies on a Siamese Network model. Bromley et al. [2] are the
first to propose the use of Siamese Network for solving the
problem of hand-written signatures matching. A Siamese
Network is composed of two identical ANN called twin net-
works. These twin networks share the same weights and
they train simultaneously. This network, unlike other ML
techniques, is trained to decide whether a given pair is simi-
lar or not. The output is the degree of similarity which can
also be squashed to a binary similar/dissimilar output.
Figure 1 visualises the overall process comprising three

sub-processes. Figure 1-(A) is concerned with preparing
datasets for training and evaluation. Having a dataset with
𝑁 classes, each class is split into two parts. The first part
is used for training and the second is used for testing (i.e.,
50% for generating training pairs and 50% for generating
testing pairs). Unlike traditional ML techniques, the training
instances are not fed directly to the network to learn from.
As aforementioned, Siamese Networks train to decide on
pair similarity, thus the training samples are passed into the
model as pairs with their labels ‘similar’ or ‘dissimilar’. Using
the first half of each class, similar and dissimilar pairs are
randomly generated. The generation of pairs must ensure
the following constraints: (a) The uniqueness of pairs (i.e.,
no duplicates). (b) The balanced representation of all combi-
nations (i.e., equal number of pairs for each combination of
similar and dissimilar pairs). (c) The number of classes (𝑁 )
must be more than 2, otherwise the network will converge
to a 50% similarity.

Once the training batch is generated, the Siamese Network
is trained for 𝑛 iterations (Figure 1-(B)). The value of 𝑛 is
chosen using ANN parameter optimisation. Based on the
monitoring the training and validation loss curves, the num-
ber of iterations at which the network converges is chosen.
For this study, 𝑛 = 2000, which is decided by hyperparameter
optimisation and monitoring the loss curves. The training
uses Adam optimiser [12, 24] and the loss is calculated using
Equation 1. This loss function is proposed by Chopra, Had-
sell, and LeCun [4] and is called “constructive loss” where
(𝑎, 𝑏)𝑖 is the 𝑖𝑡ℎ pair in the batch 𝐵,𝑦 (𝑎, 𝑏) is the label (similar
(1) or dissimilar (0)), 𝑑𝑖 is the distance (similarity) calculated
by the network and𝑚 > 0 is a margin. In this work, the mar-
gin is set to𝑚 = 1 [4]. The constructive loss is best suited for
the Siamese network training since it limits the contribution
of dissimilar pairs to the total loss if the difference exceeds
𝑚. Therefore, if the distance between the dissimilar pairs is
large, it does not bias the overall loss.

13

A- Dataset	Split

C- Evaluation

Dataset
	( 	Classes)	

Split	each	class
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Figure 1. Proposed Similarity-Based IDS Model

𝑙𝑜𝑠𝑠 =

𝐵∑
𝑖=1

𝑦 (𝑎, 𝑏)𝑖 ∗ (𝑑𝑖 )2 + (1 −𝑦 (𝑎, 𝑏)𝑖 ) ∗ (𝑚𝑎𝑥 (𝑚 −𝑑𝑖 , 0))2

(1)
Finally, the model is evaluated (Figure 1-(C)). Relying on

the similarity check, the evaluation is performed as follows.
Given a random testing instance 𝑥 , the instance is paired
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with a random instance from each class (i.e. For each 𝑛 ∈ 𝑁 ,
a pair (𝑥 , instance ∈ 𝑛) is used). The similarity of all pairs is
calculated, and an instance 𝑥 is given the classification label
based on the class of the most similar pair (i.e., the closest
pair). Since the pairing is based on randomness, multiple in-
stances are used from each class and an aggregation method
is used to get the classification label (i.e., given a random
testing instance 𝑥 , 𝑥 is paired with a random instance from
each class multiple times ( 𝑗 ) and the results are aggregated
using majority voting).

4 Experiments and Results
The model discussed in Section 3 is evaluated using three
IDS benchmark datasets. These datasets are CICIDS2017 and
NSL-KDD. Moreover, KDD Cup’99 is used in comparison
to the NSL-KDD to assess the impact of having clean data
when generating the pairs to train the model.

The CICIDS2017 dataset [28] is a recent dataset gener-
ated by the Canadian Institute for Cybersecurity (CIC). The
CICIDS2017 dataset comprises up-to-date benign, insider,
and outsider cyber attacks. Using the provided ‘.pcap’ files,
bidirectional flow features are generated and instances are
labeled.
Although old, the KDD Cup’99 [6] is still considered the

classic benchmark dataset used in evaluating IDS. More than
60% of the research in the past years (2008 - 2020) is evaluated
using KDD’99 [7]. KDD Cup’99 covers 4 attack classes along-
side normal activity. The attacks contained in the dataset
are: Denial of Service (DoS), Root to Local (R2L), User to
Root (U2R) and probing.

The KDD Cup’99 dataset is relatively large, however, the
provider published a reduced subset of ~10% [34]. For the
purposes of evaluation, only the smaller subset is used to
ensure the applicability of the proposed Siamese Network to
learn from limited data.

The NSL-KDD [3] dataset is proposed by the CIC to over-
come the problems of the KDD Cup’99 dataset discussed by
Tavallaee et al. [32]. Similar to KDD Cup’99, NSL-KDD cov-
ers 4 attack classes alongside normal activity. The NSL-KDD
is used for evaluation to observe the effect of enhancing and
filtering a dataset on the similarity learning and performance.

The NSL-KDD and KDD Cup’99 are already preprocessed
and provided in 42 features. The CICIDS2017 has 31 bidirec-
tional flow features.
As aformentioned, ANN is used as the building block of

Siamese twin networks. The optimal netowrk architecture
based on hyper parameter optimisation (number of hidden
layers and neurons) for the datasets is (bold: input, italic:
output of Siamese Network before similarity calculation, Dr:
Dropout layer):

• CICIDS2017:
31:25:Dr(0.1):20:Dr(0.05):15

• NSL-KDD - KDD Cup’99:
118:98:Dr(0.1):79:Dr(0.1):59:Dr(0.1):39:Dr(0.1):20

4.1 CICIDS2017 Results
The Confusion Matrix (CM) of the classification for the CI-
CIDS2017 is presented in Table 1. The results is obtained
when 𝑗 = 5 pairs are used. As demonstrated, based only on
pair similarity, the overall accuracy is 83.74%, which rises
to 84.71% when 𝑗 = 30, as shown in Table 2. The different
attack classes detection accuracies are 96.08%, 75.17%, 80.05%
and 76.55% respectively. Moreover, the low false negatives
are presented in the first column. Also, a low false positive
rate for Normal (0.05%, 2.6%, 1.87% and 4.62%) for the attack
classes, respectively.

Table 2 demonstrates the overall accuracy, TNR, and FPR
when using different 𝑗 pairs when aggregating the results
using majority voting. Two observations are noted. (a) Using
5 pairs results in a distinctive rise compared to using 1 pair
in both the overall accuracy (from 74.55% to 83.74%) and
the TNR (from 70.43% to 90.87%). The is due to the instance
selection randomness which has a high influence when only
1 pair is used. (b) Using more than 5 pairs improves the
accuracy but with a small margin (~1%).

Table 1. CICIDS2017 Classification Confusion Matrix (5
pairs)

Predicted Class

Correct Normal DoS
(Hulk)

DoS
(Slowloris) FTP SSH Overall

Normal 5452
(90.87%)

3
(0.05%)

156
(2.6%)

112
(1.87%)

277
(4.62%)

83.74%DoS
(Hulk)

139
(2.32%)

5765
(96.08%)

24
(0.4%)

13
(0.22%)

59
(0.98%)

DoS
(Slowloris)

914
(15.23%)

1
(0.02%)

4510
(75.17%)

71
(1.18%)

504
(8.4%)

FTP 790
(13.17%)

2
(0.03%)

95
(1.58%)

4803
(80.05%)

310
(5.17%)

SSH 973
(16.22%)

0
(0%)

227
(3.78%)

207
(3.45%)

4593
(76.55%)

Table 2.CICIDS2017 ClassificationAccuracy UsingDifferent
𝑗 Votes

No Votes Overall Normal
( 𝑗 ) Accuracy TNR FPR

1 74.55% 70.43% 29.57%
5 83.74% 90.87% 9.13%
10 84.54% 92.58% 7.42%
15 84.63% 93.07% 6.93%
20 84.69% 93.55% 6.45%
25 84.69% 93.73% 6.27%
30 84.71% 93.85% 6.15%

4.2 KDD Cup’99 and NSL-KDD Results
The CM of the classification for the KDD Cup’99 dataset
is presented in Table 3. As shown, the overall accuracy is
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87.99% with a small portion of malicious traffic misclassified
as normal (0.1%, 0.97%, 0.27% and 8% for the attack classes,
respectively).
Similar to the results presented in Section 4.1, using 5

pairs results in a rise in the accuracy and TNR as outlined in
Table 4.

Table 3. KDD Cup’99 Classification Confusion Matrix (5
pairs)

Predicted Class
Correct Normal DoS Probe R2L U2R Overall

Normal 4423
(73.72%)

9
(0.15%)

492
(8.2%)

979
(16.32%)

97
(1.62%)

87.99%DoS 6
(0.1%)

5920
(98.67%)

64
(1.07%)

10
(0.17%)

0
(0%)

Probe 58
(0.97%)

254
(4.23%)

5453
(90.88%)

222
(3.7%)

13
(0.22%)

R2L 16
(0.27%)

0
(0%)

39
(0.65%)

5786
(96.43%)

159
(2.65%)

U2R 480
(8%)

0
(0%)

685
(11.42%)

21
(0.35%)

4814
(80.23%)

Table 4. KDD Cup’99 Classification Accuracy Using Differ-
ent 𝑗 Votes

No Votes Overall Normal
( 𝑗 ) Accuracy TNR FPR

1 82.03% 69.27% 30.73%
5 87.99% 73.72% 26.28%
10 88.26% 73.67% 26.33%
15 88.29% 73.63% 26.37%
20 88.26% 73.65% 26.35%
25 88.23% 73.6% 26.4%
30 88.24% 73.6% 26.4%

Training the Siamese Network model on the NSL-KDD
dataset, which is an improved dataset based on the KDD
Cup’99 (filtered and removed duplicates), did not show a
significant rise in the classification results. This is owed
to the randomness of pair selection and the Siamese Net-
work learning approach. Since the Siamese Network learns
from similarities, not specific class features, it can overcome
the balancing and duplicate issues. The randomisation of
choosing the training batch pairs and ensuring the balanced
representation of class pairs conribute to this as well.
The CM of the NSL-KDD dataset is presented in Table 5.

The overall accuracy increased to 91.01% with around the
same False Negative rates.

Table 5. NSL-KDD Classification Confusion Matrix (5 pairs)

Predicted Class
Correct Normal DoS Probe R2L U2R Overall

Normal 5187
(86.45%)

47
(0.78%)

300
(5%)

315
(5.25%)

151
(2.52%)

91.01%DoS 144
(2.4%)

5621
(93.68%)

217
(3.62%)

16
(0.27%)

2
(0.03%)

Probe 159
(2.65%)

643
(10.72%)

5133
(85.55%)

44
(0.73%)

21
(0.35%)

R2L 227
(3.78%)

0
(0%)

31
(0.52%)

5669
(94.48%)

73
(1.22%)

U2R 214
(3.57%)

0
(0%)

92
(1.53%)

2
(0.03%)

5692
(94.87%)

Table 6. NSL-KDD Classification Accuracy Using Different
𝑗 Votes

No Votes Overall Normal
( 𝑗 ) Accuracy TNR FPR

1 86.61% 80.47% 19.53%
5 91.01% 86.45% 13.55%
10 91.1% 86.45% 13.55%
15 91.17% 86.4% 13.6%
20 91.24% 86.47% 13.53%
25 91.26% 86.42% 13.58%
30 91.3% 86.53% 13.47%

It is important to note that, compared to recent deep learn-
ing models that classify cyber attack classes using feature
learning, the Siamese Network model demonstrates its ef-
fectiveness. KDD Cup’99 overall accuracy using the Siamese
network model reaches 88% compared to 92.6% in [35] and
99.8% in [27]. However, based solely on similarity-based
learning, the true positive rates are 98.67%, 90.88%, 96.43%,
and 80.23% for DoS, Probe, R2L and U2R, respectively. These
results outperform the use of ANNs in [35] where the detec-
tion rates for the same attack classes are 93.9%, 73.2%, 24.3%,
and 15.5% and 99.9%, 98.9%, 96.9%, and 75% in [27].
Similarly, for the NSL-KDD dataset, recent research re-

ported an overall accuracy of 83.83%when using an ensemble
DL model [10] and 77.8% in [35], while the overall accuracy
reported in this paper is 91.01%, with a detection rate of
93.68%, 85.55%, 94.48%, and 94.87% for the attack classes re-
spectively. Another paper [16] that uses a convolution neural
network to classify attacks in the NSL-KDD dataset, reports
a true posite rate of 86.63% for DoS, 83.73% for Probe, 35.15%
for R2L, and 23.50% for U2R, compared to 93.68%, 85.55%,
94.48%, and 94.87% in this work.
Finally, the CICIDS2017 overall accuracy reaches 84% us-

ing the Siamese network model, compared with 96% in [8].
The true posite rate of FTP and SSH classes is 80.05% and
76.55% compared with 98% and 77% in [8] and 0% and 3.1%
in [35].
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5 Discussion and Limitations
In this section, the main takeaways are discussed, based
on the proposed model in Section 3 and the results pre-
sented in Section 4. Limitations and recommendations of
using Siamese Network are provided.

5.1 Key Takeaways
• Datasets Usage: Siamese Networks prove their ability
to learn from pairs similarity, thus the ability to learn
from few instances. This lessens the burden of collect-
ing large amounts of data and labelling it. Secondly, it
accelerates the process of having an IDS model trained
to classify new attacks.

• Classes’ Representatives: The optimal method of
choosing instances to represent each class to accelerate
the training and evaluation processes solely depending
on pairs is still a known and open research question in
literature [18]. Therefore, instead of choosing random
instances to calculate similarity, class representatives
could be used.

• Classes’ Representatives Randomness: Since the
evaluation of the Siamese Network is based on select-
ing random pairs, it is recommended to choose multi-
ple random instances from each class. Voting is then
used to aggregate the results.

• Class Instances Distinctiveness: To ensure the cor-
rectness of the similarity learning, instances that are
collected from each attack class and normal scenarios
should be distinctive. The more distinctive the class
instances are, the more effective the Siamese Network
will be at detection.

5.2 Limitations
• Pairs Selection: When generating training batches
for the Siamese Networks, it is key to identify the best
pairing technique. Training with all pairs combina-
tions is often not practical. Current research uses a
random choice of pairs with the constraint of having
an equal number of similar and dissimilar pairs. How-
ever, a choice of more distinctive pairs could enhance
the accuracy of the model and accelerate its conver-
gence.

• Finding ANNArchitecture: Finding a suitable ANN
architecture could be challenging. An architecture that
suits one dataset might not suit another, however, the
modality of the model presented in this paper renders
it extendable and not tightly coupled with a partic-
ular ANN architecture. Furthermore, grid search or
random search can be used to identify the optimal
parameters [17].

6 Conclusion and Future Work
This paper proposed a novel Siamese Network-based model
for IDS. The model leverages similarity-based learning to
enable training using limited instances and allows the appli-
cability of building flexible IDS. This is the first IDS model
based on One-Shot learning and similarity-based learning.
Given a dataset, the model is trained using pairs and is used
to classify cyber attacks. The model is evaluated using three
IDS benchmark datasets, namely; CICIDS2017, NSL-KDD
and KDD Cup’99.

In the experiments, a careful consideration must be given
when creating the training set, ensuring an equal number
of training pairs for every class combination. This, in turn,
brought its own challenges with an exploding number of
combinations between all instances. To minimise this effect,
distinct pairs were chosen to create large batches in the re-
gion of 30,000 pairs [13, 21]. During the evaluation, similarity
comparison using a single point for each class resulted in
noisy predictions due to randomness. This behaviour was
avoided by choosing multiple random instances from each
class and aggregating using majority voting.
The results of the Siamese Network demonstrated high

classification performance. The similarity-based model was
able to classify with an accuracy reaching 84% for the CI-
CIDS2017, 88% for the KDD Cup’99 while for the NSL-KDD
the accuracy reached over 91%. Although the proposedmethod
classify attacks based on similarity only, compared to other
ML techniques that train on class discriminative features,
the Siamese Network classification performance falls inline
with recent research.

These results demonstrate the ability of the proposed archi-
tecture to learn from similarities. This opens a new research
direction for IDS that can adapt to new cyber attacks.
Future work involves evaluating the models using other

datasets. Moreover, proposing other applications for One-
Shot learning in the Cyber-Security domain. The code will
be made available through a GitHub repository.
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