
   

 
Neural Malware Detection 

Sean Park 
 

 

 

 

 

A dissertation submitted in fulfilment of the requirements 

for the degree of 

Doctor of Philosophy 

 

 
Internet Commerce Security Laboratory 

Federation University 
December 2019 

 

 

 

  



   

Table of Contents 
Declaration ...................................................................................................................... i 

Abstract .......................................................................................................................... ii 

Acknowledgements ...................................................................................................... iv 

List of Publications ........................................................................................................ v 

General Declaration – Published works ....................................................................... vi 

List of Figures ............................................................................................................. viii 

List of Tables ............................................................................................................... xii 

Acronyms .................................................................................................................... xiii 

Chapter 1: Introduction ........................................................................................... 1 

1.1 Background .................................................................................................... 2 

1.1.1 Static Analysis ....................................................................................... 5 

1.1.2 Dynamic Analysis .................................................................................. 5 

1.1.3 Taint Analysis ........................................................................................ 6 

1.1.4 Symbolic Execution ............................................................................... 7 

1.1.5 Concolic Analysis .................................................................................. 8 

1.2 Motivation ..................................................................................................... 8 

1.3 Research Challenges .................................................................................... 11 

1.4 Research Objectives .................................................................................... 13 

1.5 Contributions ............................................................................................... 14 

1.6 Structure of the Thesis ................................................................................. 17 

Chapter 2: Literature Review ................................................................................ 19 

2.1 Malware Evolution ...................................................................................... 20 

2.2 Deep Learning ............................................................................................. 22 

2.3 Traditional Machine Learning Methods for Malware Detection ................. 27 

2.4 Deep Learning Methods for Malware Detection ......................................... 34 

2.5 Understanding Raw Binary Executables ..................................................... 37 



   

2.6 Resiliency against Adversarial Attacks ....................................................... 41 

2.7 Metamorphism ............................................................................................. 43 

2.8 Research Challenges .................................................................................... 44 

2.9 Theoretical Background .............................................................................. 46 

2.10 Conclusion ................................................................................................... 48 

Chapter 3: Generative Static Malware Detection .................................................. 49 

3.1 Introduction ................................................................................................. 50 

3.2 Method ......................................................................................................... 52 

3.2.1 Static Features ...................................................................................... 52 

3.2.2 Adversarial Autoencoder ..................................................................... 54 

3.2.3 Semantic Hashing ................................................................................ 57 

3.3 Evaluation .................................................................................................... 57 

3.3.1 Static Sample Dataset .......................................................................... 57 

3.3.2 Static Detection Result ........................................................................ 60 

3.3.3 Static Detection Analysis ..................................................................... 60 

3.3.4 Theoretical Analysis ............................................................................ 62 

3.4 Conclusion ................................................................................................... 63 

Chapter 4: Generative Dynamic Malware Detection ............................................ 65 

4.1 Introduction ................................................................................................. 66 

4.2 Method ......................................................................................................... 68 

4.2.1 Dynamic Features ................................................................................ 69 

4.2.2 Adversarial Autoencoder with Multi-Dimensional Input .................... 71 

4.2.3 Mean Squared Error Metric ................................................................. 74 

4.3 Evaluation .................................................................................................... 74 

4.3.1 Dynamic Sample Dataset ..................................................................... 74 

4.3.2 Dynamic Detection Result ................................................................... 76 

4.3.3 Dynamic Detection Analysis ............................................................... 78 



   

4.4 Conclusion ................................................................................................... 80 

Chapter 5: Instruction Cognitive Malware Detection ........................................... 81 

5.1 Introduction ................................................................................................. 82 

5.2 Methodology ................................................................................................ 84 

5.2.1 Transformer Network .......................................................................... 84 

5.2.2 Model Architecture .............................................................................. 85 

5.2.3 Detection Analysis ............................................................................... 87 

5.3 Evaluation .................................................................................................... 88 

5.3.1 Instruction Cognitive Dataset .............................................................. 88 

5.3.2 Model Performance ............................................................................. 89 

5.3.3 False Positive Complexity ................................................................... 90 

5.4 Conclusion ................................................................................................... 91 

Chapter 6: Threat Hunting against Metamorphic Threats ..................................... 92 

6.1 Introduction ................................................................................................. 93 

6.2 Malware Triage Methods ............................................................................. 95 

6.2.1 K-Nearest Neighbour ........................................................................... 96 

6.2.2 HDBSCAN (Hierarchical Density-Based Spatial Clustering of 

Applications with Noise) ..................................................................................... 96 

6.2.3 SDHASH (Similarity Digest Hash) ..................................................... 96 

6.2.4 Adversarial Auto-Encoder ................................................................... 97 

6.3 Evaluation .................................................................................................... 97 

6.3.1 Metamorphic Malware Dataset ........................................................... 97 

6.3.2 Instruction Feature ............................................................................... 98 

6.3.3 Evaluation Criteria ............................................................................... 99 

6.3.4 Malware Triage Benchmarking Results ............................................ 100 

6.4 Conclusion ................................................................................................. 101 

Chapter 7: Conclusion ......................................................................................... 103 



   

7.1 Summary of Contributions ........................................................................ 103 

7.2 Future Works ............................................................................................. 105 

References ................................................................................................................. 106 

Appendix ................................................................................................................... 119 

Generative Static Malware Detection: Detailed Results ....................................... 119 

Generative Dynamic Malware Detection: Detailed Results .................................. 121 

Instruction Cognitive Malware Detection: Detailed Results ................................. 123 

Comparative Study on Metamorphic Threats: Detailed Results ........................... 126 

 

 



   i 

Declaration 
This thesis is my own work and has not been submitted in any form for another degree 

or diploma at any university or other institute of tertiary education. Information derived 

from the published and unpublished work of others has been acknowledged in the text 

and a list of references is given.  

 

 

Sean Park 

December 2019  

 

  



   ii 

Abstract 
At the heart of today’s malware problem lies theoretically infinite diversity created by 

metamorphism. The majority of conventional machine learning techniques tackle the 

problem with the assumptions that a sufficiently large number of training samples exist 

and that the training set is independent and identically distributed. However, the lack 

of semantic features combined with the models under these wrong assumptions result 

largely in overfitting with many false positives against real world samples, resulting in 

systems being left vulnerable to various adversarial attacks. 

 

A key observation is that modern malware authors write a script that automatically 

generates an arbitrarily large number of diverse samples that share similar 

characteristics in program logic, which is a very cost-effective way to evade detection 

with minimum effort. Given that many malware campaigns follow this paradigm of 

economic malware manufacturing model, the samples within a campaign are likely to 

share coherent semantic characteristics. This opens up a possibility of one-to-many 

detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique 

to the campaign in order to detect these seemingly diverse but identically rooted 

variants. 

 

To address these issues, this dissertation proposes novel deep learning models, 

including generative static malware outbreak detection model, generative dynamic 

malware detection model using spatio-temporal isomorphic dynamic features, and 

instruction cognitive malware detection. A comparative study on metamorphic threats 

is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over 

convolutional network with global average pooling is introduced as a fundamental deep 

learning framework for malware detection, which captures highly complex non-linear 

metamorphism through translation invariancy and local variation insensitivity. 

Generative Adversarial Network (GAN) used as a part of the framework enables one-

shot training where semantically isomorphic malware campaigns are identified by a 

single malware instance sampled from the very initial outbreak. This is a major 

innovation because, to the best of our knowledge, no approach has been found to this 

challenging training objective against the malware distribution that consists of a large 

number of very sparse groups artificially driven by arms race between attackers and 
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defenders. In addition, we propose a novel method that extracts instruction cognitive 

representation from uninterpreted raw binary executables, which can be used for one-

to-many malware detection via one-shot training against frequency spectrum of the 

Transformer’s encoded latent representation. The method works regardless of the 

presence of diverse malware variations while remaining resilient to adversarial attacks 

that mostly use random perturbation against raw binaries. 

 

Comprehensive performance analyses including mathematical formulations and 

experimental evaluations are provided, with the proposed deep learning framework for 

malware detection exhibiting a superior performance over conventional machine 

learning methods.  The methods proposed in this thesis are applicable to a variety of 

threat environments where artificially formed sparse distributions arise at the cyber 

battle fronts.  
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Chapter 1:  Introduction 
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Cyber-attacks [1] have been increasingly prevalent over benign internet community 

ever since the dawn of internet. The majority of cyber-attacks consist of a complex life 

cycle, which includes exploitation of software vulnerabilities, infiltration into the 

victim’s machine, and exfiltration of information. Malware [2] plays a crucial role in 

this, enabling automatic execution at each step of the cyber-attack while evading 

detections by security software. From a cyber-attack defender’s point of view, the 

fundamental goal is to identify the nature of arbitrary software to determine the 

maliciousness of the code and apply appropriate detection or prevention mechanisms.  

This is a challenging task in current threat landscape due to the volume of the samples 

to investigate, increased complexity of the code, and usage of obfuscation techniques 

[3] [4] [5]. In this chapter, we describe the background, scope and motivations, research 

challenges, research objectives, and overview of the contributions. 

1.1 Background 

 

Figure 1.1. source: https://www.av-test.org/en/statistics/malware/ 
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As shown in Figure 1.1, the volume of malware has sharply increased in the last decade 

with the next year’s number expected to exceed 1 trillion based on the statistics 

provided by one of the AV benchmarking firms, AV-TEST. 

 

The complexity of the malware code has dramatically increased in a battle against anti-

malware systems. For instance, Cerber Windows malware has evolved over the past 

few years to evade detection systems by constantly mutating its code as shown in Figure 

1.2. 

 

Figure 1.2. The evolution of Cerber malware family running in Windows operating system. Each 

horizontal line visualises the sequence of instructions for a Cerber variant. The figure shows 258 

unique Cerber variants. 

Internet Security Threat Report Volume 24 published by Symantec in 2019 [6] 

demonstrates increased diversity in malware distribution including formjacking that 

targets payment data, crytojacking that surreptitiously mines cryptocurrencies, constant 

ransomware prevalence, continued targeted attacks, attacks on vulnerable cloud 
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systems, and IoT infections. Not only lies the diversity in the number of malware 

families, but also in the code patterns as shown in Figure 1.2.  

 

In a nutshell, current malware detection problem is summarised with scalability of 

analysis, complexity of patterns, and diversity. Firstly, the sheer volume of incoming 

samples exponentially increases every year where automated precision detection is 

required. Particularly this scalability problem renders triaging probabilistically 

suspicious samples increasingly important in defence pipeline. Secondly, the key 

observation in malware domain is that the complexity of the static and dynamic pattern 

has significantly increased after decades of anti-cognition evolution that involves 

encryption, oligomorphism, polymorphism, and metamorphism. Combined with the 

scale of the volume, the malware analysis complexity exacerbates the malware problem, 

which then accelerates the need for highly accurate detection. Finally, the arms race 

between detection and evasion created a giant problem space where various custom 

anti-cognition scripts generate a theoretically infinite number of different malware 

samples. This diversity fundamentally defines the silent battle between the attackers 

and the defenders today. 

 

Program cognition is an understanding of a given software sample, which can be as 

deep as cracking the hidden encryption key embedded within a suspicious file, or as 

simple as grouping samples based on their statistical characteristics. Deep program 

analysis such as malware reverse engineering has a great value in understanding the 

purpose of the software. At the same time, providing an accurate and timely detection 

covering a large number of malware variants forms a significant part of program 

cognition. Program cognition introduces extra complexity compared to the analysis of 

legitimate software due to the obfuscation and anti-analysis techniques deployed in 

various levels to hide the nature of the code. Anti-cognition techniques such as 

obfuscation and anti-analysis not only makes it difficult to analyse the code, but they 

also thwart the detection and automated analysis. The following sub-sections provide 

an overall insight into how program cognition can be accomplished in the presence of 

anti-cognition.  
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1.1.1 Static Analysis 

One of the primary analysis methods is static analysis that analyses the program by 

inspecting the code line by line without executing it. Unlike dynamic analysis, static 

analysis enables analysts to explore all possible control flow paths without being 

restricted to the evaluated control paths that would have been executed at runtime. 

However, static analysis passes the burden of anti-cognition problem to the analysts 

whereas a large part of the anti-cognition problem is automatically circumvented in 

dynamic analysis.  

 

The fundamental semantic building blocks that static analysis needs to find in order to 

achieve reversing goals include control flow graph (CFG) and data flow graph (DFG) 

from which high level design constructs and purpose of the program can be derived. 

1.1.2 Dynamic Analysis 

Dynamic analysis is a process to analyse a program by executing it in a controlled 

environment such as virtual machine or emulated machine, observing the behaviour 

and extracting information enough to make the decision of maliciousness of the 

program and to create actionable intelligence such as a pattern for detection and a 

remote location for malicious traffic.  

 

Modern program logics are divided into modules that share similar functionality in 

order to split the load of programming complexity. Rather than tracing the program 

instruction by instruction, it is naturally a much more efficient to monitor Application 

Programming Interface (API), which is a set of entry points to the functions 

implemented in each module. The monitoring of function calls provides a quick 

overview of the program’s behaviour towards system resources such as file system, 

registry, network, and processes. These activities then help analysts to find high level 

design constructs and can be translated into the purpose of the program. Function call 

monitoring can be implemented using various hooking techniques within a virtual 

machine, or setting the trigger rules in binary instrumentation [7].  

 

Although dynamic analysis efficiently reveals surface level design features of the 

program, it fundamentally lacks in identifying all control flow paths as it runs through 

a subset of the code blocks during execution. This poses a significant problem in 
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reversing since it fails to discover a logic bomb [8]  that will get activated at later time, 

and time-based mutation logic such as random domain generation algorithm (DGA) [9]. 

For example, the malware used in 2013 South Korea cyber-attack that simultaneously 

paralysed multiple financial services network and broadcasting systems was designed 

to get activated at a specific time [10]. Dynamic analysis approach will fail to analyse 

the piece of code that gets unpacked and executed when the predefined time is triggered. 

In addition, dynamic analysis is vulnerable to anti-analysis techniques with which the 

malware shows a convoluted behaviour and therefore prevents program analysis once 

it finds itself running within a controlled environment [7]. For example, malware can 

detect the analysis environment and cease its execution by fingerprinting various 

artifacts exposed by analysis platforms such as the debugger flag enabled for a 

debugging session, and the specific name of network interface adapter, virtual hard disk, 

file or registry key that is present only in controlled environments. Dinaburg et al. [11] 

created a transparent hardware based virtualized emulation system, Ether, dedicated for 

malware analysis in an attempt to prevent convoluted execution of malware that occurs 

when malware detects the presence of emulation environment. However, EtherUnpack 

and EtherTrace created as part of Ether project addresses the program cognition 

problem in a limited scope by considering specific unpacking approaches only. In 

addition, hardware virtualization does not provide a sufficient level of fine-grained 

program analysis. 

1.1.3 Taint Analysis 

While function call monitoring provides key checkpoints in the control flow, 

information flow tracking provides the knowledge of how the program data is processed. 

Using a dynamic taint system [12] [13], an analyst can introduce a taint source by 

marking interesting data, propagate the taint as the program runs, and check the taint 

status when the code reaches a point where predefined conditions meet.  For example, 

a taint system can detect Windows login password theft by marking the user-entered 

password as the taint source, monitoring the data read access operation, and checking 

where the data ends up. This approach can be generalised to discover many different 

information theft attempts including key logging, password theft, network sniffing, 

stealth backdoors, spyware and rootkits. 
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Dynamic taint analysis technique has been used to acquire greater detail of program 

logic at instruction level by setting taint source, taint sink, and taint track policy [14] 

[15]. It opened up possibilities that binary code segments can be structurally and 

conceptually connectable in a way that high level program cognition is achievable. 

However there are several challenges to overcome to acquire accurate analysis such as 

under-tainting, over-tainting, and taint sanitization [12]. In addition, despite its fine-

grained information flow tracking capability, taint analysis inherits most limitations 

dynamic analysis possesses because it essentially analyses the program’s behaviour by 

executing the code. 

1.1.4 Symbolic Execution 

Schwartz et el. [12] summarised a key technique, called symbolic execution, to reason 

about the behaviour of a program by creating a logical formula for the program 

execution. King et al. [16] and Hom et al. [17] conducted a comprehensive study on 

symbolic execution. Symbolic execution combined with constraint solver [12] [18] 

gives us a normalized view of a given program code segment using Intermediate 

Representation (IR), which allows us to generically represent all binary code operations 

and bind the code and data relationships. 

 

Several critical aspects of malware analysis have been addressed by a set of tools [19] 

using an emulator based on dynamic binary instrumentation, and symbolic execution. 

These tools demonstrate how these two techniques can be used to reveal trigger-based 

malware behaviour [20], to extract hidden malware code [21], to identify privacy 

breach [22],  and to detect malware’s hooking behaviours [23]. One of the problems 

inherent to symbolic execution in program analysis is denial-of-service attack to 

dynamic analysis, especially to fine-grained dynamic analysis techniques [19]. Since 

fine-grained symbolic execution requires significantly more processing power than 

native execution, malware can exploit this fact to effectively halt the analysis. Due to 

this limitation, symbolic execution based approach does not scale well for automated 

malware cognition process. 

 

Most symbolic execution and taint analysis approaches utilise Intermediate 

Representation (IR) in order to make shadow variables explicit and to account for 

implicit operations. However, this extra step requires each native code to be translated 
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to IR by hand, which is implemented incompletely due to rich set of instructions in 

modern CPUs. 

 

Although symbolic execution offers the finest granularity of program analysis, its 

capability to achieve the malware program cognition goals is mainly limited by the 

burden of computational complexity and the incomplete symbolic emulation of native 

code. 

1.1.5 Concolic Analysis 

Concolic analysis is a hybrid technique that combines symbolic execution with 

dynamic analysis, in which program is analysed under a concrete execution path, and 

symbolic execution is used in conjunction with an automated theorem prover or a 

constraint solver based on constraint logic programming to generate new test cases that 

cover other concrete paths [24]. The main drawback of concolic analysis is manual 

setup of program inspection points while snapshots need to be managed for each 

inspection point. Therefore this approach is difficult to automate and incurs intolerable 

performance overhead, making it infeasible to apply in a large scale malware analysis. 

 

Although symbolic execution combined with constraint solver promises to meet 

malware program cognition goals, the approach causes significant performance 

overhead due to IR translation layer and makes it difficult to automate the program 

analysis. It was mainly designed to help in-depth analysis of a single program such as 

condition identification of trigger-based programs and information flow tracking on a 

small input data set, instead of producing general program cognition constructs such as 

function call monitoring and information flow tracking. In addition, the emulation 

required for symbolic execution forces all machine instructions to be rewritten in order 

to execute each instruction symbolically. A complex instruction set in modern CPU 

architectures renders it nearly infeasible to precisely emulate all instructions. 

1.2 Motivation 

This thesis aims to develop malware detection methods that can be deployed under 

practical constraints present in the production environments and requirements, which 

include timely detection with acceptable accuracy and chronological detection. 
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Therefore the scope of this thesis is limited to static and dynamic malware detection, 

and triaging malware, as opposed to deep malware analysis. 

 

Many previous studies have suffered from imperfect labelling, which caused various 

errors in evaluation at different levels. However, the representations given by the 

instruction sequence provide an attractive approximation of semantics, which can aid 

in mitigating the labelling problem primarily caused by the use of statistical features. 

For instance, Figure 1.3 shows the variants from two heterogeneous malware families. 

Regardless of the family names, their instruction-wise characteristics are similar, 

thereby invariant to labelling. 

 

Figure 1.3. Three Blackhole and four Freezer variants 

The key observation in most malware campaigns is that malware authors try to 

maximise the return on investment given that their time and resources are limited, 

which forces them to create maximum diversity under these constraints. This drives the 

malware authors to develop a script that automatically generates a large number of 

samples for distribution. Metamorphism plays a key role in this process, creating a set 

of samples with diverse appearances. As a result, what the world sees is a malware 

campaign that consists of a series of outbreaks that attempt to infect the victim machines. 

The majority of serious campaigns follow this paradigm of economic malware 

generation model. For example, Figure 1.4 illustrates four distinct patterns of malware 

samples visualised using instruction sequence, all of which are clearly recognisable and 

separable by a human being with decent visual cortex system and unharmed brain 

function.  
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Figure 1.4. Visualisation of instructions from four different malware families (Ransomware Cryptesla, 

Emotet banking Trojan, Tofsee backdoor, Ransomware Cerber, respectively from top to bottom). Each 

horizontal line is colour-coded instruction sequence for each malware sample. 

A crucial insight here is that humans can also identify many different patterns of the 

same kind based on a single sample. Human brain has a great generalisation capability 

by this one-shot training. Given the recent breakthroughs achieved in deep learning 

which mimic human neural network system, there is a significant potential that deep 

learning can be leveraged in detecting these highly complex non-linear patterns. For 

example, one-shot training has been recently introduced in deep learning space via 

meta-learning or generative adversarial network [25]. 

 

Recent studies show that anti-cognition techniques are increasingly problematic. 

Considering that many malware variants are created by a single metamorphic script, 

the metamorphism used by the variants spawned from a script exhibits coherent 

characteristics within several campaigns as depicted in Figure 1.4. Deep learning, if 

proven to work in one-shot training setting, is expected to be resilient to anti-cognition 

techniques because re-training the model with a single additional sample for new 

campaign requires little effort. 

 

To enable the detection under production constraints, accurately extracting instruction 

sequence out of raw binary executables without 3rd party tools such as IDA Pro [26] is 

critical, which is a challenging task. In addition, many recent machine learning based 
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detection techniques using raw binary executable as a feature have been found to 

significantly rely on statistical features rather than instruction-based semantic features, 

which also exhibited vulnerabilities to adversarial attacks. In tackling this semantic 

detection problem from raw binary executables, Transformer has shown a great 

potential that semantic signals based on instructions can be extracted using self-

attention mechanism. 

 

If deep learning can provide the aforementioned capabilities in this section, it is 

expected to cluster well under complex non-linear problem setting such as metamorphic 

malware samples. The hypothesis is that state-of-the-art neural networks can learn: 

• A generalised representation coherent to malware campaign out of a limited 

training set 

• A mapping from highly structured raw binary executable to semantic 

instruction signals 

They also have a potential to provide a good clustering method for metamorphic threats. 

1.3 Research Challenges 

Due to the key malware problems described in section 1.1, a variety of machine learning 

based malware detection methods have been proposed over the last decade. However, 

many difficult challenges are still remaining. This section will present key research 

challenges. 

 

Anti-cognition techniques such as metamorphism are identified as one of the primary 

challenges in malware detection problem. The task involves devising a method that 

automatically captures highly complex non-linear patterns present both statically and 

dynamically. Given that anti-cognition is a part of the arms race, it is also crucial to 

produce a long-term strategic method resilient to short-term evasive tactics. 

 

In traditional machine learning regime, the underlying assumptions are as follows: 

• A sufficiently large number of training samples exist 

• Training set represents the underlying data distribution being modelled. 
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This problem setting works well against natural and continuous datasets with abundant 

training samples. However, given that the nature of the malware battle is arms race, 

malware distribution consists of a large number of very sparse groups. Therefore, none 

of the above assumptions for machine learning holds true. Almost all previous studies 

are based on these assumptions. The sparse sample distribution driven by the arms race 

poses a big challenge to machine learning based detection. 

 

The ultimate goal of malware defence is to provide a maximum number of detections 

from a minimal number of known training samples. In in-the-wild malware campaigns, 

the very initial outbreak delivers the most valuable piece of information about the 

malware campaign. The concept of one-shot training is critical in detecting the malware 

variants that belong to the same malware campaign, which were generated by the 

identical metamorphic script. It is an extremely challenging task to estimate the data 

distribution of the campaign with sufficient accuracy using a handful number of training 

samples.  

 

Resiliency against adversarial attacks forms a critical part of the malware defence. 

While metamorphism has been previously used to target manual signatures and 

traditional machine learning, the recent metamorphism is increasingly sophisticated 

especially with the advent of deep learning based detections. The previous approaches 

based on hand-crafted statistics and information-theoretic metrics such as N-gram have 

been countered with reinforcement learning with random mutation [27]. Moreover, 

many studies [28] [29] [30] [31] [32] [33] have proposed adversarial attacks primarily 

targeting the vulnerabilities of machine learning based detection methods. It is essential 

to provide anti-adversarial attack mechanisms when machine learning is used. 

 

One of the common malware problems arises when the trained model is not designed 

to distinguish the legitimate instructions from data. A significant number of malware 

samples deliberately insert arbitrary amount of high entropy data in between the code 

fragments largely in an attempt to evade traditional detection methods (see Figure 1.5). 

Unfortunately this old tactic also poses yet another obstacle for the machine learning 

models utilising raw executables as a feature. This randomised data scattered within the 

code section works as a significant amount of noise that contributes to the incorrect 

decision. For this reason, the models without instruction cognitive capability will 
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essentially make a random coin flip decision with a certain probability against the 

malware samples with this tactic. Forcing the disassembler to parse the packed data in 

Figure 1.5 produces logically insensible sequence of instructions along with 

intermittent invalid opcode exceptions.  

 

Figure 1.5. A disassembly of a malware sample that has a large amount of packed data embedded 

within the code section. 

Metamorphism lies at the heart of malware problem today. We are fighting against the 

diversity than anything else when it comes to malware detection. In addition, no 

research has been conducted in the context of metamorphism on the clustering of 

metamorphic samples. It is a challenging task to accurately cluster datasets that contain 

metamorphic groups. 

1.4 Research Objectives 

The goal of this research is to provide timely and accurate malware detection method 

resilient to anti-cognition methods and adversarial attacks. Inspired by the research 

challenges discussed in the previous section, the following key research objectives are 

formulated in this thesis: 

Objective 1: Create a model that learns to statically detect semantically similar 

malware variants by identifying highly complex non-linear patterns created by 

various anti-cognition techniques, and by using one-shot training while remaining 

resilient to adversarial attacks. 

Objective 2: Investigate the static detection model to dynamically detect semantically 

similar malware variants, discovering multiple heterogeneous malware families that 

share similar dynamic execution characteristics. 



   14 

Objective 3: Develop instruction cognitive representation that disambiguates 

legitimate instructions from uninterpreted raw binary executables, and perform one-

to-many malware detection using one-shot training while remaining resilient to 

adversarial attacks. 

Objective 4: Conduct comprehensive comparative studies of various machine 

learning methods on their capabilities in clustering the variants of malware families 

that show similar characteristics in their core instructions. 

1.5 Contributions 

With regard to the research objectives formulated in the previous section, Figure 1.6, 

Figure 1.7,  and Figure 1.8 illustrate the overall research contributions made in this 

thesis in relation to the first three objectives. The main contributions of the thesis are 

briefly described below.  

• Generative Outbreak Detection Model 

To fulfil Objective 1, a generative Adversarial Auto-Encoder (AAE) (Figure 1.6) is 

developed. This novel method generalises malware detection using a single training 

sample from each outbreak. Adversarial autoencoder is trained over prepared 

instructions to reach Nash equilibrium in a non-cooperative minmax game, producing 

smooth approximated nearby representations for scarce number of training samples. 

This unique one-shot problem setting is not aligned with traditional arrangement of 

large training set, which makes practical sense considering the ultimate goal is to 

maximise the ratio of malware variant detection against known training malware 

samples. The model shows near-production level performance, outperforming all 

baseline traditional machine learning models. A paper has been published [34] on this 

work. 
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Figure 1.6. Adversarial autoencoder architecture used for malware outbreak detection. The input, x, 

and the reconstructed input, p(x) are instruction sequence feature. 

• Spatio-Temporal Isomorphic Dynamic Outbreak Detection Model 

To address Objective 2, DCGAN [35] was deployed to handle multi-dimensional 

dynamic API call events on top of adversarial autoencoder at its foundation. The model 

is jointly trained with stochastic gradient descent by minimising the reconstruction loss 

on spatio-temporal input x over latent representation z (Figure 1.7), which allows 

resiliency over various perturbations introduced in dynamic execution such as multi-

threaded events and missing events caused by anti-cognition techniques and sandbox 

limitations. The model has been further extended to cope with variable length inputs, 

allowing arbitrary sequence of API call events by utilising global average pooling over 

the last convolutional layer. A paper has been published [36] on the outcomes of this 

work. 
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Figure 1.7. Generative adversarial autoencoder with 2D API call event feature and embedding. (a) 

Autoencoder with each value in 2D feature mapped to an embedding. Note that the value in blue gets 

mapped to an embedding of size two at its corresponding position marked in dotted blue line. The 

embedding value is chosen from the embedding lookup table for each symbol at the input feature. The 

same applies to the value in red. (b) Discriminator with positive samples from Gaussian normal 

distribution and negative samples from the latent representation, z, obtained from the input feature. 

• Instruction Cognitive Detection Model 

To fulfil Objective 3,  a deep learning model based on Transformer is trained to produce 

instruction cognitive representation that can directly transform the raw binary 

executable into a sequence of legitimate instructions while generating empty signals for 

data regions. The model is resilient to various adversarial attacks against machine 

learning detections which are based on raw binary executables. The model has been 

demonstrated to perform static malware detections using the Fourier transform of the 

instruction cognitive representations, showing its capability for one-to-many detection 

(Figure 1.8). A paper has been published [37] on this contribution. 

 



   17 

 

Figure 1.8. Model architecture using Transformer. Frequency spectrum of approximated encoded latent 

representation is used as the feature for malware detection. 

• Comparative Study on Clustering Metamorphic Malware 

To fulfil Objective 4, a comparative study on various machine learning methods has 

been conducted over interpretable family-wise metamorphic malware samples that 

possess similar instruction-wise characteristics instead of arbitrarily chosen malware 

dataset from the black box. Several top-performing clustering models from 

representative domains have been evaluated, including KNN, HDBSCAN, SDHASH, 

and AAE. The evaluation has been conducted with appropriate benchmarking criteria 

that fairly tests different models. Studies have uncovered which model best generalises 

the distribution with metamorphism in place. The study has been submitted and 

accepted [38] as a book chapter. 

1.6  Structure of the Thesis 

This dissertation is organised as follows:  

 

Chapter 1 gives overview, research motivation, research objectives and thesis structure. 

 

Chapter 2 reviews a number of existing studies on malware anti-cognition techniques 

and detection methods. The review covers deep learning studies relevant to the research 

objectives. In addition, various detection approaches specific to machine learning and 

deep learning are reviewed with pros and cons.  
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Chapter 3 proposes a generative malware outbreak detection model that detects similar 

malware variants within a campaign using a single training sample from each campaign. 

It explains how to apply one-shot learning in the static malware detection context. The 

efficacy of the model is validated against various supervised machine learning models. 

 

Chapter 4 extends generative detection approach from Chapter 3 by generalising the 

inputs to handle multi-dimensional features from dynamic execution and variable 

length event sequence. The model’s efficacy on cross-family as well as intra-family 

similarity detection is tested against OS X malware dataset. 

 

Chapter 5 introduces a novel method of extracting instruction cognitive signals by 

cleverly taking advantage of Transformer’s sequence-to-sequence mapping capability  

with self-attention mechanism. The model is validated with the feature Fourier-

transformed from instruction cognitive representation. 

 

Chapter 6 provides the significance of clustering capability on metamorphism followed 

by the increasing need for threat hunting under current threat landscape. It provides a 

comprehensive comparison among several key clustering methods. 

 

Finally, Chapter 7 provides some concluding remarks on the efficacy of the research 

undertaken and outlines some possible research directions based on the findings in this 

thesis.  

 

The essence of the malware problem is discussed in the following chapter through a 

comprehensive review of previous studies on a variety of malware techniques and 

detection methods based on machine learning. 
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Chapter 2:  Literature Review 
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In the history of malware battle, understanding what lies at the heart of the arms race is 

crucial in order to stay on top of the fight. This chapter discusses the key malware 

strategies, recent deep learning development, and various approaches taken by 

traditional machine learning and deep learning methods. The significance of a semantic 

feature is also discussed by reviewing many previous studies on detection over raw 

binary executables and its resiliency against adversarial attacks. This chapter concludes 

with a discussion on metamorphism and key research challenges. Overall diagram of 

literature review is shown in Figure 2.1. 

 

Figure 2.1. Overview of literature review 

2.1 Malware Evolution 

In this section, the evolution of core malware techniques is described along with several 

key malware analysis techniques to tackle them. 
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Guo et al. [3] conducted a comprehensive study on the packer problem where 

combinations of multiple different custom packers create a significant amount of 

diversity, which increases the complexity in writing detection signatures. The study 

also highlighted several techniques that help automatically acquiring the original 

unpacked binary code through the use of dirty page execution, unpacker memory 

avoidance, stack pointer check, and command line argument access. Roundy et al. [4] 

provided a more comprehensive survey on various anti-cognition techniques, primarily 

focusing on the packers and unpacking mechanisms. 

 

Sharif et al. [39] proposed an idea to defeat the malware analysis that captures the 

trigger-based malware behaviour, by encrypting the code conditionally dependent on 

the input. The authors showed that the approach is capable of concealing the malware 

behaviour by obfuscating the key, which hinders deep malware analysis including 

malware unpacking. 

 

Royal et al. [40] showed a novel method, PolyUnpack, to extract the hidden code from 

a packed executable file based on a simple concept. The algorithm keeps track of the 

execution of the program instruction by instruction, and iteratively identifies the hidden 

code when the current instruction in the memory is absent in the statically identified 

instruction set, which indicates that the unpacked code is being executed. 

 

In 2008, Borello et al. [5] studied on various ways to generate metamorphic code, which 

summarised the anti-cognition trend and later became a foundation of future malware 

anti-cognition researches. The authors highlighted the difficulty of static malware 

detection in the presence of metamorphism, posing an N-P complete problem. Several 

key anti-cognition methods were identified in this work, including instruction 

substitution, instruction permutation, variable substitution, dead code insertion, and 

control flow modification. In 2010, You et al. [41] further elaborated on malware 

obfuscation techniques explaining the brief history of obfuscation from mere 

encryption, oligomorphism, polymorphism, and finally metamorphism. The study 

shows a wider spectrum of metamorphism in different scales of code. Later, Rad et al. 

[42] provided a more concise explanation from encryption to metamorphism. 
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In an attempt to defeat metamorphic malware, Wong et al. [43] proposed a novel 

method that utilises Hidden Markov Model (HMM) against the opcode sequence of the 

program, providing the likelihood per opcode (LLPO) as a score measure. The model 

demonstrated its efficacy with better capability to detect similar malware samples that 

exhibit similar LLPO. However, this method was soon defeated by Lin et al. [44] who 

used mere junk code insertion obfuscation. 

 

Runwal et al. [45] also proposed a novel method using opcode graph similarity in order 

to tackle the metamorphic malware problem. The approach takes straightforward 

Euclidean distance between opcode transition probabilities within the graph as a 

similarity measure. The authors also suggested potential counter-attacks on the 

approach such as uncommon opcode removal and random dead code insertion. 

 

The core strength in evasive malware lies in diversity, which is primarily driven by 

metamorphism in the recent trend. Although early detection attempts described in this 

section include clever tricks such as HMM and graph similarity, a more sophisticated 

approach is in need to capture the complex non-linear relationship buried within the 

executable file where deep learning has a strong potential. A brief description of deep 

learning techniques and their applications in malware detection are presented in the 

following sub-sections. 

2.2 Deep Learning 

Deep learning [46] is a group of methods that train neural networks with multiple layers 

by backpropagation [47], which iteratively minimises the loss function using stochastic 

gradient descent [48]. Deep learning arguably forms the backbone of the modern 

artificial intelligence today. There has been a surge of research interests in deep learning 

in the early 21st century, driven by a series of successes mainly in natural language 

processing (NLP) and computer vision. In 2006, Hinton et al. [49] created a 

computationally efficient and yet deep neural network called, Deep Belief Network 

(DBN), which ignited the resurgence of research in the field of neural networks. 

Although DBN’s performance is superseded by many recent algorithms, it possessed 

many critical attributes of modern neural networks such as energy-based learning and 

unsupervised generative modelling. 
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Long Short-Term Memory (LSTM) [50] has been widely used for sequence modelling 

such as machine translation and natural language processing. LSTM learns via 

backpropagation through time using several memory gates of the recurrent neural 

network (RNN). It is designed to perform supervised tasks against both continuous and 

discrete sequence inputs. Later, more efficient RNN, Gated Recurrent Unit (GRU) [51], 

was proposed with less number of gates. Graves [52] further extended LSTM 

applications to multidimensional data such as images and videos. Despite its success, 

RNN suffers from vanishing gradient problem [53] for applications with long range 

dependencies during backpropagation through time, which makes it impractical to use 

in long sequences such as program instructions. However, RNN has proven to work 

well for short sequences such as word prediction and document sentiment analysis. In 

cybersecurity field, RNN can detect URLs of Domain-name Generation Algorithm 

(DGA)  [54] used to obfuscate the Command and Control location on the internet.  

 

Another big stream of research in deep learning is based upon Convolutional Neural 

Network (CNN) [55] that possesses several characteristics similar to the human visual 

cortex system such as local receptive fields, shared weights, and spatial subsampling. 

CNN’s resiliency to local distortion and shift provides a firm foundation of high 

precision classification and clustering for multi-dimensional data such as images and 

videos. Due to this resiliency to variations, at the core of malware detection models 

proposed throughout the chapters in this thesis exists CNN. 

 

Goodfellow et al. [56] invented a clever Generative Adversarial Network (GAN) where 

non-cooperative generator and discriminator are jointly trained in a minmax game with 

its goal to reach Nash equilibrium [57], the state where both the generator and the 

discriminator cannot reduce the error any further. GAN is the foundation of modern 

artificial intelligence, producing many state-of-the-art results in many fields including 

realistic image generation, neural style transfer, cross-domain transformation, image 

super resolution, and pose generation. GAN is a generative model where its goal is to 

produce realistic data resembling the training data. Its capability to capture highly 

complex non-linearity present in the data has proven to work well for semi-supervised 

[57] and purely unsupervised tasks [58]. 
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Despite its success, GAN is known to be difficult to train. Vanilla GAN is trained by 

performing gradient descent on approximated Kullback-Leibler (KL) divergence, 

which does not always converge, exhibits model collapse producing limited varieties 

of samples, and results in overfitting due to the imblance caused by the joint training. 

Many approaches have been invented to improve the GAN training such as f-GAN [59], 

instance noise [60], and Wasserstein GAN [61] at the optimisation level. Seeing the 

simultaneous gradient descent performed by GAN as non-conservative vector field, 

Consensus optimisation [62] suggests a general method to find the Nash equilibria by 

optimising with the vector field combined with the gradient of loss. The malware 

detection models proposed in this thesis use Consensus optimisation for this reason. 

GAN provides a general framework for a large number of neural network models. 

Naturally Radford et al. [35] created a deep convolutional network using GAN, 

DCGAN. DCGAN served as a basis for a wide variety of applications that deal with 

multi-dimensional data. Due to the dimensionality of the input used in this thesis, the 

overall DCGAN architecture is deployed in the deep learning models proposed in this 

thesis. 

 

Autoencoders [63] play a fundamental role in unsupervised learning that leverages deep 

learning. The purpose of Autoencoder is to produce a compressed representation, z,  of 

the input data while eliminating the noise in order to achieve dimensionality reduction. 

z is then used for distance calculation during clustering or similarity search. 

Autoencoder is trained with a single objective of minimising the reconstruction error. 

Earlier implementations such as denoising autoencoder (DAE) [64] used dropout [65] 

as an approximation of Bayesian inference to deal with uncertainty at the input. Multi-

dimensional data with local spatial relationship works better with stacked convolutional 

autoencoder (CAE) [66] since the architecture is simply aware of the structure of the 

input. Kingma et al. [67] proposed variational autoencoder (VAE) using stochastic 

variational inference. Makhzani et al. [58] proposed an autoencoder using GAN 

framework, called adversarial autoencoder (AAE). AAE is jointly trained with GAN’s 

adversarial objective along with regular reconstruction minimisation objective. The 

regularisation performed by adversarial objective guides the aggregated posterior 

distribution, p(z), produced by the encoder to match the chosen prior distribution, which 

is normally random normal distribution. This extra adversarial regularisation in AAE 

turns out to be effective for one-shot training that will be explained in Chapter 3. The 
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compressed representation on which the prior, p(z), is imposed captures information 

well even for an extremely small number of malware training samples. 

 

Although deep learning has proven to work well with continuous data such as speeches, 

images, and videos where gradients can be propagated back to the direction guided by 

the optimisation objectives, it is difficult to define the gradients for discrete data such 

as symbols that contain highly complex relationships in between them. The ability to 

train over discrete symbols is critical in applying deep learning to cybersecurity 

problems including malware detection due to the fact that the source of input is nearly 

always in the form of symbols such as machine instructions, programming language 

statements, or command line commands. One-hot encoding [68] has been extensively 

used to deal with this problem. However, this method is neither computationally 

scalable for training when the number of independent categories goes high nor allows 

backpropagation since the mapped representation in the model space is not close to 

each other for similar data points. Guo et al. [69] proposed an entity embedding where 

the mapping is learned as part of standard supervised learning process. This approach 

overcomes the limitations of one-hot encoding including high cardinality feature 

problem and the lack of distance measure in the model space. 

 

Combining the idea of unsupervised learning with discrete inputs, a discrete 

autoencoder is a natural approach in deep learning. While discrete data is nicely handled 

with entity embedding, sequence to sequence modelling required for autoencoder 

reconstruction error calculation is challenging. RNN for this problem is suboptimal for 

this task due to the vanishing gradient problem against long sequences. Zhang et al. [70] 

proposed a simple yet clever technique for this problem using pure convolutional and 

deconvolutional autoencoder with entity embedding for discrete symbols. The 

approach combines the entity embedding with standard convolutional autoencoder with 

reconstruction error computed by the Cosine distance between the original embedding 

and the reconstructed output. This trick enables unsupervised learning to be applied 

against many symbolic inputs that arise in cybersecurity problems. 

 

While Autoencoder produces a compressed latent representation, z, of the data obtained 

through unsupervised learning, we need a mechanism to compare different values of z 

to perform similarity search. Semantic hashing [71] provides an approximation of the 
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latent representation that can be used with Hamming distance [72] for efficient distance 

comparison. The computational efficiency of semantic hashing can be a great boost for 

practical systems with the sacrifice of minor accuracy.   

 

In recent years, many innovative ideas on how deep learning can be utilised apart from 

straight forward classification and clustering tasks have been explored. Image-to-image 

translation using conditional adversarial GAN [73] demonstrated impressive image 

transformations such as photo synthesis from labelled maps, aerial to map conversion 

and edges to photos. Zhang et al. [74] demonstrated the use of GAN to generated 

realistic photos from textual descriptions. Cross-domain image transfer proposed by 

Zhu et al. [75] shows great results on image style changes using CycleGAN. Super-

resolution [76] and image inpainting [77] are some of the new areas where GAN shows 

impressive results. DeepFake [78] produced some of the realistic and yet fake videos 

constructed based on CoupledGAN. 

 

In the NLP space, Vaswani et al. [79] proposed a novel sequence transduction 

architecture called, Transformer,  that is solely based upon attention mechanism 

without any recurrence or convolution layers. Vanishing gradient problem has been one 

of the significant drawbacks of sequence models. The key breakthrough made by 

Transformer is the use of self-attention mechanism that enables to learn the long range 

dependencies by allowing the efficient traversal of intra-embedding signals. A pre-

trained deep bidirectional Transformer, called BERT [80], shows state-of-the-art results 

for various sequence modelling tasks such as language inference. This thesis takes 

advantage of Transformer’s cross domain transformation capability to identify signals 

of instructions from highly structured raw binary executable files. 

 

Despite a number of remarkable successes, deep learning as well as traditional machine 

learning have not yet demonstrated the capability to logically understand the complex 

algorithms let alone primitive arithmetic. For instance, Kaiser et al. [81] proposed an 

algorithm that learns basic arithmetic operations such as addition and multiplication 

with a neural network architecture called, Neural GPU. The model is capable of 

performing other algorithmic tasks including copying sequences, reversing sequences, 

duplicating sequences, and sorting bits. Essentially the model adopted a deep recurrent 

neural network that consists of convolutional gated recurrent units, combined with 
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clever learning tricks such as parameter sharing relaxation, dropout, and gradient noise. 

Price et al. [82] further improved the generalisation ability of neural GPU by tweaking 

the model hyperparameters and the training algorithm. Nonetheless, no machine 

learning model to date including neural GPU and its descendants have proven to 

perform this basic arithmetic tasks with 100% accuracy, which a human child with basic 

math education can achieve with perfect accuracy. This strongly suggests that machine 

learning is not at the level of understanding the semantics of many logical problems yet. 

Complex conceptual inference tasks such as malware reverse engineering and deep 

semantic program analysis are beyond the capability of deep learning today.  

 

Traditional machine learning methods typically rely on hand-crafted statistical features 

whereas deep learning lets the model automatically discover non-linear features out of 

the feature-rich original data. In recent years, deep learning has shown many different 

ways to leverage machine learning including generative models and cross-domain 

transformation. Due to these major breakthroughs, there is a high potential that deep 

learning can be leveraged in malware detection problem where the perception of 

complex non-linear pattern is required. 

2.3 Traditional Machine Learning Methods for Malware Detection  

There have been many malware detection approaches using traditional machine 

learning. Gandotra et al. [83] provided a compact summary of the major challenges of 

malware threats and machine learning based detections in response to them. Bazrafshan 

et al. [84] conducted a survey on various evasion methods as well as heuristic malware 

detection methods, discussing individual features and machine learning approaches. 

Narudin et al. [85] also conducted an evaluation of various machine learning based 

malware detection using MalGnome Project samples. Nath et al. [86] provided a nice 

summary of recent malware types and trends in addition to various features used by 

machine learning methods. 

 

Gavrilut et al. [87] implemented rudimentary perceptron iteratively trained with 

primitive weight update algorithm. Although it failed to address many critical aspects 

of malware detection problem, the algorithm shows the fundamentals of modern 

machine learning based malware detection. Raman et al.  [88] showed how statistical 



   28 

features extracted from the executable file header can be used for malware classification 

task. The authors proposed a Random Forest with simple feature selection method that 

iteratively adds the feature with higher accuracy in the previous step. 

 

Metamorphism constitutes one of the core problems in malware detection. Focusing on 

the predictable opcode patterns identifiable from metamorphic malware, Santos et al. 

[89] proposed a method that takes advantage of opcode histogram as a feature and 

cosine distance as the similarity metric. The feature vector is created by selecting the 

most relevant opcodes using Mutual Information followed by calculating the vector’s 

weighted term frequency. Despite its simplicity, this research successfully spotted the 

significance of instructions as a more semantic feature in tackling the heart of the 

modern malware detection problem. Santos et al. [90] further extended the idea of 

opcode sequence feature by deriving weighted term frequency features calculated by 

Mutual Information [91]. They identified polynomial kernel classifiers and decision 

trees as the best performing models while Bayesian networks yielded high false 

positives. 

 

Although all the above approaches show the fundamentals of how machine learning 

can be leveraged in malware detection problem, they significantly lack the capability 

to deal with the complex diversity of malware. 

 

Santos et al. [92] argued the problem of machine learning researches geared towards a 

large labelled training dataset. The authors utilised Learning with Local and Global 

Consistency (LLGC) that learns the smooth transition of underlying intrinsic structure 

based on both labelled and unlabelled samples. Using the byte N-gram as a feature, the 

authors showed that the semi-supervised learning contributed to a reduction in the 

number of required labelled samples when detecting unknown malware. As far as we 

know, this is the first research that highlighted the significance of unknown malware 

detection out of a small number of known malware samples, which is one of the key 

aspects of this thesis. 

 

Rieck et al. [93] approached the problem of unknown novel malware detection by 

combining similarity based clustering with class assignment tasks. The authors 

proposed a novel feature representation called, malware instruction set (MIST), which 
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enables expressive characterisation of malware behaviour. The authors further describe 

how to map MIST into vector space suitable for machine learning by way of embedding 

using instruction Q-grams and normalised embedding function. The embedding 

definition provided by Rieck et al. not only enables geometric distance comparison but 

also offers explicit vector representation where causal inference of the decision is 

possible. In order to allow clustering, the authors proposed an iterative algorithm that 

discovers a prototype in a group that exhibits homogeneous behaviour. The authors 

further proposed a nearest cluster identification method for classification purpose in the 

environment where the labels are not reliable. The authors, then, showed how to 

determine the malware behaviour from the combination of novel clustering and 

classification algorithm, by incrementally identifying the belonging classes in an 

iterative loop.  

 

Yerima et al. [94] proposed a Bayesian based classification method for static zero-day 

Android malware detection. Features are extracted from APK permissions and code-

based properties, and prominent features are selected using information gain method. 

The approach decides the maliciousness based on Bayes theorem over selected features. 

Notably the result shows that the number of features ranked by information gain heavily 

affects the model performance. A method to update the model with regression test is 

desired in order to adopt this approach in the field. 

 

Anderson et al. [95] proposed graph similarity based malware detection using the 

instructions traced with a dynamic instrumentation tool. The authors converted 

instruction traces into Markov chain of instructions with transition probabilities using 

the adjacency matrix. Unique instruction identifiers were used while eliminating the 

operands, which removes the sensitivity to register allocations and compiler artifacts.  

This approach is much more fine-grained than utilising statistical features such as N-

gram. Graph kernel, combining Gaussian kernel and spectral kernel, is computed to 

find the similarity of given two instances of a sample. The authors used SVM to perform 

the classification. The result shows that the Markov chain with combined graph kernels 

outperforms N-gram based detections by a large margin. Although the proposed method 

is novel with good performance, the computational complexity is prohibitive in a real-

time setting.  
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Xu et al. [96] focused on detecting the kernel rootkits that implants hooks and the 

execution of exploits on the vulnerable application process such as return-oriented 

programming (ROP). Given that a combination of these activities mostly occur at the 

beginning phase of infection, this unique approach utilising the memory access patterns 

is valuable research. The underlying idea behind the approach is that the control flow 

and data structure of a legitimate application process will be convoluted once it is 

compromised, which will lead to the changes in memory access patterns. Since modern 

processors can run billions of instructions per second, collecting the memory access 

patterns is one of the key challenges in this work. The authors addressed this problem 

by collecting the histogram of each memory region access at function call level with 

hardware-assisted framework. The result for kernel rootkits shows that Random Forest 

records 100% detection rate with less than 1% false positives. This is sensible 

considering the memory changes made by the kernel rootkits are concentrated to a 

dedicated region of kernel virtual memory space that leaves a unique signature. For 

user level memory corruption attacks, the best performing model, Random Forest, 

against SVM and Logistic Regression also recorded 99% detection rate with less than 

5% false positives. In short, the authors introduced a novel approach that detects 

common infection scenarios occurring within a local machine by leveraging the 

distinguishable memory access patterns. 

 

Jacob et al. [97] explained the efficacy of behavioural signature based detection over 

static counterpart. The authors conducted a survey of different reasoning techniques 

They divided the malware detection approaches into simulation-based verification and 

formal verification, which are directly connected to dynamic and static detection, 

respectively. The authors concluded with the necessity of a common model of reference 

that combines both dynamic and static modes.   

 

Given that both static and dynamic views of the sample exhibit different aspects of 

underlying characteristics, it would be a good idea to consolidate both features. Islam 

et al. [98] attempted the malware classification based on integrated static and dynamic 

features. Shijo et al. [99] proposed a similar method where the feature vector is created 

by combining the frequency of API call strings and N-gram of behavioural API calls. 

SVM and Random Forest models were tested with integrated features against individual 
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features. The result shows the integrated feature has higher accuracy than the one for 

individual features.  

 

A sample in malware detection problem is a binary executable file that contains 

program logic along with metadata. The syntactic structure of the program logic is best 

represented by a function call graph (FCG). Kong et al. [100] proposed a classification 

model based on similarity distances of attributed FCGs. The model is trained by 

performing expectation maximisation that iteratively updates the model parameters and 

graph matching matrix that consists of matching nodes. The authors used a clever 

optimisation method that maximises inter-class distance while minimising intra-class 

distance for each attribute type using maximum margin principle, which dictates that 

the malware in the same family be closely clustered while clusters formed by different 

malware families have large margins to separate them. The authors then take the 

ensemble of classifiers for each attribute using Adaboost algorithm that iteratively 

assigns higher weights to those instances misclassified previously. Later, the model is 

trained to learn the confidence level that minimises the error of the classification results 

obtained through either SVM with Gaussian kernel or k-nearest neighbour (KNN). 

They found ensemble learning has the advantage of finding the best performing 

individual classifier even though the benefit by taking ensemble is not significant. The 

classifiers are then extended to deal with zero-day malware and benign legitimate 

samples by introducing new clusters based upon KNN classifier. The results generally 

show decent performance. However there was noticeable misclassification between 

Rbot and Sdbot, which is largely caused by different naming for essentially the same 

malware family. Kong’s approach essentially builds up the knowledge of classes by 

combining the knowledge of clusters based on the similarity of syntactic and semantic 

features. This method is conceptually identical to several papers that constitute our 

thesis. 

 

Sahs et al.  [101] proposed a one-class SVM based Android malware detection using 

permissions and control flow graphs as a feature, given that substantially large number 

of benign samples are available than that of the malicious samples. The spirit of this 

research is aligned with semi-supervised approach taken by Santos et al. [92]. 
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Comar et al. [102] proposed a method that detects novel malware using statistical 

features derived from layer 3 and layer 4 network flow data. The approach attempted 

to detect zero-day malware using one-class support vector machine (SVM) with for 

each type of malware, which found that supervised weighted linear kernel outperforms 

RBF kernel and Random Forest on this task. It is a novel approach to use per-malware 

one-class classifier in an attempt to probabilistically determine the similarity of a given 

sample towards each malware category, thereby detecting any zero-day malware. 

However, even the best hyperparameter shows below 50% F1 score, which is nowhere 

near comparable with the latest models. 

 

Ki et al. [103] proposed a malware detection method based on API call sequence 

clustering. The authors used common API call sequence as malware signature, which 

was extracted using Longest Common Sub-sequences (LCS) algorithm. The authors 

first grouped samples through a sequence alignment technique called, Multiple 

Sequence Alignment (MSA). Then they profiled the critical API call sequences such as 

DLL injection, IAT hooking, Anti-debugging, and Screen Capture to construct the 

signature database, against which test API call sequence is matched. However, taking 

hand-crafted API call sequences as behavioural signature is vulnerable to commonly 

used obfuscations such as bogus API call insertion.  

 

In the study on the efficacy of feature parameters against malicious behaviour detection, 

Canali et al. [104] suggested a systematic way of extracting common signatures of a 

given dataset, which consists of atom, structure, and cardinality of a signature. The 

authors considered behavioural operations (e.g. system calls) as signature atom while a 

combination of N-gram and bags were used to represent signature structure. The 

authors tested 215 behavioural detection models using the defined representations, with 

the best results produced by 2-bags of 2-tuples of actions with arguments, which detects 

99% detection accuracy against unknown malware samples with 0.4% false positives. 

The authors concluded that different data models should be analysed by a 

comprehensive experimental evaluation because there is no general rule that dictates 

the relationships between different configuration of the data model. 

 

Egele et al. [7] provided a gentle introduction to dynamic malware detection by 

conducting a comprehensive survey on various mechanisms of collecting the dynamic 
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event traces, a diverse set of sandbox tools with detailed setup instructions, and 

dynamic malware detection methods. 

 

Firdausi et al. [105] tested several state-of-the-art machine learning techniques to 

develop a proof-of-concept malware detection method based on behavioural events 

collected from sandbox. The experiment shows that J48 decision tree using term 

frequency-weight without feature selection outperforms KNN, SVM, and multi-layer 

perceptron (MLP). The best result of 97.3% precision and 95.9% recall suggests that 

the approach fits to threat hunting rather than practical detection system. Faruki et al. 

[106] constructed features using API call N-grams out of call traces obtained from 

Cuckoo sandbox [107]. The authors experiments with various classifiers available in 

WEKA [108] including Random Forest, Sequential Minimal Optimisation, J48 

decision tree, Naïve-Bayes, and Voted Perceptron. The result shows that Voted 

Perceptron with API call tri-gram records the best performance. These two approaches 

essentially used API call sequences as a feature against a large corpus of training 

samples for classification tasks.  

 

Although API call trace was used, the method used by Tian et al. [109] takes a slightly 

different approach from Faruki’s [106] in feature construction. The feature vector is 

created by taking both the local and global frequency of each API call. The evaluation 

was performed using WEKA with Random Forest as the best performing model. 

 

Wu et al. [110] introduced the use of clustering in dynamic malware detection for 

Android, utilising K-means and EM (Expectation Maximisation) algorithm. The 

authors used metadata from application’s manifest files as well as API call traces as 

feature. The proposed method first clusters using K-means and expectation 

maximisation (EM) with the number of clusters determined by Singular Value 

Decomposition (SVD) on the low rand approximation. Then it determines the 

maliciousness by computing the distance to the reference samples. The experiment 

shows K-means combined with KNN outperforms other models. 

 

Unlike previous approaches, Ahmed et al. [111] proposed spatio-temporal feature set 

as a sophisticated data model for the feature. To overcome the dynamic detection 

evasion through garbage calls, the authors considered the entire call trace as a whole 
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rather than focusing on the statistics of individual API calls. Spatial information is 

created by taking statistical and information theoretic measures for the API call 

arguments. Temporal information is created by implementing a discrete time Markov 

chain represented by the probability transition matrix for the call sequence. Information 

Gain was used for classification determination. A 3rd order Markov chain was chosen 

based on the insight from sample autocorrelation function that indicated the 3rd order 

dependence. The authors also investigated minimal feature subset in order to 

accommodate large scale training and prediction. 

2.4 Deep Learning Methods for Malware Detection 

In this section, prominent approaches for static and dynamic malware detection based 

on deep learning methods are discussed. 

 

Li et al. [112] experimented with Deep Belief Network (DBN) where stacked 

autoencoder using Restricted Boltzmann Machine (RBM) [113] is trained with layer-

wise greedy algorithm followed by standard binary classification with softmax cross 

entropy at the output layer using backpropagation. RBM performs dimensionality 

reduction that converts complicated high dimensional data to low dimensional latent 

representation with non-linear mapping. The approach recorded 92.1% accuracy over 

KDDCUP'99 dataset [114]. Although it did not use layer-wise noises for autoencoder 

and the dataset consists of handcrafted sparse features, it demonstrated the efficacy of 

DBN. Nonetheless the result is far from sufficient to be useful in practical detection 

systems. 

 

David et al. [115] demonstrated the use of DBN for behavioural malware detection over 

a relatively fine-grained number of target classes. The model was trained layer-wise 

with dropout to generalise the classification to compensate for the use of the relative 

small dataset. The authors have applied deep denoising autoencoder in a straight 

forward way, using the produced latent representation as signature. Although this 

technique does not deal with complex malware problems such as one-shot training and 

metamorphism, the approach is novel in the sense that unsupervised deep learning was 

first leveraged in generating the signature. 
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Saxe et al. [116] approached the malware detection problem by treating it as a binary 

classification problem, using a deep neural network of fully connected layers. They 

used a variety of handcrafted statistical features from the executable file. For example, 

byte entropy histogram feature they used contains a set of sliding windows of entropy 

histogram spanning the entire binary executable file, which approximately separates 

the compressed or encrypted portion from legitimate instructions and data. Other 

features such as hashed import table entries are the metadata from the executable header. 

The model consists of two fully connected layers with a single sigmoid output layer 

over an aggregated input constructed from the described feature set. The model also 

uses dropouts to improve generalisation, which also addresses overfitting problem to a  

certain extent. The authors defined threat score derived from the original classifier’s 

output score by incorporating the confidence level. Bayesian rule is applied using 

probability density functions (PDF) of scores given the classifier’s output prediction. 

The authors used kernel density estimator (KDE) with Epanechnikov kernel to derive 

these PDFs in order to calculate the threat score. The experiment was conducted with 

4-fold cross-validation, achieving an average of 95.2% detection accuracy and 0.1% 

false positives. The authors then performed a time split experiment to estimate the 

model’s capability of detecting the novel malware and the variants of previously known 

malware, which showed significant degradation in performance. As the authors pointed 

out, the classifier should be retrained frequently to incorporate the changes introduced 

by the evolving malware variants. 

 

Dahl et al. [117] addressed the difficulty of training classifiers against large sparse 

binary features. The primary contribution of this work is the application of a very sparse 

random projection technique [118] on high dimensional input data using sparse 

projection matrix, which significantly reduces the dimensionality that allows the 

processing by the following classifiers. For classifiers, the authors experimented with 

multinomial logistic regression and deep neural network over 136 target classes, each 

of which corresponds to malware families. In a nutshell, deep neural networks trained 

on random projections produced a 43% reduction in error rate compared to the baseline 

logistic regression that uses all sparse features. The authors also investigated PCA-

based input dimensionality reduction, which produced significantly worse result let 

alone its computational complexity of O(N3) is prohibitive.  Randomised PCA 

algorithm was chosen for this experiment due to the difficulty of computing singular 
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value decomposition (SVD) on the data’s covariance matrix. For binary classification 

setting, the larger number of random projection dimension generally tend to produce a 

better detection result.  

 

Using convolutional neural network, Davis [119] first adopted raw binary samples as 

features, which contains program code in it. However, the binary distribution of a 

malware outbreak can significantly vary depending on the packed code and data, and 

the layout of sections can change with little effort by the attacker. Using highly 

structured content such as an executable file as a sequence of raw bytes is less likely to 

generalize the distributions of malware and its variants.   

 

Park [120] argued that on-time malware detection failure is primarily due to the 

diversity of the malicious code, which is achieved through metamorphism. The author 

points out that metamorphism messes up data distribution when the program 

instructions are used as a base feature. The author introduced a method that detects 

malware families through the metamorphic patterns using stacked de-noising 

autoencoder and semantic hashing. Fourier transform was demonstrated to capture a 

wide spectrum of metamorphic instruction patterns used in different malware families. 

Using the features generated by Fourier transform applied to the program instructions, 

the author showed that the model successfully captures intra-function metamorphism.  

 

Malware classification with LSTM and GRU language models and a character-level 

CNN  Athiwaratkun et al. [121] conducted an evaluation of the efficacy of various 

language models in dynamic malware detection. The authors benchmarked different 

networks such as ESN (Echo State Network), RNN, LSTM, and CNN combined with 

auxiliary techniques such as temporal max pooling and attention mechanism. The result 

indicates that LSTM with temporal max pooling and logistic regression for output 

classifier performs the best. Character level convolutional neural network showed the 

worst performance, which suggests that capturing the temporal positional relationship 

is critical in sequence classification. 

 

Huang et al. [122] created the first deep learning based model for dynamic malware 

detection called, MtNet. The model implemented with MLP serves as a binary classifier 

outputting malicious and benign probabilities as well as a multi-class classifier 
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outputting fine-grained malware family probability distribution. The features used 

include null-terminated tokens in the memory, sparse binary vector of individual API 

calls combined with their parameter values, and 3-grams of API calls. Thereafter 

Mutual Information is used to obtain the best relevant feature set. The authors reduced 

the input dimension further using random projection as suggested by Dahl et al. [117]. 

The dual task model shares the weights in the hidden layer except for the softmax output 

layer. The model is simultaneously trained through standard backpropagation using 

stochastic gradient descent with the loss function given by the weighted sum of 

individual output loss functions. The experimental result shows that multi-task model 

outperforms a single-task model, suggesting that the malware family classification 

helps regularising the network and learning better feature abstractions for binary 

classification. 

 

Kolosnjaji et al. [123] investigated a deep learning approach against dynamic malware 

detection problem by using a binary classifier implemented with a combination of 

convolutional neural network and recurrent neural network. Kernel system calls 

retrieved by Cuckoo sandbox were used as a primary feature while labels were retrieved 

from VirusTotal. Interestingly, the authors performs feature pre-processing which 

limits the number of repetitive calls occurring in a loop and one-hot encoding of API 

calls in the binary feature vector. The proposed model first produces sub-sampled latent 

representation using two convolutional layers with filter size of 3x60, which has a 

similar effect of 3-gram of system calls. It then feeds the output feature map from the 

convolutional layers to each step of the LSTM to model the sequential dependency in 

the system call sequence. The final output is calculated by taking the softmax cross 

entropy on the mean-pooled LSTM’s last output to get the class label. This hybrid 

model outperforms other standard deep learning models while beating traditional 

machine learning models with a large margin. 

2.5 Understanding Raw Binary Executables 

When raw binary executables are used as a primary source of feature, it is critical to 

integrate their semantics contained within program instructions. Accurately 

consolidating these semantics into the detection pipeline has been a big challenge. 

Some of the prominent recent researches in this field are reviewed in this section. 
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Shin et al. [124] first attempted function recognition in raw binary executables with 

deep learning. The authors demonstrated that identifying the function signatures can be 

done with bidirectional LSTM. Although the result shows a respectable performance 

on legitimate binary files, the model was not tested against malware binary files, which 

poses greater challenges such as polymorphism and metamorphism. The model’s 

efficacy against malware anti-cognition techniques is questionable especially when it 

struggles with simple variation in compiler optimisations. 

  

Using RNN, Pascanu et al. [125] proposed a dynamic malware detection method that 

automatically generates the latent features out of raw inputs to avoid manual hand-

crafting of features. The authors deployed a novel non-linear down-sampling method 

for RNN called, temporal max-pooling, which is derived by taking the maximum of 

hidden state across all time steps for each neuron in the memory cell. The authors also 

used a technique called, half-frame, that combines the memory state in the middle to 

the output hidden state, which increases the memory capacity. A separate MLP 

classifier was independently trained, leaving RNN as a pure feature extractor. The 

experiment conducted against a raw sequence of API calls shows that it outperforms 

the 3-gram model by a large margin. Although this primitive model demonstrated the 

efficacy of sequence modelling using RNN, the approach is not suitable for a long 

sequence of data since vanishing gradient problem persists.  

 

In order to reduce the feature dimensionality, Kan et al. [126] first used the concept of 

instruction ID in feature construction by grouping native CPU instructions into 206 

unique categories based on the nature of the operation. The authors implemented a 

binary classifier that consists of embedding layer for the input instruction features, 

followed by a series of convolutional layers, max-pooling layer, fully-connected layer, 

and softmax output layer. This lightweight CNN model shows superior accuracy over 

a large dataset compared to traditional machine learning models with N-gram. 

 

HaddadPajouh et al. [127] experimented LSTM based binary classifier over ARM 

processor instruction for the Internet Of Things (IoT) environment. The most prominent 

instructions were selected based on Information Gain, after which word embedding 

technique [128] was applied to transform the input to continuous numeric 
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representation. The authors found that LSTM with 2 layers outperforms other 

configuration of LSTM while beating conventional machine learning methods by a 

large margin including Random Forest, SVM, KNN, and decision tree. 

 

In all aforementioned approaches in this section, differing degrees of in-depth analysis 

of the binary executable was required to retrieve the domain-specific features. It is ideal 

to have the model automatically derive the knowledge itself and consolidate the 

semantics of instructions into the model. The following works address this crucial 

aspect by directly dealing with raw binary executable files without domain knowledge. 

 

The main contribution by Le et al. [129] is the elimination of complex feature 

engineering that requires expert domain knowledge, by using the raw binary file as an 

input to the model. The authors created a multi-class classifier using a combination of 

CNN, unidirectional LSTM and bidirectional LSTM. Treating the binary executable 

file as an image, Le et al. scaled it down to 10,000 bytes using an image library. CNN 

layers were used as a pre-processing step to capture local sequences and patterns within 

the bytecode on a spatial level while LSTM layers model their longer distance 

relationships throughout the file. The best performance was achieved with CNN-

BiLSTM. As the authors are aware, the data model does not consider the semantics of 

the code in the raw binary file, which contributes to the distortion in the classification.  

 

In the same spirit, Kalash et al. [130] also implemented a binary classifier treating the 

raw executable as an image similar to the approach taken by Le et al. [129], using VGG-

16 image recognition model [131] over binary files. Zhao et al. [132] also used grey 

scale images as a feature, obtained through code mapping, texture partitioning, and 

texture extracting. The authors used a standard CNN followed by two fully connected 

layers like previous image-based malware classification. 

 

Motivated to avoid domain-specific feature engineering, Raff et al. [133] proposed an 

approach that detects malware with CNN using the features automatically extracted 

from raw binary executables. Unlike the other approaches by Le et al. [129] and Kalash 

et al. [130], the authors have taken advantage of embedding [69] to map the symbolic 

inputs to the representation in the model space that can be learned via backpropagation. 

The authors implemented a model called, MalConv, primarily based upon 1-
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dimensional convolutional network to best capture the spatial invariance occurring 

within the same class malware while discarding RNN based approach simply due to the 

excessive sequence length present in the raw executable binary. The model converges 

only within 3 epochs and shows a better performance than N-gram based approach in 

general. The authors also pointed out that MalConv is more resilient to N-gram 

approach since N-gram is fragile to even a single byte change. The correlation between 

the classifier’s prediction and the reactive portion within the binary executable file has 

been investigated using sparse class activation map proposed by Zhou et al. [134]. It 

shows the activation relevant to the classification comes from mostly executable header 

along with a variety of other parts including the code section. This indicates that 

MalConv pays attention to instructions as well as metadata whereas the activation from 

N-gram based approach [135] mostly comes from the metadata in  the executable 

header. With batch normalisation posing a negative impact during the experiment, the 

authors suggested that multi-modal nature of executable file causes multiple modes of 

convolutional layer activations, which violates the underlying assumption of batch 

normalisation. 

 

Marek et al. [136] further improved MalConv from Raff et al. [133] using various 

techniques including fixed embedding instead of typical learnable entity embedding 

[69] and convolution stride tuning to reduce the computational load. The authors claim 

they have slightly increased the performance from MalConv by using power-of-two 

strides in convolutional layers, Scaled Exponential Linear Unit (SELU) activation and 

removing the De-convolution regularisation. However, they experimented with 

unpacked raw binary executables dataset as opposed to the original dataset that includes 

a large number of packed metamorphic samples, which poses a relatively less challenge. 

 

Chen [137]  applied transfer learning using CNN trained from image space for malware 

detection. The author first resized and reshaped the original binary file to a fixed shape 

required by pre-trained ImageNet [138], then performed transfer learning where a 

portion of the layers is frozen and the last few layers are trained against prepared 

malware images. The author demonstrated the model works against multi-family 

malware classification problem as well as binary classification. The author also points 

out that the approach allows debugging what caused the prediction by checking the 

positive coefficients of super pixel [139]. 
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2.6 Resiliency against Adversarial Attacks 

Although the majority of the models described so far reported respectable detection 

accuracy, none of them has demonstrated the capability to understand instructions, 

thereby vulnerable to overfitting and further to adversarial attacks. As machine learning 

methods evolve, the attacks adapt to exploit the vulnerabilities of the detection models, 

which renders the topic of semantic cognition a very important part of the battle. This 

section zooms into various techniques targeting machine learning based detections. 

 

In recent works, adversarial machine learning was identified as a threat to deep learning 

based models, exhibiting vulnerabilities to gradient-based attacks. Non-differential 

models are also susceptible to the evasion attacks by genetic algorithms. Anderson et 

al. [27] created a more generic framework using reinforcement learning (RL), which 

aims to evade static malware detection. The proposed model overcomes the limitations 

of previous approaches where the target model must be fully differentiable with weight 

and gradient information available to the attacker, or the attacker has unlimited access 

to probe the target model possibly with the access to the score.  The authors trained an 

RL agent which learns to generate evasive malware variants by mutating a seed 

malware file at each step of the iteration, using statistical features including metadata 

from executable header and statistics from the file body were used for mutation. 

Caution has been taken during mutation in order to avoid breaking the functionality of 

the binary sample. The result shows a substantial evasion rate, demonstrating the 

model’s efficacy in discovering the detection model’s weaknesses and in mitigating 

this threat by performing adversarial training. 

 

Kolosnjaji et al. [28]  suggested an adversarial attack exploiting the vulnerability of 

deep neural network that utilises the raw executable bytes as a feature. Raff’s model 

[133] was chosen as an attack target model. Kolosnjaji’s model iteratively performs 

gradient descent by optimising the injected padding bytes one at a time, which 

essentially discovers bytes that need to be modified in order to flip the classifier’s 

prediction. They recorded 60% evasion rate against MalConv model implemented by 

Raff et al. [133]. Although Kolosnjaji’s attack against deep neural network is 

conceptually valid, the fact that instructions in the code section cannot be freely 

modified by the algorithm significantly limits the efficacy of the attack. Crafting a 
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malicious binary in code section still remains challenging to adversarial attack 

researchers. In addition, this attack works when the fully trained defence neural network 

is available, which is unlikely to happen in practice. 

 

Grosse et al. [29] also introduced a method to induce misclassification of the detection 

model by perturbation of the malware binary. The authors adopted adversarial example 

crafting algorithm based on the Jacobian matrix of the deep neural network put forward 

by Papernot et al. [30]. Although they demonstrated the attack against a simple feed 

forward deep neural network, the approach works against arbitrary differential 

classification neural network. The authors suggest potential defence mechanisms for 

this adversarial attack including defensive distillation [140] and adversarial training 

[141]. However, finding the gradients for embeddings of the discrete symbols and 

making the perturbed adversarial samples functionally intact remain as a challenge for 

the adversarial attack to work. Especially functional integrity requires many constraints 

to be defined for the training, which needs further research. Moreover, this white box 

based attack, which is not a stringent for the attack to be practical in itself, targeted 

over-simplified hypothetical defence model. More generic and plausible model should 

be deployed to support the efficacy of the attack. 

 

Hu et al. [31] proposed a GAN-based attack model named, MalGAN, against black box 

detection system. The authors used a hypothetical binary feature vector which MalGAN 

can only add while disallowing the removal of features to retain the sample functional 

integrity. Since the detection system is not available, the authors used a substitute 

detector to fit the black box detector and provide the gradient information to train the 

adversarial example generator. Finally MalGAN is trained by minimising the generator 

loss, which reduces the predicted probability of malware being malicious and pushes 

the substitute detector’s probability to recognise the malware as benign. The scary 

aspect of this approach is the generated adversarial example distribution, which is fully 

controlled and retrainable by MalGAN, is unknown to the substitute detector. This 

makes it extremely difficult for the detector to learn the patterns. 

 

Biggio et al. [32] proposed an evasion attack against machine learning at test time with 

limited knowledge where surrogate dataset can be collected from alternate sources. The 

training objective is to minimise the approximated classifier’s output probability where 
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‘zero’ indicates benign and ‘one’ indicates malicious. Like many adversarial evasion 

techniques, the authors employed iterative gradient descent algorithm to minimise the 

approximated classifier’s probability of correct decision. In addition, the authors 

introduced an extra training objective using density estimator that penalises the 

generated samples in low density regions. This extra constraint guides the adversarial 

example generation towards the region where negative class is concentrated, which has 

a similar effect as what mimicry attacks do to intrusion detection systems [33]. They 

demonstrated the efficacy of the attack against malicious PDF files. 

 

Nonetheless adversarial attacks without the capability of generating legitimate 

instructions while maintaining the functional integrity will have little impact on various 

malware detection approaches described in this thesis such as generative detection and 

instruction cognitive detection. Particularly instruction cognitive representation has a 

filtering effect on the sequences of invalid instructions, reacting to the recognised 

portion of the input binary sequence only, which will neutralise all adversarial evasion 

attempts described in this section. 

2.7 Metamorphism 

Metamorphism has been one of the major tactics to defeat detection [41]. The crux of 

various metamorphic techniques is in its global spatial translation with local context 

intact. In order to deal with these variations, the model must be able to recognise the 

coherent pattern shared across the variants generated by the same metamorphic script.  

This section reviews several critical previous research addressing those techniques 

related to metamorphism. 

 

Sebastián et al. [142] devised a malware labelling method over a large scale malware 

dataset. Primarily using Anti-virus vendor detection labels as a feature, the approach 

did not show a promising way of gaining confidence on unlabelled samples. Shalaginov 

et al. [143] provided a good introduction on applying machine learning to classification 

problem using n-gram as a feature. Li et al. [144] described the fundamental risk of 

blindly clustering using labels obtained from Anti-virus voting, which describes the 

problems of biased or misconfigured clusters. Their research points out the significance 
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of choosing the right ground truth cluster samples based on their underlying features 

for the clusters to build.  

 

Rieck et al. [93] established an embedding method in vector space using instruction q-

gram from arbitrary malware features, which has become a fundamental building block 

for many machine learning research studies later on.  Hu et al. [145] created a system 

called MutantX-S using prototype-based clustering algorithm over opcode n-gram 

features. Although the time complexity of the clustering method is close to linear, the 

confidence for unlabelled samples has not been discussed in detail.  

 

Pai et al. [146] studied the efficacy of K-means and Expectation Maximization (EM) 

clustering over opcode sequence. They created a separate Hidden Markov Model 

(HMM) instance for each family in an attempt to produce similar representations for 

intra-cluster samples. However, the experiment did not show the resiliency of the model 

since the number of benign samples used in testing was significantly low to prove its 

accuracy on false positives. 

 

Dilokthanakul et al. [147] demonstrated the use of variational autoencoder (VAE) over 

image clustering. Although deep learning has recently proven to be effective in many 

fields, discrete symbol data as input has remained challenging.  

2.8 Research Challenges 

A large number of researches have leveraged the use of statistical features with N-gram 

nominated as the most advanced data model within this category. Previous sections 

strongly suggest that more semantic features resilient to adversarial attacks are required 

for accurate detection.  

 

Many approaches have treated malware detection as a binary classification problem 

where samples are labelled in one of two classes. As pointed out in several papers, 

acquiring correct labels itself is a challenging task due to the volume of the samples 

and heterogenous labelling techniques, which causes confusion in model training let 

alone interpretation of the result is difficult.  
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Given that the number of variations generated by metamorphic engine can be infinitely 

large in theory, those approaches that do not take the domain knowledge into account 

are highly likely to overfit over the limited number of training samples while drastically 

fail for the real world samples. Given that malware runs as a campaign that consists of 

large number of samples generated by an automated metamorphic script, the samples 

within a campaign are likely to share similar characteristics within it, which opens up 

a possibility of one-to-many detection.  

 

One of the significant gaps in the previous researches is that nearly all approaches tried 

to solve a binary classification problem over a large training set with the assumption 

that the dataset has unbiased distribution across different styles of samples. However, 

there is no magic combination of formulas that will reliably detect all past, present, and 

future malware samples. The problem must be addressed chronologically. Combined 

with one-to-many detection concept, the crucial insight in malware detection problem 

is that the ultimate goal is to identify as many variants as possible that appear in the 

future from the smallest possible number of known malware samples present today. 

The higher the ratio of detected malware variant count over the number of training 

malware samples is, the better the model is considered to perform.  

 

One of the common malware problems arises when the trained model is not designed 

to distinguish the legitimate instructions from data. A significant number of malware 

samples deliberately insert arbitrary amount of high entropy data in between the code 

fragments largely in an attempt to evade traditional detection methods. As pointed out 

by Zak et el. [148], disambiguating instructions by their binary opcode is critical for 

model generalization.  

 

The research challenges are summarised below. 

• Statistical features without semantic context expose the detection to a variety of 

adversarial evasion. 

• Diversity of distributed malware takes complex non-linear form. 

• Extremely small number of samples are available during malware outbreak, 

from which following variants must be detected. 
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• Lack of fine-grained level of instruction identification within raw binary 

executables allow adversarial attacks. 

 

In this thesis, all of the research challenges will be addressed by leveraging deep 

learning. 

2.9 Theoretical Background 

For the given problems outlined in this chapter, a supervised learning method can be 

adopted. The training set ! = ($, &) consists of ((! , )!) where (! ∈ 	ℝ" is the feature 

vector and  )! ∈ 	 {1, … , 0} is the label for the sample (!. Binary classification can be 

implemented by simply setting 0 = 2. The objective is to find a function 3#:	$ → & 

where 6 is learnable model parameters. The prediction for an unseen sample is made 

based on equation (1). 

! = 	 $!(&)!∈{$,…,'}
)*+,)-  (1) 

Parametric non-linear classifiers such as SVM and deep learning typically use gradient 

descent method to find optimum parameters via iterative parameter update. For the 

model function 3#((!) to be learned, the cost function is defined as equation (2). 

7# =	
1

8
9ℒ(3#((!), )!)

"

!$%
 (2) 

The loss function, ℒ ∶ & × & ⟼ 	ℝ&, measures the difference between the predicted 

output for the input &.  and the class label *. . Information-theoretic cross entropy 

function is commonly used to compute the difference between the predicted probability 

distribution and the class probability distribution as shown in equation (3). 

=#(), >) = 	−9)! log 3#((!)
"

!$%
 (3) 

With learning rate, + ∈ ℝ , and parameters ,/  where C ∈ 	 {1, … , D}  , the gradient 

descent update is described as equation (4). 

6' ∶= 6' 	− F∇7# (4) 
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In statistical machine learning, the implicit assumption is that the samples are 

independently drawn from an identically distributed joint probably distribution set: 

H(I, J) = H(J|I)H(I) (5) 

The Independent and Identically Distributed (I.I.D) assumption is formally described 

in equation (6) and (7) respectively. 

((! , )!)	~	M(I, J), ∀O = 1,… ,8 (6) 

((! , )!)	OPQRHRPQRPS	T3	U(' , )'V, ∀O ≠ C ∈ {1, … ,8} (7) 

However, in the context of malware detection, samples are heavily biased towards 

benign samples with much higher diversity within the benign class, which severely 

breaks the assumption in equation (6). This imbalanced dataset makes the unsupervised 

learning more viable. 

 

In unsupervised setting, instead of learning the parameters for a function 3#:	$ → &, we 

define a function X#:	$ → Y  where Y  is the latent representation that map similar 

samples to the points in linearly close proximity in latent space. The distance between 

two points Z = ([%, [(, … , [)) and \ = (]%, ](, … , ])) in latent space is computed 

using linear distance metrics such as Euclidean distance. See equation (8). 

-(., 0) = 12(3. − 5.)0
1

.2$
 (8) 

The prediction for an unseen sample ^* ∈ ℝ" where 8 is the dimension of the input 

feature vector, is made by choosing _* ∈ ℝ) where ` is the dimension of the latent 

representation according to the equation (9). 

_* =	 -(X#(&3),X#(&4))4∈{1,…,6}
738  (9) 

Note that X# 	is a non-linear transformation whose parameters are learned via training 

whereas the distance is calculated using a fixed metric. 
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2.10 Conclusion 

In this chapter, we have reviewed the core strategies taken by malware to evade 

detection, the strengths and weaknesses of deep learning, and many recent malware 

detection techniques using traditional machine learning and deep learning. We have 

also highlighted the need of a more accurate model when deep learning is used with 

raw binary executables in order to stay resilient against adversarial attacks.  

 

Having identified the key research challenges through the comprehensive review 

conducted in this chapter, we will tackle the static malware detection problem by 

leveraging generative adversarial autoencoder in the next chapter. 
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Chapter 3:  Generative Static Malware 
Detection 

 

 

 

 

 
 

 

 

 

 

 

The work in this chapter was published in following paper: 

 

Sean Park, Iqbal Gondal, Joarder Kamruzzaman, Jon Oliver, "Generative Malware 

Outbreak Detection” 2019 IEEE International Conference on Industry Technology. 

Melbourne, 2019. 
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In chapter 2, various previous machine learning methods have been presented to detect 

malware. This chapter will present a method that generalises the static malware 

detection using one-shot training to detect the variants within a malware campaign. 

 

Recently several deep learning approaches have been attempted to detect malware 

binaries using convolutional neural networks and stacked deep autoencoders. Although 

they have shown respectable performance on a large corpus of dataset, practical defence 

systems require precise detection during the malware outbreaks where only a handful 

of samples are available. This chapter demonstrates the effectiveness of the latent 

representations obtained through the adversarial autoencoder for malware outbreak 

detection. Using instruction sequence distribution mapped to a semantic latent vector, 

a model can provide a highly effective neural signature that helps detecting variants of 

a previously identified malware within a campaign mutated with minor functional 

upgrade, function shuffling, or slightly modified obfuscations. The method presented 

in this chapter demonstrates how adversarial autoencoder can turn a multiclass 

classification task into a clustering problem when the sample set size is limited and the 

distribution is biased. The model performance is evaluated on OS X malware dataset 

against traditional machine learning models. 

3.1 Introduction 

Timely malware detection is critical, especially in current threat environment where 

malware outbreaks are a daily routine. This chapter considers static features for 

malware detection. Although malware packing problem [3]  is crucial when reverse 

engineering the detailed functional characteristics of the malware is the objective, the 

surface level static features are sufficient to differentiate malware families from benign 

samples when the ultimate goal is solely the detection. 

 

The observations in the malware battle forefront are malware mutates over time to 

bypass static signature-based detection by upgrading its functions or applying new 

metamorphic (or obfuscation) techniques. The downside for attackers is the malware 

mutation requires their time and effort to develop new variants. Due to this development 

cost, minor tactical modification to the original malware code frequently occurs and is 

seen in the form of an outbreak while a major strategic code change rarely occurs across 
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a longer period of time. This inevitably causes a similar pattern of instruction sequence 

either generated by a metamorphic engine or upgraded from previous functions. As a 

result, there appears a phenomenon typically seen for the instruction sequence of 

malware samples from a campaign as shown in Figure 1.1. The method presented in 

this chapter will exploit the presence of this unique pattern of instruction sequence in 

the malware samples of a campaign whether or not it forms unpacking routine, 

metamorphic components, or pure functional modification. 

 

Traditional machine learning algorithms such as SVM, Random Forest and Gradient 

Boosting commonly use metadata as features such as executable file header fields, n-

gram of raw binary file and entropy of sections because they are optimised to work with 

independent sparse features. In the meantime, encoded high dimensional data such as 

sequence of program instructions constitutes the substantial body of a sample in 

malware detection context, which contains rich information of the sample's identity. 

Although several previous techniques utilised the instruction sequence as a feature 

[149][150][84][151], the use of n-gram simply discards the sequence order information,  

leaving those approaches vulnerable to a trivial histogram matching attack [152]. 

However, adversarial autoencoder used in this chapter, like many other deep learning 

models, fully takes advantage of the input samples with the sequence order retained.  In 

this chapter, we use the sequence of program instructions as a feature. 

 

One critical aspect of malware outbreak detection is that there are a scarce number of 

samples we can train with. The goal of this chapter is not only detecting malware 

variants but also detecting them with extremely small number of samples captured at 

the very early outbreak as it should be in real world detection scenario. The method as 

well as various other machine learning models will be evaluated with this scarce 

training dataset setting.  

 

This chapter presents a novel method that detects similar malware samples with high 

accuracy on malicious samples and low false positives on benign samples, using a 

single sample of a kind for training with adversarial autoencoder. The techniques 

described in this chapter are applicable to the other domains, such as IoT (Internet Of 

Things), that require well-generalised detection using a handful of malware samples. 
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3.2 Method 

This section discusses features, dataset, model architecture, and training methods. 

 

Figure 3.1. Each row represents a per-sample feature, which is a sequence of instructions of a malware 

sample. Each normalised instruction is rendered as vertical bar with a unique colour to differentiate 

between different instructions. X axis is the feature. Y axis is the sample number.   

3.2.1 Static Features 

Today malware samples are automatically generated by a custom tool created by the 

attacker. It renders hard-coded static signature based detection obsolete. A run of 

automatic malware generation tool essentially creates a batch of the functionally same 

malware in a different look, which can involve different obfuscations [41][153] such as 

dead code insertion, register reassignment, code transposition and integration and 

control flow obfuscation. Nonetheless the distribution of the program instruction 

sequence remains relatively intact. Figure 3.1 shows three unique variants of 

MAC.OSX.CallMe family. The samples in Figure 3.1 are described below. 

 

MAC.OSX.CallMe.A (3 samples) 

MAC.OSX.CallMe.E (1 samples) 

MAC.OSX.CallMe.F (1 samples) 

 

As shown in Figure 3.1, MAC.OSX.CallMe variants have identical instruction sequence 

until a variation was introduced at approximately instruction 5250. Despite this 

variation it is visually clear that parts of instructions of sample 2 and sample 3 are 

merely shifted from the instructions of the rest of the samples. In short, the instruction 
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sequences appear very similar to each other for these three MAC.OSX.CallMe variants. 

Visual analysis on the majority of malware families shows that program instruction 

sequence plays a significant role in identifying the variants during outbreaks. 

 

Based on this insight, we use the instruction sequence as the sole feature for the model 

proposed in this chapter. The steps to construct a feature vector for a sample are 

described below and example values are shown in Figure 3.2. 

 

Figure 3.2. Example values for each step of the feature extraction. 

1) Extract function-wise raw instruction bytes using IDA Pro [26]: It is critical to 

extract the original raw features. Failing that, sample distribution will change, 

which will significantly affect the clustering result. In this chapter, a list of 

function bytes are extracted from each malware sample using a custom IDA 

Python script. 

2) Create a sample by combining the extracted functions: Each individual data 

sample per malware sample needs to be created. This is done by concatenating 

the functions present in the executable file in the order they appear. A blind 

concatenation of functions is vulnerable to code transposition and integration 

metamorphism [41]. How to overcome this problem is discussed later in this 

section using a model with translation invariant property. 

3) Map each instruction byte to a unique instruction ID: Instruction's operands are 

ignored. For example, both push 0x5C and push eax are mapped to a unique ID, 

6A. Note that this unique ID is computed using a custom table instead of being 

assigned directly from the instruction’s opcode because the opcode in CPU 

architecture may include a portion of a byte or span across multiple bytes. The 
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rationale for this pre-processing is it reduces noises in the distribution while 

remaining immune to several obfuscation techniques such as register and 

memory reassignment [41]. 

3.2.2 Adversarial Autoencoder 

The model consists of two independent modules. Firstly the latent representation for 

the instruction sequence feature that is resilient to metamorphism is acquired by 

adversarial autoencoder. Then the class number is computed for the latent 

representation via HDBSCAN with predefined threshold. 

 

Over the past few years, Generative Adversarial Network (GAN) [56] has successfully 

demonstrated its capability to understand the data distributions by generating realistic 

samples. The power of GAN primarily comes from its generative nature by jointly 

training the generator and the discriminator in a tight competitive loop. In a situation 

like malware outbreaks where a handful of samples are available, adversarial 

autoencoder is a natural choice so that the scarce number of training samples produce 

smooth approximated nearby distributions. The core architecture for malware outbreak 

detection in this chapter is borrowed from the original adversarial autoencoder [58] as 

shown in Figure 3.3. 

 

Figure 3.3. Adversarial autoencoder architecture used for malware outbreak detection. The input, x, 

and the reconstructed input, p(x) are instruction sequence feature. 
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Adversarial autoencoder essentially combines an arbitrary autoencoder with GAN. The 

autoencoder part within the model must have two properties: 

• The stacked weights are symmetric and shared between encoder and decoder: 

This is a compulsory requirement to be qualified as an autoencoder. 

• Encoder also functions as a generator, hence must have all properties of the 

generator of GAN: Since encoder has a dual function, it needs to conform to the 

training techniques used for the generator while maintaining the autoencoder 

property. 

As one of the desired properties in malware outbreak detection is to identify relocated 

functions, the autoencoder used in the proposed model is a stacked convolutional 

autoencoder [66] to take advantage of translation invariant property of the architecture. 

This allows the model to capture the program instruction sequence in the presence of 

code transposition and integration metamorphism [41]. 

 

The input vector consists of sparse discrete symbols, which are difficult to train with 

stochastic gradient descent. Therefore we create an embedding lookup for the symbols, 

and let the model find the best representations for them during the training. This 

embedding layer nicely transforms 1D input vector to a 2D array, which can be fed as 

an input to this convolutional autoencoder. The reconstruction method based on cosine 

similarity cross entropy is used to deal with sparse discrete input symbols [70].  

 

As outlined in [58], both the adversarial network and the autoencoder are trained jointly 

with stochastic gradient descent in two phases – the reconstruction phase and the 

regularization phase – executed on each mini-batch. Specifically, in reconstruction 

phase, the model is trained by minimizing the cross entropy loss between the input 

symbol and the decoder output with sigmoid activation. During regularization phase, 

binary cross entropy is used for the discriminator loss, which is computed by summing 

the loss between positive samples from Gaussian normal distribution and negative 

samples from the encoder output. Binary cross entropy is also used for the generator 

loss. Let x be the one-hot encoded representation of input data distribution and z be the 

latent code vector of an autoencoder. Let p(z) be the prior distribution imposed on the 

codes, q(z|x) be the encoding distribution, p(x|z) be the decoding distribution, and p(x) 
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be the model’s reconstructed distribution. Reconstruction loss is described in (1), and 

discriminator and generator loss are defined by (2). 

 

a+ba,(.|+)[− log H(^|_)]e                                                    (1) 

 

min
1
max
2
	 a+~4!"#"[log	k(^)] + a.~4(.)[log	(1 − k(m(_))]                       (2) 

 

In order to mitigate the instability caused by standard adversarial autoencoder training, 

consensus optimization has been adopted. Mescheder L [62] showed that simultaneous 

gradient descent used in GAN does not generally converge to Nash equilibrium in non-

cooperative minmax game. The solution proposed by Mescheder L is to construct a 

conservative vector field from the original using consensus optimization [62].  

 

There are a number of hyperparameters that can be tuned in the network architecture 

such as how much of diverse clusters you want to detect and how much performance 

you need during prediction. In terms of clustering behavior, the standard deviation of 

GAN's Gaussian noise input generally affects the total number of clusters detectable 

with accuracy. The wider the Gaussian normal distribution is, the larger number of 

clusters the model will spread evenly. The gradients are clipped by a global norm to 

force Lipschitz constraint in latent variables, which enhances the smooth code 

generation for a small number of training samples. A large size latent vector increases 

the accuracy of clustering.  On the contrary, a large embedding size for input symbol 

does not have significant impact on clustering accuracy.  

 

In general, convolutional autoencoder part of the network does not influence much in 

accuracy, but the increased number of convolutional layers can significantly reduce 

both training and prediction speed. A large convolutional filter window tends to 

produce less optimal results.  

 

From the training perspective, batch normalization within the GAN generator is 

necessary to help generate consistent latent representation. ADAM optimizer [154] was 

used for both reconstruction and regularization phase while consensus optimization was 

performed with RMSProp [155]. Some of the key hyperparameters are shown below: 
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Latent representation dimension: 100 

Input gaussian noise standard deviation: 5.0 

Embedding dimension: 4 

Number of channels for each convolution layer: 

[1, 20, 20, 1] 

Filter sizes: [3, 3, 3, 3] 

Strides: [1, 2, 2, 1] 

Maximum epochs: 100 

Learning rate: 0.0001 

Batch size: 20 

When training is complete, the encoder output is taken as a latent vector that represents 

the input sample, which will be used as input to semantic hashing. 

3.2.3 Semantic Hashing 

The latent representation obtained through adversarial autoencoder needs to be 

transformed into a class number for prediction. Firstly, the latent vector represented by 

real valued numbers are binarized using the bitwise mean value of the training samples. 

Then hamming distance is used to compute the distance for the two given latent vectors 

[71]. Finally, a test sample is assigned a class of the closest training sample. 

3.3 Evaluation 

3.3.1 Static Sample Dataset 

In total, 3,254 in-the-wild OS X malware samples collected from proprietary source 

and randomly chosen 9,981 benign OS X Mach-O samples were used for evaluation. 

These samples are equipped with full malicious functionalities and have once managed 

to enter into user machines to exercise real damage. A snapshot of family distribution 

of 3,254 in-the-wild malware samples is shown in Figure 3.4. 
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Figure 3.4. Malicious sample distribution by VirusTotal detection names. The biggest bar at the far left 

hand side indicates the samples with no detection or with generic name. 

In order to simulate the outbreak situation, 175 out of 3,254 malicious samples that 

exhibit unique instruction sequence patterns were manually selected by a human 

malware expert as core malicious training samples and were assigned a unique label for 

each sample. Note that no benign samples were included in the training set. 

 

Since there is no generic evaluation metric available to find a core sample of a malware 

family based on instruction sequence, the instruction sequences of all 3,254 malicious 

samples were visually explored to obtain the core sample of each family. The properties 

used to include samples in the same category are summarized as follows. 

• Similar instruction distribution: The samples have similar instruction 

distribution statistics. 

• Minor local variations: The modification of a sample’s instruction sequence is 

restricted to one or more local areas. 
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• Translation invariant: Most part of the sample’s code distribution is identical to 

the rest of them within the same cluster when the code is translated or shuffled. 

The properties for unqualified malware family are summarized as follows: 

• Mismatched function-wise distribution: Neither similar sample length nor 

similar statistical distribution qualifies a sample to become a member of a 

cluster. Samples must also match function-wise statistical distributions. 

• Substantial difference in code distribution size: Although a partial match 

suggests a variant, it is desirable to have the size of similar code distribution 

significantly larger than the variations. It's because the clusters can drift over 

repetitive trainings across longer period of time, which can potentially cause 

false positives due to the mixed distributions. 

In order to find out the category for the latent representation, HDBSCAN clustering 

algorithm was used, which shows the most appealing performance against unknown 

number of clusters [156]. The samples categorized as a noise by HDBSCAN are 

classified as benign because it indicates no similar cluster was found for the test sample. 

Overall flow chart is illustrated in Figure 3.5. 

 

Figure 3.5. Overall pipeline from a sample to its predicted class number. Examples are shown on the 

right. 
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3.3.2 Static Detection Result 

Using raw instruction sequence for classification models significantly reduces the 

accuracy. Gradient boosting, Support Vector Machine and Random Forest models were 

chosen as baseline with the feature implemented using n-gram [150] over the 

instruction sequence. Clustering models such as KNN were not included in the baseline 

model since they need decent number of training samples to work, which is different to 

the problem setting put forward in this research. 

 

As shown in Table 3.1, traditional classifiers perform reasonably well even for a 

training dataset that consists of a single sample for each class. The proposed model, 

aae-sh, which is adversarial autoencoder combined with semantic hashing, shows 

reasonably high detection accuracy against malicious samples. However, all traditional 

classification models catastrophically fail on benign samples, recording 100% false 

positives. With the training set of only core malicious samples by which outbreaks are 

simulated, the traditional classification methods do not work at all. On the contrary, 

aae-sh, records a 91% accuracy over benign samples with this training setting. 

Model Malicious (3,254) Benign (9,981) 
gradient-boosting-1gram 0.935 0.000 

gradient-boosting-2gram 0.936 0.000 

gradient-boosting-3gram 0.931 0.000 

svm-1gram 0.934 0.000 

svm-2gram 0.944 0.000 

svm-3gram 0.968 0.000 

randomforest-1gram 0.983 0.000 

randomforest-2gram 0.987 0.000 

randomforest-3gram 0.989 0.000 

aae-sh 0.959 0.910 

Table 3.1 Detection rate against malicious and benign samples for various models. 

3.3.3 Static Detection Analysis 

Visual analysis of the families detected by aae-sh not only shows similar instruction 

sequences with variations within the family but also it does not exhibit undesirable 

properties described in the previous subsection. Figure 3.6 shows aae-sh correctly 
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identifying malware variants whose major feature mass is identical across all samples 

in the cluster while variations occur in many different ways. These samples are the 

variants of malware named Blackhole or Freezer. It becomes clear that the names from 

VirusTotal [157] do not necessarily agree with malware clusters produced by aae-sh 

because human analysts tag detection names based on analyst-specific heuristics 

whereas the proposed approach in this chapter derives the detection purely from the 

instruction sequence pattern. 

 

Figure 3.6. Visualisation of instruction sequence of Blackhole or Freezer samples identified by aae-sh. 

X axis is the feature. Y axis is the sample number. 

Figure 3.7 shows the detected cluster 49 that contains many Flashback variants. Note 

that aae-sh detected the samples of different lengths as long as instruction sequences 

are similar.  

 

Figure 3.7. Visualisation of instruction sequence of malware samples within cluster 49 in Figure 3.8 

identified by aae-sh. X axis is the feature. Y axis is the sample number. 
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Figure 3.8. VirusTotal detection names for the samples in cluster 49 that is visualised in Figure 3.7. 

Figure 3.8 shows redacted VirusTotal detection names for the samples in Figure 3.7. It 

is notable that 447 samples either had no names or had generic names. 

3.3.4 Theoretical Analysis 

A function 3 ∶ $	 ⟼ & is called Lipschitz continuous if there exists a positive constant 

K for any given (% and  (( in $ such that  

|3((1) − 3((2)| ≤ 0((1 − (2) (1) 

The encoder function of the adversarial autoencoder, o ∶ ^	 ⟼ _, maps input feature 

vector ^  to a latent variable _  whose distribution o(_)  is imposed by the prior 

distribution, Gaussian distribution, after the training.  

o(_)~p(0,1) (2) 

The decoder function of the adversarial autoencoder, H ∶ _	 ⟼ ^ , reconstructs the 

original input ^ from _. 

 

Lemma 1. The encoder function o ∶ ^	 ⟼ _ is Lipschitz continuous. 

Proof. Let the gradient of the encoder function be r and the clipping norm be s. The 

following gradient penalty is applied if ‖r‖ > s where ‖r‖ is Euclidean norm over 

gradients. 

r	 ∶=	
sr
‖r‖

 (3) 
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A differentiable function is K-Lipschitz if and only if it has gradients with norm at most 

K everywhere [158]. Therefore, the encoder function o ∶ ^	 ⟼ _  is Lipschitz 

continuous, concluding the proof. 

 
Lemma 2. The decoder function H ∶ _	 ⟼ ^ is Lipschitz continuous. 

Proof. In autoencoder, the gradient of the decoder function calculated during the back 

propagation is identical to equation (3). Since the decoder function is differentiable and 

has gradients with norm at most K everywhere, H ∶ _	 ⟼ ^ is Lipschitz continuous, 

concluding the proof.  

 
Theorem 1. If there exist malware variants for a training malware sample that share 

common instruction features, the latent variables for malware variants are located near 

the latent variable for a single prototype training sample in latent space. 

Proof. Since the latent distribution H(_) has Gaussian distribution after the training, all 

nearby points for a given >%  in Y is continuous as shown in Lemma 1. Lemma 2 

dictates that the inverse of _ is also Lipschitz continuous because the decoder function 

is a mirror implementation of the encoder function. Therefore, being the inverse of _, 

input feature ^ is continuous if there exist nearby points in _. This means, if there are 

latent _ variables near >% corresponding to a known prototype malware sample, they 

have similar features to the known prototype malware sample. This theorem proves that 

a single training sample can find similar samples in the proposed generative adversarial 

autoencoder if its variants do exist. 

3.4 Conclusion 

The research presented in this chapter has shown that the generative power of 

adversarial autoencoder creates latent representations that can be used to identify 

similar samples with minimum number of training samples. It turned out that some 

malware families such as Flashback reuse the same piece of code repeatedly across 

their variants, which subsequently enables the adversarial autoencoder to identify its 

family effectively. In addition, the model was found to be effective in discovering 

multiple variants across heterogeneous malware families that share similar instruction-

wise characteristics. 
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In chapter 3, we looked into static malware detection method by leveraging generative 

adversarial encoder. In chapter 4, dynamic malware detection is presented by extending 

the concept presented in this chapter to dynamic execution events. 
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Chapter 4:  Generative Dynamic Malware 
Detection 

 

 

 

 

 

 

 
 

 

 

 

 

 

The work in this chapter was published in following paper: 

 

Sean Park, Iqbal Gondal, Joarder Kamruzzaman, and Leo Zhang, "One-Shot Malware 

Outbreak Detection using Spatio-Temporal Isomorphic Dynamic Features" 2019 18th 

IEEE International Conference On Trust, Security And Privacy In Computing And 

Communications/13th IEEE International Conference On Big Data Science And 

Engineering. Melbourne, 2019. 
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Previous chapter focused on static malware detection using generative adversarial 

autoencoder (AAE). In this chapter, we will demonstrate its efficacy in dynamic 

malware detection where higher dimensional feature is utilised as input. 

  

Fingerprinting the malware by its behavioural signature has been an attractive approach 

for malware detection due to the homogeneity of dynamic execution patterns across 

different variants of similar families. Although previous studies show reasonably good 

performance in dynamic detection using machine learning techniques on a large corpus 

of training set, decisions must be undertaken based upon a scarce number of observable 

samples in many practical defence scenarios. This chapter demonstrates the 

effectiveness of generative adversarial autoencoder for dynamic malware detection 

under outbreak situations where in most cases a single sample is available for training 

the machine learning algorithm to detect similar samples that are in the wild. 

4.1 Introduction 

Every malware has its own purpose, be it banking Trojan, ransomware, information 

stealer or advanced persistent threat. We name them by their behaviours. All top level 

malware categories contain multiple families, each of which again contains many 

variants. Despite this complex hierarchy of malware samples, the invariancy of 

execution offers a great opportunity to detect not only a wide range of malware variants 

of a family but also multiple families that share similar behaviour patterns. This chapter 

proposes a detection method that leverages this common nature of the malware. 

 

Many individuals and organisations have been breached and have suffered financial 

losses since early 21st century due to ransomware [159]. Although ransomware has a 

large number of different families, its execution fundamentally involves behaviourally 

similar patterns: 

• Downloads a custom encryption key from a remote command and control 

server 

• Enumerates the file system for the targeted files in the victim’s machine 

• Encrypts the target files using the key 

• Displays the ransom note 
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• Extorts the victim for payment.  

Likewise, various banking Trojans that have impacted the world over the past decade 

such as Zeus, Dyre, and Trickbot have kept their core behaviour unchanged although 

they have gone through numerous binary structure changes to bypass static detection. 

After many years, the fact that banking Trojans hijack web traffic, inject a custom Java 

script within a target online banking page and initiate or modify a covert transaction to 

underground channel, has not still changed. Although there are minor variations in the 

behaviours of variants of a family or a group of families, the substantial body of the 

execution remains relatively invariant. As a result there appears a phenomenon as 

shown in Figure 4.1, commonly seen among different variants and quite often cross-

family malware samples that are behaviourally isomorphic in temporal behaviour space. 

The method proposed in this chapter will exploit the presence of this pattern exhibited 

by behaviourally similar malware samples. 

 

The intrinsic behaviour of a sample is best defined by its dynamic execution log. As 

with many previous works, this chapter will leverage API call sequence as a feature to 

our model while maintaining its spatio-temporal characteristics. The API call logs are 

obtained via a custom sandbox [160] that captures a selected set of user mode API calls 

along with their parameters. Dynamic detection faces several challenges of its own. 

Multi-threaded operating environment can result in the API call events shuffled in 

threaded code blocks. A sample can exhibit several different behaviours depending on 

how it gets executed in a sandbox. Anti-analysis and non-deterministic programs can 

lead the sample to different execution paths. Resilience over mutation of dynamic 

execution is a long-term challenge as well. All of these perturbations in the event log 

interferes with accurate dynamic detection. The global feature that captures local 

characteristics is deemed optimal in this chapter for dynamic detection models. 

 

From practical defence point of view, time-to-detection is a critical factor when there 

is a new malware outbreak and several thousand variants of its kind could soon follow. 

The task at hand is to build a quick knowledge base, out of a handful of samples which 

are available from the outbreak, in the manner that the detection is resilient to minor 

changes in the malware behaviour. This is very different to the traditional problem 

setting where a large corpus of training samples are available and used to predict 
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maliciousness of test samples. Due to the availability of limited training samples, the 

problem in this chapter is posed as similarity-based detection instead of traditional 

binary classification.   

 

The order of API call sequence within a block is the key to the semantics of the 

behaviour. Unfortunately traditional machine learning models such as SVM, Random 

Forest and Gradient Boosting generally use N-gram [149] which is computed from the 

original sample in order to come up with a fixed size feature vector. The N-gram 

approach takes away the important context information present in the global scope. This 

chapter explores a deep learning model that fully utilises the order of API call sequence 

information. Given that similarity-based detection is desired, a generative deep learning 

model is used and evaluated against several traditional machine learning approaches. 

 

This chapter presents a novel method that detects malware outbreaks using dynamic 

execution features when very limited training samples are available. The proposed 

model, generative adversarial autoencoder, automatically extracts perturbation-resilient 

and context-aware features from the raw API call sequences to proactively detect 

malware outbreaks in practical threat response environments. 

4.2 Method 

This section discusses features, model, and metric of the proposed method. The 

proposed method takes advantage of the generative power of adversarial neural network 

against spatio-temporal features extracted from API call events, which shows 

remarkable generalisation of a single sample of its kind used in the training.   
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Figure 4.1. Each row represents a per-sample feature, which is a sequence of API call events made 

issued by a malware sample. Each normalised API call event is rendered as pixel with a unique color 

assigned via a lookup table. X axis is the feature. Y axis is the sample number. This cluster contains 38 

samples (HO_WINPLYER.MSMIU18: 15 samples, OSX_Agent.PFL: 3 samples, OSX_Generic.PFL: 

1 sample, OSX_SearchPage.PFM: 18 samples, OSX_WINPLYER. RSMSMIU18: 1 sample) 

4.2.1 Dynamic Features 

Figure 4.1 illustrates the API call events of the variants of a malware family, which are 

identified by the model proposed in this chapter. Although there are several variations 

in the family name, the visual representation of the API call events for this family 

remains very much isomorphic. 

 

The steps to construct a feature are as follows and an example is shown in Figure 4.2: 

1) Map API call name to a unique ID 

2) Assign a unique ID for each character found in the API call arguments 

3) Pad each API call event with zeros to a predefined fixed size. 
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Figure 4.2. An example of dynamic execution log transformation. (a) A dynamic execution log. (b) 

Symbol to ID lookup table constructed by creating a map of symbols from all training samples. (c) A 

two dimensional array constructed from (a) with padded zeros at the end of each API call event. 

A dynamic execution log consists of a sequence of API call events, each of which is 

broken down into an API identifier and its corresponding API arguments. A sample 

dynamic execution log is shown in Figure 4.2(a). The symbol lookup table shown in 

Figure 4.2(b) is constructed by creating a map of all possible call argument characters. 

This symbol lookup is performed on a per-character basis instead of per-word. 

 

This design decision was made to allow arbitrary number of arguments and values. 

Figure 4.2(c) shows the final feature transformed from the dynamic execution log, 

which will be fed to the deep learning model. 
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Figure 4.3. Generative adversarial autoencoder with 2D API call event feature and embedding. (a) 

Autoencoder with each value in 2D feature mapped to an embedding. Note that the value in blue gets 

mapped to an embedding of size two at its corresponding position marked in dotted blue line. The 

embedding value is chosen from the embedding lookup table for each symbol at the input feature. The 

same applies to the value in red. (b) Discriminator with positive samples from Gaussian normal 

distribution and negative samples from the latent representation, z, obtained from the input feature. 

4.2.2 Adversarial Autoencoder with Multi-Dimensional Input 

Adversarial Autoencoder [58] forms the core of the model, which consists of an 

autoencoder and generator-discriminator pair. In addition, DCGAN [35] is used as an 

autoencoder in order to cope with various perturbations that occur in API call events. 

The proposed model is jointly trained with stochastic gradient descent by minimising 

the reconstruction loss on spatio-temporal input x over latent representation z in 

Equation (1) and by performing min-max adversarial game in Equation (2). Consensus 

optimisation [62] is also applied on top of Adam optimisation [154] to aid stable GAN 

[56] training. Batch normalisation [161] is used within the GAN generator to help 

generate stable latent representations. 

 

a+ba,(.|+)[− log H(^|_)]e                                 (1) 

 

min
1
max
2

a+~4!"#"[log	k(^)] +	
a.~4(.)[log	(1 − k(m(_))]

                (2) 
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Figure 4.4. Autoencoder loss calculation diagram. 

However, several key adjustments are made on top of the base adversarial autoencoder 

model to fit the two-dimensional symbol inputs into the model and to generate 

consistent latent representation over variable length inputs. 

 

The input feature is a two-dimensional array with its width fixed. As shown in Figure 

4.3(a), each symbol at the input is mapped to an embedding vector using a embedding 

lookup table, which transforms the 2D symbol inputs to 3D array required by the 

convolutional encoder. The autoencoder cost calculation process is shown in Figure 4.4 

for each API call event where feature length is limited to 200, embedding vector size is 

4, and symbol lookup table size is 106. The variable length API call event is denoted 

as ‘?’. The reconstructed symbol probability is calculated via cosine similarity obtained 

as an inner product of L2 normalised reconstructed input and L2 normalised embedding 

[70]. The output in Figure 4.4 contains the cross entropy between the one hot encoded 

input symbol and the softmax’ed reconstructed symbol probability. The autoencoder 

cost is calculated by taking the mean of the sum of the negative log likelihood value at 

each symbol position in the input. 
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Figure 4.5. A fixed size z is required for similarity comparison. (a) shows a sample with larger number 

of API call events causing larger kernel volume. (b) shows a sample with relatively smaller number of 

API call events leading to smaller kernel volume. Both (a) and (b) must generate a z with identical size 

for similarity comparison. 

Further, variable length inputs pose a challenge in producing consistent latent 

representations. Although the convolution operation can be performed against arbitrary 

length inputs, the size of the latent representation, z, can vary depending on the input 

length, which is not a desirable property when a fixed size z is needed for similarity 

comparison during detection. Figure 4.5 illustrates the need for pooling the variable 

size convolutional filters produced by variable length inputs. While global max pooling 

works well when the features are extracted for classification problems, it performs 

poorly for autoencoders because each z bit gets biased to a relatively larger value, 

saturates to a distinct bit range, generates poor reconstruction, and therefore negatively 

impacts the accurate clustering of similar samples. Our experiments show that global 

average pooling performs better for autoencoders. Notably Gaussian normal 

distribution that drives adversarial training is nicely imposed on z bits with global 

average pooling (See Figure 4.6). 

 

As shown in Figure 4.7, global average pooling is performed on the last convolutional 

layer of the encoder by producing the z bits from each filter’s mean value (blue part of 

Figure 4.7). Then z is unpooled by setting bit values to the decoder filters at the argmax 

index locations saved from the encoder filters (red part of Figure 4.7). 
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4.2.3 Mean Squared Error Metric 

The latent representations obtained through adversarial autoencoder contain real 

numbers which can be directly compared with each other by calculating mean squared 

error (MSE). 

 

If binary bits are desired for efficient comparison, z needs to be binarized using the 

bitwise mean value of the training samples, which splits the bit distributions into halves 

and subsequently helps better to distinguish between samples. Adversarial training 

driven by Gaussian normal distribution significantly helps in spreading the bits evenly. 

Hamming distance is then used to compute the distance for the given two latent vectors. 

However, our experiment indicates that MSE metric over real valued z performs 

slightly better than hamming distance over binary z bits. 

 

Figure 4.6. Distribution of each bit in z.  

Each bit has Gaussian normal distribution as instructed by adversarial training, which 

helps distinguishing between different samples. Global average pooling allows this 

adversarial property as well as sound reconstruction required for autoencoder. 

4.3 Evaluation 

4.3.1 Dynamic Sample Dataset 

Dynamic execution logs of 2,855 in-the-wild OS X malware samples collected from a 

proprietary commercial sandbox and 7,541 benign OS X samples were used for 
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evaluation. A snapshot of family distribution for a portion of 2,855 in-the-wild malware 

samples is shown in Figure 4.8. 

 

Figure 4.7. Global average pooling, latent representation (z) generation, and global average un-pooling. 

Argmax of each encoder filter is marked in red. The mean value of each encoder filter is marked in 

blue. 

Dynamic execution logs were analysed and labelled by human experts with the focus 

on the similarity of API call event sequences. Out of 2,855 malicious samples, 353 

unique API call sequence patterns have been identified and were used for training. Note 

that the benign samples were not included in the training set in order to test the outbreak 

detection capability as outlined at the introduction of this chapter. 

 

Gradient boosting, Support Vector Machine and Random Forest models were chosen 

as baseline that the proposed model is evaluated against. The two dimensional variable 

length input feature vector used for the proposed model collapses to a one dimensional 

array in order to produce n-gram feature [149] for the baseline models. Note that 

clustering models were not included in the baseline since they need decent number of 

training samples, which is different to the problem setting put forward in this research. 
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Figure 4.8. A snapshot of the family distribution for a portion of 2,855 in-the-wild malware samples 

used in the evaluation. 

Since the baseline classifiers perform differently depending on whether the benign 

samples are included in the training set or not, two separate experiments were 

conducted in this research The samples were split for the two experiments and are 

shown in Table 4.1. Note that the benign samples in training set and those in test set are 

mutually exclusive in experiment 2. 

 Experiment 1 Experiment 2 
malicious benign malicious benign 

train 353 0 353 3770 
test 2855 7541 2855 3771 

Table 4.1. Dynamic detection sample splits 

4.3.2 Dynamic Detection Result 

To simulate the outbreaks, we have assigned a unique label for each of these 353 unique 

malicious training samples and have evaluated how accurately the label matches with 

the prediction. Therefore, True Positive (TP) ratio in Table 4.2 shows the label-wise 

matches of all test malicious samples against malicious training samples.  

 

Baseline models did not produce a good TP ratio against malicious samples scoring less 

than 50% detection rate regardless of the sample splits in both experiments. They also 

catastrophically failed the False Positive (FP) test in experiment 1 where no benign 

samples were used for training. The definitions of sensitivity and specificity including 

TP ratio and FP ratio can be found in [162]: 
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Model Experiment 1 Experiment 2 
TP FP TP FP 

gradient-boosting-1gram 0.167 1.000 0.194 0.026 
gradient-boosting-2gram 0.126 1.000 0.108 0.027 
svm-1gram 0.367 1.000 0.056 0.000 
svm-2gram 0.394 1.000 0.056 0.000 
randomforest-1gram 0.452 1.000 0.460 0.000 
randomforest-2gram 0.356 1.000 0.385 0.000 
aae-mse 0.991 0.001   

Table 4.2. Dynamic detection evaluation result 

 

Threshold TP FP 

0.000500 1.000 0.306 
0.000100 1.000 0.057 
0.000075 1.000 0.033 
0.000050 1.000 0.010 
0.000025 0.991 0.001 
0.000010 0.860 0.000 

Table 4.3. Effect of thresholds in dynamic detection 

However, they recorded near perfect FP ratio for experiment 2 where large benign 

samples were included in the training set, which meets the expectation for a good 

classifier. On the contrary, aae-mse, the proposed generative adversarial autoencoder 

using mean squared error (MSE) as autoencoder loss, shows 99.1% true positives along 

with 0.1% false positives with MSE decision threshold set to 0.000025. This threshold 

influences how much the model generalises the detection.  

 

The higher the threshold is set, the more reliable the detection is whereas the more 

likely the model misses mutated samples. The effect of various threshold values is 

shown in Table 4.3, and the highlighted threshold shows the performance described in 

Table 4.2. One can run the inference with a sufficiently low threshold for accurate 

detection while running a separate inference with a higher threshold to grab potentially 

malicious samples for further analysis. 

 

In summary, the experiments show that the proposed model is capable of reliably 

generalising the sample variations while keeping a sufficiently fair distance from 
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previously unseen benign samples. In contrast, traditional classifiers are much less 

likely to work to detect under the malware outbreak situations. 

4.3.3 Dynamic Detection Analysis 

In this section, we analyse several key aspects of how the latent representation produced 

by generative adversarial autoencoder is correlated to the semantics of API call events. 

Figure 4.9 shows an example of two similar samples detected by the proposed model. 

The majority of the API call events remain identical (marked in white background). A 

sequence of API calls appears (marked in yellow background), initiated by a successful 

network connection establishment in the sample on the right hand.  Those API calls are 

absent (marked in grey background) in the sample on the left hand. This demonstrates 

the robust detection capability of the model even when samples execute different code 

paths in different operational environments. 

 

Figure 4.9. An example of API call snippets of two similar samples detected by the proposed model. 

White lines indicate identical events. Yellow lines indicate non-identical events due to a difference in 

the event. Gray lines indicate absent events relative to the other event. 

Figure 4.10 shows API call snippets of OSX_Bundlore.ESS2 (on the left hand) and 

OSX_Bundlore.PFL (on the right hand side) which shows that aae-mse found that these 
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samples are similar to each other. Although the URL and the IP address of the remote 

command and control server have changed, aae-mse successfully identified this 

variation. 

 

Figure 4.10. An example of API call snippets of two similar samples detected by the proposed model. 

Both samples are distinguishable by the access to different remote network nodes. 

The cluster detected by aae-mse shown in Figure 4.11 contains 209 different samples 

of 6 different variants of a family. It also detected similar samples across multiple 

different malware families as shown in Figure 4.12. 

 

Figure 4.11. Cluster 2 (nsamples=209) consists of OSX_Bnodlero.PFL (2 samples), 

OSX_Bundlore.PFL (88 samples), OSX_Bundlore.PFM (109 samples), OSX_BundloreCA.PFL (1 

samples), OSX_BundloreCA.PFM (4 samples), and OSX_SurfBuy.ESS2 (5 samples). 

 

 

Figure 4.12. Cluster 4 (nsamples=61) consists of HO_WINPLYER.MSMIU18 (31 samples), 

OSX_Agent.PFL (1 samples), OSX_SearchPage.PFM (3 samples), and 

OSX_WINPLYER.RSMSMIU18 (26 samples). 
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4.4 Conclusion 

Proposed generative adversarial autoencoder with the use of API call event as features 

can produce good latent representations with small training set that can be used for 

distance-based similarity between samples. The training set restriction seriously tests 

the generalisation capability of the model. The result shows that the proposed model 

provides effective detection for gradually diverging mutation of malware species in 

behaviours. The model was also found to be effective in discovering multiple 

heterogeneous malware families that share similar dynamic execution events. 

 

This chapter demonstrated how generative adversarial autoencoder can be leveraged 

for dynamic malware detection. In chapter 5, more semantic malware detection method 

using instruction cognitive signal will be presented. 
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Chapter 5:  Instruction Cognitive Malware 
Detection 
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Sean Park, Iqbal Gondal, Joarder Kamruzzaman, Jon Oliver, " Instruction Cognitive 

One-Shot Malware Outbreak Detection" 2019 26th International Conference on 

Neural Information Processing of the Asia-Pacific Neural Network Society. Sydney, 

2019. 
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Previous two chapters presented an efficient malware detection method using deep 

learning over instruction feature. This chapter will show a method that extracts highly 

accurate instruction signals from raw binary executables and that leverages them for 

malware detection. 

 

New malware outbreaks cannot provide thousands of training samples which are 

required to counter malware campaigns. In some cases, there could be just one sample. 

So, the defence system at the firing line must be able to quickly detect many 

automatically generated variants using a single malware instance observed from the 

initial outbreak by statically inspecting the binary executables. As previous research 

works show, statistical features such as term frequency–inverse document frequency 

and n-gram are significantly vulnerable to attacks by mutation through reinforcement 

learning.  Recent studies focus on raw binary executable as a base feature which 

contains instructions describing the core logic of the sample. However, many 

approaches using image-matching neural networks are insufficient due to the malware 

mutation technique that generates a large number of samples with high entropy data. 

Deriving instruction cognitive representation that disambiguates legitimate instructions 

from the context is necessary for accurate detection over raw binary executables. In this 

chapter, we present a novel method of detecting semantically similar malware variants 

within a campaign using a single raw binary malware executable. We utilize Discrete 

Fourier Transform of instruction cognitive representation extracted from self-attention 

transformer network. The experiments were conducted with in-the-wild malware 

samples from ransomware and banking Trojan campaigns. The proposed method 

outperforms several state-of-the-art binary classification models. 

5.1 Introduction 

Modern malware authors write a script that automatically generates an arbitrarily large 

number of diverse samples that share similar characteristics in program logic, which is 

a very cost-effective way to evade detection with minimum effort. A series of malware 

outbreaks that stems from the same automated script constitutes a malware campaign. 

The majority of traditional approaches make an assumption that a large number of 

training samples are available, searching the model space for a presumably perfect 

parameters that perfectly fits the training samples. These approaches tend to overfit the 
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lab samples while not generalising well against real world samples, let alone the 

training sample availability assumption is far from practical. Given that it is crucial to 

detect these seemingly diverse but identically rooted variants by utilising a single 

malware instance observed from the initial outbreak, this chapter will focus on one-shot 

training optimized for one-to-many malware detection. To the best of our knowledge, 

no work has been conducted on one-shot training over raw binary executables. 

 

Saxe at al. [116] and Vinayakumar et al. [163] implemented a deep feed forward 

network using statistical features derived from the executable file metadata. Anderson 

et al. [27] showed that it is easy to defeat these statistical features largely from the 

executable header metadata such as import table entries, sections, entropy, and other 

relevant metadata. Anderson’s experiment shows a significant evasion rate even 

without intensive fine-tuning of the random mutation performed at each iteration of 

reinforcement learning, which essentially demonstrates the vulnerability of statistics- 

based detection approaches. 

 

Byte n-gram has been considered an attractive approach when dealing with highly 

structured data such as raw executable files. However, Zak et al. [148] showed that byte 

n-gram learns little information from code sections contrary to common hypotheses in 

machine learning. Then Raff et al. [133] discovered a potential that neural network 

models can learn useful representation from uninterpreted sequence of executable bytes 

that helps classification. In addressing the problems faced by the above approaches and 

devising a technique capable of learning from a single instance of the initial outbreak, 

this chapter makes following contributions: 

1) Developments of a method that learns a representation directly correlated with 

the legitimate instructions embedded within the binary executable file.  

2) Development of method to use the model to detect malware variants that possess 

instruction-wise similarity by performing one-shot training. 
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5.2 Methodology 

5.2.1 Transformer Network 

Figuring out valid instructions from raw sequence of bytes in executables requires a 

model that understands the semantic relationship between the elements of the input 

sequence. A plethora of deep learning techniques have been produced in early 21st 

century. Notably CNN and RNN along with Generative Adversarial Network (GAN) 

[56] have been the base platform for language modelling and machine translation. 

Despite its success, correctly identifying the instructions purely based on the context 

remained challenging until Transformer network [79] was proposed. For our purpose, 

Transformer network can be trained by providing raw sequence of bytes from an 

executable as an input and by setting the desired instructions as a target (See Figure 

5.1). 

Line Input (raw bytes) Instruction disassembly Output (opcodes) 
1 89 e1 mov ecx, esp 89 64 
2 b8 32 00 00 00 mov eax, 0x32 b8 64 64 64 64 
3 83 ec 3c sub esp, 0x3c 83 64 64 
4 8b 35 03 6c 40 00 mov esi, dword ptr [0x406c03] 8b 64 64 64 64 64 
5 56 push esi 56 
6 ff 15 c4 50 40 00 call dword ptr [0x4050c4] ff 15 64 64 64 64 
7 2e ba c2 37 40 00 mov edx, 0x4037c2 2e 64 c2 64 64 64 
8 ff e2 jmp edx 64 64 
9 00 00 add byte ptr [eax], al 64 64 
10 00 8b 3d ff 6b 40 add byte ptr [ebx + 0x406bff3d], cl 64 64 64 64 64 64 
11 00 57 ff add byte ptr [edi - 1], dl 64 64 64 
12 15 8c 50 40 00 adc eax, 0x40508c 64 64 64 64 64 

Figure 5.1. The first column is line number. The second column shows input raw bytes to Transformer 

model. The third column is the disassembly for the input. The last column shows the output of the 

Transformer. All numbers are in hexadecimal while the line numbers in the first column is in decimal. 

Legitimate instructions are shown until line 8, and the following bytes are data bytes. 

The goal of the model is to produce correct opcodes at its output while padding the rest 

of the bytes with 64, which indicates INVALID. As highlighted in blue, the model 

correctly identifies opcodes until it starts outputting 64 (INVALID) from line 9. The 

model correctly disregards invalid instructions as highlighted in the disassembly in red 

from line 9, by filling output bytes with 64 (INVALID). Although the model’s output 

(last column) is not correct at line 8 when transitioning from the end of the code block 
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to the beginning of data block, the model mostly produces accurate outputs. In short, 

self-attention enables Transformer to find out the relationship between different 

positions of the input sequence. With LSTM model [124], the experiment shows that 

output instruction sequence is far from accurate in the presence of packed data, which 

suggests self-attention plays a key role in predicting the opcodes. 

 

Figure 5.2. Model architecture using Transformer. Frequency spectrum of approximated encoded latent 

representation is used as the feature for malware detection. 

5.2.2 Model Architecture 

Transformer network [79] is used as a base model to produce instruction cognitive 

signals for the raw input sequence. The model is trained using hold-out dataset that 

consists of both malicious and benign samples. Let ^ = ((%, … , (5) ∈ ℝ6 be an input 

sequence of symbols, _ = (>%, … , >5) ∈ ℝ7×6 be latent representation of dimension v 

retrieved from the encoder output, and w = ()%, … , )5) ∈ ℝ6  be the desired output 

sequence with the opcode placed at the beginning of each valid instruction and 

INVALID symbol in the rest of the positions. _ is learned by minimizing the softmax 

cross entropy loss of the decoder output, wx, against the label w, using adam optimizer 

[154]. The model architecture is shown in Figure 5.2. The trained _ has instruction 

cognitive signals that can directly transform the raw byte sequences into a sequence of 

legitimate instructions. 

 

Adversarial attack by manipulating the bytes is a threat to the success of the model as 

described in Section 2.4. Figure 5.3 illustrates an example of _ for a malware sample 
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with the majority of the executable occupied by high entropy packed data. This 

demonstrates that the model is resilient to adversarial perturbations modifying the 

binary executable by inserting arbitrary bytes without caring about the legitimacy of 

instructions. 

 

Figure 5.3. Maximum activation for backdoor TORFSEE.SMF. There are several intervals  where the 

activation strength is flat where no valid instruction was found. 

As described in Section 2.3, it is critical to detect diverse malware variants deploying 

metamorphism. Given that frequency spectrum exhibits a coherent view of the features 

correlated to instructions while staying resilient to minor variations, we perform 

discrete Fourier transform, _ → y [164]. However, the dimension of the learned latent 

representation _  is reasonably large which prevents us from performing multi-

dimensional Fourier transform due to high computational complexity. Therefore, we 

approximate _ by taking the most active neuron for each _9 ∈ ℝ7 across dimension v. 

Z: = [zX{[(	_9             (1) 

y; = ∑ [: ∙ R
<$%&' ;:"<%

:$=  (2) 

where y; ∈ ℝ>   and k = (0,… ,8 − 1). We use FFT [30] in order to compute the 

frequency coefficients faster. 

 

We discovered that the samples sharing similar instruction-wise characteristics exhibit 

similar spectrum distributions. Therefore, we use Pearson Correlation Coefficient [165] 

against spectral density as a distance metric between samples, which is defined in 

equation (3). 
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~?,A =	
B[(?<D")(A<D()]

F"F(
                (3) 

where �?  is the standard deviation of [, �A  is the standard deviation of ], Ä?  is the 

mean of [, ÄA is the mean of ], and a is the expectation.  

 

A sample is detected as malicious if the correlation, defined by the equation (3), to a 

known malware instance in a malware campaign is within the threshold, which needs 

to be empirically decided depending on the dataset. 

5.2.3 Detection Analysis 

Figure 5.4 shows the FFT of two separate malware campaigns captured in the wild. 

Each graph contains two variants exhibiting their frequency spectra overlapped to each 

other. Variants from the same campaign show similar spectral characteristics while the 

difference in spectra from different campaigns is distinct enough to distinguish them. 

 

Figure 5.4. The top graph shows FFT of CRYPTESLA variants whereas the bottom graph displays that 

of EMOTET variants. The difference between families is clearly distinctive while the samples within 

the family are kept close in frequency distribution. 
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5.3 Evaluation 

5.3.1 Instruction Cognitive Dataset 

As stated at the introduction, one-shot training is used to evaluate the model’s 

performance on one-to-many detection capability. There is no publicly available dataset 

for this problem setting. Repurposing public datasets for our problem setting is not 

optimal because some datasets come without binary samples, and others contain 

imbalanced samples with no campaign information, which makes it difficult to derive 

an accurate evaluation of the model’s capability to detect malware variants originated 

from the same campaign. Besides most datasets are old and are not annotated with first-

seen timestamp. 

 

For these reasons, we use a proprietary dataset provisioned by a commercial vendor 

that contains major ransomware and banking Trojans campaigns of 2017 and 2018. 

Each individual malware outbreak has been recorded along with its time and the binary 

sample. The largest campaigns are shown in Figure 5.5. 

 

Figure 5.5. A snapshot of the malware campaign distribution of the dataset used in the evaluation. X-

axis is the name of the malware campaign and Y-axis is the number of samples within each malware 

campaign. Shown from the largest campaign (left) to the smaller ones (right). 

Gradient Boosting, Support Vector Machine, and Random Forest were selected as 

baseline models to evaluate our proposed model against. Benchmarking against 

clustering methods is deemed irrelevant to our problem setting since only a single 

sample from each campaign is available for training and therefore, cluster around each 

campaign cannot be formed. We used a single malware sample first seen in each 

campaign for training, which counts to 488. 20% of total benign samples were used for 
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training while the rest of them were used for validation (see Table 5.1). Training and 

validation sets are mutually exclusive.  Note that our proposed model did not use benign 

training samples. In addition, our model does not need extra training for malicious 

training samples once Transformer has been trained to recognize instructions using off-

the-dataset samples. We use malicious training samples for distance computation only. 

 malicious benign 
baselines our model 

Train 488 1365 0 
Validation 3085 5461 5461 

Table 5.1. Instruction cognitive detection: train and validation dataset split 

5.3.2 Model Performance 

As shown in Table 5.2, our proposed model (transformer+fft) outperforms all models 

in True Positive despite the fact that no benign sample was used for training. Our model 

marginally comes in the second place for False Positive following SVM. However, 

SVM records a poor TP, which is sub-optimal to be used as a production model. 

Model TP FP 
Gradientbooster-unigram 0.967 0.1518 
Gradientbooster-bigram 0.986 0.0957 
SVM-unigram 0.656 0.0016 
SVM -bigram 0.853 0.0016 
RandomForest-unigram 0.981 0.1648 
RandomForest -bigram 0.982 0.1168 
Transformer+FFT 0.997 0.0190 

Table 5.2. Instruction cognitive model performance comparison 

ROC of the decision threshold for the equation (3) is shown in Figure 5.6.  
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Figure 5.6. ROC of decision threshold of the model as defined by equation (3). 

5.3.3 False Positive Complexity 

It is important to understand how scalable a given model’s FP is especially when a tiny 

percentage of false positives can cause catastrophic failure for real world traffic since 

the volume is amplified by several magnitudes. We measured the FP by changing the 

benign training set size. Figure 5.7 illustrates that the FP complexity of the baseline 

models is close to O(n), showing strong dependency on the amount of the benign 

training samples whereas the FP complexity of transformer+fft is O(1) because it does 

not use any benign training samples for detection, which shows a great resiliency of our 

model against false positives. 

 

Figure 5.7. FP rate of the baseline models when the amount of benign samples varies. transformer+fft 

model that does not use benign training samples is also shown for comparison. 
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5.4 Conclusion 

In this chapter, we presented a novel method that extracts instruction cognitive 

representation from uninterpreted raw binary executables. This method can be used for 

one-to-many malware detection via one-shot training against frequency spectrum of the 

Transformer’s encoded latent representation. The method works regardless of the 

presence of diverse malware variations while remaining resilient to adversarial attacks 

that mostly use random perturbation against raw binaries. 

 

One significant advantage of the method is that no computationally expensive training 

is required each time a new malware sample is added once Transformer is fully trained 

to produce the representation sufficient to recognize instructions within the binary 

sequence. 

 

In this chapter, we demonstrated a method that extracts semantic features from the raw 

binary executables, which is critical in accurate malware detection in the presence of 

adversarial attacks that target the vulnerabilities of modern machine learning models. 

Next, we will look into an effective hunting approach to triage suspicious samples 

through a comprehensive study on metamorphic threat detection. 
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Chapter 6:  Threat Hunting against 
Metamorphic Threats 

 

 

 

 
 

 

 

 

The work in this chapter was accepted in following book chapter: 

 

Sean Park, Iqbal Gondal, Joarder Kamruzzaman, Jon Oliver, "Comparative Study on 

Machine Learning Methods to Detect Metamorphic Threats" Malware Analysis using 

Artificial Intelligence and Deep Learning" Springer, 2020. 

  



   93 

Many effective malware detection methods using deep learning has been demonstrated 

in the last three chapters. In this chapter, we will show the significance of clustering 

against metamorphic threats and provide a benchmarking result over several 

representative models including deep learning method presented in this thesis. 

 

As the sheer volume of incoming samples exponentially increases every year, one of 

the critical tasks in defence pipeline is to identify probabilistically suspicious samples 

that require further investigation. The task essentially involves filtering out a large 

volume of unknown samples and producing a manageable set of potentially malicious 

samples with sufficiently high confidence. Today the majority of malware samples 

possess metamorphic property where various mutations over the original set of code 

blocks occur before they are released. This arbitrary custom-designed mutation 

algorithm applied at each outbreak constitutes the crux of the constant battle between 

the attackers and the defenders. Therefore it is crucial to capture this non-linear 

metamorphic pattern unique to the mutation in order to detect the variants. This chapter 

compares the performance of various clustering methods against metamorphic malware 

samples to identify the model that best suits in practical threat hunting. Results have 

shown that Adversarial autoencoder performs better than well-known techniques such 

as. HDBSCAN, KNN, and SDHASH. 

6.1 Introduction 

Modern threats are created using a script that automatically generates an arbitrarily 

large number of diverse samples that share similar characteristics in program logic, 

which is a very cost-effective way to evade detection with minimum effort. For instance, 

a series of malware outbreaks originated from the same automated script constitutes a 

malware campaign that distributes seemingly diverse but identically rooted variants. 

This diversity comes from metamorphism that forms the basis of modern threats [41]. 

 

As the scale of incoming samples rises, many machine learning methods have been 

attempted to detect those threats. However, the survey by Ye et al. [166] essentially 

shows that it is very difficult to accurately classify malware samples. With the lack of 

machine learning models with the desired accuracy over real world samples, triaging 

unknown samples has been increasingly important. In particular, it is required to 



   94 

produce a smaller number of potentially malicious samples which human analysts can 

manually inspect or other tools with finer-grained detection capability can analyse. 

 

Although several triaging methods have been previously published with respectable 

results [145][146], it has always been challenging to gain certain degree of confidence 

in the correctness of triage. The triage result is more reliable when it is interpretable. 

Particularly the extensive use of black box dataset with unknown characteristics used 

in most studies makes it difficult to validate the triage result for unlabelled samples. 

Considering this limitation, given that the vast majority of modern malware samples 

exhibit similar patterns in the automatically generated instruction sequences, we argue 

that triage result is less likely to be incorrect if instruction-wise characteristics are 

similar. For instance, let us consider Figure 6.1 that shows the variants of a Cerber 

malware family captured in the wild that spanned across several weeks. Similar 

instruction-wise characteristics are present in basic block (BBL) level, function level, 

or somewhere in between. A reasonable degree of newly introduced or removed code 

fragments are observed, which can be considered as a minor noise. Despite various 

metamorphic techniques in place, the instruction patterns for this malware campaign 

are clearly similar to each other to humans. Even though a significant portion of the 

code is related to unpacking the hidden code, this surface level instructions still carry 

the semantics of the metamorphic code combined with the original unpacking code. 

 

This chapter focuses on static instructions as a base feature, which possesses semantic 

representation of a potentially metamorphic samples. Statistical features are not 

considered in this chapter due to its inherent vulnerability demonstrated by the evasion 

method based on reinforcement learning [27]. In this chapter, the instruction IDs are 

used as a base feature instead of raw binary instructions [34] in order to avoid 

instruction differences caused by register transposition metamorphism [41] and 

language compiler differences. 
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Figure 6.1. Visualisation of 7 Ransomware Cerber variants. Each row represents a per-sample feature, 

which is a sequence of instructions of a malware sample. Each instruction is rendered as horizontal 

stripes with a unique colour assigned to different instructions. X axis is the feature. Y axis is the sample 

number. 

To the best of our knowledge, no comparative study has been conducted on the efficacy 

of semi-supervised learning methods against metamorphic samples. The main 

contribution of this chapter is the comparison of various machine learning methods that 

best detects malware variants with similar campaign-wise metamorphic similarity. Our 

study shows that Adversarial Autoencoder has shown better performance as compared 

with other techniques. 

6.2 Malware Triage Methods 

There are a plethora of machine learning methods that can be used for malware triage. 

We selected four different methods for comparison that meet the following 

requirements: 

• The model must be widely deployed in similarity detection field. 

• The model must provide a method to find the closest training sample for a given 

test sample since the similarity of a test sample is evaluated by checking if its 

closest training sample and itself belong to the same cluster. 

• The model must be able to predict in the absence of total cluster count 

information. Since most threats evolve over time with minor changes, no 

explicit decision boundary between adjacent clusters exist in practice. In fact, 

many clusters exhibit similar metamorphism with variations. Therefore, the 

evaluation based on strict cluster matching can interfere with correct detection 

of the threats. 
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We briefly describe the four methods in the light of the above selection requirements. 

6.2.1 K-Nearest Neighbour 

K-Nearest Neighbour (KNN) [167] is one of the most widely used machine learning 

methods in similarity search. Despite its long history, it still shows reasonably 

competitive results in many research papers and provides non-parametric interface for 

ease of use. The hyper parameters include search algorithm and distance metric. The 

implementation can leverage either KDTree [168] or BallTree [169] for efficient 

pairwise distance computation. Since KNN requires fixed length inputs, it uses n-gram 

of instruction feature as input, as discussed in the next section. We use BallTree to cope 

with high dimensional n-gram variables with ‘minkowski’ having the parameter equal 

to 2 for distance metric [170] 

6.2.2 HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications 
with Noise) 

HDBSCAN [171] is widely used in unsupervised clustering method that creates clusters 

with varying densities. As with KNN, n-gram is used as input due to fixed input 

restriction of the model. ‘euclidean’, which is identical ‘minkowski’ with parameter of 

2, is used for distance metric of HDBSCAN. The primary hyper parameters include the 

following: 

 

min_cluster_size=5, min_samples=None, metric='euclidean', 

alpha=1.0 

 

Different ranges of these hyper parameters have been experimented during the 

evaluation and the best result is compared against the rest of the models. 

6.2.3 SDHASH (Similarity Digest Hash) 

SDHASH, also known as Fuzzy hashing, has been widely used when determining the 

similarities of documents by maximising the probability of local hash collision. Popular 

algorithms include SDHASH [172], SSDEEP [173], and TLSH [174]. SSDEEP 

calculates edit distance to recognise identical blocks, TLSH uses n-gram frequency 

distribution for similarity measure, and SDHASH uses normalized entropy measure to 
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find statistically improbable features. Studies show SDHASH and TLSH outperforms 

SSDEEP [175][176]. In this chapter, we show the results for SDHASH because TLSH 

shows similar results. Since fuzzy hashing can deal with variable length input, raw 

instruction feature is used as input to the model. The distance is calculated by 

normalising the inverse of the similarity score returned by SDHASH. 

6.2.4 Adversarial Auto-Encoder 

Adversarial Auto-Encoder (AAE) is a dimensionality reduction method based on deep 

learning that compresses an arbitrary length input to a fixed length latent representation. 

The model implemented by Park et al. [34] is used for the evaluation, which combines 

the power of generative adversarial network [58] and location-resilient convolutional 

neural network [35]. Raw instruction feature is fed to the model as input. The distance 

is computed by taking the mean squared error of the difference of z values, which are 

the latent representations at the bottleneck. 

6.3 Evaluation 

6.3.1 Metamorphic Malware Dataset 

In this chapter, we use interpretable family-wise metamorphic malware samples that 

possess similar instruction-wise characteristics instead of arbitrarily chosen malware 

dataset from the black box. To deal with the biased ground truth cluster problem [144], 

we carefully created the dataset for the experiment in such a way that each cluster holds 

the core semantics of campaign’s metamorphism. A commercial vendor provided 3,390 

unique malware samples from multiple isolated in-the-wild campaigns, which is a 

representative dataset from a larger sample pool. The 3,390 samples are further reduced 

to 1,012 samples after removing duplicate samples with identical instruction sequence 

are removed. Using various machine learning methods combined with manual analysis, 

these 1,012 instruction-unique samples have been identified to form 211 clusters. We 

used half of each cluster for training and use the rest for testing. In addition, we reduced 

a large pool of benign testing samples to 5,854 by taking representative samples with 

similar TLSH digest values. The dataset for the experiment is summarised in Table 6.1. 
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 Malicious Benign 

Train 485 0 
Test 527 5854 
Table 6.1. Metamorphic clustering: train and test dataset split 

The malicious samples contain major ransomware, backdoor, and banking Trojans in 

Windows operating system. The colour-coded instructions of randomly chosen families 

are depicted in Figure 6.2. 

6.3.2 Instruction Feature 

As described in [34], instruction sequences are extracted from each binary sample from 

which instruction IDs are calculated using capstone [177]. Input feature is essentially a 

sequence of variable length integers representing instruction characteristics. Models 

can choose different types of random variables for the input. KNN and HDBSCAN 

require fixed length inputs whereas SDHASH and AAE accept variable length inputs. 

To utilise the maximum potential of the model, SDHASH and AAE use the original 

instruction feature with minimum pre-processing. For KNN and HDBSCAN, we 

deploy n-gram, which is one of the most widely used tools that generate fixed length 

inputs. We use n=2, which generates 7,302 features for the instruction feature. 

 

Figure 6.2. Horizontal lines represent samples showing each family can contain variable length 

malware variants exhibiting different instances of metamorphism. 
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6.3.3 Evaluation Criteria 

Let ground_truth be a mapping 3: ( → sÅÇÉSRz where ( is the input feature prepared 

for each model as explained in the previous section and sÅÇÉSRz is a label obtained 

through the process described above. Let is_similar be a function defined by each 

model that calculates the distance between the first argument and the second argument 

and returns the closest sample within the second argument, and threshold be the hyper 

parameter for each model. The process for strict evaluation is described by the 

algorithm in Figure 6.3. The algorithm sets the decision metrics (tp, tn, fp, fn) if the 

predicted cluster number strictly matches the true cluster number. In addition to this 

strict matching criteria, relaxed evaluation is also performed to see if models are 

capable of separating malicious samples from benign samples given that our ultimate 

goal is malware detection. In relaxed evaluation, an exception is made to line 16 of the 

algorithm in which tp is incremented if both ytrue and ypred have a valid malicious 

cluster number. 
 

Algorithm: Process for strict evaluation 

1: train_xs = x for all x ∈ train_malicious 

2: test_xs = x for all x ∈ {test_malicious, test_clean} 

3: tp = 0, tn = 0, fp = 0, fn = 0  

4: for test_x in test_xs: 

5:     ytrue = ground_truth[test_x] 

6:     Distance, similar_train_x = is_similar(test_x, train_xs) 

7:     if distance < threshold:  

8:         ypred = ground_truth[similar_train_x] 

9:     else: 

10:         ypred = 0 

11:     if ytrue ==  ypred: 

12:         if ytrue == 0: tn += 1 

13:         else: tp += 1 

14:     else: 

15:         if ytrue == 0: fp += 1 
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16         else: fn += 1 

Figure 6.3. The algorithm used to compute the performance metrics of the models. tp, tn, fp, fn describe 

the count of True Positive, True Negative, False Positive, and False Negative, respectively. 

6.3.4 Malware Triage Benchmarking Results 

The model performances are depicted as ROC curves in Figure 6.4 and Figure 6.5. The 

top performing model is AAE, followed by KNN with a decent gap. SDHASH finds 

the correct malware clusters approximately for 50% of the test samples. On the contrary, 

HDBSCAN performed extremely poorly in strict setting while its accuracy remains 

around 50% in relaxed setting. 

 

First of all, the AAE model that utilises convolutional autoencoder performs global max 

pooling at the last encoder layer, which captures translation invariant features 

insensitive to locational variations of the instructions. Furthermore, generative 

adversarial network finetunes the latent representation in a non-cooperative minmax 

game, making it more resilient to artificially generated similar samples. The result also 

shows locality sensitive hashing does not adapt well in identifying the similarities 

between metamorphic malware samples in the same cluster. Above all the fact that 

metamorphism involves frequent code transpositions renders location dependent 

SDHASH simply ineffective in clustering similar malware samples. In the meantime, 

KNN performs reasonably well although insufficient to compete with AAE. A 

straightforward Euclidean distance comparison over location-independent histogram of 

n-gram appears to support KNN’s decent performance. Finally, HDBSCAN shows 

poor performance with the result unpredictable both in strict and relaxed settings. 

Especially HDBSCAN in strict setting shows worse results than random decisions. 
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Figure 6.4. (a)  ROC of model performances with strict matching. 

 

Figure 6.5. (b)  ROC of model performances with relaxed matching criteria. 

6.4 Conclusion 

In this work, we presented a comprehensive comparison of various machine learning 

methods on their capabilities in identifying the variants of malware families that show 
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similar characteristics in their core instructions. The result shows adversarial network 

combined with convolutional network with global max pooling outperforms the rest of 

the machine learning techniques in this task. Since it is critical to generalise the 

distribution under metamorphic threats, this result suggests that models with translation 

invariant property is more resilient to metamorphic threats than the ones that leverages 

traditional distance metrics. 

 

In chapter 7 of the thesis, conclusions are presented based on contribution chapters 3, 

4, 5 and 6. 
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Chapter 7:  Conclusion 
 

In previous chapters, it has been demonstrated that deep learning is capable of tackling 

various difficult challenges posed by modern malware threats. Neurally identifying 

complex non-linear patterns is increasingly important especially when malware 

diversity is accelerated with a high volume of potentially suspicious samples arriving 

every day. This chapter summarises the primary contributions of the thesis and sets out 

future works. 

7.1 Summary of Contributions 

The contributions of the deep learning based malware detection in this thesis is 

summarised below. 

1. Generative static malware outbreak detection: Using the data model of 

original instruction sequence with order retained, the proposed model 

overcomes imperfect labelling problem and provides maximum information 

possible required for deep learning to create accurate latent representation. The 

generative power of GAN by use of AAE makes one-shot training possible, 

which is a critical requirement in production environment. The translation 

invariant property achieved through stacked CNN enables the detection of many 

metamorphic characteristics present in the instruction sequence. The 

unsupervised learning through autoencoder in combination with semantic 

hashing allows a lot of freedom to finetune detection in practical defence 

systems using adjustable distance threshold. Performance evaluation against 

representative traditional supervised models confirms the superiority of the 

proposed model. 

 

2. Generative dynamic malware outbreak detection: The static outbreak 

detection model has also demonstrated its efficacy for dynamic detection. 

DCGAN is used to cope with the increased number of dimensions introduced 

by the use of dynamic API call event sequence at the input. For the variable 

length inputs, the upgraded model produces consistent size of latent 
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representation from the autoencoder by using global average pooling that allows 

distance calculation for similarity comparison. The experimental results again 

confirm the efficacy of the model, outperforming many state-of-the-art 

traditional machine learning approaches by a significant margin. Despite the 

training set size restriction that seriously tests the generalisation capability, the 

model effectively discovers not only intra-family variants but also 

heterogeneous malware families that exhibit similar dynamic execution 

behaviour. 

 

3. Instruction cognitive malware detection: The proposed approach performs an 

important task of extracting instruction-aware signals from the raw binary 

executables whose structure is completely unknown. Equipped with self-

attention capability, the Transformer model learns a representation directly 

correlated with the legitimate instructions embedded within the binary, which 

helps identifying semantically similar malware variants. Pearson Correlation 

Coefficient against spectral density computed by Discrete Fourier Transform is 

used for similarity comparison. The efficacy of the instruction cognitive 

representation was demonstrated with the evaluation against traditional 

supervised models. False Positive complexity of the model shows O(1) 

dependency on the training set size, which shows great resiliency against false 

positives. In contract, False Positive complexity of all traditional models is close 

to O(n), which shows unacceptable sensitivity to real world samples whose 

volume is several magnitudes higher. 

 

4. Comparative study on metamorphic threats: One of the critical tasks in 

defence pipeline is threat hunting that filters out a large volume of unknown 

samples, producing a manageable set of potentially malicious samples with 

sufficiently high confidence. A comparative study has been conducted on the 

efficacy of semi-supervised learning methods malware variants with similar 

campaign-wise metamorphic similarity. A set of widely used methods from 

each field were selected for benchmarking, which include a similarity search 

algorithm – KNN, an unsupervised clustering method – HDBSCAN, a fuzzy 

hashing method – SDHASH, a deep learning based dimensionality reduction 

method – AAE. It has been found that adversarial network with CNN and global 



   105 

max pooling performs the best in both multi-class classification and binary 

classification tasks. 

7.2 Future Works 

Recently malware are also appearing in the forms other than executable binary such as 

Microsoft’s PowerShell, JavaScript, and VB Script. Hendler et al. [178] implemented 

CNN-based classifier that detects malicious PowerShell scripts. The generative models 

with variable length inputs proposed in this thesis are expected to outperform Hendler’s 

naïve CNN over truncated one-hot encoded input features let alone the requirement of 

outbreak detection leaves the generative models as the sole option. Further research can 

be carried out for script malware by taking advantage of generative outbreak detection 

approaches presented in this thesis. 

 

The instruction cognitive Transformer model described in Chapter 5 can provide a 

highly accurate approximated instruction sequence. Creating an express pipeline from 

raw binary executable straight to the detection would be a good extension to this thesis 

by feeding the semantic instruction signal from Transformer model to the generative 

outbreak detection model described in Chapter 3. 

 

Despite its capability to capture highly complex non-linear metamorphism present in 

the instructions, the proposed models in this thesis still confined to the surface level 

features. For instance, detailed program analysis such as discovering Command and 

Control URL and decryption keys is beyond the scope of this thesis. Obtaining high 

level semantics by capturing the logical relationships in the sequence requires further 

research as the development in deep learning progresses. 

 

Overall, the developed techniques can be applied to provide solutions in other areas as 

well. 
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Appendix 

Generative Static Malware Detection: Detailed Results 

Generative static malware detection presented in chapter 3 has been evaluated by 

executing a python script developed using tensorflow, generative-static-detection.py. 

 

Evaluation on benign test set 
python generative-static-detection.py eval --name test. benign --threshold 10 
Evaluation result for 9981 samples saved to eval.csv 
test.benign accuracy: 0.659954 (6587/9981) 
python generative-static-detection.py eval --name test.benign --threshold 2 
Evaluation result for 9981 samples saved to eval.csv 
test.benign accuracy: 0.912734 (9110/9981) 

 

Evaluation on malicious test set 
python generative-static-detection.py eval --name test.malicious --threshold 5 
Evaluation result for 3254 samples saved to eval.csv 
test.malicious accuracy: 0.977873 (3182/3254) 
python generative-static-detection.py eval --name test.malicious --threshold 2 
Evaluation result for 3254 samples saved to eval.csv 
test.malicious accuracy: 0.957591 (3116/3254) 
python generative-static-detection.py eval --name test.malicious --threshold 1 
Evaluation result for 3254 samples saved to eval.csv 
test.malicious accuracy: 0.948064 (3085/3254) 

 

Baseline evaluation was conducted using a python script developed with scikit-learn. 

The execution log is shown below. 

 
trainset=175 testset=3254 batchsize=10 
1-gram: total 453 features extracted 
 top 10 freqs: [2752, 2445, 2393, 2387, 2074, 1472, 1441, 1085, 901, 870] 
 number of 1's: 77 
2-gram: total 9449 features extracted 
 top 10 freqs: [2386, 2049, 1814, 1574, 1525, 1344, 1337, 1224, 1172, 1166] 
 number of 1's: 3900 
3-gram: total 54539 features extracted 
 top 10 freqs: [6237, 2677, 2361, 2104, 1916, 1754, 1527, 1349, 1209, 1200] 
 number of 1's: 27065 
>osx-base-outbreak|osx-base-malicious|gradientbooster|1gram: 0.935 (3044/3254) 
>osx-base-outbreak|osx-base-malicious|gradientbooster|2gram: 0.936 (3045/3254) 
>osx-base-outbreak|osx-base-malicious|gradientbooster|3gram: 0.931 (3028/3254) 
>osx-base-outbreak|osx-base-malicious|svm|1gram: 0.934 (3038/3254) 
>osx-base-outbreak|osx-base-malicious|svm|2gram: 0.944 (3071/3254) 
>osx-base-outbreak|osx-base-malicious|svm|3gram: 0.968 (3151/3254) 
>osx-base-outbreak|osx-base-malicious|randomforest|1gram: 0.983 (3200/3254) 
>osx-base-outbreak|osx-base-malicious|randomforest|2gram: 0.987 (3213/3254) 
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>osx-base-outbreak|osx-base-malicious|randomforest|3gram: 0.989 (3217/3254) 
 
1-gram: total 453 features extracted 
 top 10 freqs: [2752, 2445, 2393, 2387, 2074, 1472, 1441, 1085, 901, 870] 
 number of 1's: 77 
2-gram: total 9449 features extracted 
 top 10 freqs: [2386, 2049, 1814, 1574, 1525, 1344, 1337, 1224, 1172, 1166] 
 number of 1's: 3900 
3-gram: total 54539 features extracted 
 top 10 freqs: [6237, 2677, 2361, 2104, 1916, 1754, 1527, 1349, 1209, 1200] 
 number of 1's: 27065 
 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|1gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|1gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|2gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|2gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|3gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|gradientbooster|3gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|1gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|1gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|2gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|2gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|3gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|svm|3gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|1gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|1gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|2gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|2gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|3gram 
>train.x.npz!train.y.npz|test.benign.x.npz!test.benign.y.npz|randomforest|3gram: 0.000 (0/7857) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|1gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|1gram: 0.956 
(3112/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|2gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|2gram: 0.938 
(3051/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|3gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|gradientbooster|3gram: 0.934 
(3038/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|1gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|1gram: 0.934 (3038/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|2gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|2gram: 0.944 (3071/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|3gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|svm|3gram: 0.968 (3151/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|1gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|1gram: 0.983 
(3200/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|2gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|2gram: 0.987 
(3213/3254) 
train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|3gram 
>train.x.npz!train.y.npz|test.malicious.x.npz!test.malicious.y.npz|randomforest|3gram: 0.989 
(3217/3254) 
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Generative Dynamic Malware Detection: Detailed Results 

Generative dynamic malware detection presented in chapter 4 has been evaluated by 

executing a python script developed using tensorflow, generative-dynamic-

detection.py. 

 
python generative-dynamic-detection.py predict --sampledir program-datasets --datasetname osx-
dynamic-malware --metric mse --threshold 0.000025 
Total detection: 99.159% (2831/2855) 
python generative-dynamic-detection.py predict -- sampledir program-datasets --datasetname osx-
dynamic-benign --metric mse --threshold 0.000025 
Total detection: 0.106% (8/7541) 

 

The result of baseline models trained with no benign training samples is shown below. 

 
python classifier_benchmark.py 
trainset=(train.x.npz,train.y.npz) 
testset=(test.benign.x.npz,test.benign.y.npz) batchsize=10 
train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|gradientbooster|1gram 
1-gram: total 103 features extracted 
        top 10 freqs: [2527, 1948, 1736, 1633, 1578, 1402, 1246, 1022, 954, 933] 
        number of single appearance ngrams: 11 
train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|gradientbooster|2gram 
2-gram: total 5123 features extracted 
        top 10 freqs: [723, 551, 545, 499, 498, 497, 497, 497, 497, 497] 
        number of single appearance ngrams: 3178 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|gradientbooster|1gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|gradientbooster|2gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|svm|1gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|svm|2gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|randomforest|1gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.benign.x.npz,test.benign.y.npz|randomforest|2gram: 0.000 (0/7541) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|gradientbooster|1gram: 0.167 
(478/2855) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|gradientbooster|2gram: 0.126 
(361/2855) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|svm|1gram: 0.367 (1047/2855) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|svm|2gram: 0.394 (1125/2855) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|randomforest|1gram: 0.452 
(1291/2855) 
>train.x.npz,train.y.npz|test.malicious.x.npz,test.malicious.y.npz|randomforest|2gram: 0.356 
(1017/2855) 

 

The result of baseline models trained with 50% of benign samples in the training set is 

shown below. 

 
python classifier_benchmark.py 
loading data(train.x.npz,train.y.npz) 
loading data(test.benign.x.npz,test.benign.y.npz) 
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loading data(test.malicious.x.npz,test.malicious.y.npz) 
3770 benign test samples addded to train set 
train=4113 test.benign=3771 test.malicious=2855 
1-gram: total 104 features extracted 
        top 10 freqs: [1075, 869, 761, 585, 569, 556, 523, 447, 398, 350] 
        number of single appearance ngrams: 19 
2-gram: total 5690 features extracted 
        top 10 freqs: [425, 369, 296, 296, 296, 296, 296, 296, 296, 296] 
        number of single appearance ngrams: 3675 
>gradientbooster|train.x.npz|test.benign.x.npz|1gram: 0.974 (3674/3771) 
>gradientbooster|train.x.npz|test.benign.x.npz|2gram: 0.973 (3671/3771) 
>svm|train.x.npz|test.benign.x.npz|1gram: 1.000 (3771/3771) 
>svm|train.x.npz|test.benign.x.npz|2gram: 1.000 (3771/3771) 
>randomforest|train.x.npz|test.benign.x.npz|1gram: 1.000 (3771/3771) 
>randomforest|train.x.npz|test.benign.x.npz|2gram: 1.000 (3771/3771) 
>gradientbooster|train.x.npz|test.malicious.x.npz|1gram: 0.194 (555/2855) 
>gradientbooster|train.x.npz|test.malicious.x.npz|2gram: 0.108 (308/2855) 
>svm|train.x.npz|test.malicious.x.npz|1gram: 0.056 (161/2855) 
>svm|train.x.npz|test.malicious.x.npz|2gram: 0.056 (161/2855) 
>randomforest|train.x.npz|test.malicious.x.npz|1gram: 0.460 (1314/2855) 
>randomforest|train.x.npz|test.malicious.x.npz|2gram: 0.385 (1099/2855) 

 

The result for varying threshold values is shown below. 

Threshold TP FP 
0.000500 2855/2855 2315/7541 
0.000100 2855/2855 433/7541 
0.000075 2855/2855 246/7541 
0.000050 2855/2855 83/7541 
0.000025 2831/2855 8/7541 
0.000010 2456/2855 0/7541 
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Instruction Cognitive Malware Detection: Detailed Results 

Instruction cognitive static detection presented in chapter 5 has been evaluated by 

executing a python script. 20% of total benign samples were used for training. Training 

and test sets are mutually exclusive. 

 
Training set size=488: 3085 campaign samples 
threshold=0.110000 tp=3078/3085 (99.773%) fp=130/6826 (1.904%) 
 
train benign: 6826-(2730+2731) = 1365 (20%) 

 

Baseline evaluation was conducted using a python script developed with scikit-learn. 

The execution log is shown below. 

 
loading data(train.x.npz,train.y.npz) 
loading data(test.benign1.x.npz,test.benign1.y.npz) 
loading data(test.benign2.x.npz,test.benign2.y.npz) 
loading data(test.malicious.x.npz,test.malicious.y.npz) 
1-gram: total 256 features extracted 
 top 10 freqs: [3600, 2227, 925, 739, 701, 683, 561, 490, 436, 432] 
 number of single occurrence ngrams: 0 
>gradientbooster|train.x.npz|test.benign1.x.npz|1gram: 0.874 (2387/2730) 
>svm|train.x.npz|test.benign1.x.npz|1gram: 0.998 (2724/2730) 
>randomforest|train.x.npz|test.benign1.x.npz|1gram: 0.856 (2336/2730) 
 
>gradientbooster|train.x.npz|test.benign2.x.npz|1gram: 0.822 (2245/2731) 
>svm|train.x.npz|test.benign2.x.npz|1gram: 0.999 (2728/2731) 
>randomforest|train.x.npz|test.benign2.x.npz|1gram: 0.815 (2225/2731) 
 
>gradientbooster|train.x.npz|test.malicious.x.npz|1gram: 0.967 (2982/3085) 
>svm|train.x.npz|test.malicious.x.npz|1gram: 0.656 (2023/3085) 
>randomforest|train.x.npz|test.malicious.x.npz|1gram: 0.981 (3025/3085) 
 
2-gram: total 65536 features extracted 
 top 10 freqs: [2948, 1668, 1370, 1248, 1131, 927, 826, 669, 556, 549] 
 number of single occurrence ngrams: 0 
>gradientbooster|train.x.npz|test.benign1.x.npz|2gram: 0.942 (2572/2730) 
>svm|train.x.npz|test.benign1.x.npz|2gram: 0.997 (2722/2730) 
>randomforest|train.x.npz|test.benign1.x.npz|2gram: 0.919 (2509/2730) 
 
>gradientbooster|train.x.npz|test.benign2.x.npz|2gram: 0.866 (2366/2731) 
>svm|train.x.npz|test.benign2.x.npz|2gram: 0.999 (2728/2731) 
>randomforest|train.x.npz|test.benign2.x.npz|2gram: 0.847 (2314/2731) 
 
>gradientbooster|train.x.npz|test.malicious.x.npz|2gram: 0.986 (3043/3085) 
>svm|train.x.npz|test.malicious.x.npz|2gram: 0.853 (2630/3085) 
>randomforest|train.x.npz|test.malicious.x.npz|2gram: 0.982 (3030/3085) 

 

 

The TP (True Positive) and FP (False Positive) are calculated as follows. 
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1-gram 
gradientbooster : 1 - (2387+2245)/(2730+2731) = 0.1518 
svm : 1 - (2724+2728)/(2730+2731) = 0.0016 
randomforest : 1 - (2336+2225)/(2730+2731) = 0.1648 

 

2-gram 
gradientbooster : 1 - (2572+2366)/(2730+2731) = 0.0957 
svm : 1 - (2722+2728)/(2728+2731) = 0.0016 
randomforest : 1 - (2509+2314)/(2730+2731) = 0.1168 

 

FP complexity analysis has been conducted as follows by varying the number of 

training samples indicated by train percent, followed by a table showing the final result. 

 
train percent=0.050000 
>gradientbooster|train.x.npz|test.benign1.x.npz|1gram: 0.456 (1478/3242) 
>svm|train.x.npz|test.benign1.x.npz|1gram: 0.102 (332/3242) 
>randomforest|train.x.npz|test.benign1.x.npz|1gram: 0.418 (1355/3242) 
>gradientbooster|train.x.npz|test.benign2.x.npz|1gram: 0.451 (1463/3243) 
>svm|train.x.npz|test.benign2.x.npz|1gram: 0.111 (361/3243) 
>randomforest|train.x.npz|test.benign2.x.npz|1gram: 0.414 (1342/3243) 
gradientbooster: 1. - (1478+1463)/(3242+3243) = 0.5464 
svm: 1. - (332+361)/(3242+3243) = 0.8931 
randomforest: 1. - (1355+1342)/(3242+3243) = 0.5841 

 

train percent=0.100000 
>gradientbooster|train.x.npz|test.benign1.x.npz|1gram: 0.665 (2044/3072) 
>svm|train.x.npz|test.benign1.x.npz|1gram: 0.993 (3052/3072) 
>randomforest|train.x.npz|test.benign1.x.npz|1gram: 0.635 (1951/3072) 
>gradientbooster|train.x.npz|test.benign2.x.npz|1gram: 0.609 (1870/3072) 
>svm|train.x.npz|test.benign2.x.npz|1gram: 0.998 (3065/3072) 
>randomforest|train.x.npz|test.benign2.x.npz|1gram: 0.599 (1841/3072) 
gradientbooster: 1. - (2044+1870)/(3072+3072) = 0.3629 
svm: 1. - (3052+1870)/( 3065+3072) = 0.1979 
randomforest: 1. - (1951+1841)/(3072+3072) = 0.3828 

 

train percent=0.200000 
>gradientbooster|train.x.npz|test.benign1.x.npz|1gram: 0.874 (2387/2730) 
>svm|train.x.npz|test.benign1.x.npz|1gram: 0.998 (2724/2730) 
>randomforest|train.x.npz|test.benign1.x.npz|1gram: 0.856 (2336/2730) 
>gradientbooster|train.x.npz|test.benign2.x.npz|1gram: 0.822 (2245/2731) 
>svm|train.x.npz|test.benign2.x.npz|1gram: 0.999 (2728/2731) 
>randomforest|train.x.npz|test.benign2.x.npz|1gram: 0.815 (2225/2731) 
>gradientbooster|train.x.npz|test.malicious.x.npz|1gram: 0.967 (2982/3085) 
>svm|train.x.npz|test.malicious.x.npz|1gram: 0.656 (2023/3085) 
>randomforest|train.x.npz|test.malicious.x.npz|1gram: 0.981 (3025/3085) 
gradientbooster : 1 - (2387+2245)/(2730+2731) = 0.15180 
svm : 1 - (2724+2728)/(2730+2731) = 0.00164 
randomforest : 1 - (2336+2225)/(2730+2731) = 0.16480 
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Model FP with different benign train set 
5% 10% 20% 50% 

gradientbooster-unigram 54.649 36.295 15.180 0.005 
svm-unigram 89.313 19.797 0.164 0.000 
randomforest-unigram 58.411 38.281 16.480 0.005 
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Comparative Study on Metamorphic Threats: Detailed Results 

Comparative study presented in chapter 6 has been evaluated using a custom python 

script developed with scikit-learn and tensorflow. 

Bi-gram for the relevant baseline models 

 
2-gram: total 4457 features extracted 
 top 10 freqs: [3166, 683, 682, 390, 387, 368, 363, 361, 360, 358] 
 number of single occurrence ngrams: 0 
 
 

Evaluation in Strict mode 

 
Loaded tokens from: model-eval/tokens.pkl 
233 tokens in model_eval 
>>sdhash 
threshold=0.010: precision=1.000000 recall=0.172676 f1=0.294498 (tp=91 tn=5854 fp=0 fn=436) 
threshold=0.050: precision=1.000000 recall=0.195446 f1=0.326984 (tp=103 tn=5854 fp=0 fn=424) 
threshold=0.100: precision=1.000000 recall=0.229602 f1=0.373457 (tp=121 tn=5854 fp=0 fn=406) 
threshold=0.200: precision=1.000000 recall=0.284630 f1=0.443131 (tp=150 tn=5854 fp=0 fn=377) 
threshold=0.300: precision=0.977654 recall=0.332068 f1=0.495751 (tp=175 tn=5850 fp=4 fn=352) 
threshold=0.400: precision=0.784553 recall=0.366224 f1=0.499353 (tp=193 tn=5801 fp=53 fn=334) 
threshold=0.500: precision=0.546174 recall=0.392789 f1=0.456954 (tp=207 tn=5682 fp=172 fn=320) 
threshold=0.700: precision=0.468172 recall=0.432638 f1=0.449704 (tp=228 tn=5595 fp=259 fn=299) 
threshold=0.900: precision=0.122460 recall=0.445920 f1=0.192150 (tp=235 tn=4170 fp=1684 fn=292) 
>>knn 
threshold=1.000: precision=0.986547 recall=0.417457 f1=0.586667 (tp=220 tn=5851 fp=3 fn=307) 
threshold=5.000: precision=0.959885 recall=0.635674 f1=0.764840 (tp=335 tn=5840 fp=14 fn=192) 
threshold=10.000: precision=0.945498 recall=0.757116 f1=0.840885 (tp=399 tn=5831 fp=23 fn=128) 
threshold=20.000: precision=0.866530 recall=0.800759 f1=0.832347 (tp=422 tn=5789 fp=65 fn=105) 
threshold=30.000: precision=0.825919 recall=0.810247 f1=0.818008 (tp=427 tn=5764 fp=90 fn=100) 
threshold=40.000: precision=0.792208 recall=0.810247 f1=0.801126 (tp=427 tn=5742 fp=112 fn=100) 
threshold=50.000: precision=0.738832 recall=0.815939 f1=0.775473 (tp=430 tn=5702 fp=152 fn=97) 
threshold=80.000: precision=0.699839 recall=0.827324 f1=0.758261 (tp=436 tn=5667 fp=187 fn=91) 
threshold=100.000: precision=0.672308 recall=0.829222 f1=0.742566 (tp=437 tn=5641 fp=213 fn=90) 
threshold=200.000: precision=0.607438 recall=0.836812 f1=0.703911 (tp=441 tn=5569 fp=285 fn=86) 
threshold=300.000: precision=0.488474 recall=0.844402 f1=0.618915 (tp=445 tn=5388 fp=466 fn=82) 
>>hdbscan 
threshold=0.000: precision=0.031111 recall=0.013283 f1=0.018617 (tp=7 tn=5636 fp=218 fn=520) 
threshold=0.000: precision=0.064286 recall=0.034156 f1=0.044610 (tp=18 tn=5592 fp=262 fn=509) 
threshold=0.000: precision=0.055901 recall=0.017078 f1=0.026163 (tp=9 tn=5702 fp=152 fn=518) 
threshold=0.000: precision=0.075630 recall=0.017078 f1=0.027864 (tp=9 tn=5744 fp=110 fn=518) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5825 fp=29 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5780 fp=74 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5781 fp=73 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5784 fp=70 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5784 fp=70 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5784 fp=70 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5784 fp=70 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5785 fp=69 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5785 fp=69 fn=527) 
threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5785 fp=69 fn=527) 



   127 

threshold=0.000: precision=0.000000 recall=0.000000 f1=0.000000 (tp=0 tn=5786 fp=68 fn=527) 
>>aae 
Ground Truth: tp=527 tn=5854 
threshold=0.010: precision=0.997636 recall=0.800759 f1=0.888421 (tp=422 tn=5853 fp=1 fn=105) 
threshold=0.020: precision=0.930754 recall=0.867173 f1=0.897839 (tp=457 tn=5820 fp=34 fn=70) 
threshold=0.025: precision=0.791379 recall=0.870968 f1=0.829268 (tp=459 tn=5733 fp=121 fn=68) 
threshold=0.030: precision=0.365142 recall=0.878558 f1=0.515877 (tp=463 tn=5049 fp=805 fn=64) 
threshold=0.040: precision=0.135965 recall=0.882353 f1=0.235622 (tp=465 tn=2899 fp=2955 fn=62) 
threshold=0.050: precision=0.100432 recall=0.882353 f1=0.180337 (tp=465 tn=1689 fp=4165 fn=62) 
threshold=0.080: precision=0.078827 recall=0.882353 f1=0.144725 (tp=465 tn=420 fp=5434 fn=62) 
threshold=0.100: precision=0.075548 recall=0.882353 f1=0.139180 (tp=465 tn=164 fp=5690 fn=62) 
threshold=0.150: precision=0.074376 recall=0.882353 f1=0.137188 (tp=465 tn=67 fp=5787 fn=62) 
threshold=0.200: precision=0.074151 recall=0.882353 f1=0.136805 (tp=465 tn=48 fp=5806 fn=62) 

 

Evaluation in Relaxed mode 

 
Loaded tokens from: model-eval/tokens.pkl 
233 tokens in model_eval 
>>sdhash 
threshold=0.010: precision=1.000000 recall=0.178368 f1=0.302738 (tp=94 tn=5854 fp=0 fn=433) 
threshold=0.050: precision=1.000000 recall=0.201139 f1=0.334913 (tp=106 tn=5854 fp=0 fn=421) 
threshold=0.100: precision=1.000000 recall=0.240987 f1=0.388379 (tp=127 tn=5854 fp=0 fn=400) 
threshold=0.200: precision=1.000000 recall=0.296015 f1=0.456808 (tp=156 tn=5854 fp=0 fn=371) 
threshold=0.300: precision=0.978610 recall=0.347249 f1=0.512605 (tp=183 tn=5850 fp=4 fn=344) 
threshold=0.400: precision=0.792157 recall=0.383302 f1=0.516624 (tp=202 tn=5801 fp=53 fn=325) 
threshold=0.500: precision=0.573201 recall=0.438330 f1=0.496774 (tp=231 tn=5682 fp=172 fn=296) 
threshold=0.700: precision=0.504780 recall=0.500949 f1=0.502857 (tp=264 tn=5595 fp=259 fn=263) 
threshold=0.900: precision=0.140816 recall=0.523719 f1=0.221954 (tp=276 tn=4170 fp=1684 fn=251) 
>>knn 
threshold=1.000: precision=0.986726 recall=0.423150 f1=0.592297 (tp=223 tn=5851 fp=3 fn=304) 
threshold=5.000: precision=0.961749 recall=0.667932 f1=0.788354 (tp=352 tn=5840 fp=14 fn=175) 
threshold=10.000: precision=0.948775 recall=0.808349 f1=0.872951 (tp=426 tn=5831 fp=23 fn=101) 
threshold=20.000: precision=0.875954 recall=0.870968 f1=0.873454 (tp=459 tn=5789 fp=65 fn=68) 
threshold=30.000: precision=0.839286 recall=0.891841 f1=0.864765 (tp=470 tn=5764 fp=90 fn=57) 
threshold=40.000: precision=0.807890 recall=0.893738 f1=0.848649 (tp=471 tn=5742 fp=112 fn=56) 
threshold=50.000: precision=0.758347 recall=0.905123 f1=0.825260 (tp=477 tn=5702 fp=152 fn=50) 
threshold=80.000: precision=0.720896 recall=0.916509 f1=0.807018 (tp=483 tn=5667 fp=187 fn=44) 
threshold=100.000: precision=0.694405 recall=0.918406 f1=0.790850 (tp=484 tn=5641 fp=213 fn=43) 
threshold=200.000: precision=0.632732 recall=0.931689 f1=0.753645 (tp=491 tn=5569 fp=285 fn=36) 
threshold=300.000: precision=0.515593 recall=0.941176 f1=0.666219 (tp=496 tn=5388 fp=466 fn=31) 
>>hdbscan 
threshold=0.000: precision=0.495370 recall=0.406072 f1=0.446298 (tp=214 tn=5636 fp=218 fn=313) 
threshold=0.000: precision=0.498084 recall=0.493359 f1=0.495710 (tp=260 tn=5592 fp=262 fn=267) 
threshold=0.000: precision=0.628362 recall=0.487666 f1=0.549145 (tp=257 tn=5702 fp=152 fn=270) 
threshold=0.000: precision=0.711286 recall=0.514231 f1=0.596916 (tp=271 tn=5744 fp=110 fn=256) 
threshold=0.000: precision=0.887160 recall=0.432638 f1=0.581633 (tp=228 tn=5825 fp=29 fn=299) 
threshold=0.000: precision=0.796143 recall=0.548387 f1=0.649438 (tp=289 tn=5780 fp=74 fn=238) 
threshold=0.000: precision=0.794944 recall=0.537002 f1=0.640997 (tp=283 tn=5781 fp=73 fn=244) 
threshold=0.000: precision=0.792899 recall=0.508539 f1=0.619653 (tp=268 tn=5784 fp=70 fn=259) 
threshold=0.000: precision=0.777778 recall=0.464896 f1=0.581948 (tp=245 tn=5784 fp=70 fn=282) 
threshold=0.000: precision=0.776358 recall=0.461101 f1=0.578571 (tp=243 tn=5784 fp=70 fn=284) 
threshold=0.000: precision=0.769737 recall=0.444023 f1=0.563177 (tp=234 tn=5784 fp=70 fn=293) 
threshold=0.000: precision=0.771523 recall=0.442125 f1=0.562123 (tp=233 tn=5785 fp=69 fn=294) 
threshold=0.000: precision=0.770000 recall=0.438330 f1=0.558646 (tp=231 tn=5785 fp=69 fn=296) 
threshold=0.000: precision=0.769231 recall=0.436433 f1=0.556901 (tp=230 tn=5785 fp=69 fn=297) 
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threshold=0.000: precision=0.767123 recall=0.425047 f1=0.547009 (tp=224 tn=5786 fp=68 fn=303) 
>>aae 
Ground Truth: tp=527 tn=5854 
threshold=0.010: precision=0.997773 recall=0.850095 f1=0.918033 (tp=448 tn=5853 fp=1 fn=79) 
threshold=0.020: precision=0.936330 recall=0.948767 f1=0.942507 (tp=500 tn=5820 fp=34 fn=27) 
threshold=0.025: precision=0.808544 recall=0.969639 f1=0.881795 (tp=511 tn=5733 fp=121 fn=16) 
threshold=0.030: precision=0.392911 recall=0.988615 f1=0.562331 (tp=521 tn=5049 fp=805 fn=6) 
threshold=0.040: precision=0.151106 recall=0.998102 f1=0.262475 (tp=526 tn=2899 fp=2955 fn=1) 
threshold=0.050: precision=0.112319 recall=1.000000 f1=0.201954 (tp=527 tn=1689 fp=4165 fn=0) 
threshold=0.080: precision=0.088408 recall=1.000000 f1=0.162454 (tp=527 tn=420 fp=5434 fn=0) 
threshold=0.100: precision=0.084768 recall=1.000000 f1=0.156287 (tp=527 tn=164 fp=5690 fn=0) 
threshold=0.150: precision=0.083465 recall=1.000000 f1=0.154071 (tp=527 tn=67 fp=5787 fn=0) 
threshold=0.200: precision=0.083215 recall=1.000000 f1=0.153644 (tp=527 tn=48 fp=5806 fn=0) 

 

 


