Neural malware detection

Abstract

At the heart of today’s malware problem lies theoretically infinite diversity created by metamorphism. The majority of conventional machine learning techniques tackle the problem with the assumptions that a sufficiently large number of training samples exist and that the training set is independent and identically distributed. However, the lack of semantic features combined with the models under these wrong assumptions result largely in overfitting with many false positives against real world samples, resulting in systems being left vulnerable to various adversarial attacks. A key observation is that modern malware authors write a script that automatically generates an arbitrarily large number of diverse samples that share similar characteristics in program logic, which is a very cost-effective way to evade detection with minimum effort. Given that many malware campaigns follow this paradigm of economic malware manufacturing model, the samples within a campaign are likely to share coherent semantic characteristics. This opens up a possibility of one-to-many detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique to the campaign in order to detect these seemingly diverse but identically rooted variants. To address these issues, this dissertation proposes novel deep learning models, including generative static malware outbreak detection model, generative dynamic malware detection model using spatio-temporal isomorphic dynamic features, and instruction cognitive malware detection. A comparative study on metamorphic threats is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over convolutional network with global average pooling is introduced as a fundamental deep learning framework for malware detection, which captures highly complex non-linear metamorphism through translation invariancy and local variation insensitivity. Generative Adversarial Network (GAN) used as a part of the framework enables oneshot training where semantically isomorphic malware campaigns are identified by a single malware instance sampled from the very initial outbreak. This is a major innovation because, to the best of our knowledge, no approach has been found to this challenging training objective against the malware distribution that consists of a large number of very sparse groups artificially driven by arms race between attackers and defenders. In addition, we propose a novel method that extracts instruction cognitive representation from uninterpreted raw binary executables, which can be used for oneto- many malware detection via one-shot training against frequency spectrum of the Transformer’s encoded latent representation. The method works regardless of the presence of diverse malware variations while remaining resilient to adversarial attacks that mostly use random perturbation against raw binaries. Comprehensive performance analyses including mathematical formulations and experimental evaluations are provided, with the proposed deep learning framework for malware detection exhibiting a superior performance over conventional machine learning methods. The methods proposed in this thesis are applicable to a variety of threat environments here artificially formed sparse distributions arise at the cyber battle fronts.Doctor of Philosoph

    Similar works