
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

Few-Shot Malware Detection Using A Novel Adversarial Few-Shot Malware Detection Using A Novel Adversarial

Reprogramming Model Reprogramming Model

Ekula Praveen Kumar
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Kumar, Ekula Praveen, "Few-Shot Malware Detection Using A Novel Adversarial Reprogramming Model"
(2022). Browse all Theses and Dissertations. 2666.
https://corescholar.libraries.wright.edu/etd_all/2666

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2666?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2666&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

FEW-SHOT MALWARE DETECTION USING A
NOVEL ADVERSARIAL REPROGRAMMING

MODEL

A Thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Cyber Security

by

EKULA PRAVEEN KUMAR
B.Tech., National Institute of Science and Technology, 2017

2022
Wright State University

Wright State University
GRADUATE SCHOOL

December 20, 2022

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Ekula Praveen Kumar ENTITLED Few-Shot Malware Detection Using A
Novel Adversarial Reprogramming Model BE ACCEPTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Cyber Security.

Dr. Lingwei Chen, Ph.D.
Thesis Director

Thomas Wischgoll, Ph.D.
Chair, Department of Computer Science and Engineering

Committee on Final Examination

Dr. Lingwei Chen, Ph.D.

Dr. Tanvi Banerjee, Ph.D.

Dr. Junjie Zhang, Ph.D.

Dr. Shu Schiller, Ph.D.
Interim Dean of the Graduate School

ABSTRACT

Kumar, Ekula Praveen. M.S.C.S., Department of Computer Science and Engineering, Wright State
University, 2022. Few-Shot Malware Detection Using A Novel Adversarial Reprogramming Model.

The increasing sophistication of malware has made detecting and defending against

new strains a major challenge for cybersecurity. One promising approach to this problem

is using machine learning techniques that extract representative features and train clas-

sification models to detect malware in an early stage. However, training such machine

learning-based malware detection models represents a significant challenge that requires a

large number of high-quality labeled data samples while it is very costly to obtain them in

real-world scenarios. In other words, training machine learning models for malware de-

tection requires the capability to learn from only a few labeled examples. To address this

challenge, in this thesis, we propose a novel adversarial reprogramming model for few-shot

malware detection. Our model is based on the idea to re-purpose high-performance Ima-

geNet classification model to perform malware detection using the features of malicious

and benign files. We first embed the features of software files and a small perturbation to

a host image chosen randomly from ImageNet, and then create an image dataset to train

and test the model; after that, the model transforms the output into malware and benign

classes. We evaluate the effectiveness of our model on a dataset of real-world malware and

show that it significantly outperforms baseline few-shot learning methods. Additionally,

we evaluate the impact of different pre-trained models, different data sizes, and different

parameter values. Overall, our results suggest that the proposed adversarial reprogramming

model is a promising direction for improving few-shot malware detection.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Contribution . 5
1.4 Organization . 7

2 Literature Review 8
2.1 Malware Detection . 8

2.1.1 Signature-based Malware detection 8
2.1.2 Behavior-based Malware detection 9
2.1.3 Machine learning-based Malware detection 9

2.2 Few-Shot Learning . 12
2.2.1 Meta Learning . 12
2.2.2 Transfer Learning . 13
2.2.3 Other Techniques . 15

2.3 Few-shot Malware Detection . 15

3 Design of Few-Shot Malware Detection 16
3.1 Adversarial Vulnerability . 16
3.2 Adversarial Reprogramming . 18

3.2.1 Input Transformation . 20
3.2.2 Output Transformation . 21
3.2.3 Optimization . 21

4 Experimental Results and Analysis 23
4.1 Experiment Setup . 23

4.1.1 Dataset . 23
4.1.2 Parameters . 29
4.1.3 Settings . 30

4.2 Evaluation . 30
4.2.1 Impact of Pre-Trained Model . 30
4.2.2 Impact of Data Size . 31

iv

4.2.3 Impact of Perturbation . 33
4.2.4 Comparison with Baselines . 34

5 Challenges 36

6 Future Work 38

7 Conclusion 39

Bibliography 40

v

List of Figures

1.1 Statistics of malware over the years [3] . 2

3.1 An example of adversarial vulnerability 17
3.2 Overview of the designed adversarial reprogramming model 19

4.1 Evacuation on the impact of pre-trained model 31
4.2 Evaluation on the impact of data size . 32
4.3 Evaluation on the impact of perturbation magnitude 33
4.4 Comparison with baselines . 35

vi

List of Tables

4.1 Statistics of the dataset used in this thesis 24
4.2 Features of files from dataset . 25
4.3 Evaluation on the impact of pre-trained models 30
4.4 Evaluation on the impact of data size . 32
4.5 Evaluation on the impact of perturbation magnitude 33
4.6 Comparison with baselines . 35

vii

Acknowledgment
I would like to thank my thesis advisor, Dr. Lingwei Chen, for his guidance, support, and

encouragement throughout the entire process. His expertise and dedication to my academic

development have been instrumental in shaping my research and helping me to reach this

point. I would also like to thank my committee members, Dr. Tanvi Banerjee and Dr. Junjie

Zhang for taking the time to evaluate my thesis; your discussion, ideas, and feedback have

been absolutely invaluable. Finally, I would like to thank my family and loved ones for their

unwavering support and encouragement. Their love and belief in me have sustained me

through the highs and lows of this process and allowed me to persevere to this point. Thank

you all again for your invaluable contributions to my thesis and my academic journey.

viii

Introduction

In this thesis, we would like to propose a machine learning solution to detect malware from

a more practical yet challenging perspective where the labeled data samples are limited,

which is called few-shot malware detection. In this chapter, we first describe the back-

ground of malware and its detection, and our motivation for the proposed solution. After

that, we specify our contribution and the organization of this thesis.

1.1 Background

Malware, short for malicious software, is any software that is designed to harm or ex-

ploit computer systems [24]. There are many different types of malware including viruses,

worms, trojan horses, ransomware, and spyware. According to a recent report, which is

illustrated in Figure 1.1, the total amount of malware as per recent findings surpassed 1.2

billion in 2022 [3]. The threat of malware is constantly evolving as criminals come up

with new ways to gain access to systems and steal data. As more businesses move their

operations to the cloud, the importance of protecting their data has never been greater. By

identifying and removing malicious software before it can cause damage, you reduce the

risk of your computer or network is compromised and the data within it being lost. This is

the reason why malware detection is an important part of any security strategy. Different

malware detection systems have been constantly designed and developed to ensure they

1

Figure 1.1: Statistics of malware over the years [3]

can detect threats and provide businesses with protection [5].

With the rapid development in machine learning, and especially the revolutionary

learning structures and capabilities raised by deep learning [29], in recent years, the se-

curity industry and researchers have developed different these data-driven algorithms and

frameworks into practical products and applications for more accurate malware detection,

which improve the protection of computer systems against attacks. Here, we discuss some

of the advantages of using machine learning to detect malware.

One of the first advantages of machine learning in malware detection is that it provides

accuracy in identifying new and unknown threats. Unlike traditional malware detection

methods that rely on pre-defined rules to identify known threats, machine learning algo-

rithms can recognize previously unseen malware patterns. By analyzing large numbers of

samples obtained from real malware infections, machine learning models can learn which

features of a file or program are most indicative of malicious behavior [30]. Once trained,

these models can then be used to automatically analyze new samples and detect previously

unknown threats.

Another advantage of using machine learning for malware detection is that it has the

2

potential to scale to large datasets. Since machine learning algorithms are based on algo-

rithms that can learn from data, they can incorporate features from a large set of malicious

samples and train a model to identify similar features in new samples. Thus, they can han-

dle large quantities of data and can effectively detect a wide range of malicious files without

the need for extensive manual analysis [19, 42]. For example, deep learning models can

produce highly accurate results even for complicated datasets containing thousands of fea-

tures. This makes them particularly suitable for addressing large-scale malware detection

and classification problems.

Utilizing machine learning for detecting malware can also enhance system security

with minimal human input, providing an additional benefit. As machine learning models

are trained on real-world samples rather than on rule-based specifications, they can detect

previously unknown threats based on features extracted from actual malware code.

Even though using machine learning for malware detection has a lot of advantages,

there are downsides to using machine learning for malware detection. The most significant

one of them is the requirement for labeled data samples. Labeled data is the heart of

machine learning. The data that is fed into the machine learning model should fit the

algorithm and needs to be sufficiently large for the model to train correctly [53], such

that the model can capture the feature patterns and accordingly improve its learning and

detection ability. Unfortunately, collecting such a large number of high-quality labeled

malware samples is extremely difficult, and labeling the malware samples is also costly

[34, 19, 5].

1.2 Motivation

Based on the above discussions, we can summarize the challenge to use machine learning

for malware detection is that we need to collect a large number of labeled data samples

to facilitate model training. However, different from more straightforward annotations on

3

less complex data such as images, labeling malware data calls for solid domain knowledge

and elaborate verification, which is time-consuming and labor-intensive [49, 12]; thus, it

is often costly to acquire sufficient labeled malware data for detection model training. In

other words, our built machine learning model for malware detection needs to have the

ability to learn from a few samples. To address the data-limited learning challenge, various

paradigms have been accordingly proposed, where meta learning [17, 59, 63] and transfer

learning [41, 40] are some major solutions.

Meta Learning: Meta learning, also known as ”learning to learn,” is a type of

machine learning that involves learning how to learn new tasks quickly and efficiently [22].

It is based on the idea that a learning system can improve its learning ability by learning

from past learning experiences. In meta learning, a model is trained on a set of related tasks,

to learn how to learn new tasks within the same domain more quickly and effectively. The

model is then tested on a new, unseen task and evaluated on its ability to learn and adapt

to this task. Meta learning has been applied to a variety of domains, including natural

language processing, computer vision, and reinforcement learning [23]. It has the potential

to enable machine learning systems to learn more efficiently and adapt more quickly to new

environments, making it an important area of research in the field of artificial intelligence.

However, meta learning has several limitations. Meta learning algorithms can be com-

plex and computationally intensive, which can limit their practicality for certain applica-

tions. It is often sensitive to the quality of the training data, and may not perform well if the

training data is noisy or biased [57]. These algorithms may struggle to generalize to tasks

that are significantly different from those seen during training, due to a lack of sufficient

inductive bias. The most significant limitation to meta learning is that the classes used

for meta-training and meta-testing need to be disjoint, but the data are generally collected

from the similar problem domain [25], which, however, is infeasible in few-shot malware

detection, since annotations for any malware class are difficult and it is hard to collect such

a distribution of malware detection tasks to learn a shared initialization.

4

Transfer Learning: Transfer learning is a machine learning technique in which

a model trained on one task is re-purposed on a second related task. It involves the transfer

of knowledge from a source task to a target task, to improve the performance of the model

on the target task [39], which is useful in situations where it is difficult to collect sufficient

data for training a model on a new task, or when there is a need to use a pre-trained model

as a starting point for a new task. By using transfer learning, it is possible to leverage the

knowledge gained from a related task to improve the performance of a model on a new task,

without the need to start from scratch. There are several ways to perform transfer learning,

including fine-tuning a pre-trained model, using a pre-trained model as a feature extractor,

or using a pre-trained model as a fixed feature extractor [52]. As such, transfer learning has

been applied to a variety of domains, including natural language processing [43], computer

vision [20], and speech recognition [46].

However, transfer learning also has certain limitations. First, transfer learning is only

effective when the source and target domains are similar enough that knowledge learned in

the source domain applies to the target domain. If the domains are too different, transfer

learning may not be effective. Second, it can be sensitive to the choice of the source domain

and the model pre-trained on that domain, and may not always achieve the best performance

compared to training a model from scratch on the target domain [52]. Third, it still requires

a large amount of labeled data in the source domain, which may not always be available

or may be difficult to obtain. In this way, transfer learning may not be a good solution to

address few-shot malware detection either, since we do not have the large labeled samples

for the model fine-tuning.

1.3 Contribution

Similar to transfer learning, adversarial reprogramming is a machine learning technique

that involves altering the behavior of a machine learning model by making small, carefully

5

chosen changes to the input data that the model processes. These changes, known as ad-

versarial perturbations, are designed to cause the model to produce a desired output, even

if the original input data would have resulted in a different output [13]. That is, adversarial

reprogramming can achieve the same objective as transfer learning that re-purposes a ma-

chine learning model pre-trained in a source domain to perform a target-domain task. By

contrast, adversarial reprogramming yields an additional advantage that transfer learning

does not have: adversarial reprogramming only learns a universal perturbation to be added

to the input data, but the pre-trained model, with respect to structure and parameters, keeps

unchanged. In this respect, adversarial reprogramming needs much less labeled data sam-

ples for model training and deals much better with few-shot machine learning application

scenarios [10, 11].

With this in mind, to mitigate the limitations of meta learning and transfer learning,

in this thesis, we propose to use adversarial reprogramming to deal with small labeled data

for malware detection. More specifically, we present a novel adversarial reprogramming

approach to detect malware in a few-shot setting, where we have only a small number of

examples of malware and benign files to work with.

Our approach is to reprogram an ImageNet classification neural network to perform

few-shot malware detection. Specifically, the model first obtains a set of features from data

samples, injects these features into a host image randomly selected from ImageNet, and

then adds a universal perturbation to the host image to create a set of new image inputs

to represent the original data samples. After that, the adversarial reprogramming model

will randomly select two ImageNet classes to indicate malware and benign classes for mal-

ware detection. At the end of model formulation, an optimization problem is constructed

between the predictions and true labels to minimize the loss function to calculate the op-

timal perturbation. The reasons why we choose ImageNet classification neural networks

in our proposed adversarial reprogramming model are that these pre-trained models have

very deep and non-linear structures, which can cope better with feature learning and im-

6

prove the malware detection capability, and these neural networks are easily feasible. We

evaluate our approach with different ImageNet classification neural networks and differ-

ent parameter settings and compare it with different baseline models to demonstrate that it

can outperform state-of-the-art few-shot learning methods for malware detection. We can

summarize our contributions as follows:

• We deal with few-shot malware detection with small labeled data instead of regular

data settings with a large number of labeled data.

• We propose a novel adversarial reprogramming idea to implement this few-shot mal-

ware detection model.

• We evaluate our approach with different ImageNet classification neural networks and

different parameter settings, and compare with different baseline models.

1.4 Organization

In this thesis, section 1 refers to the background, motivation, and contribution to the thesis.

In section 2, I explained the related works for few-shot malware detection that have been

proposed and the introduction of adversarial reprogramming. In section 3, I explained more

about adversarial reprogramming technically, how it works, and the difference between

adversarial reprogramming and other few-shot models. In section 4, I explained how I

implemented the model and the parameters with other settings. Then I evaluated the model

with different pre-trained ImageNet classification models and with different train data sizes

and different parameter values and compared it with the baseline models; random forest and

neural network and transfer learning.

7

Literature Review

In this chapter, we would like to introduce the related works, including machine learning-

based malware detection models, few-shot learning models, and few-shot malware detec-

tion models. Based on this literature review, we can better understand the challenges of

malware detection and the differences between our proposed few-shot malware detection

from the current works.

2.1 Malware Detection

Malware detection is the process of identifying and mitigating the presence of malware on

a computer system or network. This can be done through a variety of means, including

the use of antivirus software, manual inspection of system files and processes, and the use

of machine learning algorithms [21]. In this section, we would like to present different

machine learning detection methods.

2.1.1 Signature-based Malware detection

Signature-based methods are generally employed in anti-malware software products from

different security companies to provide the major protections against malware attacks [16].

A signature is a specific pattern or characteristic that is unique to a particular type of mal-

ware [5]. We can easily find some research papers that use signature-based methods for

8

malware detection. Deepak et al. performed malware detection on mobile devices using

a signature-based malware detection method [56]. Abbas et al. built a low complexity

signature-based method for IoT devices that only identifies and stores a subset of signa-

tures to detect a group of malware instead of storing a separate signature for every potential

malware [1]. Savenko et al. proposed a method for signature generation of malware based

on API call tracing [45]. But the limitation of signature-based malware detection lies in

the fact that they are effective at detecting known malware, but they can be less effective at

detecting new or unknown types of malware; also, these models can be easily get evaded

by malware attacks using more sophisticated techniques, such as obfuscation, and also a

large amount of malware generated every data.

2.1.2 Behavior-based Malware detection

To address the limitation of signature-based malware detection, another approach is pro-

posed to use behavior-based information, which involves analyzing the behavior of a pro-

gram or process to determine whether it is exhibiting characteristics that are indicative of

malware [5]. Burguera et al. built a malware detection model using dynamic analysis of

application behaviors in android [7], Liu et al. implemented a model using Malware Be-

havior Feature (MBF) based malware detection algorithm [31]. This approach can be more

effective at detecting new or unknown types of malware, but it can also be more resource-

intensive and may produce more false positives.

2.1.3 Machine learning-based Malware detection

In recent years, machine learning has become a popular approach for detecting malware,

as it allows models to learn and adapt to new types of malware over time. The advantages

of machine learning algorithms are that they can analyze large datasets of known malware

and benign software to identify patterns and features that are indicative of malware, and

9

can then be used to classify new, unseen software as either benign or malicious.

There has been a significant amount of research using machine-learning techniques

for malware detection. One common approach is to use traditional machine learning algo-

rithms, such as decision trees [67], support vector machines [28], and ensemble learning

[64], to classify executables as benign or malicious based on static features extracted from

the executables. These static features may include characteristics of the executable file it-

self, such as its size, entropy, and the presence of certain strings or patterns [42, 15]. For

example, Zulkifli et al. implemented a model based on network traffic using decision tree

algorithm [67]. Zhao et al. proposed a behavior-based malware detection model using sup-

port vector machine algorithm [65]. Azzez et al. presented a malware detection method

based on ensemble learning. A stacked ensemble of fully-connected, one-dimensional con-

volutional neural networks (CNNs) performs the base-stage classification, while a machine

learning algorithm performs the end-stage classification [4].

In recent years, there has been a growing trend toward using deep learning techniques

for malware detection. These techniques, such as convolutional neural networks (CNNs)

[55] and long short-term memory (LSTM) [62] networks, are able to learn more complex

patterns in the data and have achieved state-of-the-art results on many tasks. Deep learning

approaches for malware detection often use dynamic features extracted from the execution

of the executable, such as the system calls made by the executable or the network traffic

generated by the executable [19, 2]. For example, Ganesh et al. suggested a technique, that

utilizes a convolutional neural network to evaluate authorization patterns [18]. Based on

behavioral data, McDole et al. carried out malware detection using process-level perfor-

mance metrics, such as consumption of CPU, memory, and disk with convolutional neural

network (CNN). [33]. Vinayakumar et al. used the long short-term memory (LSTM) archi-

tecture for Android malware detection [58].

Overall, machine learning can be a powerful tool for detecting malware, but it is im-

portant to carefully consider the type of machine learning approach and the dataset being

10

used, as these factors can significantly impact the accuracy and effectiveness of the model.

There are several limitations to using machine learning for malware detection [24], which

are summarized as follows:

• Need for large, high-quality datasets. Machine learning algorithms require large

datasets of known malware and benign software in order to learn and classify new,

unseen software. If the dataset is small or of low quality, the model may not be able

to accurately classify new software.

• Vulnerability to adversarial examples. Machine learning models can be vulnerable

to adversarial examples, which are intentionally misclassified examples designed to

trick the model into making incorrect predictions. This can be a concern in the con-

text of malware detection, as attackers may try to create adversarial examples of

malware in order to evade detection by the model.

• Need for ongoing training and evaluation. Machine learning models require ongoing

training and evaluation to maintain their accuracy and effectiveness. If the model is

not regularly updated and tested, it may become less effective at detecting malware

over time.

• Limited ability to detect new or unknown types of malware. Machine learning al-

gorithms are generally more effective at detecting known types of malware, as they

are trained on specific patterns and features that are indicative of malware. How-

ever, they may be less effective at detecting new or unknown types of malware, as

they have not been trained on these types of malware and may not recognize them as

malicious.

In this thesis, we mainly focus on solving the limitation of machine learning-based

malware detection with limited labeled data samples, and investigating how we can build a

few-shot malware detection model to improve the detection performance.

11

2.2 Few-Shot Learning

As we would like to build a few-shot malware detection model, in this section, we list

some major few-shot learning techniques to facilitate understanding data limitation and

constructing our few-shot malware detection model. Few-shot learning is a machine learn-

ing technique that involves learning to perform a new task using only a small number of

examples. This is an important problem in the context of not just malware detection but also

any other cyber security attack detection, as it is often costly or time-consuming to obtain

large amounts of labeled data for these types of detection tasks [57]. Some major few-shot

learning methods with their own unique set of benefits and drawbacks are introduced in

detail as follows.

2.2.1 Meta Learning

Meta learning is a type of machine learning that involves learning how to learn. In the

context of malware detection, a meta-learning approach could involve training a model to

learn how to classify new, previously unseen examples of malware by adapting its learning

strategy based on the examples it has seen so far [23, 66]. There are several approaches to

perform meta learning, including:

• Model-based meta learning: This approach involves training a neural net-

work to learn a task by learning a model of the task. The model is then used to make

predictions about the task, which can be used to improve the model’s performance

[50].

• Optimization-based meta learning: This approach involves training a

model to optimize its own parameters, based on its experience with previous tasks.

The model learns to optimize its own learning process, rather than learning the task

directly [22, 60].

12

• Memory-based meta learning: This approach involves training a model to

use its memory of previous tasks to learn new tasks more efficiently. The model

stores information about past tasks in its memory and uses this information to guide

its learning process for new tasks [60].

Meta learning has a wide range of potential applications, including natural language

processing [27], computer vision [35], and robotics [26]. However, like any machine learn-

ing approach, it has certain limitations that should be considered. Some of the limitations

of meta learning include [22]:

• Data requirements: Meta learning often requires a large amount of data in order to

learn effectively. This can be a challenge in situations where it is difficult to collect

sufficient data for training a model on a specific task.

• Limited generalization: Meta learning algorithms are typically designed to work well

on a specific set of related tasks, but may not generalize well to tasks outside of this

domain.

• Sensitivity to hyper-parameters: Meta learning algorithms can be sensitive to the

choice of hyper-parameters, which can make it difficult to fine-tune the model for a

specific task.

2.2.2 Transfer Learning

Transfer learning is a type of machine learning that involves using knowledge learned from

one task to improve the performance of a model on a related task [39, 44]. The goal of trans-

fer learning is to leverage the knowledge and experience gained from solving one problem

to improve the performance of a model on a different, but related problem. For example,

imagine that you have trained a deep-learning model to classify images of dogs and cats.

If you wanted to use this model to classify images of birds, you could use transfer learning

13

by fine-tuning the model on a dataset of bird images. This would allow you to leverage the

knowledge the model has already gained about image recognition and classification and

fine-tune it to perform the specific task of bird classification [52].

Transfer learning can be a powerful tool in machine learning because it allows you to

build on the work of others and take advantage of pre-trained models that have already been

trained on large, high-quality datasets. This can save time and resources, and can often lead

to better performance than training a model from scratch. There are several approaches to

perform transfer learning, including fine-tuning [39], feature extraction [52], and multi-

task learning [44]. Each approach involves using a pre-trained model as a starting point

and adjusting it to perform a new task, with the specific approach depending on the details

of the new task and the availability of data.

However, it has certain limitations that should be considered. Some of the limitations

of transfer learning include [52]:

• Limited to related tasks: Transfer learning is most effective when the source and tar-

get tasks are closely related. If the tasks are too dissimilar, the knowledge learned

from the source task may not be useful for the target task, resulting in poor perfor-

mance.

• Lack of generalization: Transfer learning algorithms are typically designed to work

well on a specific set of related tasks, but may not generalize well to tasks outside of

this domain.

• Dependence on the quality of the pre-trained model: The performance of a transfer

learning model is dependent on the quality of the pre-trained model. If the pre-trained

model is not well-suited for the target task, the performance of the transfer learning

model may be poor.

14

2.2.3 Other Techniques

In addition to meta-learning and transfer learning, there have also been efforts to design

more effective feature representations and similarity measures for few-shot learning. These

approaches aim to capture the important characteristics of input samples and measure the

similarity between different types of samples in a way that is robust to variations in the

input data [53].

2.3 Few-shot Malware Detection

Some approaches have been designed and developed to address few-shot malware detection

using the aforementioned techniques, including transfer learning [44], and meta learning

[27]. Transfer learning involves fine-tuning a pre-trained machine learning model on a mal-

ware detection task using a small amount of labeled data. Meta learning involves training

a machine learning model to adapt to new malware detection tasks using a small amount

of labeled data [53]. For example, Martin et al. proposed a model using meta-information

from the Android Manifest to analyze and find fraudulent Android applications; its major

goal is to offer a quick but accurate tool that can help users prevent infecting their devices

without even needing to install the application to carry out the examination [32]. To more

accurately capture the characteristics of the studied segments, Tahan et al. implemented the

model employing a novel feature type called a meta-feature [51]. Bhodia et al. dealt with

the issue of malware categorization and detection using image analysis. Bhodia et al. used

deep learning (DL) models to apply image recognition after converting executable files to

images [6]. Chen et al. proposed a model using computer vision’s deep transfer learning to

categorize static malware and apply knowledge from naturally occurring images or objects

to the target domain of static malware detection in the transfer learning scheme [9].

15

Design of Few-Shot Malware Detection

Few-shot malware detection is to train a machine learning model to classify new, unseen

types of malware based on a small number of examples, or “shots” [8]. As traditional

machine learning approaches may require a larger dataset for model training [54], this ap-

proach is particularly useful in situations where there are few examples of a particular type

of malware available for training [21]. In this chapter, we are using adversarial repro-

gramming to build a few-shot malware detection model. As the adversarial reprogramming

technique uses machine learning vulnerability as a fundamental for the design to transfer

the input with perturbation and change the output that leads to re-purposing the model for

other tasks, we first explain adversarial vulnerability more technically and then dive into

the technical steps in detail for our design for few-shot malware detection.

3.1 Adversarial Vulnerability

Adversarial vulnerability in machine learning refers to the susceptibility of a machine learn-

ing model to being deceived or fooled by malicious or unintended inputs [48]. These inputs,

called adversarial examples, have been specifically crafted to cause the model to make mis-

takes or incorrect predictions, which can be in the form of images, texts, or other types of

data and designed to be similar to normal, legitimate inputs but with subtle differences that

can be difficult for humans to detect [14].

One example of such an adversarial vulnerability is that an attacker crafts an image

16

Figure 3.1: An example of adversarial vulnerability

that is intentionally designed to mislead a machine learning model trained for image clas-

sification. For instance, consider a model that has been trained to recognize animals in

images [38]. As illustrated in Figure 3.1, an attacker could generate an adversarial image

of a panda in an easy way that the model incorrectly classifies it as a dog. This could

be done, for example, by adding small, imperceptible perturbations to the image that are

specifically designed to fool the model [48].

Different from crafting perturbation for individual input, the universal perturbation is

a small change added to all inputs that can cause a classifier to misclassify most inputs,

which is generally drawn from a given distribution [36]. The goal is to find a perturbation

vector v that satisfies two constraints:

• It has a small norm (as measured by the p-norm, with p ∈ [1,∞)).

||v||p <= ϵ (3.1)

• It causes the classifier to misclassify at least 1-δ fraction of inputs drawn from the

distribution.

where the parameters ϵ and δ are used to control the magnitude of the perturbation vector

and the desired fooling rate, respectively [36, 48].

Adversarial vulnerability is a concern in machine learning because it can potentially

17

lead to serious consequences, such as incorrect medical diagnoses or financial fraud. There-

fore, it is important for machine learning researchers and practitioners to consider these

vulnerabilities when developing and deploying machine learning models. However, these

vulnerabilities are also good opportunities to be applied for social good. The focus of this

thesis is one of such cases, which attempts to craft a universal perturbation to be added to

all inputs that can change the behaviors of the pre-trained neural networks, and accordingly

reprograms their functions to perform malware detection.

3.2 Adversarial Reprogramming

Inspired by adversarial vulnerability, adversarial reprogramming is proposed to re-purpose

a pre-trained model in a source domain to perform a new task in a target domain by adding

universal perturbation into the inputs [37]. Here, we reprogram an ImageNet classification

neural network to address few-shot malware detection problem. In more detail, the model

first extracts a collection of features from data samples, adds these characteristics to a host

image drawn at random from ImageNet, and then adds a universal perturbation to the host

image to produce a set of new image inputs that reflect the original data samples. Next, two

ImageNet classes will be randomly chosen using the adversarial reprogramming model

to represent malware and benign classes for malware detection. The best perturbation is

determined by minimizing the loss function after the model construction process, which

involves creating an optimization problem between the predictions and true labels. The

advantages yielded by adversarial reprogramming are [11]:

• Only the perturbation is trainable and requires less training time and labeled data

than transfer learning and other models that are created from scratch.

• The ImageNet model can be used for a range of malware detection tasks without

modifying the model’s structure or computations because software features must al-

ways be converted to images due to the model’s fixed input format.

18

Figure 3.2: Overview of the designed adversarial reprogramming model

• With the help of pre-trained weights and layers on ImageNet neural networks, it is

possible to identify expressive patterns from subtle software features and perform

well at malware detection.

Based on the aforementioned advantages of adversarial reprogramming, to deal with

machine learning-based malware detection with few labeled data samples, we build a novel

adversarial reprogramming model based on a pre-trained ImageNet classification neural

network, which is illustrated in Figure 3.2. Overall, our adversarial reprogramming model

proceeds with three steps: (1) input transformation, (2) output transformation, and (3) op-

timization. This leads to three major goals:

19

• Input transformation to embed the software features with the perturbation into the

host image to create new image data.

• Output transformation to map the ImageNet classes to malware detection classes.

• Optimization to obtain the optimal perturbation.

We detail all these three major steps as follows.

3.2.1 Input Transformation

To perform input transformation, there were two important steps. One is software feature

embedding and the other is applying perturbation. For feature embedding, I assigned fea-

tures of my dataset to a Numpy array and embedded them to randomly selected pixels of

the host image and stored the index values of the pixels so that it can generate a whole

new image dataset for training and testing. After feature embedding, I added a universal

perturbation function to all the inputs. I also introduced a parameter epsilon ϵ, to analyze

the magnitude of the perturbation [13, 10]. The perturbation function is formulated to be

added to all inputs, which can be defined as:

θ̃ = ϵ · tanh(θ ⊙M) (3.2)

where θ ∈ Rn×n×3 refers to perturbation, M is the matrix of mask values to specify the

pixels used to store the software features, ⊙ refers to element-wise product, tanh (·) sets

the bounds of the perturbation to be in (-1,1) . To control the amount of the perturbation,

we introduce an adjustable hyper-parameter ϵ. The transformed new input data sample can

thus be presented as a transformation function hs(x; θ) defined as follows:

hs(x; θ) = X̃ = clip(X + ϵ · tanh(θ ⊙M)) (3.3)

20

where X is input data in a format of host image with feature embedding x, clip (·) limits

the values of each pixel in the image by clipping them to a specified range (0,1) and X̃

represents the new image input after input transformation. In our scenario, both ϵ and clip

(·) result in the perturbation imperceptibility.

3.2.2 Output Transformation

The goal of the output transformation process is to map the output classes of the ImageNet

classification neural network back to the classes used for malware detection (i.e., benign

and malicious). To do this, we implement a hard-coded mapping to perform this operation

for detection [47].

More specifically, the hard-coded mapping involves simply assigning two randomly-

selected class outputs out of 1,000 ImageNet classes to predict benign and malicious classes,

respectively. This is done by using a function ht(·) that takes an output ỹ of the ImageNet

model and maps it to a pair of classes yi and yj , where i is not equal to j.

ht(ỹ) = ⟨ỹi, ỹj⟩, i ̸= j. (3.4)

Overall, the output transformation process is an important step in adversarial repro-

gramming, as it allows the results of the ImageNet model to be translated into the classes

used for malware detection [12].

3.2.3 Optimization

To develop a cost-efficient method for detecting malware, the pre-trained ImageNet classi-

fication neural network needs to be self-deployed for complete access, such that no addi-

tional expenses on large model queries will be incurred and we can perform gradient-based

method to optimize the adversarial reprogramming model and obtain the ideal perturbation.

21

In this respect, the optimization of our adversarial reprogramming model is formulated as

an optimization problem where the goal is to minimize a loss function that takes into ac-

count the difference between the probability that an input image, transformed from soft-

ware, will be classified as malware and its ground-truth label, where a regularization term is

added to help prevent overfitting [11]. The adversarial reprogramming model optimization

can be formally written out as:

θ∗ = argmin (−log(p(ht(ỹ)|hs(x; θ))) + λ||θ||2F) (3.5)

where λ is a regularization parameter, and p(ht(ỹ)|hs(x; θ)) shows the likelihood that an

image input X that was altered by features x will be categorized as ỹ, which can be mapped

to malware. The single parameter of the problem, θ, is updated using Adam, an optimiza-

tion algorithm that makes use of first and second-moment estimates of the gradient to adapt

the learning rate. The optimization problem described in this subsection is a key component

of the adversarial model, which is critical for achieving the goal of cost-efficient malware

detection using self-deployed ImageNet classification neural networks.

22

Experimental Results and Analysis

In this chapter, we evaluate the effectiveness of our proposed few-shot malware detection

model over a real malware dataset. First, we introduce the dataset in detail and then spec-

ify the experimental settings. After that, we evaluate the impacts of different pre-trained

models, parameters, and data sizes, and also compare with some baselines to demonstrate

the advantages yielded by our adversarial reprogramming model.

4.1 Experiment Setup

4.1.1 Dataset

For this experiment, I used the MalData dataset from the GitHub open source repository1.

This dataset consists of 138,047 entries, with 41,323 benign files and 96,724 malware files.

The data statistics are illustrated in Table 4.1. Each file in the dataset is characterized

by 56 features, including the number of resources, the size of initialized data, the size of

uninitialized data, the major and minor linker versions, the MD5 hash, the size of code,

the machine type, the size of the optional header, and the characteristics. These features

provide a wealth of information about each file, allowing for thorough analysis and com-

parison. Considering that the feature scales are very different, we normalize these feature

values before embedding them into the host image. The MalData dataset is a valuable

1https://github.com/PacktPublishing/Mastering-Machine-Learning-for-Penetration-Testing

23

Table 4.1: Statistics of the dataset used in this thesis
Dataset No. of Entries No. of Benigns No. of Malwares No. of Features
MalData 138,047 41,323 96,724 56

resource for researchers studying malware and seeking to develop effective methods for

detecting and mitigating its effects.

The dataset includes the following features, where the detailed feature value examples

are given in Table 4.2:

• Name is the name of the file.

• md5 is the MD5 hash of the file, which is a unique identification code that can be

used to verify the integrity of the file.

• Machine is the machine type the file is intended to run on, such as x86 or x64.

• SizeOfOptionalHeader is the size of the optional header in the file, which

contains information about the file’s layout and execution.

• Characteristics is a set of flags indicating the characteristics of the file, such

as whether it is a dynamic-link library (DLL) or whether it is intended to be run on a

system with high entropic content.

• MajorLinkerVersion and MinorLinkerVersion are the major and minor

version numbers of the linker used to create the file. The linker is a program that

combines object files and libraries to create an executable file.

• SizeOfCode is the size of the code section in the file, which contains the instruc-

tions that the processor will execute.

• SizeOfInitializedData is the size of the initialized data section in the file,

which contains data that is initialized when the file is loaded into memory.

24

Table 4.2: Features of files from dataset
0 2

Name mshtml.dll VirusShare cf329dab9d0e2b9129b27771a2862394
md5 d20f7eea01f00190902462c0b69ec6c8 cf329dab9d0e2b9129b27771a2862394

Machine 34404 332
SizeOfOptionalHeader 240 224

Characteristics 8226 783
MajorLinkerVersion 9 2
MinorLinkerVersion 0 56

SizeOfCode 6752256 29184
SizeOfInitializedData 2310656 14848

SizeOfUninitializedData 0 110592
AddressOfEntryPoint 21520 14764

BaseOfCode 4096 4096
BaseOfData 0 36864
ImageBase 8793907789824.0 4194304.0

SectionAlignment 4096 4096
FileAlignment 512 512

MajorOperatingSystemVersion 6 4
MinorOperatingSystemVersion 1 0

MajorImageVersion 6 6
MinorImageVersion 1 0

MajorSubsystemVersion 5 4
MinorSubsystemVersion 2 0

SizeOfImage 9076736 221184
SizeOfHeaders 1536 1024

CheckSum 9120035 0
Subsystem 2 2

DllCharacteristics 64 32768
SizeOfStackReserve 262144 2097152
SizeOfStackCommit 4096 4096
SizeOfHeapReserve 1048576 1048576
SizeOfHeapCommit 4096 4096

LoaderFlags 0 0
NumberOfRvaAndSizes 16 16

SectionsNb 6 7
SectionsMeanEntropy 5.41745943392 3.34528001443
SectionsMinEntropy 2.76177448394 0.0
SectionsMaxEntropy 6.76452138512 6.30323831549
SectionsMeanRawsize 1509290.66667 8118.85714286
SectionsMinRawsize 53760 0
SectionMaxRawsize 6752256 29184

SectionsMeanVirtualsize 1510175.16667 28755.4285714
SectionsMinVirtualsize 60704 140
SectionMaxVirtualsize 6751839 110088

ImportsNbDLL 13 8
ImportsNb 935 155

ImportsNbOrdinal 147 0
ExportNb 20 0

ResourcesNb 134 8
ResourcesMeanEntropy 3.28753758854 4.0912689525
ResourcesMinEntropy 1.11239546515 2.45849222582
ResourcesMaxEntropy 7.99092475232 5.86996923095

ResourcesMeanSize 1965.05223881 2088.75
ResourcesMinSize 20 48
ResourcesMaxSize 67585 9640

LoadConfigurationSize 0 0
VersionInformationSize 17 0

legitimate 1 0

• SizeOfUninitializedData is the size of the uninitialized data section in the

file, which contains data that is not initialized when the file is loaded into memory.

25

• AddressOfEntryPoint is the address of the entry point of the file, which is the

location in memory where the execution of the file begins.

• BaseOfCode is the base address of the code section in the file, which is the starting

address of the code section when the file is loaded into memory.

• BaseOfData is the base address of the data section in the file, which is the starting

address of the data section when the file is loaded into memory.

• ImageBase is the preferred address of the first byte of the file when it is loaded

into memory.

• SectionAlignment is the alignment of the sections in the file, which determines

how the sections are arranged in memory.

• FileAlignment is the alignment of the file on disk, which determines how the

file is arranged on the disk.

• MajorOperatingSystemVersion and MinorOperatingSystemVersion

are the major and minor version numbers of the required operating system.

• MajorImageVersion and MinorImageVersion are the major and minor ver-

sion numbers of the image.

• MajorSubsystemVersion and MinorSubsystemVersion are the major and

minor version numbers of the subsystem.

• SizeOfImage is the size of the image, including all headers, in memory.

• SizeOfHeaders is the size of the headers in the file.

• CheckSum is the checksum of the file, which is a value calculated from the contents

of the file that can be used to verify the integrity of the file.

26

• Subsystem is the subsystem required to run the file, such as a graphical user inter-

face (GUI) or a command-line interface (CLI).

• DllCharacteristics is a set of flags indicating the DLL characteristics of the

file, such as whether it is re-locatable or whether it supports high-entropy 64-bit

virtual address space.

• SizeOfStackReserve is the size of the stack to reserve for the file. The stack

is a portion of memory used for storing temporary data, such as function parameters

and local variables.

• SizeOfStackCommit is the size of the stack to commit for the file. When a

memory page is committed, it is reserved for the program’s use and can be accessed.

• SizeOfHeapReserve is the size of the heap to reserve for the file. The heap is a

portion of memory used for dynamic memory allocation.

• SizeOfHeapCommit is the size of the heap to commit for the file. When a mem-

ory page is committed on the heap, it is reserved for the program’s use and can be

accessed.

• LoaderFlags is a set of flags indicating the state of the file.

• NumberOfRvaAndSizes is the number of data directories in the file. Data direc-

tories contain information about the file’s resources, such as its import and export

tables.

• SectionsNb is the number of sections in the file. A file is divided into sections,

each of which has a specific purpose, such as containing code or data.

• SectionsMeanEntropy is the mean entropy of the sections in the file. Entropy

is a measure of the randomness or disorder of a system, and it can be used to assess

the complexity of the file’s sections.

27

• SectionsMinEntropy is the minimum entropy of the sections in the file.

• SectionsMaxEntropy is the maximum entropy of the sections in the file.

• SectionsMeanRawsize is the mean size of the sections in the file.

• SectionsMinRawsize is the minimum size of the sections in the file.

• SectionMaxRawsize is the maximum size of the sections in the file.

• SectionsMeanVirtualsize is the mean virtual size of the sections in the file.

The virtual size of a section is the size it occupies in memory, which may be larger

than its actual size on disk.

• SectionsMinVirtualsize is the minimum virtual size of the sections in the

file.

• SectionMaxVirtualsize is the maximum virtual size of the sections in the

file.

• ImportsNbDLL is the number of dynamic-link libraries (DLLs) imported by the

file.

• ImportsNb is the number of imported functions in the file.

• ImportsNbOrdinal is the number of imported functions with ordinals in the file.

An ordinal is a number that identifies a function in a DLL, and it can be used to

import the function more quickly than by using its name.

• ExportNb is the number of exported functions in the file. An exported function is

a function that can be called by other programs.

• ResourcesNb is the number of resources in the file. Resources are data that is

stored in the file and can be accessed at runtime, such as images and strings.

28

• ResourcesMeanEntropy is the mean entropy of the resources in the file. En-

tropy is a measure of the randomness or disorder of a system, and it can be used to

assess the complexity of the file’s resources.

• ResourcesMinEntropy is the minimum entropy of the resources in the file.

• ResourcesMaxEntropy is the maximum entropy of the resources in the file.

• ResourcesMeanSize is the mean size of the resources in the file.

• ResourcesMinSize is the minimum size of the resources in the file.

• ResourcesMaxSize is the maximum size of the resources in the file.

• LoadConfigurationSize is the size of the load configuration data in the file.

The load configuration data contains information about how the file should be loaded

into memory.

• VersionInformationSize is the size of the version information in the file. The

version information contains details about the version of the file, such as its copyright

and company name.

4.1.2 Parameters

In the experiment, several parameters were used to train and test the adversarial repro-

gramming model. The train parameters include the number of epochs to train 12, the initial

learning rate as 0.01, the batch size as 32, the weight decay as 5e-4, and the epsilon ϵ value

used for rounding while updating the weights as 0.3. The test parameters include the step

size at which weights were updated is set to 4 and the gamma value is 0.9.

29

4.1.3 Settings

The settings for the experiment involve using different portions of the training dataset to

test the model, ranging in {80%, 5%, 0.1%, 0.05%, 0.01%}. The hyper-parameter epsilon

is set to a constant value of 0.3, where its impact on the model performance is also analyzed

by changing the value of epsilon from 0.1 to 0.5. Four different pre-trained ImageNet Clas-

sification models (resnet50, resnet101, densenet121, and densenet161) with pre-trained

weights from the PyTorch and Torch-vision modules were used as the basis for the adver-

sarial task. The baseline models used for comparison are random forest, neural network,

and transfer learning.

4.2 Evaluation

4.2.1 Impact of Pre-Trained Model

Adversarial reprogramming is a type of attack on machine learning models where an at-

tacker attempts to cause the model to perform a task that it was not designed for by adding

small, carefully crafted perturbations to the input data [61]. In this experiment, we tested

the effectiveness of this attack on different ImageNet models using a small training dataset

and a larger test dataset, while keeping the perturbation constant at ϵ = 0.3.

Table 4.3: Evaluation on the impact of pre-trained models
Pre-trained Models Accuracy F1-score

resnet50 97.73 96.21

resnet101 97.50 95.89

densenet121 98.05 96.74

densenet161 97.66 96.08

30

Figure 4.1: Evacuation on the impact of pre-trained model

We conducted an experiment where we tested the performance of adversarial re-

programming on four different ImageNet models: resnet50, resnet101, densenet121, and

densenet161. We presented the results of the experiment in Figure 4.1 and Table 4.3, and

found that the densenet121 model has the best performance, with an accuracy of more than

98%. This suggests that the densenet121 model was the most resistant to the adversarial

reprogramming attack among the four models tested.

4.2.2 Impact of Data Size

In this experiment, we tested the performance of adversarial reprogramming on a dataset

that was split into five different categories based on size. The categories included 80% of

the dataset (with 110,437 inputs), 5% of the dataset (with 6,902 inputs), 0.1% of the dataset

(with 138 inputs), 0.05% of the dataset (with 69 inputs), and 0.01% of the dataset (with 13

inputs). We kept the perturbation constant at ϵ = 0.3 throughout the experiment. This

experiment is significant because we are testing the performance of adversarial reprogram-

ming on very small datasets, which may have different characteristics compared to larger

datasets. It would be interesting to see how the size of the dataset affects the performance

31

of the adversarial reprogramming attack.

Table 4.4: Evaluation on the impact of data size
Data Size Accuracy F1-score

80% 98.10 96.87

5% 97.99 96.64

0.1% 94.62 90.06

0.05% 93.02 87.32

0.01% 92.08 85.37

Figure 4.2: Evaluation on the impact of data size

As illustrated in Figure 4.2 and Table 4.4, we can observe that the attack had a very

high efficiency of more than 98% when using 80% of the dataset (with 110,437 inputs) as

the training data. We also found that the attack had an accuracy of more than 91% even

when using a very small dataset (0.01% of the total dataset, with 13 inputs) as the training

data. These results suggest that adversarial reprogramming is a highly effective method

that is able to achieve good performance even when using a very small amount of training

data, which demonstrate our proposed idea to address few-shot malware detection.

32

4.2.3 Impact of Perturbation

In this experiment, we tested the effect of the perturbation function on the performance

of adversarial reprogramming. We did this by varying the parameter ϵ, which is used to

control the magnitude of the perturbations applied to the input data, and observing the

performance of the attack with 5% of the dataset as the training data. This is also an

interesting experiment because the perturbation function is a key component of adversarial

reprogramming, and understanding how it affects the attack can provide insights into how

the attack works and how to defend against it. It would be interesting to see how the

performance of the attack changes as the value of ϵ is varied

Table 4.5: Evaluation on the impact of perturbation magnitude
Perturbation ϵ Accuracy F1-score

0.1 97.60 95.98

0.2 97.80 96.34

0.3 97.99 96.64

0.4 97.66 96.45

0.5 98.09 97.60

Figure 4.3: Evaluation on the impact of perturbation magnitude

33

From figure 4.3 and table 4.5, we can see the experimental results where we tested

the performance of adversarial reprogramming with 5% of the dataset as the training data,

and varied the parameter ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} that controls the magnitude of the

perturbations applied to the input data. We recorded the accuracy and f1-score for each

value of ϵ that we tested. The results show that as the value of ϵ increases, the accuracy

and f1-score of the attack also generally increase. However, there is a noticeable drop in

accuracy and f1-score when ϵ is increased from 0.3 to 0.4. This suggests that there may be

an optimal value of ϵ for this particular dataset that falls in the range between 0.3 and 0.4.

4.2.4 Comparison with Baselines

In this experiment, we compared the performance of our proposed model with three base-

line models (random forest, neural network, and transfer learning) on small data settings.

We used three different train datasets with sizes of 0.1%, 0.05%, and 0.01% of the total data

samples, and trained all four models on each of these datasets. Here, transfer learning is

implemented in a way similar to adversarial reprogramming, with only one difference that

transfer learning fine-tunes the parameters for all layers. The goal of the experiment was

to see how well each of the models performs on small datasets, and compare the perfor-

mance of the proposed model with the baseline models. This is an interesting experiment

because it can provide insights into how well these types of models can generalize to small

datasets, and whether there are any specific characteristics of the dataset or the models that

contribute to their performance. It would be also interesting to see how the performance of

the models changes as the size of the train dataset is decreased, and whether there are any

notable advantages yielded by the proposed model compared to the baseline models.

As illustrated in Table 4.6 and Figure 4.4, we can see the comparative results of four

different models (random forest, neural network, transfer learning, and adversarial repro-

gramming) on a small datasets with sizes of 0.1%, 0.05%, and 0.01% of the total dataset

34

Table 4.6: Comparison with baselines
Baseline Models 0.1% 0.05% 0.01%

Random Forest
Accuracy 95.10 91.33 88.92

F1-score 92.23 82.91 80.22

Neural Network
Accuracy 93.79 89.58 80.87

F1-score 90.43 83.70 54.09

Transfer Learning
Accuracy 91.39 86.55 64.09

F1-score 83.95 71.07 60.60

Adversarial
Reprogramming

Accuracy 95.62 92.81 91.59

F1-score 90.79 87.03 84.12

Figure 4.4: Comparison with baselines

in terms of the accuracy and f1-score. The results show that the performance of all four

models decreases as the size of the train dataset is decreased. However, the adversarial

reprogramming model generally performs better than the baseline models across all train

dataset sizes. This suggests that the adversarial reprogramming model may have better gen-

eralization performance compared to the other models when working with small datasets.

35

Challenges

One challenge that was faced while building the model for adversarial reprogramming was

related to input transformation and embedding features into the host image, as well as

saving the indexes of the host image to create a new image dataset. This process can be

complex and time-consuming, and can require a lot of trial and error to get right.

Another challenge was finding suitable datasets to use for adversarial reprogramming.

we tried using two popular datasets, MNIST and CIFAR10, for adversarial reprogramming,

but found that they were not well suited for use with pre-trained models. MNIST is a dataset

of gray-scale images of handwritten digits, while CIFAR10 is a dataset of colored images of

objects in 10 classes. Both datasets are widely used for machine learning research, but they

have some limitations that made them not well suited for use with pre-trained models in

this context. One limitation of MNIST is that it has only one channel for gray-scale images,

which can limit the types of models that can be used with it. CIFAR10, on the other hand,

is a relatively small dataset, which can make it difficult to achieve good performance with

more complex models. This highlights the importance of selecting appropriate datasets for

a given task, and the challenges that can arise when working with datasets that are not well

suited for building a pre-trained model.

In addition to these challenges, adversarial reprogramming can also be computation-

ally intensive, particularly when working with large target models or when the perturbations

require many iterations to find. This can be a challenge for users with limited computa-

tional resources, and may require the use of specialized hardware or techniques to manage

36

the computational demands of the task. Finally, adversarial reprogramming often involves

fine-tuning a pre-trained model on a small number of examples, which can lead to overfit-

ting and reduced generalization and accuracy on new and unseen data. This highlights the

need to carefully balance the trade-off between model performance and generalization, and

to carefully monitor model performance on new data to ensure that it is not overfitting.

37

Future Work

One direction for future work is to explore the effect of different hyper-parameters on the

performance of the adversarial reprogramming model. This could involve testing different

values for the perturbation parameter epsilon, or trying different optimization algorithms

or learning rates. By varying these and other hyper-parameters, it may be possible to find

configurations that result in improved performance or faster convergence.

Another direction for future work is to test the model using different pre-trained mod-

els as the target model. This could involve using models trained on different datasets or

using models with different architectures or hyper-parameters. By comparing the perfor-

mance of the adversarial reprogramming model across different target models, it may be

possible to identify any characteristics of the target model that affect its vulnerability to

the attack or to identify strategies for making the target model more resistant to adversarial

reprogramming.

One potential application of adversarial reprogramming is improving machine learn-

ing models’ robustness. By altering the behavior of the model in a way that makes it more

resistant to noise or perturbations in the input data, it may be possible to improve the gen-

eralization performance of the model and make it more robust to changes in the data dis-

tribution. This could be an important area of future work, as robustness and generalization

are critical concerns in many machine-learning applications.

38

Conclusion

Malware is software that is specifically designed to disrupt, damage, or gain unauthorized

access to a computer system. To protect against malware, effective techniques for detecting

and mitigating malware are needed. One approach to detecting malware is to use machine

learning models, which are algorithms that can learn patterns in data and make predictions

or decisions based on those patterns. Machine learning models can be effective for detect-

ing malware, but they often require large datasets to achieve good performance. This can

be a challenge in the context of malware detection, as the datasets used for training and

evaluation are often quite small.

To address this challenge, in this study, we aimed to develop a machine learning model

that can achieve good performance even when using small datasets. To do this, we used

an adversarial reprogramming technique, which involves modifying the behavior of a pre-

trained model by adding small perturbations to the input data. Adversarial reprogramming

has been shown to be effective in improving the performance of machine learning models

on small datasets.

To test this hypothesis, we compared the performance of the adversarial reprogram-

ming model with traditional baseline models on a dataset of malware and benign samples.

We found that the adversarial reprogramming model was able to produce efficient results

even when using very small datasets, outperforming the traditional baseline models. We

also evaluated the performance of the adversarial reprogramming model with different pre-

trained ImageNet classification models, with different parameter settings, and with differ-

39

ent data sizes.

Overall, the results of this study suggest that adversarial reprogramming is a promising

approach for improving the performance of machine learning models on small datasets, and

could be a valuable tool for improving malware detection in situations where the available

datasets are limited. It would be interesting to see how the approach performs on other

types of small datasets, and whether it is generally applicable to a wide range of machine

learning tasks.

40

Bibliography

[1] Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan. Low-complexity signature-

based malware detection for iot devices. In International Conference on Applications

and Techniques in Information Security, pages 181–189. Springer, 2017.

[2] Muhammad Shoaib Akhtar and Tao Feng. Detection of malware by deep learning as

cnn-lstm machine learning techniques in real time. Symmetry, 14(11):2308, 2022.

[3] Malware AV-TEST The Independent IT-Security Institute. Atlas - malware amp; pua,

2023.

[4] Nureni Ayofe Azeez, Oluwanifise Ebunoluwa Odufuwa, Sanjay Misra, Jonathan Olu-

ranti, and Robertas Damaševičius. Windows pe malware detection using ensemble

learning. In Informatics, volume 8, page 10. MDPI, 2021.

[5] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh. A

survey on heuristic malware detection techniques. In The 5th Conference on Informa-

tion and Knowledge Technology, pages 113–120. IEEE, 2013.

[6] Niket Bhodia, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. Transfer

learning for image-based malware classification. arXiv preprint arXiv:1903.11551,

2019.

41

[7] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based

malware detection system for android. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, pages 15–26, 2011.

[8] Yuhan Chai, Lei Du, Jing Qiu, Lihua Yin, and Zhihong Tian. Dynamic prototype net-

work based on sample adaptation for few-shot malware detection. IEEE Transactions

on Knowledge and Data Engineering, 2022.

[9] Li Chen. Deep transfer learning for static malware classification. arXiv preprint

arXiv:1812.07606, 2018.

[10] Lingwei Chen, Yujie Fan, and Yanfang Ye. Adversarial reprogramming of pretrained

neural networks for fraud detection. In Proceedings of the 30th ACM International

Conference on Information & Knowledge Management, pages 2935–2939, 2021.

[11] Lingwei Chen, Xiaoting Li, and Dinghao Wu. Adversarially reprogramming pre-

trained neural networks for data-limited and cost-efficient malware detection. In Pro-

ceedings of the 2022 SIAM International Conference on Data Mining (SDM), pages

693–701. SIAM, 2022.

[12] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio, Alessandro Ar-

mando, and Fabio Roli. Adversarial exemples: A survey and experimental evaluation

of practical attacks on machine learning for windows malware detection. ACM Trans-

actions on Privacy and Security (TOPS), 24(4):1–31, 2021.

[13] Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial re-

programming of neural networks. arXiv preprint arXiv:1806.11146, 2018.

[14] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for any

classifier. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.

Curran Associates, Inc., 2018.

42

[15] Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma. A novel

dynamic android malware detection system with ensemble learning. IEEE Access,

6:30996–31011, 2018.

[16] Eric Filiol, Grégoire Jacob, and Mickaël Le Liard. Evaluation methodology and the-

oretical model for antiviral behavioural detection strategies. Journal in Computer

Virology, 3(1):23–37, 2007.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In International conference on machine learning,

pages 1126–1135. PMLR, 2017.

[18] Meenu Ganesh, Priyanka Pednekar, Pooja Prabhuswamy, Divyashri Sreedharan Nair,

Younghee Park, and Hyeran Jeon. Cnn-based android malware detection. In 2017

international conference on software security and assurance (ICSSA), pages 60–65.

IEEE, 2017.

[19] Daniel Gibert, Carles Mateu, and Jordi Planes. The rise of machine learning for de-

tection and classification of malware: Research developments, trends and challenges.

Journal of Network and Computer Applications, 153:102526, 2020.

[20] Kasthurirangan Gopalakrishnan, Siddhartha K Khaitan, Alok Choudhary, and Ankit

Agrawal. Deep convolutional neural networks with transfer learning for computer

vision-based data-driven pavement distress detection. Construction and building ma-

terials, 157:322–330, 2017.

[21] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. Dl4md: A deep

learning framework for intelligent malware detection. In Proceedings of the Interna-

tional Conference on Data Science (ICDATA), page 61. The Steering Committee of

The World Congress in Computer Science, Computer . . . , 2016.

43

[22] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-

learning in neural networks: A survey. IEEE transactions on pattern analysis and

machine intelligence, 44(9):5149–5169, 2021.

[23] Mike Huisman, Jan N Van Rijn, and Aske Plaat. A survey of deep meta-learning.

Artificial Intelligence Review, 54(6):4483–4541, 2021.

[24] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques.

Purdue University, 48(2):32–46, 2007.

[25] Ashraful Islam, Chun-Fu Richard Chen, Rameswar Panda, Leonid Karlinsky, Rogerio

Feris, and Richard J Radke. Dynamic distillation network for cross-domain few-shot

recognition with unlabeled data. Advances in Neural Information Processing Systems,

34:3584–3595, 2021.

[26] Rituraj Kaushik, Timothée Anne, and Jean-Baptiste Mouret. Fast online adaptation in

robotics through meta-learning embeddings of simulated priors. In 2020 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 5269–5276.

IEEE, 2020.

[27] Hung-yi Lee, Shang-Wen Li, and Ngoc Thang Vu. Meta learning for natural language

processing: A survey. arXiv preprint arXiv:2205.01500, 2022.

[28] Wenjia Li, Jigang Ge, and Guqian Dai. Detecting malware for android platform: An

svm-based approach. In 2015 IEEE 2nd International Conference on Cyber Security

and Cloud Computing, pages 464–469. IEEE, 2015.

[29] Xiaoting Li, Lingwei Chen, and Dinghao Wu. Turning attacks into protection: Social

media privacy protection using adversarial attacks. In Proceedings of the 2021 SIAM

International Conference on Data Mining (SDM), pages 208–216. SIAM, 2021.

44

[30] Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. Automatic malware classifi-

cation and new malware detection using machine learning. Frontiers of Information

Technology & Electronic Engineering, 18(9):1336–1347, 2017.

[31] Wu Liu, Ping Ren, Ke Liu, and Hai-xin Duan. Behavior-based malware analysis and

detection. In 2011 first international workshop on complexity and data mining, pages

39–42. IEEE, 2011.

[32] Alejandro Martı́n, Alejandro Calleja, Héctor D Menéndez, Juan Tapiador, and David

Camacho. Adroit: Android malware detection using meta-information. In 2016 IEEE

Symposium Series on Computational Intelligence (SSCI), pages 1–8. IEEE, 2016.

[33] Andrew McDole, Mahmoud Abdelsalam, Maanak Gupta, and Sudip Mittal. Analyz-

ing cnn based behavioural malware detection techniques on cloud iaas. In Interna-

tional Conference on Cloud Computing, pages 64–79. Springer, 2020.

[34] Grégoire Mesnil, Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian

Goodfellow, Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-

Farley, et al. Unsupervised and transfer learning challenge: a deep learning approach.

In Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages

97–110. JMLR Workshop and Conference Proceedings, 2012.

[35] Farid Ghareh Mohammadi, Hamid R Arabnia, and M Hadi Amini. On parameter tun-

ing in meta-learning for computer vision. In 2019 International Conference on Com-

putational Science and Computational Intelligence (CSCI), pages 300–305. IEEE,

2019.

[36] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), July 2017.

45

[37] Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov, and Farinaz Koushanfar.

Adversarial reprogramming of text classification neural networks. arXiv preprint

arXiv:1809.01829, 2018.

[38] Kb Pachauri. Adversarial machine learning, Aug 2020.

[39] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[40] Matthew E Peters, Sebastian Ruder, and Noah A Smith. To tune or not to tune? adapt-

ing pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987,

2019.

[41] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training. 2018.

[42] Hemant Rathore, Swati Agarwal, Sanjay K Sahay, and Mohit Sewak. Malware detec-

tion using machine learning and deep learning. In International Conference on Big

Data Analytics, pages 402–411. Springer, 2018.

[43] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. Trans-

fer learning in natural language processing. In Proceedings of the 2019 conference of

the North American chapter of the association for computational linguistics: Tutori-

als, pages 15–18, 2019.

[44] Ravi K Samala, Heang-Ping Chan, Lubomir M Hadjiiski, Mark A Helvie, Kenny H

Cha, and Caleb D Richter. Multi-task transfer learning deep convolutional neural

network: application to computer-aided diagnosis of breast cancer on mammograms.

Physics in Medicine & Biology, 62(23):8894, 2017.

46

[45] Oleg Savenko, Andrii Nicheporuk, Ivan Hurman, and Sergii Lysenko. Dynamic

signature-based malware detection technique based on api call tracing. In ICTERI

Workshops, pages 633–643, 2019.

[46] Prashanth Gurunath Shivakumar and Panayiotis Georgiou. Transfer learning from

adult to children for speech recognition: Evaluation, analysis and recommendations.

Computer speech & language, 63:101077, 2020.

[47] Arif Siddiqi. Adversarial security attacks and perturbations on machine learning and

deep learning methods. arXiv preprint arXiv:1907.07291, 2019.

[48] Carl-Johann Simon-Gabriel, Yann Ollivier, Léon Bottou, Bernhard Schölkopf, and

David Lopez-Paz. Adversarial vulnerability of neural networks increases with input

dimension, 2019.

[49] Ankush Singla, Elisa Bertino, and Dinesh Verma. Overcoming the lack of labeled

data: Training intrusion detection models using transfer learning. In 2019 IEEE In-

ternational Conference on Smart Computing (SMARTCOMP), pages 69–74. IEEE,

2019.

[50] Steven A Stahl and Marilyn M Fairbanks. The effects of vocabulary instruction: A

model-based meta-analysis. Review of educational research, 56(1):72–110, 1986.

[51] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-id: Automatic malware detection

using common segment analysis and meta-features. Journal of Machine Learning

Research, 13(4), 2012.

[52] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang

Liu. A survey on deep transfer learning. In International conference on artificial

neural networks, pages 270–279. Springer, 2018.

47

[53] Umm-e-Hani Tayyab, Faiza Babar Khan, Muhammad Hanif Durad, Asifullah Khan,

and Yeon Soo Lee. A survey of the recent trends in deep learning based malware

detection. Journal of Cybersecurity and Privacy, 2(4):800–829, 2022.

[54] Trung Kien Tran, Hiroshi Sato, and Masao Kubo. Image-based unknown malware

classification with few-shot learning models. In 2019 Seventh International Sympo-

sium on Computing and Networking Workshops (CANDARW), pages 401–407. IEEE,

2019.

[55] Danish Vasan, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Qin Zheng. Image-

based malware classification using ensemble of cnn architectures (imcec). Computers

& Security, 92:101748, 2020.

[56] Deepak Venugopal and Guoning Hu. Efficient signature based malware detection on

mobile devices. Mobile Information Systems, 4(1):33–49, 2008.

[57] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning.

Artificial intelligence review, 18(2):77–95, 2002.

[58] R Vinayakumar, KP Soman, Prabaharan Poornachandran, and S Sachin Kumar. De-

tecting android malware using long short-term memory (lstm). Journal of Intelligent

& Fuzzy Systems, 34(3):1277–1288, 2018.

[59] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-

agnostic meta-learning via task-aware modulation. Advances in Neural Information

Processing Systems, 32, 2019.

[60] Duo Wang, Yu Cheng, Mo Yu, Xiaoxiao Guo, and Tao Zhang. A hybrid approach

with optimization-based and metric-based meta-learner for few-shot learning. Neuro-

computing, 349:202–211, 2019.

48

[61] Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G Ororbia, Xinyu Xing,

Xue Liu, and C Lee Giles. Adversary resistant deep neural networks with an appli-

cation to malware detection. In Proceedings of the 23rd ACM sigkdd international

conference on knowledge discovery and data mining, pages 1145–1153, 2017.

[62] Xi Xiao, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar San-

gaiah. Android malware detection based on system call sequences and lstm. Multi-

media Tools and Applications, 78(4):3979–3999, 2019.

[63] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured

meta-learning. In International Conference on Machine Learning, pages 7045–7054.

PMLR, 2019.

[64] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik. High accuracy android malware

detection using ensemble learning. IET Information Security, 9(6):313–320, 2015.

[65] Min Zhao, Fangbin Ge, Tao Zhang, and Zhijian Yuan. Antimaldroid: An efficient

svm-based malware detection framework for android. In International conference on

information computing and applications, pages 158–166. Springer, 2011.

[66] Jinting Zhu, Julian Jang-Jaccard, Amardeep Singh, Ian Welch, AI-Sahaf Harith, and

Seyit Camtepe. A few-shot meta-learning based siamese neural network using entropy

features for ransomware classification. Computers & Security, 117:102691, 2022.

[67] Aqil Zulkifli, Isredza Rahmi A Hamid, Wahidah Md Shah, and Zubaile Abdullah.

Android malware detection based on network traffic using decision tree algorithm.

In International Conference on Soft Computing and Data Mining, pages 485–494.

Springer, 2018.

49

	Few-Shot Malware Detection Using A Novel Adversarial Reprogramming Model
	Repository Citation

	Abstract
	Introduction
	Background
	Motivation
	Contribution
	Organization

	Literature Review
	Malware Detection
	Signature-based Malware detection
	Behavior-based Malware detection
	Machine learning-based Malware detection

	Few-Shot Learning
	Meta Learning
	Transfer Learning
	Other Techniques

	Few-shot Malware Detection

	Design of Few-Shot Malware Detection
	Adversarial Vulnerability
	Adversarial Reprogramming
	Input Transformation
	Output Transformation
	Optimization

	Experimental Results and Analysis
	Experiment Setup
	Dataset
	Parameters
	Settings

	Evaluation
	Impact of Pre-Trained Model
	Impact of Data Size
	Impact of Perturbation
	Comparison with Baselines

	Challenges
	Future Work
	Conclusion
	Bibliography

