25 research outputs found

    Salient Region Detection by UFO: Uniqueness, Focusness and Objectness

    Full text link
    The goal of saliency detection is to locate important pix-els or regions in an image which attract humans ’ visual at-tention the most. This is a fundamental task whose output may serve as the basis for further computer vision tasks like segmentation, resizing, tracking and so forth. In this paper we propose a novel salient region detec-tion algorithm by integrating three important visual cues namely uniqueness, focusness and objectness (UFO). In particular, uniqueness captures the appearance-derived vi-sual contrast; focusness reflects the fact that salient regions are often photographed in focus; and objectness helps keep completeness of detected salient regions. While uniqueness has been used for saliency detection for long, it is new to integrate focusness and objectness for this purpose. In fac-t, focusness and objectness both provide important salien-cy information complementary of uniqueness. In our ex-periments using public benchmark datasets, we show that, even with a simple pixel level combination of the three com-ponents, the proposed approach yields significant improve-ment compared with previously reported methods. 1

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    A robust patch-based synthesis framework for combining inconsistent images

    Get PDF
    Current methods for combining different images produce visible artifacts when the sources have very different textures and structures, come from far view points, or capture dynamic scenes with motions. In this thesis, we propose a patch-based synthesis algorithm to plausibly combine different images that have color, texture, structural, and geometric inconsistencies. For some applications such as cloning and stitching where a gradual blend is required, we present a new method for synthesizing a transition region between two source images, such that inconsistent properties change gradually from one source to the other. We call this process image melding. For gradual blending, we generalized patch-based optimization foundation with three key generalizations: First, we enrich the patch search space with additional geometric and photometric transformations. Second, we integrate image gradients into the patch representation and replace the usual color averaging with a screened Poisson equation solver. Third, we propose a new energy based on mixed L2/L0 norms for colors and gradients that produces a gradual transition between sources without sacrificing texture sharpness. Together, all three generalizations enable patch-based solutions to a broad class of image melding problems involving inconsistent sources: object cloning, stitching challenging panoramas, hole filling from multiple photos, and image harmonization. We also demonstrate another application which requires us to address inconsistencies across the images: high dynamic range (HDR) reconstruction using sequential exposures. In this application, the results will suffer from objectionable artifacts for dynamic scenes if the inconsistencies caused by significant scene motions are not handled properly. In this thesis, we propose a new approach to HDR reconstruction that uses information in all exposures while being more robust to motion than previous techniques. Our algorithm is based on a novel patch-based energy-minimization formulation that integrates alignment and reconstruction in a joint optimization through an equation we call the HDR image synthesis equation. This allows us to produce an HDR result that is aligned to one of the exposures yet contains information from all of them. These two applications (image melding and high dynamic range reconstruction) show that patch based methods like the one proposed in this dissertation can address inconsistent images and could open the door to many new image editing applications in the future

    Saillance Visuelle, de la 2D à la 3D Stéréoscopique : Examen des Méthodes Psychophysique et Modélisation Computationnelle

    Get PDF
    Visual attention is one of the most important mechanisms deployed in the human visual system to reduce the amount of information that our brain needs to process. An increasing amount of efforts are being dedicated in the studies of visual attention, particularly in computational modeling of visual attention. In this thesis, we present studies focusing on several aspects of the research of visual attention. Our works can be mainly classified into two parts. The first part concerns ground truths used in the studies related to visual attention ; the second part contains studies related to the modeling of visual attention for Stereoscopic 3D (S-3D) viewing condition. In the first part, our work starts with identifying the reliability of FDM from different eye-tracking databases. Then we quantitatively identify the similarities and difference between fixation density maps and visual importance map, which have been two widely used ground truth for attention-related applications. Next, to solve the problem of lacking ground truth in the community of 3D visual attention modeling, we conduct a binocular eye-tracking experiment to create a new eye-tracking database for S-3D images. In the second part, we start with examining the impact of depth on visual attention in S-3D viewing condition. We firstly introduce a so-called "depth-bias" in the viewing of synthetic S-3D content on planar stereoscopic display. Then, we extend our study from synthetic stimuli to natural content S-3D images. We propose a depth-saliency-based model of 3D visual attention, which relies on depth contrast of the scene. Two different ways of applying depth information in S-3D visual attention model are also compared in our study. Next, we study the difference of center-bias between 2D and S-3D viewing conditions, and further integrate the center-bias with S-3D visual attention modeling. At the end, based on the assumption that visual attention can be used for improving Quality of Experience of 3D-TV when collaborating with blur, we study the influence of blur on depth perception and blur's relationship with binocular disparity.L'attention visuelle est l'un des mécanismes les plus importants mis en oeuvre par le système visuel humain (SVH) afin de réduire la quantité d'information que le cerveau a besoin de traiter pour appréhender le contenu d'une scène. Un nombre croissant de travaux est consacré à l'étude de l'attention visuelle, et en particulier à sa modélisation computationnelle. Dans cette thèse, nous présentons des études portant sur plusieurs aspects de cette recherche. Nos travaux peuvent être classés globalement en deux parties. La première concerne les questions liées à la vérité de terrain utilisée, la seconde est relative à la modélisation de l'attention visuelle dans des conditions de visualisation 3D. Dans la première partie, nous analysons la fiabilité de cartes de densité de fixation issues de différentes bases de données occulométriques. Ensuite, nous identifions quantitativement les similitudes et les différences entre carte de densité de fixation et carte d'importance visuelle, ces deux types de carte étant les vérités de terrain communément utilisées par les applications relatives à l'attention. Puis, pour faire face au manque de vérité de terrain exploitable pour la modélisation de l'attention visuelle 3D, nous procédons à une expérimentation oculométrique binoculaire qui aboutit à la création d'une nouvelle base de données avec des images stéréoscopiques 3D. Dans la seconde partie, nous commençons par examiner l'impact de la profondeur sur l'attention visuelle dans des conditions de visualisation 3D. Nous quantifions d'abord le " biais de profondeur " lié à la visualisation de contenus synthétiques 3D sur écran plat stéréoscopique. Ensuite, nous étendons notre étude avec l'usage d'images 3D au contenu naturel. Nous proposons un modèle de l'attention visuelle 3D basé saillance de profondeur, modèle qui repose sur le contraste de profondeur de la scène. Deux façons différentes d'exploiter l'information de profondeur par notre modèle sont comparées. Ensuite, nous étudions le biais central et les différences qui existent selon que les conditions de visualisation soient 2D ou 3D. Nous intégrons aussi le biais central à notre modèle de l'attention visuelle 3D. Enfin, considérant que l'attention visuelle combinée à une technique de floutage peut améliorer la qualité d'expérience de la TV-3D, nous étudions l'influence de flou sur la perception de la profondeur, et la relation du flou avec la disparité binoculaire

    Saliency-based image enhancement

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    State of the Art on Neural Rendering

    Get PDF
    Efficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photo-realistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. This state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems

    Image Enhancement via Deep Spatial and Temporal Networks

    Get PDF
    Image enhancement is a classic problem in computer vision and has been studied for decades. It includes various subtasks such as super-resolution, image deblurring, rain removal and denoise. Among these tasks, image deblurring and rain removal have become increasingly active, as they play an important role in many areas such as autonomous driving, video surveillance and mobile applications. In addition, there exists connection between them. For example, blur and rain often degrade images simultaneously, and the performance of their removal rely on the spatial and temporal learning. To help generate sharp images and videos, in this thesis, we propose efficient algorithms based on deep neural networks for solving the problems of image deblurring and rain removal. In the first part of this thesis, we study the problem of image deblurring. Four deep learning based image deblurring methods are proposed. First, for single image deblurring, a new framework is presented which firstly learns how to transfer sharp images to realistic blurry images via a learning-to-blur Generative Adversarial Network (GAN) module, and then trains a learning-to-deblur GAN module to learn how to generate sharp images from blurry versions. In contrast to prior work which solely focuses on learning to deblur, the proposed method learns to realistically synthesize blurring effects using unpaired sharp and blurry images. Second, for video deblurring, spatio-temporal learning and adversarial training methods are used to recover sharp and realistic video frames from input blurry versions. 3D convolutional kernels on the basis of deep residual neural networks are employed to capture better spatio-temporal features, and train the proposed network with both the content loss and adversarial loss to drive the model to generate realistic frames. Third, the problem of extracting sharp image sequences from a single motion-blurred image is tackled. A detail-aware network is presented, which is a cascaded generator to handle the problems of ambiguity, subtle motion and loss of details. Finally, this thesis proposes a level-attention deblurring network, and constructs a new large-scale dataset including images with blur caused by various factors. We use this dataset to evaluate current deep deblurring methods and our proposed method. In the second part of this thesis, we study the problem of image deraining. Three deep learning based image deraining methods are proposed. First, for single image deraining, the problem of joint removal of raindrops and rain streaks is tackled. In contrast to most of prior works which solely focus on the raindrops or rain streaks removal, a dual attention-in-attention model is presented, which removes raindrops and rain streaks simultaneously. Second, for video deraining, a novel end-to-end framework is proposed to obtain the spatial representation, and temporal correlations based on ResNet-based and LSTM-based architectures, respectively. The proposed method can generate multiple deraining frames at a time, which outperforms the state-of-the-art methods in terms of quality and speed. Finally, for stereo image deraining, a deep stereo semantic-aware deraining network is proposed for the first time in computer vision. Different from the previous methods which only learn from pixel-level loss function or monocular information, the proposed network advances image deraining by leveraging semantic information and visual deviation between two views
    corecore