6 research outputs found

    An optimal factor analysis approach to improve the wavelet-based image resolution enhancement techniques

    Get PDF
    The existing wavelet-based image resolution enhancement techniques have many assumptions, such as limitation of the way to generate low-resolution images and the selection of wavelet functions, which limits their applications in different fields. This paper initially identifies the factors that effectively affect the performance of these techniques and quantitatively evaluates the impact of the existing assumptions. An approach called Optimal Factor Analysis employing the genetic algorithm is then introduced to increase the applicability and fidelity of the existing methods. Moreover, a new Figure of Merit is proposed to assist the selection of parameters and better measure the overall performance. The experimental results show that the proposed approach improves the performance of the selected image resolution enhancement methods and has potential to be extended to other methods

    DWT and SWT based Image Super Resolution without Degrading Clarity

    Get PDF
    This project presents a self-similarity-based approach that is able to use large groups of similar patches extracted from the input image to solve the SISR problem. It introduce a novel prior leading to the collaborative filtering of patch groups in a 1D similarity domain and couple it with an iterative back-projection framework. The performance of the proposed algorithm is evaluated on a number of SISR benchmark data sets. Without using any external data, the proposed approach outperforms the current non-convolutional neural network-based methods on the tested data sets for various scaling factors. As an extension of this project, Discrete and Stationary Wavelet Decomposition is proposed to improve accuracy levels

    An Optimal Factor Analysis Approach to Improve the Wavelet-based Image Resolution Enhancement Techniques

    Get PDF
    The existing wavelet-based image resolution enhancement techniques have many assumptions, such as limitation of the way to generate low-resolution images and the selection of wavelet functions, which limits their applications in different fields. This paper initially identifies the factors that effectively affect the performance of these techniques and quantitatively evaluates the impact of the existing assumptions. An approach called Optimal Factor Analysis employing the genetic algorithm is then introduced to increase the applicability and fidelity of the existing methods. Moreover, a new Figure of Merit is proposed to assist the selection of parameters and better measure the overall performance. The experimental results show that the proposed approach improves the performance of the selected image resolution enhancement methods and has potential to be extended to other methods

    Image resolution upscaling in the wavelet domain using directional cycle spinning

    Get PDF
    Cycle spinning, a technique mainly used for wavelet denoising, has also been shown to be successful toward image resolution upscaling in the wavelet domain. We propose a directional variant of the cycle spinning methodology. We obtain estimates of local edge orientation from a wavelet decomposition of the available low-resolution image and use this information to influence the choice of cycle spinning parameters that are employed for resolution upscaling. Our experimental results show that the proposed method outperforms competing methods for a wide range of images offering modest but consistent improvements both in objective as well as subjective terms. Lower computational complexity compared to the conventional cycle spinning is also demonstrated. (c) 2005 SPIE and IS&T

    Wavelet-based image and video super-resolution reconstruction.

    Get PDF
    Super-resolution reconstruction process offers the solution to overcome the high-cost and inherent resolution limitations of current imaging systems. The wavelet transform is a powerful tool for super-resolution reconstruction. This research provides a detailed study of the wavelet-based super-resolution reconstruction process, and wavelet-based resolution enhancement process (with which it is closely associated). It was addressed to handle an explicit need for a robust wavelet-based method that guarantees efficient utilisation of the SR reconstruction problem in the wavelet-domain, which will lead to a consistent solution of this problem and improved performance. This research proposes a novel performance assessment approach to improve the performance of the existing wavelet-based image resolution enhancement techniques. The novel approach is based on identifying the factors that effectively influence on the performance of these techniques, and designing a novel optimal factor analysis (OFA) algorithm. A new wavelet-based image resolution enhancement method, based on discrete wavelet transform and new-edge directed interpolation (DWT-NEDI), and an adaptive thresholding process, has been developed. The DWT-NEDI algorithm aims to correct the geometric errors and remove the noise for degraded satellite images. A robust wavelet-based video super-resolution technique, based on global motion is developed by combining the DWT-NEDI method, with super-resolution reconstruction methods, in order to increase the spatial-resolution and remove the noise and aliasing artefacts. A new video super-resolution framework is designed using an adaptive local motion decomposition and wavelet transform reconstruction (ALMD-WTR). This is to address the challenge of the super-resolution problem for the real-world video sequences containing complex local motions. The results show that OFA approach improves the performance of the selected wavelet-based methods. The DWT-NEDI algorithm outperforms the state-of-the art wavelet-based algorithms. The global motion-based algorithm has the best performance over the super-resolution techniques, namely Keren and structure-adaptive normalised convolution methods. ALMD-WTR framework surpass the state-of-the-art wavelet-based algorithm, namely local motion-based video super-resolution.PhD in Manufacturin
    corecore