9 research outputs found

    Systems design of a high resolution retinal prosthesis

    Get PDF
    Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. Considerable progress has been made towards that goal with the development of image processing, microelectronics, and polymer based MEMS. An image processing system has been realized that is capable of real-time implementation of image decimation and filtering (for example, edge detection). Application specific integrated circuits (ASICs) have been designed and tested to demonstrate closed loop power control and efficient microstimulation. A novel packaging process has been developed that is capable of simultaneously forming communication coils, interconnects, and stimulating electrodes

    Progress Towards A High-Resolution Retinal Prosthesis

    Get PDF
    Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. Considerable progress has been made towards that goal with the development of image processing, microelectronics, and polymer based electrodes and interconnects. An image processing system has been realized that is capable of real-time implementation of image decimation and filtering (for example, edge detection). Application specific integrated circuits (ASICs) have been designed and tested to demonstrate closed loop power control and efficient microstimulation. A novel packaging process has been developed that is capable of simultaneously forming a receiver coil, interconnects, and stimulating electrodes

    Systems design of a high resolution retinal prosthesis

    Get PDF
    Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. Considerable progress has been made towards that goal with the development of image processing, microelectronics, and polymer based MEMS. An image processing system has been realized that is capable of real-time implementation of image decimation and filtering (for example, edge detection). Application specific integrated circuits (ASICs) have been designed and tested to demonstrate closed loop power control and efficient microstimulation. A novel packaging process has been developed that is capable of simultaneously forming communication coils, interconnects, and stimulating electrodes

    Image Compression and Resizing for Retinal Implant in Bionic Eye

    Full text link

    Implantable Biomedical Devices

    Get PDF

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Self-folding 3D micro antennas for implantable medical devices

    Get PDF
    Tese de Doutoramento em Engenharia Biomédica.Recent advances in device miniaturization have been enabling smart and small implantable medical devices. These are often powered by bulky batteries whose dimensions represent one of the major bottlenecks on further device miniaturization. However, alternative powering methods, such as electromagnetic waves, do not rely on stored energy and are capable of providing high energy densities per unit of area, thus increasing the potential for device miniaturization. Hence, we envision an implanted medical device with an integrated miniaturized antenna, capable of receiving a radiofrequency signal from an exterior source, and converting it to a DC signal, thus enabling remote powering. This thesis addresses the analysis, design, fabrication and characterization of novel 3D micro antennas that can be integrated on 500 × 500 × 500 μm3 cubic devices, and used for wireless power transfer purposes. The analysis is built upon the theory of electrically small antennas in lossy media, and the antenna design takes into consideration miniaturization techniques which are compatible with the antenna fabrication process. For the antenna fabrication, a methodology that combines conventional planar photolithography techniques and self-folding was used. While photolithography allows the easy patterning of virtually every desired planar antenna configuration with reproducible feature precision, and the flexibility to easily and precisely change the antenna geometry and size, self-folding allows assembly of the fabricated planar patterns into a 3D structure in a highly parallel and scalable manner. After fabrication, we characterized the fabricated antennas by measuring their S-parameters and radiation patterns, demonstrating their efficacy at 2 GHz when immersed in dispersive media such as water. This step required the development and test of multiple characterization setups based on connectors, RF probes and transmission lines and the use of an anechoic chamber. Moreover, we successfully show that the antennas can wireless transfer energy to power an LED, highlighting a proof of concept for practical applications. Our findings suggest that self-folding micro antennas could provide a viable solution for powering tiny micro devices.Os recentes avanços das tecnologias de miniaturização têm permitido o desenvolvimento de dispositivos médicos implantáveis inteligentes e mais pequenos. Estes são muitas vezes alimentados por baterias volumosas cujas dimensões limitam o nível de miniaturização alcançável por um micro dispositivo. No entanto, existem formas alternativas de alimentar estes dispositivos que não dependem de energia armazenada, tais como ondas eletromagnéticas, que são capazes de providenciar uma elevada densidade de energia por unidade de área, aumentando assim o potencial de miniaturização dos dispositivos. Desta forma, visionamos um dispositivo médico implantado, com uma antena miniaturizada e integrada, capaz de receber um sinal de rádio frequência a partir de uma fonte externa, e convertê-lo num sinal DC, permitindo assim a alimentação remota do aparelho. Esta tese apresenta a análise, desenho, fabrico e caracterização de micro antenas 3D, passíveis de serem integradas em micro dispositivos cúbicos (500 × 500 × 500 μm3), e utilizadas para fins de transferência de energia sem fios. A análise assenta na teoria das antenas eletricamente pequenas em meios com perdas, e o design da antena considera técnicas de miniaturização de antenas. Para o fabrico da antena foi utilizada uma metodologia que combina técnicas de fotolitografia planar e auto-dodragem (self-folding). Enquanto a fotolitografia permite a padronização de virtualmente todos os tipos de configurações planares de forma precisa, reprodutível, e com a flexibilidade para se mudar rapidamente a geometria e o tamanho da antena, o self-folding permite a assemblagem dos painéis planares fabricados numa estrutura 3D. Depois do fabrico, as antenas foram caracterizadas medindo os seus parâmetros S e diagramas de radiação, demonstrando a sua eficácia a 2 GHz quando imersas num meio dispersivo, tal como água. Esta etapa exigiu o desenvolvimento e teste de várias setups de caracterização com base em conectores, sondas de RF e linhas de transmissão, e ainda o uso de uma câmara anecóica. Além disso, mostramos com sucesso que as micro antenas podem receber e transferir o energia para um LED acendendo-o, destacando assim esta prova de conceito para aplicações práticas. Os nossos resultados sugerem que estas micro antenas auto-dobráveis podem fornecer uma solução viável para alimentar micro dispositivos implantáveis muito pequenos.Fundação para a Ciência e a Tecnologia (FCT) bolsa SFRH/BD/63737/2009

    Apport de la vision par ordinateur dans l'utilisabilité des neuroprothèses visuelles

    Get PDF
    L'OMS estime que 45 millions de personnes dans le monde sont aveugles. Avec le vieillissement de la population, ce chiffre ne cesse de progresser car la cécité touche majoritairement les personnes âgées. Les neuroprothèses visuelles ont pour objectif de restaurer une forme de vision. Ces systèmes convertissent les informations de la scène visuelle en percepts lumineux via des microstimulations électriques du système visuel. La perception visuelle ainsi générée consiste en un ensemble restreint de phosphènes. Ces systèmes sont, à ce jour, inutilisables dans un environnement naturel : l'information visuelle restituée est insuffisante pour que les personnes implantées puissent se déplacer, localiser des objets et les reconnaître. Au cours des dernières décennies, la vision par ordinateur a connu d'énormes avancées, grâce aux améliorations apportées aux algorithmes de traitement d'images et à l'augmentation de la puissance de calcul disponible. Il est désormais possible de localiser de manière fiable des objets, des visages ou du texte dans un environnement naturel. Or, la plupart des neuroprothèses visuelles intègrent une caméra facilement associable à un module de traitement d'images. Partant de ces constatations, nous avons montré qu'il est possible d'améliorer l'utilisabilité de ces systèmes, en utilisant des algorithmes de traitement d'images performants. En détectant des zones d'intérêt dans une scène naturelle et en les restituant à l'utilisateur par le biais d'un nombre limité de phosphènes, nos résultats indiquent qu'il est possible de restaurer des comportements visuo-moteurs adaptés : localisation d'objets, de visages ou encore de textes.The WHO estimates that 45 million people worldwide are blind. This figure is rapidly increasing because of the ageing of the world population, as blindness primarily affects elderly people. Visual neuroprostheses aim at restoring a sort of vision. These systems convert visual information captured by a camera into dots-like percepts via electrical microstimulation of the visual system. The evoked visual perception corresponds to a black and white image with a few dozen of pixels with gaps separating them. Although these systems give great hope to blind people, they are still inefficient in a natural environment: the restored visual information is too coarse to allow complex functions such as navigation, object localization and recognition, or reading at a convenient speed. Over the last decades, computer vision has been steadily improving, thanks to the development of new image processing algorithms and the increase of processing power. For instance, this is now possible to localize objects, faces or texts in real outdoor conditions. Interestingly, most of the current visual neuroprostheses include an external camera making it possible to process the input images in order to adapt the phosphenes display. In the current work, we showed that real-time image processing can improve the usability of low resolution visual neuroprostheses relying on the extraction of high-level information from the input images. Indeed, our results showed that the augmentation of the phosphene display with a limited number of phosphenes allows restoring visuomotor behaviors, such as localizing pertinent objects, faces or texts within a natural scene

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    corecore