508 research outputs found

    'White knuckle care work' : violence, gender and new public management in the voluntary sector

    Get PDF
    Drawing on comparative data from Canada and Scotland, this article explores reasons why violence is tolerated in non-profit care settings. This article will provide insights into how workers' orientations to work, the desire to care and the intrinsic rewards from working in a non-profit context interact with the organization of work and managerially constructed workplace norms and cultures (Burawoy, 1979) to offset the tensions in an environment characterized by scarce resources and poor working conditions. This article will also outline how the same environment of scarce resources causes strains in management's efforts to establish such cultures. Working with highly excluded service users with problems that do not respond to easy interventions, workers find themselves working at the edge of their endurance, hanging on by their fingernails, and beginning to participate in various forms of resistance; suggesting that even among the most highly committed, 'white knuckle care' may be unsustainable

    Finger orientation as an additional input dimension for touchscreens

    Get PDF
    Since the first digital computer in 1941 and the first personal computer back in 1975, the way we interact with computers has radically changed. The keyboard is still one of the two main input devices for desktop computers which is accompanied most of the time by a mouse or trackpad. However, the interaction with desktop and laptop computers today only make up a small percentage of current interaction with computing devices. Today, we mostly interact with ubiquitous computing devices, and while the first ubiquitous devices were controlled via buttons, this changed with the invention of touchscreens. Moreover, the phone as the most prominent ubiquitous computing device is heavily relying on touch interaction as the dominant input mode. Through direct touch, users can directly interact with graphical user interfaces (GUIs). GUI controls can directly be manipulated by simply touching them. However, current touch devices reduce the richness of touch input to two-dimensional positions on the screen. In this thesis, we investigate the potential of enriching a simple touch with additional information about the finger touching the screen. We propose to use the user’s finger orientation as two additional input dimensions. We investigate four key areas which make up the foundation to fully understand finger orientation as an additional input technique. With these insights, we provide designers with the foundation to design new gestures sets and use cases which take the finger orientation into account. We first investigate approaches to recognize finger orientation input and provide ready-to-deploy models to recognize the orientation. Second, we present design guidelines for a comfortable use of finger orientation. Third, we present a method to analyze applications in social settings to design use cases with possible conversation disruption in mind. Lastly, we present three ways how new interaction techniques like finger orientation input can be communicated to the user. This thesis contributes these four key insights to fully understand finger orientation as an additional input technique. Moreover, we combine the key insights to lay the foundation to evaluate every new interaction technique based on the same in-depth evaluation

    A Multicamera System for Gesture Tracking With Three Dimensional Hand Pose Estimation

    Get PDF
    The goal of any visual tracking system is to successfully detect then follow an object of interest through a sequence of images. The difficulty of tracking an object depends on the dynamics, the motion and the characteristics of the object as well as on the environ ment. For example, tracking an articulated, self-occluding object such as a signing hand has proven to be a very difficult problem. The focus of this work is on tracking and pose estimation with applications to hand gesture interpretation. An approach that attempts to integrate the simplicity of a region tracker with single hand 3D pose estimation methods is presented. Additionally, this work delves into the pose estimation problem. This is ac complished by both analyzing hand templates composed of their morphological skeleton, and addressing the skeleton\u27s inherent instability. Ligature points along the skeleton are flagged in order to determine their effect on skeletal instabilities. Tested on real data, the analysis finds the flagging of ligature points to proportionally increase the match strength of high similarity image-template pairs by about 6%. The effectiveness of this approach is further demonstrated in a real-time multicamera hand tracking system that tracks hand gestures through three-dimensional space as well as estimate the three-dimensional pose of the hand

    A framework for hull form reverse engineering and geometry integration into numerical simulations

    Get PDF
    The thesis presents a ship hull form specific reverse engineering and CAD integration framework. The reverse engineering part proposes three alternative suitable reconstruction approaches namely curves network, direct surface fitting, and triangulated surface reconstruction. The CAD integration part includes surface healing, region identification, and domain preparation strategies which used to adapt the CAD model to downstream application requirements. In general, the developed framework bridges a point cloud and a CAD model obtained from IGES and STL file into downstream applications

    The feasibility of sports grips customisation using rapid manufacturing methodologies

    Get PDF
    In many sports where an implement is used to strike a ball, the grip is typically the sole point of contact between the player and implement. The grip significantly influences how a player wields an implement and is also a means for a player to experience impact forces and vibration. This transmission of force and vibration to the hand can affect a player's control, perception of the equipment, and also expose a player to injury or provoke degeneration of existing maladies. In general, the grip is the least expensive component of an implement. Little development over the previous two decades has been invested on the grip when compared to the vast changes in design, geometry and materials used in the implements which they are attached to. The development and flexibility of a group of manufacturing processes collectively known as rapid manufacturing have begun to introduce customised products to the mass-market. The main advantage of rapid manufacturing processes is the lack of tooling required, allowing parts to be produced directly from 3D CAD models using an expanding range of polymers and other materials. The integration of rapid manufactured parts into recreational sports equipment has not previously been attempted and is the focus of this work, with tennis selected as the candidate sport. [Continues.

    Sistema de miografia óptica para reconhecimento de gestos e posturas de mão

    Get PDF
    Orientador: Éric FujiwaraDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: Nesse projeto, demonstrou-se um sistema de miografia óptica como uma alternativa promissora para monitorar as posturas da mão e os gestos do usuário. Essa técnica se fundamenta em acompanhar as atividades musculares responsáveis pelos movimentos da mão com uma câmera externa, relacionando a distorção visual verificada no antebraço com a contração e o relaxamento necessários para dada postura. Três configurações de sensores foram propostas, estudadas e avaliadas. A primeira propôs monitorar a atividade muscular analisando a variação da frequência espacial de uma textura de listras uniformes impressa sobre a pele, enquanto que a segunda se caracteriza pela contagem de pixels de pele visível dentro da região de interesse. Ambas as configurações se mostraram inviáveis pela baixa robustez e alta demanda por condições experimentais controladas. Por fim, a terceira recupera o estado da mão acompanhando o deslocamento de uma série de marcadores coloridos distribuídos ao longo do antebraço. Com um webcam de 24 fps e 640 × 480 pixels, essa última configuração foi validada para oito posturas distintas, explorando principalmente a flexão e extensão dos dedos e do polegar, além da adução e abdução do último. Os dados experimentais, adquiridos off-line, são submetidos a uma rotina de processamento de imagens para extrair a informação espacial e de cor dos marcadores em cada quadro, dados esses utilizados para rastrear os mesmos marcadores ao longo de todos os quadros. Para reduzir a influência das vibrações naturais e inerentes ao corpo humano, um sistema de referencial local é ainda adotado dentro da própria região de interesse. Finalmente, os dados quadro a quadro com o ground truth são alimentados a uma rede neural artificial sequencial, responsável pela calibração supervisionada do sensor e posterior classificação das posturas. O desempenho do sistema para a classificação das oito posturas foi avaliado com base na validação cruzada com 10-folds, com a câmera monitorando o antebraço pela superfície interna ou externa. O sensor apresentou uma precisão de ?92.4% e exatidão de ?97.9% para o primeiro caso, e uma precisão de ?75.1% e exatidão de ?92.5% para o segundo, sendo comparável a outras técnicas de miografia, demonstrando a viabilidade do projeto e abrindo perspectivas para aplicações em interfaces humano-robôAbstract: In this work, an optical myography system is demonstrated as a promising alternative to monitor hand posture and gestures of the user. This technique is based on accompanying muscular activities responsible for hand motion with an external camera, and relating the visual deformation observed on the forearm to the muscular contractions/relaxations for a given posture. Three sensor designs were proposed, studied and evaluated. The first one intended to monitor muscular activity by analyzing the spatial frequency variation of a uniformly distributed stripe pattern stamped on the skin, whereas the second one is characterized by reckoning visible skin pixels inside the region of interest. Both designs are impracticable due to their low robustness and high demand for controlled experimental conditions. At last, the third design retrieves hand configuration by tracking visually the displacements of a series of color markers distributed over the forearm. With a webcam of 24 fps and 640 × 480 pixels, this design was validated for eight different postures, exploring fingers and thumb flexion/extension, plus thumb adduction/abduction. The experimental data are acquired offline and, then, submitted to an image processing routine to extract color and spatial information of the markers in each frame; the extracted data is subsequently used to track the same markers along all frames. To reduce the influence of human body natural and inherent vibrations, a local reference frame is yet adopted in the region of interest. Finally, the frame by frame data, along with the ground truth posture, are fed into a sequential artificial neural network, responsible for sensor supervised calibration and subsequent posture classification. The system performance was evaluated in terms of eight postures classification via 10-fold cross-validation, with the camera monitoring either the underside or the back of the forearm. The sensor presented a ?92.4% precision and ?97.9% accuracy for the former, and a ?75.1% precision and ?92.5% accuracy for the latter, being thus comparable to other myographic techniques; it also demonstrated that the project is feasible and offers prospects for human-robot interaction applicationsMestradoEngenharia MecanicaMestre em Engenharia Mecânica33003017CAPE

    Handbook of Vascular Biometrics

    Get PDF

    Life on the ground: the behavioural ecology of risk and terrestriality in primates

    Get PDF
    The spread of predation risk across an environment creates a “landscape of fear” that acts as a significant driver of behaviour and evolution in prey species. This thesis explores primates’ landscapes of fear, with a particular focus on the relationship between perceived risk, substrate use, and the evolution of primate – including human – locomotion. Chapter One provides an introduction and overview of the landscape of fear concept, how it might have featured in the paleoenvironments of early hominins, and how it is studied in extant primates. Chapter Two presents a quasiexperimental study of risk perception in baboons in Gorongosa, Mozambique. In this study, habituation by human observers is used to document relationships between perceived risk of humans, mediating environmental variables, and behavioural correlates in two baboon troops. The results demonstrate that behaviours indicative of perceived risk – vocalisations and vigilance – decline throughout habituation and are mediated by habitat structure and time of day. There is also a negative relationship between these behaviours and baboons’ use of the ground. Chapters Three and Four explore this relationship between risk and ground-use at broader scales and using the presence of carnivores, rather than humans, as indicators of risk. In Chapter Three, camera trap data provides insight into the effects of ecology, season, and risk on the terrestrial activity patterns of two neighbouring baboon populations in Mozambique. The results illustrate that seasonality influences baboons’ use of the ground, and suggest that circadian patterns in terrestrial activity are sensitive to predator abundance or species in a landscape. Chapter Four investigates these dynamics at an even broader scale, comparing carnivore and baboon activity across 10 different sites in eastern and southern Africa. Results from this chapter indicate that loss of carnivore diversity – and particularly the absence of leopards – releases restrictions on baboon terrestriality, facilitating their use of the ground during crepuscular and nocturnal hours. Finally, Chapter Five returns to an evolutionary perspective with a review of the origins of hominin locomotion and the emergence of primate terrestriality. This chapter emphasises the value of integrating paleontological research with insights from behavioural ecology to generate more nuanced understandings and hypotheses about the environments that have shaped human evolution

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken
    corecore