500 research outputs found

    Image enhancement via adaptive unsharp masking

    Get PDF
    Journal ArticleAbstract-This paper presents a new method for unsharp masking for contrast enhancement of images. Our approach employs an adaptive filter that controls the contribution of the sharpening path in such a way that contrast enhancement occurs in high detail areas and little or no image sharpening occurs in smooth areas

    Implementation of Adaptive Unsharp Masking as a pre-filtering method for watermark detection and extraction

    Get PDF
    Digital watermarking has been one of the focal points of research interests in order to provide multimedia security in the last decade. Watermark data, belonging to the user, are embedded on an original work such as text, audio, image, and video and thus, product ownership can be proved. Various robust watermarking algorithms have been developed in order to extract/detect the watermark against such attacks. Although watermarking algorithms in the transform domain differ from others by different combinations of transform techniques, it is difficult to decide on an algorithm for a specific application. Therefore, instead of developing a new watermarking algorithm with different combinations of transform techniques, we propose a novel and effective watermark extraction and detection method by pre-filtering, namely Adaptive Unsharp Masking (AUM). In spite of the fact that Unsharp Masking (UM) based pre-filtering is used for watermark extraction/detection in the literature by causing the details of the watermarked image become more manifest, effectiveness of UM may decrease in some cases of attacks. In this study, AUM has been proposed for pre-filtering as a solution to the disadvantages of UM. Experimental results show that AUM performs better up to 11\% in objective quality metrics than that of the results when pre-filtering is not used. Moreover; AUM proposed for pre-filtering in the transform domain image watermarking is as effective as that of used in image enhancement and can be applied in an algorithm-independent way for pre-filtering in transform domain image watermarking

    An Algorithm on Generalized Un Sharp Masking for Sharpness and Contrast of an Exploratory Data Model

    Full text link
    In the applications like medical radiography enhancing movie features and observing the planets it is necessary to enhance the contrast and sharpness of an image. The model proposes a generalized unsharp masking algorithm using the exploratory data model as a unified framework. The proposed algorithm is designed as to solve simultaneously enhancing contrast and sharpness by means of individual treatment of the model component and the residual, reducing the halo effect by means of an edge-preserving filter, solving the out of range problem by means of log ratio and tangent operations. Here is a new system called the tangent system which is based upon a specific bargeman divergence. Experimental results show that the proposed algorithm is able to significantly improve the contrast and sharpness of an image. Using this algorithm user can adjust the two parameters the contrast and sharpness to have desired output

    Gradient-adaptive Nonlinear Sharpening for Dental Radiographs

    Get PDF
    Unsharp Masking is a popular image processing technique used for improving the sharpness of structures on dental radiographs. However, it produces overshoot artefact and intolerably amplifies noise. On radiographs, the overshoot artefact often resembles the indications of prosthesis misfit, pathosis, and pathological features associated with restorations. A noise- robust alternative to the Unsharp Masking algorithm, termed Gradient-adaptive Nonlinear Sharpening (GNS) which is free from overshoot and discontinuity artefacts, is proposed in this paper. In GNS, the product of the arbitrary scalar termed as ‘scale’ and the difference between the output of the Adaptive Edge Smoothing Filter (AESF) and the input image, weighted by the normalized gradient magnitude is added to the input image. AESF is a locally-adaptive 2D Gaussian smoothing kernel whose variance is directly proportional to the local value of the gradient magnitude. The dataset employed in this paper is downloaded from the Mendeley data repository having annotated panoramic dental radiographs of 116 patients. On 116 dental radiographs, the values of Saturation Evaluation Index (SEI), Sharpness of Ridges (SOR), Edge Model Based Contrast Metric (EMBCM), and Visual Information Fidelity (VIF) exhibited by the Unsharp Masking are 0.0048 ± 0.0021, 4.4 × 1013 ± 3.8 × 1013, 0.2634 ± 0.2732 and 0.9898 ± 0.0122. The values of these quality metrics corresponding to the GNS are 0.0042 ± 0.0017, 2.2 × 1013 ± 1.8 × 1013, 0.5224 ± 0.1825, and 1.0094 ± 0.0094. GNS exhibited lower values of SEI and SOR and higher values of EMBCM and VIF, compared to the Unsharp Masking. Lower values of SEI and SOR, respectively indicate that GNS is free from overshoot artefact and saturation and the quality of edges in the output images of GNS is less affected by noise. Higher values of EMBCM and VIF, respectively confirm that GNS is free from haloes as it produces thin and sharp edges and the sharpened images are of good information fidelity

    Unsharp Mask Guided Filtering

    Get PDF

    Unsharp Mask Guided Filtering

    Get PDF
    The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering by means of an additional guidance image. Where classical guided filters transfer structures using hand-designed functions, recent guided filters have been considerably advanced through parametric learning of deep networks. The state-of-the-art leverages deep networks to estimate the two core coefficients of the guided filter. In this work, we posit that simultaneously estimating both coefficients is suboptimal, resulting in halo artifacts and structure inconsistencies. Inspired by unsharp masking, a classical technique for edge enhancement that requires only a single coefficient, we propose a new and simplified formulation of the guided filter. Our formulation enjoys a filtering prior from a low-pass filter and enables explicit structure transfer by estimating a single coefficient. Based on our proposed formulation, we introduce a successive guided filtering network, which provides multiple filtering results from a single network, allowing for a trade-off between accuracy and efficiency. Extensive ablations, comparisons and analysis show the effectiveness and efficiency of our formulation and network, resulting in state-of-the-art results across filtering tasks like upsampling, denoising, and cross-modality filtering. Code is available at \url{https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering}.Comment: IEEE Transactions on Image Processing, 202

    Técnica local basada en conjuntos difusos de tipo 2 para mejorar la imagen de manchas

    Get PDF
    The proposed approach in the paper comes under “Advanced Soft Computing Based Medical Image Processing Research” and the work has been conducted by Dr. Dibya Jyoti Bora (Assistant Professor), School of Computing Sciences, The Assam Kaziranga University, Jorhat, Assam in the year 2018-2019. Introduction: HE stain images, although considered as the golden standard for medical image diagnosis, are still found to suffer from poor contrast and degradation in color quality. In this paper, a Type-2 fuzzy set-based enhancement technique is proposed for HE stain image enhancement with special care towards color-based computations and measurements. Methods: This paper introduces a new approach based on Type-2 fuzzy set for HE stain image enhancement where Bicubic Interpolation plays an important part. Unsharp Masking is also employed as a post enhancement factor. Results: From the results, it is clearly visible that cell nuclei and other cell bodies are easily distinguishable from each other in the enhanced result produced by our proposed approach. It implies that vagueness in the edges surrounding the objects in the original image is removed to an acceptable level. Conclusions: The proposed approach is found to be, through both subjective and objective evaluations, an efficient preprocessing technique for a better HE stain image analysis. Originality: The ideas involved in this paper are original. If work by other researchers are mentioned in any part of the paper, then they are cited properly. Limitation: The relatively high time complexity is the only limitation associated with the proposed approach.El enfoque propuesto en el artículo se encuentra en el proyecto “Investigación avanzada de procesamiento de imágenes médicas basadas en computación suave”, el trabajo ha sido realizado por el doctor Dibya Jyoti Bora (profesor asistente), de la Facultad de Ciencias de la Computación, Universidad de Assam Kaziranga, Jorhat, Assam en el año 2018-2019. Introducción: las imágenes de tinción HE, aunque consideradas como el estándar ideal para el diagnóstico de imágenes médicas, aún sufren de poco contraste y degradación en la calidad del color. En este documento se propone una técnica de mejora basada en conjuntos difusos tipo 2 para optimizar la imagen de tinción HE con especial cuidado hacia los cálculos y mediciones basados en el color. Métodos: este documento presenta un nuevo enfoque basado en el conjunto difuso tipo 2 para mejorar laimagen de tinción HE, donde la interpolación bicúbica juega un papel importante. La máscara de desenfoque también se emplea como factor de mejora posterior. Resultados: a partir de los resultados es claramente visible que los núcleos celulares y otros cuerpos celulares son fácilmente distinguibles entre sí en el resultado mejorado producido por el enfoque propuesto. Esto implica que la vaguedad en los bordes que rodean los objetos en la imagen original se elimina a un nivel aceptable. Conclusiones: se encuentra que el enfoque es, a través de evaluaciones tanto subjetivas como objetivas, una técnica de preprocesamiento eficiente para un mejor análisis de imagen de tinción HE. Originalidad: las ideas involucradas en este documento son originales. Si el trabajo de otros investigadores se menciona en alguna parte del artículo se citan correctamente. Limitación: la complejidad de tiempo relativamente alta es la única limitación asociada con el enfoque propuesto
    corecore