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Abstract – Unsharp Masking is a popular image processing technique used for improving the sharpness of structures on dental 
radiographs. However, it produces overshoot artefact and intolerably amplifies noise. On radiographs, the overshoot artefact 
often resembles the indications of prosthesis misfit, pathosis, and pathological features associated with restorations. A noise-
robust alternative to the Unsharp Masking algorithm, termed Gradient-adaptive Nonlinear Sharpening (GNS) which is free from 
overshoot and discontinuity artefacts, is proposed in this paper. In GNS, the product of the arbitrary scalar termed as ‘scale’ and 
the difference between the output of the Adaptive Edge Smoothing Filter (AESF) and the input image, weighted by the normalized 
gradient magnitude is added to the input image. AESF is a locally-adaptive 2D Gaussian smoothing kernel whose variance is directly 
proportional to the local value of the gradient magnitude. The dataset employed in this paper is downloaded from the Mendeley data 
repository having annotated panoramic dental radiographs of 116 patients. On 116 dental radiographs, the values of Saturation 
Evaluation Index (SEI), Sharpness of Ridges (SOR), Edge Model Based Contrast Metric (EMBCM), and Visual Information Fidelity (VIF) 
exhibited by the Unsharp Masking are 0.0048 ± 0.0021, 4.4 × 1013 ± 3.8 × 1013, 0.2634 ± 0.2732 and 0.9898 ± 0.0122. The values of 
these quality metrics corresponding to the GNS are 0.0042 ± 0.0017, 2.2 × 1013 ± 1.8 × 1013, 0.5224 ± 0.1825, and 1.0094 ± 0.0094. 
GNS exhibited lower values of SEI and SOR and higher values of EMBCM and VIF, compared to the Unsharp Masking. Lower values 
of SEI and SOR, respectively indicate that GNS is free from overshoot artefact and saturation and the quality of edges in the output 
images of GNS is less affected by noise. Higher values of EMBCM and VIF, respectively confirm that GNS is free from haloes as it 
produces thin and sharp edges and the sharpened images are of good information fidelity.
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1.  INTRODUCTION

1.1. BaCkGROUND & PROBlem DOmaIN

The advent of advanced image processing algo-
rithms and machine learning techniques has revolu-
tionized the automated analysis of dental radiographs. 
Many recent methods make use of image processing 
algorithms and machine learning techniques for the 
diagnosis of Periodontal Bone Loss (PBL) [1, 2], Os-
teoporosis [3, 4], and dental caries [5] from dental ra-
diographs. Apart from the clinical applications, dental 
radiographs are used for the automated identification 

of humans in forensic odontology [6]. The majority of 
these methods used in clinical practice and forensic 
odontology involve the segmentation of structures like 
teeth and mandibles from the dental radiograph [7, 8].

Segmentation of structures from the dental radio-
graph is often difficult as the structures in it may not 
have sharp boundaries. The lack of sharpness could be 
due to the factors like inappropriate positioning, over-
exposure, movement of patient/equipment during ex-
posure, etc. Powerful post-processing algorithms are 
required to improve the sharpness of edges and to im-
prove the accuracy of the segmentation of structures 
from dental radiographs.
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1.2.  RevIew Of lITeRaTURe

Post-processing algorithms available in literature 
meant for improving the quality of dental radiographs 
can be classified into three categories. These catego-
ries are denoising, contrast enhancement, and sharp-
ening algorithms. The denoising algorithms include a 
2-D Butterworth low-pass filter (frequency domain) [9], 
Bayesian Least Squares - Gaussian Scaled Mixture (BLS-
GSM) algorithm, and Total Variation (TV) filter [10]. Con-
trast Limited Adaptive Histogram Equalization (CLAHE) 
[11, 12] is an algorithm in literature meant for improv-
ing the contrast in dental radiographs. Unsharp Mask-
ing is the most popular algorithm used for improving 
the sharpness of dental radiographs. Yan et al. [13] 
proposed Bi-SCM: bidirectional spiking cortical model 
an adaptive unsharp mask using a bio-inspired neural 
network. To improve the x-ray, Skewness Reformed 
Complex Diffusion (SRCD) is proposed in [14] where 
the skewness of the images is used as a parameter to 
configure the smoothing filtering of the unsharp mask.

Many decades before itself, Fujita et al. [15] had dem-
onstrated the prospect of Unsharp Masking for enhanc-
ing the quality of dentomaxillofacial radiographs. Harada 
et al. [16] used Unsharp Masking for sharpening the bony 
structure in the maxillofacial region in the three-dimen-
sional Computed Tomography (CT) image. Couture et al. 
[17] used Unsharp Masking to enhance the texture of cor-
tical and trabecular bones on the projection radiographs 
of mandibles to effectively visualize the high-frequency 
variations in bone mineral density. Recently, Geraets  et 
al. [18] used Unsharp Masking to enhance trabecular pat-
terns on dental radiographs towards detecting fractures. 
Manoj et al. [19] propose a mechanism to enhance dental 
radiographs corrupted by quantum noise.

1.3.  laCUNa Of RevIew aND GaPS 

Despite the wide popularity and applications of Un-
sharp Masking, it has serious limitations also. Clark  et 
al.  [20] have demonstrated that Unsharp Masking en-
hances the perceptual quality of dental radiographs 
and it produces overshoot artefact and amplifies noise 
that will adversely influence the accuracy of diagnosis. 
The overshoot artefact may be misinterpreted as a pros-
thesis misfit or pathosis. Brettle and Carmichael [21] also 
demonstrated that the artefacts caused by image pro-
cessing, particularly at high contrast boundaries, closely 
mimic the pathological features associated with restora-
tions and invite the risk of unwanted interventions.

1.4. CONTRIBUTIONS, NOvelTy, aND 
 HIGHlIGHTS

Contributions: To resolve the issues of noise-ampli-
fication, overshoot artefact, haloes, and discontinuity 
artefact in the Unsharp Masking, a novel algorithm, 
termed Gradient-adaptive Nonlinear Sharpening 
(GNS), for improving the acuity of edges in the dental 
radiographs, is introduced in this paper.

Novelty: In the conventional Unsharp Masking al-
gorithm, the product of the arbitrary scalar termed as 
‘scale’ and the difference between the input image and 
its Gaussian smoothed version, after a thresholding pro-
cess is added back to the input image itself. The Gauss-
ian smoothing kernel used in the Unsharp Masking is a 
linear filter. The weights in the kernel depend only on 
the spatial distance from the center. The Gaussian ker-
nel has the same smoothing response on noise-affected 
pixels and edges. Hence, it cannot be expected that the 
difference between the input image and its Gaussian 
smoothed version may have higher values at the edge 
pixels compared to the noise-affected pixels. It is difficult 
to distinguish the noise-affected pixels and the edge 
pixels from the difference between the input image and 
its Gaussian smoothed version, via the thresholding op-
eration. In GNS, the Gaussian kernel is replaced by the 
Adaptive Edge Smoothing Filter (AESF). AESF is a locally-
adaptive 2D Gaussian smoothing kernel whose variance 
is directly proportional to the local value of the gradient 
magnitude. It smooths the edge pixels more strongly 
than the noise-affected pixels. Consequently, the differ-
ence between the input image and output of AESF will 
be significantly high at the edge pixels compared to the 
noise-affected pixels. The concept of the Adaptive Edge 
Smoothing Filter is new in image processing itself. Read-
ers should not be confused with the edge-preserving fil-
ters. The operation of the adaptive edge smoothing filter 
is just opposite to that of the edge-preserving filters. 

The thresholding process in the Unsharp Masking is a 
mathematical function with jump discontinuity. Because 
of the thresholding process, Unsharp Masking is prone to 
discontinuity artefact. Instead of the thresholding process 
in the Unsharp Masking, in GNS, the difference between 
the output of the AESF and the input image is weighted 
by the normalized gradient magnitude. This nonlinear 
weighting is a continuous function and avoids the issue 
of discontinuity artefact. As the thresholding process is 
not used in GNS, it is free from the burden of tuning the 
‘threshold’ parameter. GNS has less number of operation-
al parameters compared to the Unsharp Masking. 

Highlights: (i) Because of the characteristics of AESF 
used in GNS and the nonlinear weighting process in-
volved in its computation, it is free from noise-amplifi-
cation and overshoot artefact. (ii) As no mathematical 
operation with jump discontinuity is involved in the 
GNS, it is free from the discontinuity artefact. (iii) GNS 
has less number of operational parameters compared 
to Unsharp Masking. 

2. meTHODS

2.1 GRaDIeNT-aDaPTIve NONlINeaR 
SHaRPeNING (GNS)

In GNS, the product of the arbitrary scalar termed 
as ‘scale’ and the difference between the output of 
the Adaptive Edge Smoothing Filter (AESF) and the 
input image, weighted by the normalized gradient 
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magnitude is added to the input image. AESF is a lo-
cally-adaptive 2D Gaussian smoothing kernel whose 
standard deviation is directly proportional to the local 
value of the gradient magnitude. The first step in GNS 
is to compute the normalized gradient. The gradient 
magnitude is computed from the gradients along the 
rows (horizontal direction) and the columns (vertical 
direction) of the input radiograph.

(1)

In (1), is the gradient along rows (horizontal direction), 
and is the gradient along columns (vertical direction). G 
is the 2D vector comprising local values of the gradient 
magnitude. The gradient along rows and gradient along 
rows are computed by convolving the input radiograph, 
with respective Sobel convolution masks.

(2)

In (2), f is the input radiograph. The notion, ‘**’ indi-
cates 2D convolution. Sr and Sc respectively are Sobel 
masks along rows and columns.

(3)

The 2D gradient vector is normalised with the maxi-
mum value in it. The normalisation yields,

(4)

In (4), g is the normalized 2D gradient vector. Gmax is 
the largest gradient value. In GNS, the Gaussian kernel 
in the Unsharp Masking is replaced by the Adaptive 
Edge Smoothing Filter. As pointed out, AESF is a local-
ly-adaptive 2D Gaussian smoothing kernel whose vari-
ance is directly proportional to the local value of the 
gradient magnitude. It smooths the edge pixels more 
strongly than the noise-affected pixels. Consequently, 
the difference between the input image and output of 
AESF will be significantly high at the edge pixels com-
pared to the noise-affected pixels. The output of the 
AESF at a pixel location (r,c),

(5)

In (5), R and C are the number of rows and the num-
ber of columns in the input radiograph. K is the adap-
tive edge-smoothing Gaussian kernel. w is the radius 
of the adaptive Gaussian kernel. The kernel at a pixel 
location (r,c) is,

(6)

In (6), σrc is the local value of the standard deviation 
of the adaptive Gaussian kernel. The local value of the 
standard deviation of the adaptive Gaussian kernel 
is the product of the corresponding value in the nor-

malised gradient vector and the maximum limit of the 
standard deviation of the adaptive Gaussian kernel. It 
is computed as,

(7)

In (7), σmax is the maximum limit of the standard de-
viation of the adaptive Gaussian kernel. It has to be as 
high as possible. Its value is kept as 100 in this paper. 
The radius of the kernel, w, also needs to be high. The 
radius of the adaptive Gaussian kernel is set as 9 × 9, in 
this paper. The adaptive Gaussian kernel is normalised 
such that,

(8)

The difference between the input image and output 
of the Adaptive Edge Smoothing Filter,

(9)

The thresholding process in the Unsharp Masking 
is a mathematical function with jump discontinuity. 
Because of the thresholding process, Unsharp Mask-
ing is prone to discontinuity artefact. Instead of the 
thresholding process in the Unsharp Masking, in GNS, 
the difference between the output of the AESF and the 
input image is weighted by the normalised gradient 
magnitude. This nonlinear weighting is a continuous 
function and avoids the issue of discontinuity artefact. 
As the thresholding process is not used in GNS, it is free 
from the burden of tuning the ‘threshold’ parameter. As 
mentioned, each value in the 2D vector corresponding 
to the difference, d is weighted by the corresponding 
value in the normalized gradient vector as,

The operator, Γ in (9) indicates element-wise multipli-
cation. The sharpened radiograph,

(10)

(11)

In (10), α is an arbitrary parameter that determines 
the strength of sharpening. This parameter is called ad 
the scale. The Schematic of the steps involved in the 
computation of the sharpened image in GNS described 
in (1) to (10) is shown in Fig. 1.

fig. 1. Schematic of the steps involved in the 
computation of the sharpened image in GNS
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2.2. TeST ImaGeS

The dataset used in this paper is downloaded from 
the Mendeley data repository [22]. This is the data as-
sociated with Abdi et al. [23] and the dataset comprises 
of annotated panoramic dental radiographs of 116 
patients. All images are in .png format. The images are 
taken by using the Soredex CranexD digital panoramic 
x-ray unit available at Noor Medical Imaging Centre, 
Qom, Iran. The subjects cover a wide range of dental 
conditions from healthy, to partial and complete eden-
tulous cases.

2.3. PROTOCOl fOR PaRameTeR SeleCTION 
 aND PeRfORmaNCe evalUaTION

Sharpening is helpful to improve the acuity of edges. 
However, most of the sharpening algorithms produce 
inadvertent artefacts like contrast overshoot, edge-
widening or haloes, and noise amplification. There are 
no unique image quality metrics that can reflect the 
overall quality of the sharpened images accounting for 
all these quality aspects and artefacts. Hence, the per-
formance evaluation of the sharpening techniques is a 
non-trivial task. 

Krasula et al. [24] have recently proposed a frame-
work governing the subjective evaluation of the qual-
ity of the sharpened images and have suggested cer-
tain objective measures which can be used for the 
quantitative performance assessment of the sharpen-
ing schemes. As an addition to the framework for eval-
uating the performance of the sharpening algorithms 
on natural-scene images reported in [24], J. Joseph and 
R. Periyasamy [25] have suggested four quality metrics 
particularly useful for evaluating the performance of 
sharpening algorithms on medical images. They are 
the Saturation Evaluation Index (SEI) [26], Sharpness of 
Ridges (SOR) [27], Edge Model-Based Contrast Measure 
(EMBCM) [28], and Visual Information Fidelity (VIF) [29]. 
These four quality statistics are used in this paper to aid 
the selection of the scale value in GNS and for compar-
ing the performance of GNS with the Unsharp Masking.

The SEI reflects the quality degradation in terms of 
intensity saturation caused by the contrast overshoot. 
The value of SEI is expected to be as low as possible, 
ideally 0. SOR is a metric that quantitatively shows how 
far the quality of edges in the sharpened images is de-
graded by amplified noise content. Like SEI, the value 
of SOR is also supposed to be as low as possible. A 
good sharpening, free from haloes is always expected 
to produce thin and sharp edges. While assessing the 
quality of edges, their width also needs to be taken into 
account. The EMBCM is the only sharpness metric that 
considers the width of the edges as well. EMBCM is an 
unbounded statistic whose value is expected to be as 
high as possible. VIF accounts for the overall informa-
tion fidelity in the sharpened images concerning that 
in the input image. Like EMBCM, the value of VIF will be 
high if the sharpening produces artefact-free (free from 

overshoot, noise-amplification, haloes, and discontinu-
ity artefact) output images with thin and sharp edges. 

2.4.  SySTem ReqUIRemeNTS

All experiments are conducted with Matlab® soft-
ware. The version of the software is 7.12.0.635 (R2018a) 
with License Number: 161052. The software is installed 
in a desktop computer with Intel (R), Pentium (R) Pro-
cessor, and CPU B950 @ 2.10 GHz. The installed Memory 
(RAM) is 4 GB. Operating System is Microsoft Windows 
7 Version 6.1 (Build 7601: Service Pack 1), 64-bit.  

3. ReSUlTS 

The influence of the selection of the scale value in 
GNS on the subjective quality of the sharpened im-
ages and the objective quality measures like SEI, SOR, 
EMBCM, and VIF is discussed in this section. Out of the 
total 116 radiographs, three test images for which the 
pictorial results are presented are shown in Fig. 2.

(a)

(b)

(c)

fig. 2. Test images (a) Test image 1 (b) Test image 2 
(c) Test image 3

Enlarged portions of the output images of GNS corre-
sponding to the input image 1,  input image 2 and input 
image 3 for various scale values are shown in Fig. 3 to 
Fig. 5. When the scale is equal to 1, (Fig. 3 (b), Fig. 4 (b) 
and Fig. 5 (b)) significant improvement in edge strength 
is not evident. When the scale value increases from 1 to 
4, (Fig. 3 (c) to Fig. 3 (d), 4 (c) to Fig. 4 (d) and 5 (c) to Fig. 
5 (d)), the strength of edges increases to a clearly visible 
level. When the scale value is greater than 5, (Fig. 3 (f ) to 
Fig. 3 (i), 4 (f ) to Fig. 4 (i) and 5 (f ) to Fig. 5 (i)), the noise 
content gets amplified slightly. However, the amplifica-
tion of noise is not as critical as in the Unsharp Masking. 
The value of the scale in GNS is within the range of 3 to 
5, the strength of edges in the dental radiographs gets 
enhanced to a visibly apparent level without amplifying 
the noise significantly. The observation is found to be 
consistent on all 116 test images.
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(e)

(h)

(c)

(g)

(d)

(i)

(f )

(b)(a)

fig. 3. Enlarged portions of the output images of 
GNS corresponding to the input image 1 for various 
scale values (a) Enlarged portion of the input image 
1 (b) Scale = 1 (c) Scale = 2 (d) Scale = 3 (e) Scale = 4 

(f) Scale = 5 (g) Scale = 6 (h) Scale = 7 (i) Scale = 8

(e)

(h)

(c)

(g)

(d)

(i)

(f )

(b)(a)

fig. 4. Enlarged portions of the output images 
of GNS corrersponding to the input image 2 for 
various scalevalues (a) Enlarged portion of the 

input image 2 (b) Scale = 1 (c) Scale = 2 (d) Scale = 
3 (e) Scale = 4 (f) Scale = 5 (g) Scale = 6 (h) Scale = 7 

(i) Scale = 8

Influence of the scale value on SEI, SOR, EMBCM and 
VIF is illustrated in Fig. 6. The variations of the SEI with 
scale for three test radiographs are shown in Fig. 6 (a). 
The slopes of the SEI versus scale curves for all three 
test images are very low as seen in Fig. 6 (a). SEI does 
not increase critically in response to the increase in the 
value of scale. Even at high values of the scale, the in-
crease in SEI is not significant. This is a clear indication 
that GNS produces sharpened images free from inten-
sity saturation. The variations of the SOR with scale for 
three test radiographs are shown in Fig. 6 (b). Similar 
to the SEI versus scale curves, slopes of the SOR ver-
sus scale curves for all three test images are very low 
as seen in Fig. 6 (b). SOR does not increase critically, in 
response to the increase in the value of scale. Even at 
high values of the scale, the increase in SOR is not sig-
nificant. This is a clear indication that even at high val-
ues of the scale, quality of the edges in the output im-
ages produced by the GNS is not significantly affected 
by the amplified noise content.

(e)

(h)

(c)

(g)

(d)

(i)

(f )

(b)(a)

fig. 5. Enlarged portions of the output images 
of GNS corrersponding to the input image 3 for 
various scalevalues (a) Enlarged portion of the 

input image 3 (b) Scale = 1 (c) Scale = 2 (d) Scale = 
3 (e) Scale = 4 (f) Scale = 5 (g) Scale = 6 (h) Scale = 7 

(i) Scale = 8

In the EMBCM versus scale curves in Fig. 6 (c), the 
slopes of the curves are relatively higher when the 
value of the scale is less than 4 compared to the slopes 
of the curves when the scale is above 4. As mentioned 
already, the EMBCM reflects the quality of the edges in 
terms of their sharpness and thinness. From the EMB-
CM versus scale curves, it can be inferred that GNS of-
fers relatively better output images comprising sharper 
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and thinner edges when the scale value is less than 4.  
In the VIF versus scale curves in Fig. 6 (d), VIF is at its 
maximum for the input image 1, when the scale value 
is equal to 3. For input image 2 and input image 3, the 
maximum values of VIF are observed at the scale values 
equal to 3.5 and 6.5, respectively. As per the observa-
tions drawn out from the VIF versus scale curves of 116 
test radiographs, the VIF is found to be at its maximum 
for a range of scale values between 3 and 7. From the 
variations of the SEI, SOR, EMBCM, and VIF against the 
scale values, the practically efficient range of scale suit-
able for dental radiographs can be considered as be-
tween 4 and 5.

(a)

(b)

(c)

(c)

fig. 6. Influence of the scale value on various 
objective image quality measures (a) SEI versus 

scale (b) SOR versus scale (c) EMBCM versus scale (d) 
VIF versus scale

4. DISCUSSIONS

In this section, the performance of the GNS is com-
pared with the Unsharp Masking in terms of quality of 
the sharpened images and the values of the objective 
quality measures. Enlarged portions of the output im-
ages of the Unsharp Masking and GSN for three test ra-
diographs are shown in Fig. 7 to Fig. 9. 

fig. 7. Sharpened images (a) Enlarged portion 
of the input image 1 (b) Enlarged portion of the 

output of Unsharp Masking (c) Enlarged portion of 
the output of GNS

fig. 8. Sharpened images (a) Enlarged portion 
of the input image 2 (b) Enlarged portion of the 

output of Unsharp Masking (c) Enlarged portion of 
the output of GNS

In both the Unsharp Masking and the GNS, the value 
of scale is set as equal to 5. The threshold in the Unsharp 
Masking is set equal to 0.1. It can be seen in the output 
images of the Unsharp Masking furnished in Fig. 7 (b), 
Fig. 8 (b) and Fig. 9 (b) that noise content is significantly 
amplified. It is evident in Fig. 7 (c), Fig. 8 (c) and Fig. 9 
(c), GNS produces output images in which the edges are 

(a) (b) (c)

(a) (b) (c)
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sharper than those in the input images furnished in 7 (a), 
Fig. 8 (a) and Fig. 9 (a). Amplification of the noise content 
in GNS is not as critical as in the Unsharp Masking. 

fig. 9. Sharpened images (a) Enlarged portion 
of the input image 3 (b) Enlarged portion of the 

output of Unsharp Masking (c) Enlarged portion of 
the output of GNS

Values of SEI, SOR, EMBCM and VIF shown by the Un-
sharp Masking and GNS, corresponding to the output 
images furnished in Fig. 7 to Fig. 9 are shown in table 1 
and table 2, respectively. The summary of these quality 
metrics on 116 test radiographs is furnished in table 3. 
GNS exhibited lower values of SEI and SOR and higher 
values of EMBCM and VIF, compared to the Unsharp 
Masking. Lower values of SEI and SOR, respectively 
indicate that GNS is free from overshoot artefact and 
saturation and the quality of edges in the output im-
ages of GNS is less affected by noise. Higher values of 
EMBCM and VIF, respectively confirm that GNS is free 
from haloes as it produces thin and sharp edges and 
the sharpened images are of good information fidelity.

Table 1. Values of quality metrics shown by the 
Unsharp Masking

quality metric Image 1 Image 2 Image 3
SeI 0.0072 0.0036 0.0035

SOR 7.3205 × 1013 5.7376 × 1013 1.4223 × 1012

emBCm 0.5604 0.0227 0.2070

vIf 0.9757 0.9979 0.9957

Computational 
Time (S) 0.37 0.29 0.19

Table 2. Values of quality metrics shown by the GNS

quality metric Image 1 Image 2 Image 3
SeI 0.0062 0.0033 0.0032 

SOR 3.2948 × 1013 3.2183 × 1013  9.7641 × 1011  
emBCm 0.6297 0.3117 0.6259 

vIf 1.0147 0.9985 1.0149
Computational 

Time (S) 1626.05 1773.22 1595.04

Table 3. Summary of quality metrics shown by the 
Unsharp Masking and GNS on 116 images

quality metric Unsharp masking GNS
SeI 0.0048 ± 0.0021 0.0042 ± 0.0017

SOR 4.4 × 1013 ± 3.8 × 1013  2.2 × 1013 ± 1.8 × 1013

emBCm 0.2634 ± 0.2732 0.5224 ± 0.1825

vIf 0.9898 ± 0.0122 1.0094 ± 0.0094

Computational 
Time (S) 0.2833 ±0.0902 1664.8 ± 95.19

Table 4. Comparison of the proposed model with 
other state of art architectures using Unsharp 

Masking mechanisms, without considering the 
tolerance range

methods SeI SOR emBCm vIf
manoj et al. [19] 0.0044 3.7 × 1013 0.4178 0.8990

Clark et al. [20] 0.0098 5.7 × 1013 0.2065 0.8956

Geraets et al. [18] 0.0048 4.4 × 1013 0.2634 0.9898

Proposed model 0.0042 2.2 × 1013 0.5224 1.0094

It is believed that noise-amplification in the Unsharp 
Masking can be reduced by increasing the value of the 
threshold. But increasing the value of the threshold may 
introduce discontinuity artefact. Enlarged portions of 
the output images of the Unsharp Masking correspond-
ing to the three test images for a threshold value equal 
to 0.5 and scale equal to 5 are shown in Fig. 10. Black and 
white spots are visible on the output images of the Un-
sharp Masking. These spots are caused by the disconti-
nuity artefact. As no thresholding process is involved in 
GNS, the output images produced by GNS are free from 
the discontinuity artefact.

fig. 10. Discontinuity artefact in the Unsharp 
Masking (a) Enlarged portion of input image 1 

sharpened by the Unsharp Masking (b) Enlarged 
portion of input image 2 sharpened by the Unsharp 

Masking (c) Enlarged portion of input image 3 
sharpened by the Unsharp Masking

(a) (b) (c)

(a) (b) (c)

To evaluate the efficacy of the proposed model, the 
scores of the quality metrics namely SEI, SOR, EMBCM, 
and VIF are compared to other architectures employed 
for dental radiograph enhancements. The methods 
have been evaluated on the Mendeley data repository 
[18]. The finding is illustrated in Table 4. It can be ob-
served that the proposed model outperforms the com-
petitors in all the metrics. One downside of the pro-
posed model is that its computational time required is 
on the higher scale compared to its competitors.

5. CONClUSION aND fUTURe SCOPe

5.1.  CONClUSION

Summary of Contributions: A noise-robust and over-
shoot-free alternative to the Unsharp Masking, called 
Gradient-adaptive Nonlinear Sharpening (GNS), for en-
hancing the quality of edges in dental radiographs was 
proposed in this paper.

Summary of Observations: GNS exhibited lower val-
ues of SEI and SOR and higher values of EMBCM and 
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VIF, compared to the Unsharp Masking. Lower values 
of SEI and SOR, respectively indicate that GNS is free 
from overshoot artefact and saturation and the quality 
of edges in the output images of GNS is less affected 
by noise. Higher values of EMBCM and VIF, respective-
ly confirm that GNS is free from haloes as it produces 
thin and sharp edges and the sharpened images are of 
good information fidelity.

Advantages of GNS: Unlike the conventional Unsharp 
Masking, the computation of sharpened images in the 
proposed GNS does not involve any thresholding opera-
tion. Hence GNS is free from discontinuity artefact. GNS 
has less number of operational parameters compared 
to the Unsharp Masking. Because of the Adaptive Edge 
Smoothing Filter (AESF) and local gradient-based weight-
ing of the difference image in LGUM, it is free from noise-
amplification and sharpness overshoot. GNS selectively 
sharpen the edges without amplifying the noise content. 

Applications / Commercial Viability of GNS: GNS can be 
used as a pre-processing algorithm in image process-
ing tools used in clinical practice and forensic odontol-
ogy for the automated analysis of dental radiographs. It 
helps to improve the efficiency of segmentation algo-
rithms used in such image processing tools.

5.2. lImITaTIONS Of GNS aND fUTURe SCOPe

The GNS has three operational parameters. They are 
the radius of the AESF, maximum limit of the standard 
deviation of AESF and scale. Adaptive methods for 
identifying the optimum value of these operational 
parameters will help to eliminate the burden of tuning 
them. The GNS is computationally intense compared to 
the conventional Unsharp Masking, because of the lo-
cal processing strategy adopted in it. Methods which 
can accelerate the computation of GNS will make it 
more advantageous.
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