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Image Enhancement via Adaptive Unsharp Masking

Andrea Polesel, Giovanni Ramponi, and V. John Mathews

Abstract—This paper presents a new method for unsharp masking for
contrast enhancement of images. Our approach employs an adaptive filter

that controls the contribution of the sharpening path in such a way that
contrast enhancement occurs in high detail areas and little or no image

sharpening occurs in smooth areas.

Index Terms—Adaptive filters, image enhancement, unsharp masking.

I. INTRODUCTION

The visual appearance of an image may be significantly improved

by emphasizing its high frequency contents to enhance the edge and

detail information in it. The classic linear unsharp masking (UM) tech-

nique is often employed for this purpose. In the UM technique, a high-

pass filtered, scaled version of an image is added to the image itself as

shown in Fig. 1. Even though this method is simple and works well in

many applications, it suffers from two main drawbacks. i) The pres-

ence of the linear highpass filter makes the system extremely sensitive

to noise. This results in perceivable and undesirable distortions, par-

ticularly in uniform areas of even slightly noisy images. ii) It enhances

high-contrast areasmuchmore than areas that do not exhibit high image

dynamics. Consequently, some unpleasant overshoot artifacts may ap-

pear in the output image.

Various approaches have been suggested for reducing the noise

sensitivity of the linear unsharp masking technique. Many of these

methods are based on the use of nonlinear operators in the correction

path. A quadratic filter that can be approximately characterized as

a local-mean-weighted adaptive highpass filter is described in [1]

and [2]. Weighting the highpass filter output by the local mean value

enhances the details of the image uniformly from a perceptual criterion

as suggested byWeber’s Law [3]. Consequently, the perceived noise in

the output of such systems is smaller than that for linear UM schemes.

Another polynomial operator for image enhancement is presented in

[2] and [4]. The main advantage of this scheme is that the sharpening

action is controlled by the output of an edge sensor which reduces the

contribution of the highpass filter when the processing mask is not

located across an edge in the image. Thus, the system is less sensitive

to noise present in the input image. An approach based on the order

statistics Laplacian operator is described in [5]. This method is capable

of reducing the noise amplification when the input disturbance is a

zero-mean and white Gaussian process. An adaptive linear–quadratic

filter whose coefficients attempt to minimize a convex function of an

appropriately formulated prediction error image was introduced in [6].

This method was experimentally shown to be effective in enhancing

periodic textured images.

The solutions cited above reduce the noise sensitivity of the linear

UM technique. However, they still introduce some artifacts in smooth

areas due to the amplification of the input disturbances. Furthermore,
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Fig. 1. Unsharp masking for contrast enhancement.

Fig. 2. Operator g(�) employed to compute the local dynamics of an image.

medium-contrast details are not enhanced as well as large-contrast de-

tails in these methods. In order to make the medium contrast details

more visible, the parameters of these algorithms must be set such that

they produce overshoot artifacts in areas of high contrast. A way to

solve this problem was proposed in [7]. In this method, the sharpening

action is controlled by an adaptive filter based on the input contrast, and

the low-contrast details are more enhanced than high-contrast details.

This adaptive algorithm was designed to enhance images whose dy-

namic range must be matched to the available dynamic range of a CRT

monitor. Results of an experiment presented later in this paper show

that this algorithm suffers from excessive noise amplification when no

mismatch exists between the dynamic range of the monitor and the one

of the input image.

This paper introduces a variation of the basic UM scheme that con-

tains an adaptive filter in the correction path. The objective of the adap-

tive filter is to emphasize themedium-contrast details in the input image

more than large-contrast details such as abrupt edges so as to avoid

overshoot effects in the output image. The adaptive filter does not per-

form a sharpening operation in smooth areas, and therefore the overall

system is more robust to the presence of noise in the input images than

traditional approaches. The authors believe that the adaptive unsharp

masking technique that accomplishes the dual objectives of avoiding

noise amplification as well as excessive overshoot in the detail areas is

a novel approach to image enhancement.

The rest of the paper is organized as follows. Section II describes

the adaptive image enhancement algorithm. Section III presents ex-

perimental results that illustrate the effectiveness of our approach. The

concluding remarks are made in Section IV.

II. ADAPTIVE CONTRAST ENHANCEMENT ALGORITHM

In the linear unsharp masking algorithm, the enhanced image

y(n; m) is obtained from the input image x(n; m) as

y(n; m) = x(n; m) + �z(n; m) (1)

where z(n; m) is the correction signal computed as the output of a

linear highpass filter and � is the positive scaling factor that controls

the level of contrast enhancement achieved at the output.
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Fig. 3. Adaptive directional UM.

A commonly employed choice for the highpass filter in image en-

hancement applications is to obtain z(n; m) as

z(n; m) = 4x(n; m)� x(n� 1; m)� x(n+ 1; m)

� x(n; m� 1)� x(n; m+ 1): (2)

In this work, we employ two directional Laplacian operators described

by the input–output relationships

zx(n; m) = 2x(n; m)� x(n; m� 1)� x(n; m+ 1) (3)

and

zy(n; m) = 2x(n; m)� x(n� 1; m)� x(n+ 1; m) (4)

and use a modified form of (1) given by

y(n; m) =x(n; m) + �x(n; m)zx(n; m)

+ �y(n; m)zy(n; m) (5)

to obtain the enhanced images. In the above equation, �x(n; m) and
�y(n; m) are the scaling factors for the two components of the correc-

tion signal at the (n; m)th pixel. Our objective is to recursively update
these parameters using an adaptation algorithm so that little or no en-

hancement is applied in smooth areas of the image, maximum enhance-

ment is applied in medium contrast areas, and large contrast areas are

only moderately enhanced. We have chosen to adapt the horizontal and

vertical components separately since the human eye is known to be

anisotropic in its sensitivity to the details along different orientations

[8].

By defining the scaling vector �(n; m) and the correction vector

Z(n; m) as

�(n; m) = [�x(n; m); �y(n; m)]T (6)

and

Z(n; m) = [zx(n; m); zy(n; m)]T (7)

respectively, we can rewrite (5) compactly as

y(n; m) = x(n; m) +�T (n; m)Z(n; m): (8)

We describe the details of deriving the adaptation algorithm for the

scaling vector in the next subsection.

A. Formulation of the Cost Function

The objective of the adaptation algorithm is to produce an output

image whose local dynamics are increased in the detail areas and left

unchanged in the uniform areas. For ease of implementation of the

adaptive filter and analytic tractability, we define a measure of the local

dynamics of an image using the output of a simple linear highpass filter

g(�) with a 3 × 3 pixel support as shown in Fig. 2. The choice of em-

ploying the linear operator g(�) rather than other measures such as the

local variance is motivated by the simplicity of the adaptation algorithm

that results from the use of this operator. Let gx(n; m) be the measure

of the local dynamics of the input image x(n; m). Also, let gz (n; m)
and gz (n; m) represent the measures of the local dynamics of the out-

puts zx(n; m) and zy(n; m), respectively, of the directional Laplacian
filters. Then, it is straightforward to show for spatially-invariant scale

factors that the corresponding measure of the local dynamics of the

output in (8) is given by

gy(n; m) = gx(n; m) + g(� Z)(n; m): (9)

The adaptive filter changes the scaling vector�(n; m) at each spa-
tial location using a Gauss–Newton adaptation algorithm [9] to reduce

the squared error between the desired local dynamics and the actual

local dynamics measured using the operator g(�). In order to specify

the desired local dynamics of the output image, we first classify each

pixel in the input image as belonging to one of three classes based on
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the activity level in the image measured as the local variance computed

over a 3 × 3 pixel block given by

vi(n; m) = 1

9

n+1

i=n�1 m+1

j=m�1 (x(i; j)� x(n; m))2 (10)

where x(n; m) is the average luminance level over the same 3 × 3

pixel support. Let �1 and �2 be two positive threshold values such that

�1 < �2. We classify the input signal as belonging to a smooth region

if vi(n; m) < �1, a medium-contrast area if �1 � vi(n; m) < �2,

and a high-contrast area otherwise. Increasing the dynamics in smooth

areas will amplify the noise present in such areas and will reduce the

perceptual quality of the image. The local dynamics in high contrast

areas are already high, and such regions require only moderate contrast

enhancement. Themedium activity areas require themost enhancement

action. Based on this rationale, we define the desired activity level in

the output image as

gd(n; m) = �(n; m)gx(n; m) (11)

where �(n; m) is a variable gain given by

�(n; m) =

1; if vi(n; m) < �1

�dh(> 1); if �1 � vi(n; m) < �2

�dl(1 < �dl < �dh); if vi(n; m) � �2.
(12)

The threshold values �1 and �2 and the gains �dl and �dh are selected

to achieve desired levels of the contrast enhancement at the output.

Instead of the definition in (12), one may also choose �(n; m) to be

a continuous function of vi(n; m) with similar characteristics as the

function given above. However, we have employed the definition in

(12) for all the experiments presented later in the paper.

Given the definition of the desired activity level in (11) and the mea-

sure of the activity level in the output image, we define a cost function

for the adaptive filter as

J(n; m) = E[e2(n; m)] = E[(gd(n; m)� gy(n; m))2] (13)

where E[�] represents the statistical expectation of the quantity within

the square brackets.

Remark: It may appear that we can obtain the desired level of ac-

tivity in the output image by simply choosing the output image to be

�(n; m)x(n; m). While this approach will provide an output with

the desired activity level, it will not provide the contrast enhancement

we desire. To see this, we note that scaling the image with a spatially

slowly-varying function scales the local mean value also. Since local

contrast is a function of the ratio of an appropriate measure of local

variability to the local mean, we see that scaling the signal does not

produce changes in the signal contrast, and therefore, no perceivable

improvement in the subjective quality of the image.

B. Adaptation Algorithm

Computation of gy(n; m) requires knowledge of the output pixels
at locations in f(i; j)ji > n or j > mg where the scaling vector has

not yet been computed. In order to derive an implementable adaptation

strategy, we assume that the scaling vector changes slowly during the

adaptation process so that �(n; m) can be employed to compute the

Fig. 4. Original image.

output pixels required to evaluate gy(n; m). The output dynamics can

then be measured approximately as

gy(n; m) = gx(n; m) +�T (n; m)G(n; m) (14)

where

G(n; m) = [gz (n; m); gz (n; m)]T (15)

can be considered as the input vector to the adaptive filter. We assume

that�(n; m) is adapted along the rows. The Gauss–Newton algorithm
for updating this vector is given by

�(n; m+ 1) =�(n; m)� �R
�1(n; m)

�
@

@�(n; m)
(e2(n; m))

=�(n; m) + 2�e(n; m)R�1(n; m)G(n; m);

(16)

whereR(n; m) is an estimate of the autocorrelationmatrix of the input

vectorG(n; m) to the adaptive filter and is computed recursively as

R(n; m) = (1� �)R(n; m� 1) + �G(n; m)GT (n; m): (17)

In the above equation, � < 1 is a positive convergence parameter.

The parameter� in the update equation is a small, positive step size, and

it controls the speed of convergence of the adaptive filter. Fig. 3 shows

the block diagram of the adaptive contrast enhancement algorithm. As

stated earlier, the linear operator g(�) was employed to measure the

local dynamics of the input image. This ensures a unique minimum for

the cost function defined in (13). The values that �1; �2; �dl, and �dh
take depend on the contrast level desired on the output image. We have

experimentally found that the choices of �2 = 200 and (�dl; �dh) =
(3; 4) are effective in providing good contrast enhancement to almost

all images we have tested the algorithm on. The parameter �1 depends

on the noise level of the input image and usually takes values in the

range [30, 60]. We have also applied the adaptive unsharp masking al-

gorithm for preprocessing images prior to interpolation. In this appli-

cation, the parameters must be chosen differently, and the choices of

the various parameters are explained in Section III.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Enhanced images from different processors: (a) linear UM, (b) type 1B processing, (c) cubic UM processing, (d) order statistic UM processing, (e) de Vries
algorithm, and (f) the proposed adaptive method.
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TABLE I
PARAMETERS EMPLOYED FOR

EXPERIMENTS ON ENHANCEMENT

C. Computational Complexity

Direct realization of the adaptive algorithm as described above re-

quires nineteen multiplications and one division operation to compute

each output sample. Of these, two multiplications are necessary to pro-

duce the processed data, while the remaining operations are used in

the adaptation process. While this computational complexity is some-

what larger than the number of operations required to implement the

competing algorithms in [1], [2], and [4], the algorithm can be imple-

mented using VLSI technology for real-time operation. Furthermore,

significant additional complexity reduction may be possible by consid-

ering simpler variations of the adaptation algorithm and more efficient

realizations.

III. EXPERIMENTAL RESULTS

This section presents the results of experiments on applying

our method in applications involving image enhancement and pre-

processing images prior to interpolation. The performance of our

algorithm is compared with those of the linear unsharp masking filter,

the Type-1B algorithm described in [1] and [2], the cubic unsharp

masking algorithm of [2] and [4], the order-statistic unsharp masking

technique [5] and the adaptive algorithm of [7]. A quantitative

evaluation of the performances of the different methods is not trivial

for several reasons.

1) There is no ideal image to be used as a reference.

2) Any reasonable measure should be tuned to the human visual

system. However, perceptual quality evaluation is not a deter-

ministic process.

3) The conditions in which the result is observed affect the evalua-

tion by human viewers.

Even though a significant amount of work is currently being per-

formed on quantitative measures of image quality and there are several

mathematical models of subjective image quality available in the

literature, the state of the art in this area does not provide complete

agreement with qualitative measures resulting from direct visual

inspection. In this paper, we chose to use visual inspection to compare

the performances of the different algorithms.

A. Experiments in Image Enhancement

The image employed to test the enhancement capabilities of our

adaptive algorithm is the 256 × 256-pixel central portion of the com-

monly used image “Lena” shown in Fig. 4. This input image had a

gray-scale resolution of eight bits per pixel. Table I displays the values

of the parameters employed to obtain the results we present. The vari-

ables in the table that are not defined in the paper are as in the references

(a)

(b)

Fig. 6. (a) A 64 × 64 pixel portion of the original image and (b) a 256 × 256
pixel image obtained by interpolating without preprocessing.

Fig. 7. Interpolated image obtained after adaptive preprocessing.

describing the work. In most cases, the parameters were chosen exper-

imentally such that the sharpening effects produced by the methods

were comparable. When this is the case, we can compare the noise am-

plification in the output images to make judgments about the capabil-

ities of the methods under comparison. Unfortunately, in some of the

cases it was not possible to attain the same level of sharpening as in the

other algorithms without introducing significant amounts of perceptu-

ally annoying artifacts. In such situations, we chose the parameters so

as to provide the best possible contrast enhancement effect without in-

troducing the artifacts. The parameters of the adaptive algorithm in [7]

were selected in this manner.

Fig. 5(a)–(f) displays the output images obtained by the six proces-

sors under comparison. It is clear from the results that both the linear

UM and the Type-1B operator provide good sharpening of the image,

especially in the low contrast details. However, the background noise is

amplified and visible in the smooth areas. On the other hand, both the

cubic UM and the order-statistics UM algorithms are not as effective
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in fine detail areas even though they yield better results in uniform re-

gions. The sharpening effect which can be achieved using the adaptive

technique proposed in [7] is significantly smaller.

Comparing the results of the adaptive algorithm presented in this

paper to those obtained using the competing techniques, we can see that

the homogeneous areas of the output of our algorithm are less noisy

than similar areas in Fig. 5(a) or (b). In addition, good sharpening is

also achieved in the detail areas. Thus, the adaptive algorithm also over-

comes the problems of the cubic and of the order-statistics operators.

In particular, the adaptive operator is able to enhance the medium-con-

trast details better than these two algorithms. The noise amplification

due to our adaptive algorithm is lower than that caused by the other al-

gorithms except the cubic unsharp masking operator; however, the low

noise yielded by the cubic operator is due to its reduced enhancement

of medium-contrast (but significant) details. There are some transient

effects in the output of the adaptive processor that occur while the re-

cursions in the adaptive filter are moving from a detail zone to a smooth

area. These transients cause an amplification of the input noise but do

not appear to produce annoying visual effects.

B. Preprocessing for Interpolation

Interpolation is widely used in multirate image processing and

finds uses in applications such as pyramidal coding and zooming.

The presence of antialiasing lowpass filters in the sampling and

subsampling processors often introduces some blurring effects into the

interpolated images. The nonideality of the lowpass filters employed

in such systems partially suppresses useful frequency components in

the passband, and this also contributes to the loss of contrast in the

output image. Perceptually better results can be obtained by applying

a contrast enhancement algorithm to the image before interpolation

[10]. For this experiment, we processed a block of 64 × 64 pixels

of “Lena” and zoomed it to a block of size 256 × 256 pixels using

bicubic interpolation [11] after preprocessing the low-resolution block

with the enhancement operators. The original block of the image is

shown in Fig. 6(a). A general loss of contrast can be observed in Fig.

6(b), which was obtained without applying any preprocessor to the

interpolator. Fig. 7 displays the result obtained using the adaptive

preprocessor of this paper. Our objective here was to slightly enhance

the input image prior to interpolation, and therefore, we chose the

threshold values �1 and �2 to be 200 and 400, respectively, to produce

Fig. 7. We can see that this operator provides satisfactory contrast

enhancement on abrupt edges as well as fine details. Furthermore, the

noise present in the uniform areas appears to be acceptable from a

perceptual point of view. We also processed the input image with the

other processors discussed in the previous subsection. Preprocessing

the images using the linear UM technique, the Type 1B algorithm and

the adaptive algorithm in [7] resulted in amplified noise in smooth

areas. The results obtained with the Cubic UM and the OS-UM

techniques showed a lack of enhancement of the finer details. We do

not include the output images obtained using these techniques here

because of space limitations.

IV. CONCLUDING REMARKS

This paper presented an adaptive algorithm for image enhancement.

The algorithm employs two directional filters whose coefficients are

updated using a Gauss–Newton adaptation strategy. Experimental re-

sults presented in this paper demonstrate that the algorithm performs

well when compared with several approaches to image enhancement

that are available in the literature.
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Reduced Complexity Modeling and Reproduction of

Colored Textures

Patrizio Campisi, Alessandro Neri, and Gaetano Scarano

Abstract—An unsupervised color texture synthesis-by-analysis method

is described. The texture is reproduced to appear perceptually similar to
a given prototype by copying its statistical properties up to the second

order. The synthesized texture is obtained at the output of a Single-Input
Three-Output nonlinear system driven by a realization of a white Gaussian

random field. Significant complexity reduction is gained by exploiting the
rank deficiency of the Cross Power Spectral Density Matrix of the color

texture samples.

Index Terms—Image color analysis, image generation, image texture
analysis.

I. INTRODUCTION

Texture reproduction is a challenging theoretical problem as well

as an important issue in practical applications. The texture synthesis

has been widely investigated since it can be applied in the simulation

of textured fields to be used in the performance assessment of pat-

tern detection procedures, and in simulation of image background in
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