1,917 research outputs found

    Nonlinear Processing of Shape Information in Rat Lateral Extrastriate Cortex

    Get PDF
    In rodents, the progression of extrastriate areas located laterally to primary visual cortex (V1) has been assigned to a putative object-processing pathway (homologous to the primate ventral stream), based on anatomical considerations. Recently, we found functional support for such attribution (Tafazoli et al., 2017), by showing that this cortical progression is specialized for coding object identity despite view changes, the hallmark property of a ventral-like pathway. Here, we sought to clarify what computations are at the base of such specialization. To this aim, we performed multielectrode recordings from V1 and laterolateral area LL (at the apex of the putative ventral-like hierarchy) of male adult rats, during the presentation of drifting gratings and noise movies. We found that the extent to which neuronal responses were entrained to the phase of the gratings sharply dropped from V1 to LL, along with the quality of the receptive fields inferred through reverse correlation. Concomitantly, the tendency of neurons to respond to different oriented gratings increased, whereas the sharpness of orientation tuning declined. Critically, these trends are consistent with the nonlinear summation of visual inputs that is expected to take place along the ventral stream, according to the predictions of hierarchical models of ventral computations and a meta-analysis of the monkey literature. This suggests an intriguing homology between the mechanisms responsible for building up shape selectivity and transformation tolerance in the visual cortex of primates and rodents, reasserting the potential of the latter as models to investigate ventral stream functions at the circuitry level.SIGNIFICANCE STATEMENT Despite the growing popularity of rodents as models of visual functions, it remains unclear whether their visual cortex contains specialized modules for processing shape information. To addresses this question, we compared how neuronal tuning evolves from rat primary visual cortex (V1) to a downstream visual cortical region (area LL) that previous work has implicated in shape processing. In our experiments, LL neurons displayed a stronger tendency to respond to drifting gratings with different orientations while maintaining a sustained response across the whole duration of the drift cycle. These trends match the increased complexity of pattern selectivity and the augmented tolerance to stimulus translation found in monkey visual temporal cortex, thus revealing a homology between shape processing in rodents and primates

    Modelo dinámico de la circuitería push-pull del dLGN

    Get PDF
    El núcleo geniculado lateral dorsal (dNGL) es la entrada principal de la información visual a la corteza visual primaria (V1). La función que siempre se le ha atribuido, es la de una mera estación de relevo, es decir, que no realiza ningún tipo de procesamiento relevante de la información que procede de las células ganglionares. El complejo esquema de la circuitería existente entre las células de relevo y ganglionares nos hace dudar de tal afirmación. En la presente tesis planteamos como el dNGL podría estar transformando el mensaje que la retina envía a V1. Para ello hemos creado modelos computacionales basados en evidencias experimentales, que nos permiten analizar el tipo de codificación espacio-temporal que se están llevando a cabo sobre los estímulos visuales

    Investigating shape representation in area V4 with HMAX: Orientation and Grating selectivities

    Get PDF
    The question of how shape is represented is of central interest to understanding visual processing in cortex. While tuning properties of the cells in early part of the ventral visual stream, thought to be responsible for object recognition in the primate, are comparatively well understood, several different theories have been proposed regarding tuning in higher visual areas, such as V4. We used the model of object recognition in cortex presented by Riesenhuber and Poggio (1999), where more complex shape tuning in higher layers is the result of combining afferent inputs tuned to simpler features, and compared the tuning properties of model units in intermediate layers to those of V4 neurons from the literature. In particular, we investigated the issue of shape representation in visual area V1 and V4 using oriented bars and various types of gratings (polar, hyperbolic, and Cartesian), as used in several physiology experiments. Our computational model was able to reproduce several physiological findings, such as the broadening distribution of the orientation bandwidths and the emergence of a bias toward non-Cartesian stimuli. Interestingly, the simulation results suggest that some V4 neurons receive input from afferents with spatially separated receptive fields, leading to experimentally testable predictions. However, the simulations also show that the stimulus set of Cartesian and non-Cartesian gratings is not sufficiently complex to probe shape tuning in higher areas, necessitating the use of more complex stimulus sets

    Cortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Images

    Full text link
    Previous models of stereopsis have concentrated on the task of binocularly matching left and right eye primitives uniquely. A disparity smoothness constraint is often invoked to limit the number of possible matches. These approaches neglect the fact that surface discontinuities are both abundant in natural everyday scenes, and provide a useful cue for scene segmentation. da Vinci stereopsis refers to the more general problem of dealing with surface discontinuities and their associated unmatched monocular regions within binocular scenes. This study develops a mathematical realization of a neural network theory of biological vision, called FACADE Theory, that shows how early cortical stereopsis processes are related to later cortical processes of 3-D surface representation. The mathematical model demonstrates through computer simulation how the visual cortex may generate 3-D boundary segmentations and use them to control filling-in of 3-D surface properties in response to visual scenes. Model mechanisms correctly match disparate binocular regions while filling-in monocular regions with the correct depth within a binocularly viewed scene. This achievement required introduction of a new multiscale binocular filter for stereo matching which clarifies how cortical complex cells match image contours of like contrast polarity, while pooling signals from opposite contrast polarities. Competitive interactions among filter cells suggest how false binocular matches and unmatched monocular cues, which contain eye-of-origin information, arc automatically handled across multiple spatial scales. This network also helps to explain data concerning context-sensitive binocular matching. Pooling of signals from even-symmetric and odd-symmctric simple cells at complex cells helps to eliminate spurious activity peaks in matchable signals. Later stages of cortical processing by the blob and interblob streams, including refined concepts of cooperative boundary grouping and reciprocal stream interactions between boundary and surface representations, arc modeled to provide a complete simulation of the da Vinci stereopsis percept.Office of Naval Research (N00014-95-I-0409, N00014-85-1-0657, N00014-92-J-4015, N00014-91-J-4100); Airforce Office of Scientific Research (90-0175); National Science Foundation (IRI-90-00530); The James S. McDonnell Foundation (94-40

    Peripheral and Central Auditory Processing in People With Absolute Pitch

    Get PDF
    Absolute pitch (AP) is a rare ability that is defined by being able to name musical pitches without a reference standard. This ability has been of interest to researchers studying music cognition and the processing of pitch information because it is very rarely expressed and raises questions about developmental interactions between biological predispositions and musical training. This dissertation focuses mainly on the peripheral and central neural substrates and is divided into seven chapters. The first chapter reviews the anatomy, function, and frequency resolution of the auditory peripheral and central nervous system. It includes background information pertaining to the origins of AP and describes inconsistencies reported throughout a number of studies that characterize AP emergence. Chapter two details a series of peripheral experiments on twenty AP and thirty-three control subjects recruited for testing at two locations. The goal was to test whether frequency resolution differences could be resolved at the level of the cochlea within both groups as a potential correlate for the genesis of AP. Chapter three details two behavioural tests that were administered to assess the smallest frequency difference that AP musicians could resolve and to test how well they could detect melodic mistuning excerpts compared to non-AP musicians and controls without musical experience. Both AP musicians and non-AP musicians did significantly better in both tests compared to non-musicians. However, there were no differences between the AP and non-AP musician groups. Chapter four details a functional MRI study that measured frequency tuning in the cortex using a population receptive field (pRF) model that estimates preferred frequency bandwidth in each voxel. This method was also tested in auditory subcortical nuclei such as the inferior colliculus and medial geniculate nucleus. Chapter five reports the neuro-anatomical correlates of musicianship and AP using structural MRI. Here we investigated cortical thickness and volume differences among the three groups and found a number of regions differed significantly. Cortical thickness was significantly greater in the left Heschls gyrus (an area that acts as a central hub for auditory processing) in AP musicians compared to non-AP musicians and non-musicians. AP and non-AP musicians also exhibited increased cortical thickness and volume throughout their cortex and subcortex. In line with previous studies, AP musicians showed decreased cortical thickness and volume in frontal regions such as the pars opercularis part of the inferior frontal gyrus. Chapter six reports the neuro-anatomical correlates of musicianship and AP using diffusion tensor imaging (DTI) to measure connectivity and white matter structural integrity in regions associated with audition and language processing. Tracts connecting language processing regions were reduced in volume in AP musicians compared to their non-AP counterparts. Chapter seven includes the general discussion, which integrates the findings and results from the five experiments. Our findings indicate that the sharpness of frequency tuning did not differ in either peripheral or central auditory processing stages among AP and non-AP groups. This implies that AP possessors do not encode or represent auditory frequency any differently than other groups, from the periphery through auditory cortex; instead, the neural substrate of their abilities must lie elsewhere. The automatic and working memory independent categorization abilities in AP may reflect more refined efficiency in local but not global functional connectivity

    Sound Encoding in the Mouse Cochlea: Molecular Physiology and Optogenetic Stimulation

    Get PDF
    Afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons in the cochlea translate sound information into a discrete spike code, providing us the opportunity to directly observe the output of the cochlea. The availability of mutant strains with genetic hearing impairment makes the mouse a valuable species to investigate the molecular mechanisms of cochlear function. In this thesis, mouse was used as a model species to study cochlear sound encoding by recording single unit activities from auditory nerve fibers (ANFs) in vivo. First, developmental changes of ANF responses before and after hearing onset were characterized as an introduction on how normal ANF responses mature during the early postnatal age. Spontaneous bursting activity from ANFs/cochlear nucleus neurons was observed before hearing onset. After hearing onset, the average spontaneous and evoked spike rates of single ANFs increased, while tuning threshold and frequency selectivity improved between p14-15 to p20-21. To gain insight into the role of synaptic organization in cochlear and ANF function, mice carrying targeted mutations of presynaptic scaffold protein Bassoon were analyzed. IHCs of mice that are deficient of the central portion of the presynaptic scaffold protein Bassoon (BSNΔEx4/5) were previously shown to mostly lack synaptic ribbons and to have a smaller readily releasable pool of synaptic vesicles and reduced exocytosis, resulting in lower firing rates of ANFs. To distinguish better between the effects of the Bassoon mutation and those of the loss of the synaptic ribbon, the BSNΔEx4/5 phenotype was compared with that of a newly generated gene trap mutant (BSNgt), which has an intermediate phenotype in terms of the fraction of ribbon occupied active zones, presumably due to leaky expression of a small amount of Bassoon protein. The mean distance between the remaining ribbons and the active zone was greater in BSNgt than in wildtype and the synaptic calcium channel clusters had reduced immunostaining reactivity. The BSNgt IHCs showed a slightly less severe reduction of peak Ca2+ currents and sustained exocytosis compared to BSNΔEx4/5. However, IHC fast exocytosis and single unit responses of ANFs showed almost identical response properties between the two mutants. These data suggest that it is not the physical presence or absence of a synaptic ribbon but rather the disruption of presynaptic ultrastructure (e.g. abnormal calcium channel clustering, looser ribbon anchorage) that mainly determines the synaptic phenotype of Bassoon mutants.  Next, the ANF responses of Black Swiss mice (BLSW) were characterized. BLSW mice have inherited early onset sensorineural hearing loss and susceptibility to audiogenic seizures due to a mutation in the Gipc3 gene. BLSW ANFs showed higher tuning thresholds and broader frequency selectivity, which is consistent with a previous report of OHC dysfunction. Interestingly, BLSW ANFs had elevated spontaneous discharge activity, indicating that Gipc3 is a key molecular player not only for normal OHC but also for IHC function.  Upon hearing loss due to HC dysfunction, the remaining ANFs can be electrically stimulated to restore the sense of hearing. The number of useful frequency channels using electrical stimulation is limited by the spread of current. Focused optical stimulation may allow for more selective activation of ANFs compared to electrical stimulation. In the last part of the thesis, spiking activity was measured in response to laser light stimulation in ANFs and cochlear nucleus neurons of mice with constitutive expression of the light-gated ion channel Channelrhodopsin-2 and virus-mediated expression of the faster ChR2 variant CatCh.
    corecore