237 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Combined Learned and Classical Methods for Real-Time Visual Perception in Autonomous Driving

    Full text link
    Autonomy, robotics, and Artificial Intelligence (AI) are among the main defining themes of next-generation societies. Of the most important applications of said technologies is driving automation which spans from different Advanced Driver Assistance Systems (ADAS) to full self-driving vehicles. Driving automation is promising to reduce accidents, increase safety, and increase access to mobility for more people such as the elderly and the handicapped. However, one of the main challenges facing autonomous vehicles is robust perception which can enable safe interaction and decision making. With so many sensors to perceive the environment, each with its own capabilities and limitations, vision is by far one of the main sensing modalities. Cameras are cheap and can provide rich information of the observed scene. Therefore, this dissertation develops a set of visual perception algorithms with a focus on autonomous driving as the target application area. This dissertation starts by addressing the problem of real-time motion estimation of an agent using only the visual input from a camera attached to it, a problem known as visual odometry. The visual odometry algorithm can achieve low drift rates over long-traveled distances. This is made possible through the innovative local mapping approach used. This visual odometry algorithm was then combined with my multi-object detection and tracking system. The tracking system operates in a tracking-by-detection paradigm where an object detector based on convolution neural networks (CNNs) is used. Therefore, the combined system can detect and track other traffic participants both in image domain and in 3D world frame while simultaneously estimating vehicle motion. This is a necessary requirement for obstacle avoidance and safe navigation. Finally, the operational range of traditional monocular cameras was expanded with the capability to infer depth and thus replace stereo and RGB-D cameras. This is accomplished through a single-stream convolution neural network which can output both depth prediction and semantic segmentation. Semantic segmentation is the process of classifying each pixel in an image and is an important step toward scene understanding. Literature survey, algorithms descriptions, and comprehensive evaluations on real-world datasets are presented.Ph.D.College of Engineering & Computer ScienceUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/153989/1/Mohamed Aladem Final Dissertation.pdfDescription of Mohamed Aladem Final Dissertation.pdf : Dissertatio

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Comprehensive retinal image analysis: image processing and feature extraction techniques oriented to the clinical task

    Get PDF
    Medical digital imaging has become a key element of modern health care procedures. It provides a visual documentation, a permanent record for the patients, and most importantly the ability to extract information about many diseases. Ophthalmology is a field that is heavily dependent on the analysis of digital images because they can aid in establishing an early diagnosis even before the first symptoms appear. This dissertation contributes to the digital analysis of such images and the problems that arise along the imaging pipeline, a field that is commonly referred to as retinal image analysis. We have dealt with and proposed solutions to problems that arise in retinal image acquisition and longitudinal monitoring of retinal disease evolution. Specifically, non-uniform illumination, poor image quality, automated focusing, and multichannel analysis. However, there are many unavoidable situations in which images of poor quality, like blurred retinal images because of aberrations in the eye, are acquired. To address this problem we have proposed two approaches for blind deconvolution of blurred retinal images. In the first approach, we consider the blur to be space-invariant and later in the second approach we extend the work and propose a more general space-variant scheme. For the development of the algorithms we have built preprocessing solutions that have enabled the extraction of retinal features of medical relevancy, like the segmentation of the optic disc and the detection and visualization of longitudinal structural changes in the retina. Encouraging experimental results carried out on real retinal images coming from the clinical setting demonstrate the applicability of our proposed solutions

    Colour and Colorimetry Multidisciplinary Contributions Vol. XIb

    Get PDF
    It is well known that the subject of colour has an impact on a range of disciplines. Colour has been studied in depth for many centuries, and as well as contributing to theoretical and scientific knowledge, there have been significant developments in applied colour research, which has many implications for the wider socio-economic community. At the 7th Convention of Colorimetry in Parma, on the 1st October 2004, as an evolution of the previous SIOF Group of Colorimetry and Reflectoscopy founded in 1995, the "Gruppo del Colore" was established. The objective was to encourage multi and interdisciplinary collaboration and networking between people in Italy that addresses problems and issues on colour and illumination from a professional, cultural and scientific point of view. On the 16th of September 2011 in Rome, in occasion of the VII Color Conference, the members assembly decided to vote for the autonomy of the group. The autonomy of the Association has been achieved in early 2012. These are the proceedings of the English sessions of the XI Conferenza del Colore

    Anthropology of Color

    Get PDF
    The field of color categorization has always been intrinsically multi- and inter-disciplinary, since its beginnings in the nineteenth century. The main contribution of this book is to foster a new level of integration among different approaches to the anthropological study of color. The editors have put great effort into bringing together research from anthropology, linguistics, psychology, semiotics, and a variety of other fields, by promoting the exploration of the different but interacting and complementary ways in which these various perspectives model the domain of color experience. By so doing, they significantly promote the emergence of a coherent field of the anthropology of color

    Greening Cities Shaping Cities: Pinpointing Nature-Based Solutions in Cities between Shared Governance and Citizen Participation

    Get PDF
    The topic of pinpointing Nature-Based Solutions (NBS) in the urban context has been cultivating interests lately from different scholars, urban planning practitioners and policymakers. This Special Issue originates from the Greening Cities Shaping Cities Symposium held at the Politecnico di Milano (12–13 October 2020), aiming at bridging the gap between the science and practice of implementing NBS in the built environment, as well as highlighting the importance of citizen participation in shared governance and policy making. The Special Issue was also made open to other contributions from outside the symposium in order to allow for contributions from a major scientific and practical audience wherever possible. Indeed, we have gathered contributions from Italy, Germany, the Netherlands, Turkey, Brazil, Portugal, Denmark, France, Bulgaria, Sweden, Hungary, Spain, the UAE, the UK, and the USA
    • …
    corecore