195,124 research outputs found

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    Metrological characterization of a vision-based system for relative pose measurements with fiducial marker mapping for spacecrafts

    Get PDF
    An improved approach for the measurement of the relative pose between a target and a chaser spacecraft is presented. The selected method is based on a single camera, which can be mounted on the chaser, and a plurality of fiducial markers, which can be mounted on the external surface of the target. The measurement procedure comprises of a closed-form solution of the Perspective from n Points (PnP) problem, a RANdom SAmple Consensus (RANSAC) procedure, a non-linear local optimization and a global Bundle Adjustment refinement of the marker map and relative poses. A metrological characterization of the measurement system is performed using an experimental set-up that can impose rotations combined with a linear translation and can measure them. The rotation and position measurement errors are calculated with reference instrumentations and their uncertainties are evaluated by the Monte Carlo method. The experimental laboratory tests highlight the significant improvements provided by the Bundle Adjustment refinement. Moreover, a set of possible influencing physical parameters are defined and their correlations with the rotation and position errors and uncertainties are analyzed. Using both numerical quantitative correlation coefficients and qualitative graphical representations, the most significant parameters for the final measurement errors and uncertainties are determined. The obtained results give clear indications and advice for the design of future measurement systems and for the selection of the marker positioning on a satellite surface

    Bayesian off-line detection of multiple change-points corrupted by multiplicative noise : application to SAR image edge detection

    Get PDF
    This paper addresses the problem of Bayesian off-line change-point detection in synthetic aperture radar images. The minimum mean square error and maximum a posteriori estimators of the changepoint positions are studied. Both estimators cannot be implemented because of optimization or integration problems. A practical implementation using Markov chain Monte Carlo methods is proposed. This implementation requires a priori knowledge of the so-called hyperparameters. A hyperparameter estimation procedure is proposed that alleviates the requirement of knowing the values of the hyperparameters. Simulation results on synthetic signals and synthetic aperture radar images are presented

    Guided Filtering based Pyramidal Stereo Matching for Unrectified Images

    Get PDF
    Stereo matching deals with recovering quantitative depth information from a set of input images, based on the visual disparity between corresponding points. Generally most of the algorithms assume that the processed images are rectified. As robotics becomes popular, conducting stereo matching in the context of cloth manipulation, such as obtaining the disparity map of the garments from the two cameras of the cloth folding robot, is useful and challenging. This is resulted from the fact of the high efficiency, accuracy and low memory requirement under the usage of high resolution images in order to capture the details (e.g. cloth wrinkles) for the given application (e.g. cloth folding). Meanwhile, the images can be unrectified. Therefore, we propose to adapt guided filtering algorithm into the pyramidical stereo matching framework that works directly for unrectified images. To evaluate the proposed unrectified stereo matching in terms of accuracy, we present three datasets that are suited to especially the characteristics of the task of cloth manipulations. By com- paring the proposed algorithm with two baseline algorithms on those three datasets, we demonstrate that our proposed approach is accurate, efficient and requires low memory. This also shows that rather than relying on image rectification, directly applying stereo matching through the unrectified images can be also quite effective and meanwhile efficien

    Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data

    Full text link
    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS407 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore