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Abstract

This paper addresses the problem of Bayesian o�-line change-point detection in synthetic aperture radar images. The

minimum mean square error and maximum a posteriori estimators of the changepoint positions are studied. Both estimators

cannot be implemented because of optimization or integration problems. A practical implementation using Markov chain

Monte Carlo methods is proposed. This implementation requires a priori knowledge of the so-called hyperparameters. A

hyperparameter estimation procedure is proposed that alleviates the requirement of knowing the values of the hyperparameters.

Simulation results on synthetic signals and synthetic aperture radar images are presented.
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1. Introduction

Increasing interest is being shown in many signal

processing applications for change-point estimation

and detection. These applications include segmenta-

tion, fault detection or monitoring (for an overview see

[2] and references therein). Of course, the problems of

estimating and detecting change-points have received

much attention in the signal processing and statisti-

cal literature. For example, the generalized likelihood

ratio (GLR) detector proposed in [47] has shown in-

teresting properties for these problems [1,2]. Some
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shortcomings of the GLR detector were eliminated

by considering the change-point amplitudes as nui-

sance parameters and by using marginalization [22].

Marginalization is a common procedure in Bayesian

inference, which has also been widely considered

for change-point estimation and detection. The seg-

mentation of non-stationary signals which can be

represented by autoregressive processes in indepen-

dent segments is studied in [14]. The o�-line segmen-

tation of signals using a large sample approximation

of the MAP criterion is studied in [12]. The deriva-

tion is general in the sense that it is valid for signals

that can be parametrized by linear or nonlinear func-

tions embedded in additive possibly non-Gaussian

and colored noise. However, instead of pursuing

the exact MAP solution, a MAP approximation

based on asymptotic Bayesian theory is studied. The
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intractability of the a posteriori distributions for the

unknown change-point parameters has led to some

interesting approaches based on Markov Chain Monte

Carlo (MCMC) methods [19]. For example, the iden-

ti�cation of multiple change-points in linearly mod-

elled data was investigated in [33]. In this study, the

parameter space is partitioned in three subspaces: lin-

ear coe�cients, noise parameters and change-points

which are sampled using the Gibbs sampler. A Gibbs

sampling approach to Bayesian inference for single

change-point problems and its extension to multi-

ple change-points were also presented by Carlin et

al. [6] and Stephens [36]. A new parametrization of

the change-point model and an associated MCMC

algorithm were recently studied in [7].

Most of the previous studies have been carried out

to detect changes in signals contaminated by additive

noise, i.e., to detect mean shifts in the observed time

series. Consequently, the proposed algorithms cannot

be used when signals are corrupted by non-additive

interferences. Some authors have solved this prob-

lem by considering more general change-point mod-

els including random level-shift models [27,28] or

multiplicative noise models [15,34,38,39]. This paper

addresses the problem of change-point detection in

multiplicative noise models. The problem has received

much attention for edge detection in synthetic aper-

ture radar (SAR) images. Indeed, because of the mul-

tiplicative speckle noise, most standard edge detectors

such as gradient-based detectors or Bayesian detec-

tors [13,14,37] perform poorly when applied to SAR

images. Touzi et al. [43] studied a statistical and geo-

metrical edge detector for SAR images. This detector

denoted the ROA detector was based on a ratio of av-

erages (ROA). It was shown in [43] to outperform the

gradient detector, the Sobel detector and the Frost et

al. detector [16]. A new edge detector for SAR images

was recently studied in [15]. This detector denoted

the ROEWA detector performed a line-by-line and

column-by-column change-point detection, by com-

puting the ratio of exponentially weighted averages

(ROEWA) on opposite sides of the central pixel in

the horizontal and vertical directions. These averages

were computed by �ltering the image intensity by

the in�nite symmetric exponential �lter. The use of

the in�nite symmetric exponential �lter was moti-

vated by the fact that it yields the best unbiased lin-

ear re
ectivity estimator (which minimizes the mean

square error between the real image re
ectivity and

the �ltered noisy image re
ectivity). The ROEWAs in

the horizontal and vertical directions were then com-

bined to yield an Edge Strength Map (ESM). A high

pixel value in the ESM indicates the presence of an

edge at this position. Finally, local maxima were ex-

tracted and attributed to edges using the watershed al-

gorithm [46]. Fjortoft et al. showed that the ROEWA

detector outperforms the ROA detector in a multiedge

context [15].

The main contribution of this paper is to adapt the

Bayesian detector proposed by Lavielle in [25] to the

edge detection problem in SAR images. An interesting

hyperparameter estimation procedure is also studied.

The noisy SAR images are modelled as piecewise con-

stant �elds corrupted by multiplicative speckle noise.

The edge detection is performed o�-line, line-by-line

and column-by-column as in [13,15,37]. Note that the

on-line approaches studied by Basseville [2] are not

appropriate for SAR image segmentation, since the

whole image is available. Moreover, as emphasized in

[37], in image segmentation, a retrospective scheme

is more attractive as it re
ects the global rather than

local aspects of the edge detection problem. In a

Bayesian framework, the unknown change-point pa-

rameters are estimated using their a posteriori distri-

bution via the minimum mean square error (MMSE)

or marginal maximum a posteriori (MMAP) esti-

mators. These estimators are optimal in the sense

that they minimize an appropriate cost function [45,

p. 55]. It is interesting to note that change-point

parameters could also be estimated using the max-

imum likelihood (ML) method [41]. However, the

resulting maximum likelihood estimator (MLE) has

serious limitations, especially when multiple abrupt

changes occur. For instance, the MLE is sensitive to

over-parametrization [33, p. 9]. Unfortunately, the

implementation of the MMSE and MMAP estimators

is di�cult in a multiedge situation. MCMC methods

are then used to simulate the posterior distribution

of the change-point positions and to compute the

estimates.

The SAR image model is described brie
y in

Section 2. Section 3 studies the change-point in-

stant MMSE and MAP estimators. The simulation

of a posteriori change-point instant distributions us-

ing MCMC methods is discussed in Section 4. The

problem of hyperparameter estimation is discussed



in Section 5. Simulation results and conclusions are

reported in Sections 6 and 7.

2. Signal model

The complex SAR image (also referred to as par-

ent process [24]) is computed after the SAR system

receives the coherent sum of re
ected monochromatic

microwaves. The magnitude and magnitude-squared

of this complex image are denoted amplitude SAR

image and intensity SAR image, respectively. SAR

amplitude images can be obtained in several ways (1)

by averaging L amplitude images, (2) by averaging L

intensity images and then taking the square root, or

(3) coherently averaging complex images to obtain an

intensity image and then taking the square root [23].

This paper studies edge detection in SAR images pro-

duced via the second approach.

2.1. Speckle statistics for a single pixel

The complex SAR image at position (x; y) denoted

z(x; y) (or z for brevity) is usually modelled by a com-

plex zero-mean circular Gaussian variable (consider-

ing the very large number of image cells in the radar

�eld of view and invoking the central limit theorem [4]

[10, p. 215] with probability density function (pdf):

f(z) =
1

2��2(x; y)
e−|z|

2=2�2(x;y); z(x; y)∈C: (1)

The intensity image at position (x; y) is de�ned as

w(x; y) = |z(x; y)|2. A standard change of variables

shows that w(x; y) is exponentially distributed with

mean E[w(x; y)] = 2�2(x; y) [21]. Consequently, the

intensity image at position (x; y) can be written as

the product of the terrain re
ectivity at position (x; y)

denoted m(x; y) = 2�2(x; y) and a random variable

w̃(x; y) (exponentially distributed with parameter

E[w̃(x; y)] = 1) which is independent of m(x; y), i.e.,

w(x; y) = m(x; y)w̃(x; y). To reduce the speckle vari-

ance, several independent images denoted “looks”

are usually averaged. When L images are averaged,

the resulting intensity at a pixel can be written as

v(x; y) = 1=L
∑L

j=1 wj(x; y) (the index j denotes the

jth look) whose pdf is [29, p. 95]:

f(v) =

(

L

m

)L
vL−1

 (L)
exp

(

−
Lv

m

)

; v¿ 0; (2)

where  (t)=
∫ +∞

0
ut−1e−udu is the standard Gamma

function and L (the number of looks) is assumed

to be known in the rest of the paper. It is interest-

ing to note that the variable v(x; y) can be written

as a product of the real image intensity at posi-

tion (x; y), that is m(x; y) and a random variable

b(x; y) = 1=L
∑L

j=1 w̃j(x; y) which is independent

of m(x; y). This property explains the terminology

“multiplicative noise” for b(x; y) and assumes (as

in [15,16]; [29, p. 95]) (1) that the transfer func-

tion of the SAR system does not vary signi�cantly

over the bandwidth of interest, (2) that the additive

measurement noise can be neglected. The statistical

properties of b(x; y) can be easily derived from Eq.

(2): the variable b(x; y) is distributed according to a

Gamma distribution with parameters L and L [31, p.

381]. The mean and variance of this distribution are

E[b(x; y)] = 1 and Var[b(x; y)] = 1=L, which shows

the speckle noise reduction due to the averaging of L

independent images.

2.2. Speckle statistics for a line of the SAR image

intensity

Denote N as the number of pixels in a line of the

SAR image intensity and T as the sampling period.

Using the single pixel statistics (described in Section

2.1), a line of the SAR image intensity can bemodelled

as follows:

vn = bnmn; n= 1; : : : ; N; (3)

where bn = b(nT ); mn = m(nT ); vn = v(nT ) are the

multiplicative speckle noise, the uncorrupted and

corrupted line of the SAR image intensity respec-

tively. The properties of bn and mn can be de�ned as

follows:

• the autocovariance function of the speckle may
decrease very rapidly. In this case, the speckle

noise sequence bn can be approximated by an in-

dependent identically distributed (iid) sequence

of random variables with Gamma distribution

whose parameters are L and L [15]; [29, p. 99];

[44, p. 1914],

• The uncorrupted line of the SAR image intensity
mn can be modelled by K steps, when K �elds with

di�erent re
ectivities are considered. This model

referred to as the Cartoon Model [29, p. 197] is a



good approximation for important scene types such

as agricultural �elds. Denote li−1 (with l0 = 0 and

lK = N ) as the sample point after which there is

the ith sudden change in the signal (i = 1; : : : ; K).

In the following, the integers li−1 will be referred

to as change locations and the corresponding ac-

tual change locations are ti−1 = li−1T + �, with

0¡�¡T . The uncorrupted line of the SAR image

can then be de�ned by

mn = Ai ; n∈ ]li−1; li]; i = 1; : : : ; K; (4)

where Ai¿ 0 is the ith step amplitude.

The line-by-line edge detection problem con-

sists of estimating the change-point locations li for

i∈{1; : : : ; K − 1} from the observed data vn. This

edge detection problem is crucial in image segmen-

tation. Once the change-point locations have been

estimated, the line of the SAR image can be recov-

ered by estimating the change-point amplitudes Ai.

Consequently, the edge detection problem can also

be used to recover the radar re
ectivity (ideal image

without speckle) (this problem is currently referred

to as speckle �ltering).

3. Bayesian inference

3.1. Likelihood

The likelihood function of the observed data

v = (v1; : : : ; vN )
t (where t denotes transposition),

conditioned upon the change-point locations l =

(l1; : : : ; lK−1)
t and amplitudes A = (A1; : : : ; AK)

t is

de�ned by

f(v|K; A; l) =

K
∏

k=1

lk
∏

i=lk−1+1

(

L

Ak

)L

×
vL−1i

 (L)
exp

(

−
Lvi

Ak

)

˙

K
∏

k=1

1

ALnkk

exp

(

−
K
∑

k=1

LSk

Ak

)

(5)

with nk = lk − lk−1 and Sk =
∑lk

i=lk−1+1
vi. The prob-

lem can be reparameterized by introducing binary

variables de�ned by

rj = 1 if there is a

change-point at pixel j;

rj = 0 otherwise;

j = 1; : : : ; N − 1:

(6)

Conventionally, rN = 1 such that the number of step

changes equals the number of steps denoted as K(r)=
∑N

j=1 rj with r=(r1; : : : ; rN−1)
t. The likelihood func-

tion of v can then be rewritten as

f(v|�)

˙ exp

(

−L

K(r)
∑

k=1

{

Sk(r)

Ak
+ nk(r)logAk

}

)

; (7)

where “˙” means “proportional to”, nk(r) = lk(r)−

lk−1(r), �= (r; A) and Sk(r) =
∑lk (r)

i=lk−1(r)+1
vi.

3.2. Parameter priors

The choice of priors in Bayesian inference is im-

portant and has received much attention in the liter-

ature [5, p. 183]; [3, p. 264]; [35]. This study uses

the following priors for the change-point detection

problem:

• Independent Bernoulli priors are chosen for the
change-point locations:

f(r) = �K(r)−1(1− �)N−K(r);

where r ∈{0; 1}N−1: (8)

The parameter �∈ ]0; 1[ is the Bernoulli parameter
which represents the a priori probability of having

a change-point at a given position.

• Independent inverted-gamma (IG) priors (denoted
as Ai ∼ IG(�; 
)) are chosen for the step ampli-

tudes:

f(A|r) =

K(r)
∏

i=1


�

 (�)A�+1i

exp

(

−



Ai

)

×I[0;+∞[(Ai); (9)

where �¿ 0 and 
¿ 0 are two constants, and

I[0;+∞[(:) is an indicator function (I[0;+∞[(t) = 1

if t ∈ [0;+∞[ and I[0;+∞[(t) = 0 if t ∈ ] −∞; 0[).
Suitable choices of parameters � and 
 allow to



incorporate either very vague or more speci�c

prior information about the step amplitude (see

discussions in [20]). The motivation for choosing

the IG prior (whose main properties can be found

in [3, p. 119] or [20]) is that the IG belongs to the

conjugate family of priors for A with respect to

the likelihood f(v|�) [3, p. 265]. In other words,
f(A|r) has the same “structure” as f(v|�), when
f(v|�) is viewed as a function of A. This yields
analytically tractable integration of f(�|v) with
respect to Ai, i.e., allows marginalization.

3.3. MMSE and MAP estimators

Using Bayes’ theorem, we can express the param-

eter posterior pdf as

f(�|v)˙ f(v|�)f(�) = f(v|A; r)f(A|r)f(r); (10)

where f(v|�) has been de�ned in Eq. (7) and

f(�) = f(A|r)f(r) is the a priori distribution for
� = (r; A). Edge detection only requires the estima-

tion of the change-point vector r. Consequently, the

so called “nuisance parameters” Ai can be eliminated

by integrating out Ai from the posterior pdf (10).

Some straightforward computations allow to obtain

the marginal a posteriori pdf of r:

f(r|v) =C(v; L)�K(r)−1(1− �)N−K(r)

�K(r)

 (�)K(r)

×

K(r)
∏

k=1

 (�+ Lnk(r))

(
+ LSk(r))Lnk (r)+�
(11)

with C(v; L) = (LL= (L))N
∏N

i=1 v
L−1
i . Equivalently,

the marginal pdf of r can be written as f(r|v) ˙
exp(−U (r|v)) where

U (r|v) = �K(r) +

K(r)
∑

k=1

log
(
+ LSk(r))

Lnk (r)+�

 (�+ Lnk(r))
(12)

is referred to as the energy function and � =

log [(1 − �)=�] − log [
�= (�)]. Note that the param-
eter � is a decreasing function of �. Consequently,

the smaller �, the higher the a priori probability of

a change and the fewer the omissions. On the other

hand, the bigger �, the fewer the false alarms. The

parameter � controls the resolution level of the seg-

mentation: changes with small amplitudes will be

detected for small values of �.

The unknown parameter vector r can be estimated

from the posterior distribution f(r|v) by minimizing
the mean of an appropriate cost function [45, p. 55].

Standard Bayesian estimators are the (marginal) mini-

mum mean square estimator (MMSE) and (marginal)

maximum a posteriori (MAP) estimators:

• The MMSE estimator of r, which minimizes the
quadratic cost function, is de�ned by

r̂ = E[r|v]:

Here, since r ∈{0; 1}N , the MMSE estimator of r
yields the change-point a posteriori probabilities,

which will be useful to de�ne an SAR image edge

strength map (see Section 7),

• The MAP estimator of r, which minimizes the 0-1
cost function, is de�ned by

r̂ = argmax
r

f(r|v) = argmin
r

U (r|v): (13)

Unfortunately, a closed-form expression of theMMSE

and MAP estimators of r cannot be obtained.

4. MCMC methods

The previous section showed that a closed-form

expression for MMAP or MMSE estimators of the

change-point positions cannot be obtained. Indeed,

both estimators su�er from optimization or integra-

tion problems. Numerical techniques based onMCMC

methods can then be explored to solve these problems.

The detection of change-points corrupted by additive

noise using MCMC methods has received much at-

tention in the literature [6–8,21,26,30,33,35,36]. How-

ever, to our knowledge no analysis has been provided

for multiplicative noise models. The major contribu-

tion of this section is to study two simple MCMC

methods for estimating change-points corrupted by

multiplicative noise:

(1) The MMSE estimator of r is obtained by con-

structing a homogeneous Markov chain using the

Metropolis-Hastings (MH) algorithm with the invari-

ant distribution f(r|v) de�ned in (11). The mean of
(11) is then estimated by the time average of the last

Markov chain output samples, which converges to the

MMSE estimator according to the ergodic theorem

for Markov chains.



(2) The MAP estimator of r is determined by us-

ing a Simulated Annealing (SA) algorithm. The SA

algorithm de�nes a non-homogeneous Markov chain

which converges under appropriate conditions to the

minimum of the energy functionU (r|v), which is here
the MAP estimator.

The Markov chain transition kernels are the same

for both strategies. The introduction of a decreas-

ing temperature schedule in the SA algorithm (which

modi�es the acceptance probability) is the only dif-

ference between the MMSE and MAP estimator al-

gorithms. This section is organized as follows: the

Markov chain jumps are described in parts (a), (b),

(c) and the acceptance probabilities for the MMSE

and MAP estimators are detailed in parts (1) and (2).

The Markov chain state space and current state are de-

noted by 
= {0; 1}N−1 and �n = (�n
i )i=1; :::;N−1 ∈
,

respectively. The Markov chain moves are de�ned as

follows:

(a) The candidate zn+1 ∈
 is drawn independently
of the current location �n yielding the independence

sampler [19] de�ned by q(zn+1|�n) = q(zn+1), where

q is an instrumental distribution. For our experiment,

q is a Bernoulli distribution with parameter �. The

parameter � is the a priori probability of having a

change-point at a �xed pixel, and it adjusts the mean

value of the number of change-points. For example,

when N = 250 and � = 0:02, the mean number of

change-points is E[K(r)]=N�=5. In this procedure,

the candidate zn+1 is selected using the classical accep-

tance probability. The independence sampler allows to

move rapidly to distant parts of the state space. How-

ever, the global acceptance probability for this sam-

pler is very low for long datasets. Consequently, such

sampling scheme is only used during the �rst itera-

tions, and it does not increase the computational cost

of the algorithm.

(b) Local changes are made following the

so-called one-variable-at-a-time MH algorithm. This

variable-at-a-time step was suggested for instance

in [8] or [19, p. 10] to increase the convergence

speed. More precisely, a random permutation of

{1; : : : ; N − 1} is uniformly drawn. According to this
permutation, each component is 
ipped from 0 to 1

or from 1 to 0. The move is then accepted with the

usual acceptance probability. This move visits each

site randomly and all sites are visited in each scan. It

belongs to the class of random scan Gibbs samplers.

Note that the use of random scan Gibbs samplers

where the successive components are chosen at ran-

dom, either independently or in a multinomial fashion

(which amounts to select a random permutation), has

been suggested by many authors (see [32, p. 45] or

[19, p. 15]). Note also that this second step requires

N − 1 acceptance procedures.
(c) Change-points are moved in the neighborhood

of their current location. This move is particularly in-

teresting for the MAP estimator, because it is di�cult

to escape from a position close to a real change-point.

In this move, an actual change-point is randomly se-

lected and a neighborhood of this instant is de�ned.

The change-point instant is �nally moved in its neigh-

borhood and accepted or not according to the accep-

tance probability. Such move is very important since

it avoids trapping in a change-point neighborhood.

Each kernel is used in turn and the resulting hybrid

strategy is called a cycle. The resulting cycle kernel is

clearly irreducible and aperiodic (see [40] for details).

The acceptance probabilities for the MMSE and MAP

algorithms are de�ned as follows:

(1) In the MMSE algorithm (summarized in Ap-

pendix A), the chain is constructed to simulate the tar-

get distribution f(r|v) de�ned in (11). At each step
of the cycle, the acceptance probability is

�(�n; zn+1) = min

{

1;
f(zn+1|v)q(�n|zn+1)

f(�n|v)q(zn+1|�n)

}

; (14)

where q is the transition probability associated with the

jumps described in (a), (b) and (c),�n and zn+1 are the

Markov chain current state and candidate respectively.

Equivalently, if Rand is the outcome of a uniform

drawing on [0; 1]:







�n+1 = zn+1 if Rand¡
f(zn+1|v)q(�n|zn+1)
f(�n|v)q(zn+1|�n)

;

�n+1 =�n otherwise:
(15)

In procedures (a), (b) and (c) the instrumental dis-

tribution q is symmetric such that q(�n|zn+1) =
q(zn+1|�n). Since f(r|v) ˙ exp(−U (r|v)), the
acceptance in the MH algorithm de�ned in (15)

reduces to

{

�n+1 = zn+1 if U (�n|v)− U (zn+1|v)¿�;

�n+1 =�n otherwise;
(16)



Table 1

Acceptance probabilities for the di�erent moves

Acceptance probabilities Move a Move b Move c

Minimum 0.00022 0.727 0.365

Maximum 0.0022 0.824 0.442

Mean 0.0011 0.777 0.401

where � = ln Rand. After a su�ciently long burn-in,

the MMSE estimator of the change-point positions

is determined by computing the time average of the

Markov chain output samples.

(2) In the MAP algorithm (summarized in Ap-

pendix B), the schedule for lowering the temperature

is de�ned by Tk = 0:99Tk−1, where T0 is greater than

a numerical constant � depending on the energy func-

tion U (r|v) [17]. This temperature decrease is made
at each step of the independence sampler (move a), at

each permutation draw � of the one-variable-at-a-time

sampler (move b) and at each permutation draw � of

move c (i.e., three temperature decreases per cycle).

The acceptance procedure is de�ned by
{

�n+1 = zn+1 if U (�n|v)− U (zn+1|v)¿�Tk ;

�n+1 =�n otherwise;
(17)

where Tk is the current temperature.

Remarks.

• Table 1 shows the minimum, maximum and aver-
age acceptance probabilities for each move, com-

puted from 50Monte Carlo runs (eachMonte Carlo

run corresponds to 50000 cycles). The independent

sampler (move a) allows to move rapidly to dis-

tant parts of the state space. The table indicates that

the global acceptance probability for the move a

is very low. This explains why the move a is used

only during the �rst burn-in iterations, in the pro-

posed edge detection procedure.

• According to (12), the total energy U is a sum

of local potentials. Consequently, a local perturba-

tion of the con�guration �n (as in moves b and c)

a�ects few terms of this sum, which ensures fast

computations of the energy variations �U .

• Convergence results for the proposed MCMC

method can be found in standard textbooks or

many papers such as [9,17–19,26,32,40,48].

5. Hyperparameter estimation

The implementation of an MCMC algorithm as de-

scribed above assumes that the set of hyperparameters

of the model is known. These hyperparameters are

the parameters � and 
 of the IG distribution for the

change-point amplitudes Ak , and the prior proportion

of changes �. Here, we propose to estimate these hy-

perparameters in a maximum likelihood framework,

by using ideas developed in [11]. Let �=(�; 
; �). The

algorithm simply consists of inserting a step for up-

dating � in the MCMC algorithm used for simulating

the a posteriori distribution of r:

• Choose an initial guess �(0) and an initial con�gu-
ration of change-point instants r(0),

• At step j
◦ Perform one iteration of MCMC using the cur-
rent value of the parameters �(j−1) to simulate

r(j) from r(j−1),

◦ Compute the maximum likelihood estimate

T (r(j)) of � by maximizing the joint distribu-

tion of (v; r(j)) and update �(j)

�(j) = �(j−1) + �j(T (r
(j))− �(j−1)); (18)

where the stepsize sequence (�j) decreases to 0.

Remarks. (1) A decreasing sequence (�j) is chosen

in order to obtain a pointwise convergence of the se-

quence �(j) to a value �?, that will be used later for

estimating the change-points locations. A satisfactory

schedule consists of setting �j = 1 during some iter-

ations, which ensures a fast convergence to a neigh-

borhood of �?. Then, �j decreases as 1=j.

(2) This algorithm is a slight modi�cation of the

Stochastic Approximation version of the EM algo-

rithm (SAEM algorithm) proposed by Delyon [11].

The convergence of the SAEM algorithm to a local

maximum of the observed likelihood can be proved

under appropriate conditions. Some conditions are not

satis�ed here since (1) the joint pdf of (v; r) does not

belong to the exponential family and (2) r is not sam-

pled from its exact full distribution, but by using an

MCMC procedure. A theoretical analysis of the algo-

rithm is beyond the scope of the paper. However, we

have noticed that the algorithm always converges to a

value which is close to the unknown true value.
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Fig. 1. Signal reconstruction using the MAP algorithm for di�erent resolutions: (a) � =−1:4; (b) � = 0:68; (c) � = 20; and (d) � = 50.

(3) The maximum likelihood estimate of (�; 
), that

maximises the joint distribution of (v; r(j)), cannot

be computed in a closed form. However, a Newton–

Raphson algorithm which converges in few iterations

can be used. At step j, the initial guess for this algo-

rithm is the current value (�(j−1); 
(j−1)). On the other

hand, it is easy to see that the maximum likelihood es-

timate of � is the empirical mean (K(r)−1)=(N −1).

6. Simulation results

6.1. E�ect of the hyperparameter � (or equivalently

of �)

Consider a synthetic signal subject to multiple

change-points with parametersA=(1:5; 1:1; 1:6; 0:8; 0:4;

0:7), N = 250, and l = (0; 40; 80; 120; 170; 200; 250).

A Markov chain with invariant distribution f(r|v)
is simulated on 
. Once the MAP estimates of the

change-point instants have been determined, the dif-

ferent signal amplitudes are estimated by maximizing

f(A|v; r), which allows for signal reconstruction.

Straightforward computations yield

Âk =
Sk(r)

nk(r)

1 + 
=LSk(r)

1 + (�+ 1)=Lnk(r)
: (19)

Note that Sk(r)=nk(r) is the standard estimatedmean of

v on the kth segment ]lk−1; lk ]. Eq. (19) shows that Âk
approximately equals Sk(r)=nk(r) when 
=LSk(r).1

and (�+1)=[Lnk(r)].1. Such conditions are satis�ed

when the changes do not happen too frequently, i.e.

for instance for agricultural areas where the �elds are

big compared to the sensor resolution (pixel size).

Fig. 1 shows the signal reconstructions obtained for

di�erent values of �: (a) � =−1:4, (b) � = 0:68, (c)
�= 20, (d) �= 50. These �gures clearly show that �

controls the resolution level of the segmentation: for

�=50 (low resolution), only the largest change-point

is detected, whereas for � = −1:4 (high resolution),
additional change-points are detected. The e�ect of �

on the change-point MMSE estimator is very similar

to the e�ect of � on the MAP estimator (see for in-

stance [42]).

6.2. Hyperparameter estimation

Next, we study the performance of the hyperparam-

eter estimation algorithm on the previous synthetic sig-

nal. A Markov chain with invariant distribution f(r|v)
is simulated on 
 and hyperparameters are estimated

as described in Section 5. Fig. 2 shows the mean of the
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; and (c) parameter �.

hyperparameter estimates computed from 50 Monte

Carlo runs. The algorithm clearly converges in few

iterations.

6.3. Convergence of the sampler

The vector ��=(1=NMC)
∑Nbi+NMC

n=Nbi+1
�n computed for

NMC=10
5 and Nbi=50 is plotted in Fig. 3b. This vec-

tor estimates the a posteriori probability of an abrupt

change at each lag. A change-point with large ampli-

tude (l = 40; 80; 120; 170) yields a large a posteriori

probability at the corresponding lag whereas there is

some kind of ambiguity for a change-point with small

amplitude (l= 200). In this latter case, the algorithm

switches between several lags in a neighborhood of

l=200, because of the smoother transition in the ob-

served signal. The a posteriori change-point probabil-

ities shown in Fig. 3b do not signi�cantly vary from

one MCMC simulation to another, due to the high

number of cycles. However, a so large number of cy-

cles cannot be used in practical applications, where

images have to be processed. Consequently, the appro-

priate number of required cycles has to be determined

by studying the convergence of the MCMC sampler.

Many convergence diagnostics can be found in the lit-

erature (see [32] and references therein). However, as

speci�ed in [20], these diagnostics are not completely

P
o

s
te

ri
o

r 
o

f 
r

Time Index

0 50 100 150 200 250
(a)

0

0.5

1

0 50 100 150 200 250(b)

0 50 100 150 200 250
100

150

200

250

R
O

E
W

A
 ’
s

(c)

0

1

2

3

S
ig

n
a

l

Fig. 3. Noisy signal and re
ectivity (a), Changepoint a posteriori

probabilities (b), and ROEWAs (c).
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Fig. 4. MSEs between the “true” and estimated a posteriori change-

point probabilities as a function of NMC (for a �xed burn-in

Nbi = 50) (solid line). Averaged MSEs computed from 50 Monte

Carlo runs (dotted line).

reliable. Here, we examine the change-point probabil-

ities obtained for di�erent values of the hyperparam-

eter initial values. Fig. 4 shows the MSE between the

“true” (computed from 105 cycles) and estimated a

posteriori change-point probabilities as a function of

the number of cycles NMC for a �xed burn-in Nbi=50.

The averaged MSE between the “true” and estimated



a posteriori change-point probabilities computed from

50 Monte Carlo runs is also depicted. This �gure

clearly shows that NMC=50 and Nbi=50 are su�cient

to ensure convergence of the sampler. Consequently,

simulations on synthetic and real images have been

conducted NMC = 50 and Nbi = 50.

6.4. Comparison with the ROEWA edge detector

In SAR image segmentation, postprocessing

algorithms such as morphological closing [43] or the

watershed algorithm [46] are often used to remove

false edge-points and extract closed skeleton bound-

aries. In these situations, the MMSE detector should

be preferred to the MAP detector. Indeed, the MMSE

detector yields change-point a posteriori probabili-

ties which can be viewed as an ESM. Such ESM is

well suited to postprocessing algorithms such as the

watershed algorithm. The MAP estimator performs

very di�erently since it provides the most likely a

posteriori change-point con�guration given the data.

The ESM corresponding to the MAP estimator has on

each line K(r) components equal to 1 and N − K(r)
components equal to 0. Such ESM is not appropriate

for the watershed algorithm (see comments in [15]

for more details).

The MMSE change-point detector and the ROEWA

detector are then compared on the same synthetic sig-

nal (which represents a line of a SAR image). Fig. 3c

shows the results of the ROEWA detector obtained

with the in�nite symmetric exponential �lter. This �g-

ure has to be compared with Fig. 3b, which shows

the results obtained with the MMSE detector. For

this particular synthetic signal, the MMSE detector

yields better results than the ROEWA detector. Addi-

tional simulations have been conducted and they con-

�rm that the MMSE detector provides better accuracy

in change-point detection than the ROEWA detector.

However, it is important to note that the ROEWA de-

tector has lower computational cost than the proposed

detector.

Simulations are then presented for a synthetic 4

look scene represented in Fig. 5. We follow the strat-

egy used in [15] for the ROEWA detector: in order

to compute the horizontal edge strength component,

the image v(x; y) has �rst to be smoothed column by

column using the 1-D ROEWA �lter, which yields

f(y) ∗ v(x; y). The �ltered image is then processed

Fig. 5. Noisy 4-look 180× 180 SAR image.

line by line to compute the exponentially weighted

averages

�̂X1(x; y) = f1(x) ∗ {f(y) ∗ v(x; y)};

�̂X2(x; y) = f2(x) ∗ {f(y) ∗ v(x; y)};

where f1 and f2 are the causal and anticausal �l-

ters associated to the ROEWA impulse response f.

The averages �̂X1(x; y) and �̂X2(x; y) are then used to

form the normalized ratio rXmax(x; y). The vertical edge

strength component rYmax(x; y) is computed similarly

after computing the averages

�̂Y1(x; y) = f1(y) ∗ {f(x) ∗ v(x; y)}

�̂Y2(x; y) = f2(y) ∗ {f(x) ∗ v(x; y)}

The horizontal and vertical edge strength components

are �nally combined to form the 2-D ESM

r2−Dmax (x; y) =

√

[rXmax(x; y)]
2 + [rYmax(x; y)]

2:

For the MMSE detector, the image v(x; y) is �rst

smoothed column by column using the 1-D ROEWA

�lter. The MMSE detection strategy is then applied

line by line on the �ltered image (the change-point

a posteriori probabilities are estimated for each line),



Fig. 6. SAR image edge strength map (MMSE detector).

which yields the horizontal ESM. The vertical ESM

is computed similarly by (1) line smoothing using the

1-D ROEWA �lter and (2) column by column change

detection using the MMSE detector (the change-point

a posteriori probabilities are estimated for each col-

umn). The 2-D ESM is then obtained by computing the

magnitude of the horizontal and vertical ESM compo-

nents [15]. In this ESM, a high pixel value indicates

the presence of an edge. Figs. 6 and 7 show the 2-D

ESMs obtained for the MMSE and ROEWA detec-

tors. The MMSE detector seems to yield better results

than the ROEWA detector for this synthetic image.

6.5. Posterior distribution of K

This section addresses the important question of

the choice of K (number of change-points). The al-

gorithm studied in this paper draws vectors ri (for

i=1; : : : ; NMC) distributed according to the joint distri-

bution f(r|v) de�ned in (11). For each vector ri, the

number of change-points is K(ri)=
∑N

j=1 r
i
j. As a con-

sequence, the posterior distribution of K can be easily

estimated from the vectors ri. Fig. 8 shows the 150th

line of the synthetic image depicted in Fig. 5 and the

estimated posterior distribution f̂(r|v) obtained with
50 burn-in cycles and NMC = 100. As can be seen,

Fig. 7. SAR image edge strength map (ROEWA detector).
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Fig. 8. Line 150 of the synthetic SAR image and the estimated

posterior distribution f̂(r|v).

the change-point locations can be easily estimated by

thresholding f̂(r|v). Fig. 9 shows the estimated pos-
terior distribution of K(r) obtained by computing the

histogram of K(ri), for i=51; : : : ; 100. The histogram

has a maximum value for K(r) = 4, which is in good

agreement with the actual number of change-points

(indeed, we have assumed that there is a change at

N = 180).
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Fig. 9. Estimated posterior distribution of K (number of

change-points) for the signal of Fig. 8.

Fig. 10. 3-look 256×256 SAR image of an agricultural scene near

Bourges, France. ? Copyright ESA-ERS1 data-1993-Distribution

SPOT IMAGE.

6.6. Postprocessing

By thresholding the 2-D ESMs, pixels belonging

to edges are obtained with a certain probability of

false alarm. However, in practical applications, ESM

thresholding has to be combined with morphologi-

cal closing or/and the watershed algorithm to obtain

closed skeleton boundaries (see for instance [15]).

Figs. 10–12 show a 3-look real SAR image of an agri-

Fig. 11. ESMs of the SAR image represented in Fig. 10 using the

MMSE detector.

Fig. 12. ESMs of the SAR image represented in Fig. 10 using the

ROEWA detector.

cultural scene near Bourges in France and the ESMs

of this image using the raw MMSE and ROEWA

detectors. The results obtained after postprocessing

(ESM+watershed algorithm) are shown in Figs. 13

and 14. The MMSE detector combined with postpro-

cessing performs well on this real image.



Fig. 13. SAR image segmentation using the MMSE detector and

postprocessing.

Fig. 14. SAR image segmentation using the ROEWA detector and

postprocessing.

7. Conclusions

This paper studies Bayesian o�-line change-point

detectors based on the MMSE and MAP principles,

for SAR image segmentation. The MMSE and MAP

detectors were implemented by MCMC methods.

Appropriate jumps ensured fast convergence for the

Markov Chain. The resolution level in the segmen-

tation was shown to depend (for both detectors) on

the a priori knowledge of the hyperparameters. This

a priori knowledge can be replaced by the hyperpa-

rameter estimation procedure proposed in Section 5.

It is important to note that the MMSE and MAP

detectors were implemented very similarly. However,

these detectors do not provide the same information:

the MMSE detector estimates the a posteriori proba-

bility of having a change-point at each pixel whereas

the MAP detector determines the change-point lo-

cations which maximize an appropriate a posteriori

change-point location distribution. We feel that the

MMSE detector is more attractive than the MAP de-

tector for image segmentation. Indeed, the MMSE de-

tector provided an ESM which can be combined with

powerful image postprocessing algorithms including

morphological closing or watershed algorithm.

Moreover, the MMSE detector simulates the joint

a posteriori distribution of change-point locations.

Many statistical properties of the change-points (such

as the probability to have change-points in a given

interval or the posterior distribution of the number

of change-points) can be estimated using this joint a

posteriori distribution.

The change-point location MMSE detector be-

longs to the class of edge detectors. It was shown to

yield slightly better results than the ROEWA detector

(which is one of the most powerful edge detectors

for SAR images) in terms of ESM. However, the

MMSE detector has a higher computational cost than

the ROEWA detector. Future work includes (1) com-

parison on postprocessed images using appropriate

image quality measures, (2) comparison in terms of

image quality and execution time with respect to Re-

gion Merging and Region Fitting algorithms and (3)

incorporation of the row-to-row or column-to-column

dependencies by using appropriate masks. In this last

extension, potential edges are detected in the horizon-

tal or vertical directions and the edge candidates are

selected using the MAP criterion (see [14] for more

details).
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Appendix A. Summary of the MCMC algorithm for MMSE estimation

1. Initialization. Sample N − 1 i.i.d. Bernoulli variables �0(i) ∼ B(�), i = 1; : : : ; N − 1 (where B(�) is a
Bernoulli distribution with parameter �= (1 + e�)−1,

2. for j = 1; : : : ; Nbi + NMC

• perform an independent MH step, i.e.,

(a) sample a candidate zj = (z
j
1; : : : ; z

j
N−1) such that z

j
i are N − 1 i.i.d. B(�) variables,

(b) sample Rand ∼ U [0; 1] (where U [0; 1] is the uniform distribution on [0; 1]),

(c) set

{

�j = zj if U (�j−1|x)− U (zj|x)¿�= ln Rand

�j =�j−1 otherwise;

• perform a one-variable-at-a-time MH step, i.e.,

(a) draw uniformly a permutation � on the set {1; : : : ; N − 1},
(b) for k = 1; : : : ; N − 1

for l= 1; : : : ; N − 1

set �̃j(l) =

{

�j(l) if l 6= �(k);

1−�j(l) if l= �(k);

end

sample Randk ∼ U [0; 1]

set

{

�j ← �̃j if ln Randk¡− U (�̃j|x) + U (�j|x);

�j ← �j otherwise;

end

• perform a change-point move, i.e.,

(a) draw uniformly a permutation � on the set {1; : : : ; K(r)} (K(r) being the change-point number),
(b) for k = 1; : : : ; K(r)

set Ik to the position of the kth change-point,

set �̃j(I�(k)) = 0 (the change-point at position �(k) is deleted),

draw uniformly a number I�(k) on the set

Sk; � = {I�(k)−�; : : : ; I�(k)−1; I�(k)+1; : : : ; I�(k)+�} (which de�nes a neighborhood of I�(k))
where � is for instance the mean number of change-points i.e. �= E[K(r)] = N�

set �̃j(I�(k)) = 1

sample Randk ∼ U [0; 1]

set

{

�j ← �̃j if ln Randk¡− U (�̃j|x) + U (�j|x);

�j ← �j otherwise;

end

3. compute

��=
1

NMC

Nbi+NMC
∑

n=Nbi+1

�n



Appendix B. Summary of the MCMC Algorithm for MAP Estimation

1. Initialization.

• Sample N − 1 i.i.d. Bernoulli variables �0(i) ∼ B(�), i=1; : : : ; N − 1 (where B(�) is a Bernoulli distribution
with parameter �= (1 + e�)−1,

• set T0¿�

2. for j = 1; : : : ; Nbi + NMC

• set Tj = 0:99Tj−1 and perform an independent SA step i.e.,

(a) sample a candidate zj = (z
j
1; : : : ; z

j
N−1) such that z

j
i are N − 1 i.i.d. B(�) variables,

(b) sample Rand ∼ U [0; 1] (where U [0; 1] is the uniform distribution on [0; 1]),

(c) set







�j = zj if ln Rand¡ 1
Tj
{−U (zj|x) + U (�j−1|x)};

�j =�j−1 otherwise;

• set Tj ← 0:99Tj and perform a one-variable-at a time MH step i.e.,

(a) draw uniformly a permutation � on the set {1; : : : ; N − 1},
(b) for k = 1; : : : ; N − 1

set �̃j(l) =







�j(l) if l 6= �(k);

1−�j(l) if l= �(k);

sample Randk ∼ U [0; 1]

set

{

�j ← �̃j if ln Randk¡
1
Tj
{−U (�̃j|x) + U (�j|x)};

�j ← �j otherwise;

end

• set Tj ← 0:99Tj and perform a change-point move (the change-point I�(k) is moved to I�(k)) i.e.

(a) draw uniformly a permutation � on the set {1; : : : ; K(r)} (K(r) being the change-point number),
(b) for k = 1; : : : ; K(r)

set Ik the position of the kth change-point,

set �̃j(I�(k)) = 0 (the change-point at position I�(k) is deleted),

draw uniformly a number I�(k) on the set

Sk; � = {I�(k)−�; : : : ; I�(k)−1; I�(k)+1; : : : ; I�(k)+�} (which de�nes a neighborhood of I�(k))
where � is for instance the mean number of change-points i.e. �= E[K(r)] = N�

set �̃j(I�(k)) = 1 (a change-point at position I�(k) is created),

sample Randk ∼ U [0; 1]

set

{

�j ← �̃j if ln Randk¡
1
Tj
{−U (�̃j|x) + U (�j|x)};

�j ← �j otherwise;

(3) set

�̂=�NMC
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