27 research outputs found

    Identification of virtual plants using bayesian networks based on parametric L-system

    Get PDF
    Parametric L-System is a method for modelling virtual plants. Virtual plant modelling consists of components of axiom and production rules for alphabets in parametric L-System. Generally, to get the alphabet in parametric L-System, one would guess the production rules and perform a modification on the axiom. The objective of this study was to build virtual plant that was affected by the environment. The use of Bayesian networks was to extract the information structure of the growth of a plant as affected by the environment. The next step was to use the information to generate axiom and production rules for the alphabets in the parametric L-System. The results of program testing showed that among the five treatments, the combination of organic and inorganic fertilizer was the environmental factor for the experiment. The highest result of 6.41 during evaluation of the virtual plant came from the treatment with combination of high level of organic fertilizer and medium level of inorganic fertilizer. Mean error between real plant and virtual plan was 9.45 %

    Pemodelan pertumbuhan tanaman Zinnia menggunakan Lindenmayer system dengan mathematica

    Get PDF
    Pendekatan dalam mempelajari pemodelan pertumbuhan tanaman saat ini adalah dengan menggunakan metoda L-System yaitu sistem penulisan berulang (rewriting system) yang dilakukan secara paralel dengan menggunakan aturan gramatikal. Dengan menggunakan software Mathematica telah diidentifikasi pemodelan pertumbuhan tanaman zinnia sebanyak 6 tahap pertumbuhan selama 25 hari dan dapat divisualisasika

    Incorporating linkage learning into the GeLog framework

    Get PDF
    This article introduces modifications that have been applied to GeLog, a genetic logic programming framework, in order to improve its performance. The main emphasis of this work is the structure processing of genetic algorithms. As studies have shown, the linkage of genes plays an important role in the performance of genetic algorithms. Thus, different approaches that take linkage learning into account have been reviewed and the most promising has been implemented and tested with GeLog. It is demonstrated that the modified program solves problems that proved hard for the original system

    Pemodelan Pertumbuhan Tanaman Zinnia Menggunakan Lindenmayer System dengan Mathematica

    Full text link

    Identification of virtual plants using bayesian networks based on parametric L-system

    Get PDF
    Parametric L-System is a method for modelling virtual plants. Virtual plant modelling consists of components of axiom and production rules for alphabets in parametric L-System. Generally, to get the alphabet in parametric L-System, one would guess the production rules and perform a modification on the axiom. The objective of this study was to build virtual plant that was affected by the environment. The use of Bayesian networks was to extract the information structure of the growth of a plant as affected by the environment. The next step was to use the information to generate axiom and production rules for the alphabets in the parametric L-System. The results of program testing showed that among the five treatments, the combination of organic and inorganic fertilizer was the environmental factor for the experiment. The highest result of 6.41 during evaluation of the virtual plant came from the treatment with combination of high level of organic fertilizer and medium level of inorganic fertilizer. Mean error between real plant and virtual plan was 9.45 %

    Hybrid approaches to optimization and machine learning methods: a systematic literature review

    Get PDF
    Notably, real problems are increasingly complex and require sophisticated models and algorithms capable of quickly dealing with large data sets and finding optimal solutions. However, there is no perfect method or algorithm; all of them have some limitations that can be mitigated or eliminated by combining the skills of different methodologies. In this way, it is expected to develop hybrid algorithms that can take advantage of the potential and particularities of each method (optimization and machine learning) to integrate methodologies and make them more efficient. This paper presents an extensive systematic and bibliometric literature review on hybrid methods involving optimization and machine learning techniques for clustering and classification. It aims to identify the potential of methods and algorithms to overcome the difficulties of one or both methodologies when combined. After the description of optimization and machine learning methods, a numerical overview of the works published since 1970 is presented. Moreover, an in-depth state-of-art review over the last three years is presented. Furthermore, a SWOT analysis of the ten most cited algorithms of the collected database is performed, investigating the strengths and weaknesses of the pure algorithms and detaching the opportunities and threats that have been explored with hybrid methods. Thus, with this investigation, it was possible to highlight the most notable works and discoveries involving hybrid methods in terms of clustering and classification and also point out the difficulties of the pure methods and algorithms that can be strengthened through the inspirations of other methodologies; they are hybrid methods.Open access funding provided by FCT|FCCN (b-on). This work has been supported by FCT— Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020. Beatriz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021 The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/ MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio
    corecore