2,375 research outputs found

    A mathematical morphology based approach for vehicle detection in road tunnels

    Get PDF
    A novel approach to automatically detect vehicles in road tunnels is presented in this paper. Non-uniform and poor illumination conditions prevail in road tunnels making difficult to achieve robust vehicle detection. In order to cope with the illumination issues, we propose a local higher-order statistic filter to make the vehicle detection invariant to illumination changes, whereas a morphological-based background subtraction is used to generate a convex hull segmentation of the vehicles. An evaluation test comparing our approach with a benchmark object detector shows that our approach outperforms in terms of false detection rate and overlap area detection

    Stereoscopic vision in vehicle navigation.

    Get PDF
    Traffic sign (TS) detection and tracking is one of the main tasks of an autonomous vehicle which is addressed in the field of computer vision. An autonomous vehicle must have vision based recognition of the road to follow the rules like every other vehicle on the road. Besides, TS detection and tracking can be used to give feedbacks to the driver. This can significantly increase safety in making driving decisions. For a successful TS detection and tracking changes in weather and lighting conditions should be considered. Also, the camera is in motion, which results in image distortion and motion blur. In this work a fast and robust method is proposed for tracking the stop signs in videos taken with stereoscopic cameras that are mounted on the car. Using camera parameters and the detected sign, the distance between the stop sign and the vehicle is calculated. This calculated distance can be widely used in building visual driver-assistance systems

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    A New Texture Based Segmentation Method to Extract Object from Background

    Get PDF
    Extraction of object regions from complex background is a hard task and it is an essential part of image segmentation and recognition. Image segmentation denotes a process of dividing an image into different regions. Several segmentation approaches for images have been developed. Image segmentation plays a vital role in image analysis. According to several authors, segmentation terminates when the observer2019;s goal is satisfied. The very first problem of segmentation is that a unique general method still does not exist: depending on the application, algorithm performances vary. This paper studies the insect segmentation in complex background. The segmentation methodology on insect images consists of five steps. Firstly, the original image of RGB space is converted into Lab color space. In the second step 2018;a2019; component of Lab color space is extracted. Then segmentation by two-dimension OTSU of automatic threshold in 2018;a-channel2019; is performed. Based on the color segmentation result, and the texture differences between the background image and the required object, the object is extracted by the gray level co-occurrence matrix for texture segmentation. The algorithm was tested on dreamstime image database and the results prove to be satisfactory

    Adaptive video segmentation

    Get PDF
    The efficiency of a video indexing technique depends on the efficiency of the video segmentation algorithm which is a fundamental step in video indexing. Video segmentation is a process of splitting up a video sequence into its constituent scenes. This work focuses on the problem of video segmentation. A content-based approach has been used which segments a video based on the information extracted from the video itself. The main emphasis is on using structural information in the video such as edges as they are largely invariant to illumination and motion changes. The edge-based features have been used in conjunction with the intensity-based features in a multi-resolution framework to improve the performance of the segmentation algorithm.;To further improve the performance and to reduce the problem of automated choice of parameters, we introduce adaptation in the video segmentation process. (Abstract shortened by UMI.)

    Strategy for Foreground Movement Identification Adaptive to Background Variations

    Get PDF
    Video processing has gained a lot of significance because of its applications in various areas of research. This includes monitoring movements in public places for surveillance. Video sequences from various standard datasets such as I2R, CAVIAR and UCSD are often referred for video processing applications and research. Identification of actors as well as the movements in video sequences should be accomplished with the static and dynamic background. The significance of research in video processing lies in identifying the foreground movement of actors and objects in video sequences. Foreground identification can be done with a static or dynamic background. This type of identification becomes complex while detecting the movements in video sequences with a dynamic background. For identification of foreground movement in video sequences with dynamic background, two algorithms are proposed in this article. The algorithms are termed as Frame Difference between Neighboring Frames using Hue, Saturation and Value (FDNF-HSV) and Frame Difference between Neighboring Frames using Greyscale (FDNF-G). With regard to F-measure, recall and precision, the proposed algorithms are evaluated with state-of-art techniques. Results of evaluation show that, the proposed algorithms have shown enhanced performance
    corecore