9 research outputs found

    Illumination Estimation using a Multilinear Constraint on Dichromatic Planes

    Get PDF
    A new multilinear constraint on the color of the scene illuminant based on the dichromatic reflection model is proposed. The formulation avoids the problem, common to previous dichromatic methods, of having to first identify pixels corresponding to the same surface material. Once pixels from two or more materials have been identified, their corresponding dichromatic planes can be intersected to yield the illuminant color. However, it is not always easy to determine which pixels from an arbitrary region of an image belong to which dichromatic plane. The image region may cover an area of the scene encompassing several different materials and hence pixels from several different dichromatic planes. The new multilinear constraint accounts for this multiplicity of materials and provides a mechanism for choosing the most plausible illuminant from a finite set of candidate illuminants. The performance of this new method is tested on a database of real images

    Dichromatic Illumination Estimation via Hough Transforms in 3D

    Get PDF
    A new illumination-estimation method is proposed based on the dichromatic reflection model combined with Hough transform processing. Other researchers have shown that using the dichromatic reflection model under the assumption of neutral interface reflection, the color of the illuminating light can be estimated by intersecting the dichromatic planes created by two or more differently coloured regions. Our proposed method employs two Hough transforms in sequence in RGB space. The first Hough Transform creates a dichromatic plane histogram representing the number of pixels belonging to dichromatic planes created by differently coloured scene regions. The second Hough Transform creates an illumination axis histogram representing the total number of pixels satisfying the dichromatic model for each posited illumination axis. This method overcomes limitations of previous approaches that include requirements such as: that the number of distinct surfaces be known in advance, that the image be presegmented into regions of uniform colour, and that the image contain distinct specularities. Many of these methods rely on the assumption that there are sufficiently large, connected regions of a single, highly specular material in the scene. Comparing the performance of the proposed approach with previous non-training methods on a set of real images, the proposed method yields better results while requiring no prior knowledge of the image content

    Statistical/Geometric Techniques for Object Representation and Recognition

    Get PDF
    Object modeling and recognition are key areas of research in computer vision and graphics with wide range of applications. Though research in these areas is not new, traditionally most of it has focused on analyzing problems under controlled environments. The challenges posed by real life applications demand for more general and robust solutions. The wide variety of objects with large intra-class variability makes the task very challenging. The difficulty in modeling and matching objects also vary depending on the input modality. In addition, the easy availability of sensors and storage have resulted in tremendous increase in the amount of data that needs to be processed which requires efficient algorithms suitable for large-size databases. In this dissertation, we address some of the challenges involved in modeling and matching of objects in realistic scenarios. Object matching in images require accounting for large variability in the appearance due to changes in illumination and view point. Any real world object is characterized by its underlying shape and albedo, which unlike the image intensity are insensitive to changes in illumination conditions. We propose a stochastic filtering framework for estimating object albedo from a single intensity image by formulating the albedo estimation as an image estimation problem. We also show how this albedo estimate can be used for illumination insensitive object matching and for more accurate shape recovery from a single image using standard shape from shading formulation. We start with the simpler problem where the pose of the object is known and only the illumination varies. We then extend the proposed approach to handle unknown pose in addition to illumination variations. We also use the estimated albedo maps for another important application, which is recognizing faces across age progression. Many approaches which address the problem of modeling and recognizing objects from images assume that the underlying objects are of diffused texture. But most real world objects exhibit a combination of diffused and specular properties. We propose an approach for separating the diffused and specular reflectance from a given color image so that the algorithms proposed for objects of diffused texture become applicable to a much wider range of real world objects. Representing and matching the 2D and 3D geometry of objects is also an integral part of object matching with applications in gesture recognition, activity classification, trademark and logo recognition, etc. The challenge in matching 2D/3D shapes lies in accounting for the different rigid and non-rigid deformations, large intra-class variability, noise and outliers. In addition, since shapes are usually represented as a collection of landmark points, the shape matching algorithm also has to deal with the challenges of missing or unknown correspondence across these data points. We propose an efficient shape indexing approach where the different feature vectors representing the shape are mapped to a hash table. For a query shape, we show how the similar shapes in the database can be efficiently retrieved without the need for establishing correspondence making the algorithm extremely fast and scalable. We also propose an approach for matching and registration of 3D point cloud data across unknown or missing correspondence using an implicit surface representation. Finally, we discuss possible future directions of this research

    Semantik renk değişmezliği

    Get PDF
    Color constancy aims to perceive the actual color of an object, disregarding the effectof the light source. Recent works showed that utilizing the semantic information inan image enhances the performance of the computational color constancy methods.Considering the recent success of the segmentation methods and the increased numberof labeled images, we propose a color constancy method that combines individualilluminant estimations of detected objects which are computed using the classes of theobjects and their associated colors. Then we introduce a weighting system that valuesthe applicability of the object classes to the color constancy problem. Lastly, weintroduce another metric expressing the detected object and how well it fits the learnedmodel of its class. Finally, we evaluate our proposed method on a popular colorconstancy dataset, confirming that each weight addition enhances the performanceof the global illuminant estimation. Experimental results show promising results,outperforming the conventional methods while competing with the state of the artmethods.--M.S. - Master of Scienc

    A STUDY OF ILLUMINANT ESTIMATION AND GROUND TRUTH COLORS FOR COLOR CONSTANCY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Illumination Estimation Using a Multilinear Constraint on Dichromatic Planes

    No full text
    corecore