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Abstract

This thesis examines methods for illuminant estimation and color cor-
rection for color constancy. The thesis first overviews the problem of
computational color constancy by describing mathematical models used
in prior work. We then discuss commonly used metrics to evaluate color
constancy algorithms and existing available datasets.

This is followed by describing two works we have done for illuminant
estimation. The first is a statistics-based method that estimates the il-
lumination based on an images color distribution. This work starts by
questioning the role of spatial image statistics commonly used on color
constancy methods and their relation to color distribution. Specifically,
we show that the spatial information (e.g. image gradient) serves as a
proxy in providing information on the shape of the color distribution.
Based on this finding, we propose a method to derive similar results di-
rectly from the color distribution without the need for computing spatial
information. This method has the performance on par or superior to
complex learning-based method. This finding led us to a second illumi-
nation estimation method, in particular a learning-based method that
relies on simple color distribution features. To the best of our knowl-
edge, the proposed learning framework produces the best illuminant
estimation result to date but provides a computational efficiency similar
to statistics-based methods.

The last part of this thesis is to examine the color correction of an
image after the illumination has been estimated. Most methods rely
on a diagonal 3 × 3 correction model often attributed to the von Kries
model for human color constancy. This diagonal model can only ensure
that neutral colors in an image are corrected, thus allowing “white-
balancing”, but not true color correction. One fundamental problem in



CONTENTS

applying full color correction is the inability to establish ground truth
colors in camera-specific color spaces for evaluating corrected images.
We describe how to overcome this limitation by obtaining ground truth
colors from the Macbeth ColorChecker charts that can be used to re-
purpose images in existing datasets and show how to modify existing
algorithms to perform better image correction.
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Chapter 1

Introduction

1.1 Motivation

It may be obvious that when you see a red tomato, you will perceive it as red, no

matter where you are or what time of the day. For example, a ripe tomato remains

red indoor or outdoor, in the morning or later afternoon. Interestingly, the illumi-

nation falling on the tomato can be significantly different at these different times

and locations. This ability to diminish the effect of illumination, and subsequently

see the “true color” or reflectance of an object is called color constancy. It has been

shown [McCann et al. 1976] that the human visual system is equipped with a well

developed ability to perform color constancy. There are times when this fails. We

all have experienced situations where we buy an item (e.g. meat at a butcher shop)

only to find later that the color look different than we remembered. However, for

the most part, we take color constancy for granted in our daily life.

One consequence of our color constancy ability is that we are less aware of the

color constancy problem that faces computer vision systems and other applications.
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CHAPTER 1. Introduction

Lighting 1 Lighting 2

Lighting 3 Lighting 4

Figure 1.1: An illustration of the influence of different colored illumination on the
captured image values. These images are rendered with hyper-spectral data with
four different light spectral power distributions.

Many people often forget that color constancy is not an inherent part of a computer

vision system and that computational color constancy needs to be applied to reduce

the color cast caused by illumination. Specifically, an image captured by a camera

is attributed to three factors: the physical objects in the scene, the illumination

cast on the scene, and the intrinsic characteristics of the camera sensors. Figure

1.1 shows one example of the same physical scene under different colored lighting

condition. How the scene is illuminated can potentially leads to many problems
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for computer vision applications that use color as a prominent feature.

For example, a computer vision application that identifies objects by color can

fail when the system is under the “blue” illumination of sky light while the objects

in the training database are specified for “yellowish” tungsten illumination. To be

effective, illumination must be controlled and specified in many computer vision

systems, or determined automatically and diminished by computational color con-

stancy. Besides computer vision systems, computational color constancy is also

required for image reproduction. Although the human viewer can compensate

for the viewing illumination, the illumination present in a photograph cannot be

compensated. As a result, computational color constancy generally serves as the

first step before image reproduction or even image enhancement. In most cases

this is done onboard the camera as “white-balancing”.

Approaches to achieve computational color constancy for computer vision sys-

tems can be divided into two groups: (1) methods that represent images by features

that are invariant with respect to the cast illumination (e.g. [Healey and Slater 1994;

Funt and Finlayson 1995; Healey and Wang 1995; Finlayson et al. 1996; Gevers and

Smeulders 1999; Gevers and Smeulders 2000; Geusebroek et al. 2003; Van De Weijer

and Schmid 2006; Zickler et al. 2008]) and (2) methods that correct images captured

from the taken illumination to be as it is taken under a canonical illumination

(e.g. [Land and McCann 1971; Buchsbaum 1980; Forsyth 1990; Finlayson et al.

2001; Finlayson and Trezzi 2004; Van De Weijer and Gevers 2005; Van De Weijer

et al. 2007b; Chakrabarti et al. 2012; Joze and Drew 2014; Finlayson 2013]). (More

details of the difference between these two approaches will be given in Chapter 2.)

The second group are more general in nature and includes “white balancing” that

is applied as a pre-processing step for most images. This thesis will focus primarily
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on this type of computational color constancy algorithms.

Generally, methods that transform images to a canonical illumination consists

of two main steps [Gijsenij et al. 2011]: (i) illuminant color estimation and (ii)

image correction. Commonly it is accepted that step (i) illuminant color estima-

tion is the most critical and challenging step, while step (ii) image correction is

straightforward, usually achieved by a 3 × 3 diagonal correction matrix.

With above mentioned issues in the previous paragraphs, we can see that the

computational color constancy is the fundamental prerequisite to many computer

vision systems and image reproduction applications. In the the following, a short

review of work on illuminant estimation and a common mathematical model (3×3

diagonal correction matrix) for image correction are briefly introduced to help the

reader understand the context of the contribution of this thesis. The chapter is

concluded with the road map of this thesis.

1.2 Overview of Illuminant Estimation Methods

Computational color constancy in terms of illuminant estimation has been a well

studied topic in color vision since the 1970s, and they are generally categorized

[Gijsenij et al. 2011] as: 1) low-level statistical methods; 2) gamut-based methods;

3) and learning-based methods. The two earliest and most well known low-level

statistical assumptions for solving this problem are probably Grey-world assump-

tion [Buchsbaum 1980] and White-patch assumption [Land and McCann 1971].

Later in 2004 Finlayson and Trezzi [Finlayson et al. 2001] showed the Grey-world

and the White-patch algorithms to be special instantiations of the more general

Minkowski framework and improved the computational color constancy perfor-
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mance by using other Minkowski norms. These methods are simple in nature and

just based on pixel values (i.e. color domain). However their success relies on the

validation of the assumptions which are not always true in real image data.

Another computational color constancy method, the gamut-based algorithm

was introduced by Forsyth [Forsyth 1990]. This approach is based on the assump-

tion that in real-world images, for a given illuminant, one observes only a limited

number of colors. This algorithm is particularly promising because of this simple

assumption and several extensions and modifications [Finlayson 1996; Finlayson

and Hordley 1999; Barnard 2000; Finlayson and Hordley 2000; Finlayson and Xu

2003; Finlayson et al. 2005b; Finlayson et al. 2006b; Mosny and Funt 2010] to the

original gamut based method were proposed. Although the advantage of this type

of methods is clearly in the good performance, based on our own evaluation of

gamut-based algorithms on images from modern digital cameras, the performance

is not as good as expected. Another disadvantage of this type of algorithms is in

the complexity of the implementation.

The third type of algorithms estimates the illuminant using a specific model that

is learned on the training data. Strictly speaking, the gamut-based methods should

also be considered as learning-based methods, but they are generally categorized

separately in the literature [Gijsenij et al. 2011]. Among this type of methods,

there exists models using low-level statistics including 2-D chromaticity histogram

[Finlayson et al. 2001; Rosenberg et al. 2001] and 3-D color histogram Bayesian

framework [Rosenberg et al. 2003; Gehler et al. 2008], middle-level information

like the surface descriptor [Joze and Drew 2012; Joze and Drew 2014], as well as

high-level image semantic information [Van De Weijer et al. 2007b; Rahtu et al. 2009;

Bianco and Schettini 2012]. This type of methods usually represent the state-of-
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the-art in terms of the overall accuracy, however, are often slower in execution due

to more computational complexity. Moreover, some of these methods often treat

illumination estimation as a black box (function/mapping) using existing machine

learning techniques with no explicit underlying physical theory (e.g. [Cardei et al.

2002; Funt and Xiong 2004; Agarwal et al. 2006; Shi et al. 2011; Finlayson 2013]).

Intermixed with these approaches are those that rely on spatial information in

the image rather than original pixel values. These methods are often motivated by

the finding in perception studies that the human visual system is specifically sensi-

tive to local contrast [Green 1968]. Work by Weijer et al. [Van De Weijer and Gevers

2005; Van De Weijer et al. 2007a] extended the simple statistics-based method

by incorporating spatial relations in the form of gradient/edge information and

higher-order statistics, called the Grey-edge assumption. This work led to many

later works that also adopted spatial information in many former computational

color constancy algorithms [Chakrabarti et al. 2008; Gijsenij et al. 2009b; Gijsenij

et al. 2010; Chakrabarti et al. 2012; Gijsenij et al. 2012a]. While these methods often

are able to demonstrate improved performance, it is interesting to note that the

reliance of spatial information in captured scene provides insight into the color of

the scene’s illumination.

1.3 Diagonal Image Correction Model

As stated in Section 1.1, the aim of computational color constancy is to correct

images captured from the taken illumination to be as it is taken under a canonical

illumination. With the estimation of the scene illuminant color, the next step is

to transform all the colors. This transformation can be considered to be a special
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instantiation of chromatic adaptation [Fairchild 2013]. But the chromatic adaptation

works for well-defined human perception color spaces, e.g. CIE XYZ, while the

image correction step in computational color constancy framework works in the

camera RAW space and different cameras have different RAW color spaces.

In most of existing papers, a diagonal transform in the fashion of the von Kries

Model [Von Kries 1878] is used. The de facto approach of computing a 3×3 diagonal

matrix to map the estimated illumination RGB values to lie along R=G=B (i.e. to

map the illumination to the gray or achromatic line in the RGB space). Note that

this approach ensures the neutral colors appear as “white” in the corrected image.

However, the ability of this diagonal matrix to correct non-neutral colors is often

unclear. This is a significant limitation, because the goal of color constancy is to

make all colors correct, not just neutral colors. This also limits the evaluation of

color constancy performance.

1.4 Scope of the Study and Objectives

The main scope of this thesis is on improving computational color constancy using

a single image from a digital camera assuming a single illumination presented.

Hence, methods using physically different devices [Nieves et al. 2008; Zaraga and

Langfelder 2010], video sequences [Renno et al. 2005; Wang et al. 2011] or paired

images [DiCarlo et al. 2001; Petschnigg et al. 2004; Finlayson et al. 2005a; Finlayson

et al. 2007; Fredembach and Finlayson 2008; Fischer et al. 2008; Fredembach and

Susstrunk 2009; Xiong and Funt 2009], and methods for multiple illuminant esti-

mation [Hsu et al. 2008; Bleier et al. 2011; Gijsenij et al. 2012b; Zhao and Yu 2012;

Boyadzhiev et al. 2012; Beigpour et al. 2014] are not included.
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This thesis addresses both the illuminant estimation and image correction steps

in computational color constancy. In particular, in the estimation of the illuminant

color/chromaticity, we focus on the categorization of illuminant color estimation

methods depending on whether they work directly from color values (i.e. color

domain) or from values obtained from the image spatial information (e.g. image

gradients/frequencies). More specifically, this thesis investigates the following

questions:

• What is the relationship between the methods that directly use the raw R/G/B

color values and methods that use image spatial information?

• Can information derived directly from the pixel values be used to produce

state-of-the-art results? Moreover, can this be done in with a computationally

efficient framework?

For the problem of image correction, we realized that there is notable limitation

in current color constancy research due to the inability to establish ground truth

colors for evaluating corrected images. Many existing datasets contain images

of scenes with a color chart included; however, only the charts neutral colors

(grayscale patches) are used to provide the ground truth for illumination estimation

and correction. This is because the corrected neutral colors are known to lie along

the achromatic line in the cameras color space (i.e. R=G=B); the corrected RGB

values of the other color patches are not known. As a result, most methods estimate

a 3 × 3 diagonal matrix that ensures only the neutral colors are correct while the

color patches are ignored. In this thesis, we investigate the following question:

• Is it possible to determine the true colors of a scene for raw camera images?
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• If this is possible, how can this be used to evaluate color constancy image

correction performance?

1.5 Contributions

Addressing the questions outlined in the previous section, this thesis presents three

works amounting to four major contributions to help advance computational color

constancy. These are as follows:

• We show that spatial information does not provide any additional information

that cannot be obtained directly from the color distributions and that the

indirect aim of spatial domain methods is to obtain large color differences

for estimating the illumination direction. This finding allowed us to develop

a simple and efficient illumination estimation method that chooses bright

and dark pixels using a projection distance in the color distribution and

then applies PCA to estimate the illumination direction. This work has been

published in the Journal of the Optical Society of America A (JOSA A) [Cheng

et al. 2014].

• We present a learning-based method based on four simple color features

and show how to use these features with an ensemble of regression trees

to estimate the illumination. We demonstrate that our approach is not only

faster than existing learning-based methods in terms of both evaluation and

training time, but also gives the best results reported to date on modern color

constancy data sets. This work has been accepted in CVPR’2015 [Cheng et al.

2015].
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• We describe how to overcome the limitation of evaluating true color con-

stancy performance beyond common white-balancing. Specifically, we show

that under certain illuminations, the diagonal 3 × 3 matrix provides a nearly

optimal result for all the colors in a scene. This means we can obtain ground

truth colors that can be used to re-purpose images in existing datasets by es-

timating full 3 × 3 matrices using all the patches on the color chart. Working

from these re-purposed datasets, we describe how to modify existing algo-

rithms to perform better image correction. This work has been submitted to

ICCV’2015.

• As a part of our work, we have collected an image dataset of multiple modern

consumer digital cameras with over 2600 high-quality camera RAW images,

where each camera is observing roughly the same scene (see http://www.

comp.nus.edu.sg/˜whitebal/illuminant/illuminant.html). This dataset

contains natural images as well as laboratory images and serves not only

for the study of color constancy but also for other research targeting color

management and camera RAW processing.

1.6 Road Map

The rest of this thesis is organized as follows: Chapter 2 provides a formal definition

of the computational color constancy problem and detailed information on related

work. The common computational color constancy algorithms evaluating setup

and datasets are discussed in Chapter 3. Chapter 4 introduces our newly captured

dataset for a better evaluation. Chapter 5 investigates the relationship between

methods in color-domain and methods in spatial-domain. In Chapter 6, we propose

10
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a machine learning framework that uses only color-domain information which can

achieve state-of-the-art results. Chapter 7 presents the idea of re-purposing existing

evaluation datasets with a Macbeth Color-Checker chat for true color constancy

evaluation. Finally, Chapter 8 concludes the thesis with a short discussion on

possible future research directions.
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Chapter 2

Background

This chapter provides a starting point for the study of computational methods

for color constancy. We begin with the definition of color and the physics of

image formation, and then investigate models for illumination change. Having

provided this foundation, we will summarize the available existing approaches for

the computational color constancy problem.

2.1 Color and Image Formation

2.1.1 Color Representation

Before we examine the color constancy and illuminant estimation, we need first to

understand “color”. While a full exposition on color is outside the scope of this

thesis, a basic overview is provided here.

Color, interestingly, is not a physical characteristic of an object. The perception

of color is the human neural system’s interpretation of the responses sensed by

the eyes. On the retina of the eyes, there are two kinds of light-sensitive photo-
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Figure 2.1: Relative spectral sensitivities of S, M and L cones1.

receptors: rods and cones. While rods (also known as “night-vision” receptors)

contribute to the perception of shades of gray only and perform sensitively under

very low light conditions such as night, cones are the cells responsible for our color

perception under normal lighting conditions.

The human vision system is a tristimulus color system where there are three

types of cones, namely S, M and L cones with their spectral sensitivities peaking

at short (420-440 nm), medium (530-540 nm) and long (560-580 nm) wavelengths

respectively [Wyszecki and Stiles 1982]. Figure 2.1 shows the estimates of the

effective sensitivities of these three different cones. Their response to the incident

light could be formulated as

ci =

∫
λ∈Ω

l(λ)si(λ)dλ, i ∈ {S,M,L}, (2.1)

1Data and figures adapted from http://www.cvrl.org (color and vision research laboratory and
database).
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where λ represents the spectral wavelength of the equivalent monochromatic light

(measured in nanometers), Ω denotes the range of the human visible spectrum, si(λ)

is the sensitivity of the cone of the i-th type at wavelength λ, and l(λ) represents the

spectral distribution of the light incident arriving on the retina. With sufficiently

high sampling rate, Equation (2.1) can be numerically written as

ci =

N−1∑
j=0

l(λ j)si(λ j)∆λ = sT
i l, i ∈ {S,M,L}, (2.2)

where si = ∆λ ·



si(λ0)

si(λ1)
...

si(λN−1)


and L =



l(λ0)

l(λ1)
...

l(λN−1)


.

The discrete sampling wavelengths {λ}N−1
j=0 are uniformly spaced over the visible

range Ω with λ j = λ0 + j × ∆λ. And Equation (2.2) can be further arranged into

matrix-vector notation:

c = STI, (2.3)

where S = [sS, sM, sL]T and c = [cS, cM, cL].

This 3 × 1 vector c is known as a (LMS) tristimulus vector. The array of c’s

from different cones are the input for later stage neural processes. The final color

perception formed in the mind depends on many other factors, such as viewing

condition, scene arrangement and those are beyond the presentation of this chapter.

Although two same responses could be treated as different colors under different

conditions, by associating the tristimulus vector c with a well defined standard

condition, we could still uniquely specify a color by the vector c. This concept
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leads to the CIE color matching functions (CMFs) and CIE standard color spaces.

A set of color matching functions (CMFs), like the spectral sensitivity curves of

the LMS space but not restricted to be nonnegative sensitivities, associates physi-

cally produced light spectra with specific tristimulus values. In other words, they

can be thought of as the spectral sensitivity curves of three linear light detectors

yielding the tristimulus values.

One of the earliest defined and most widely used standard basic color spaces is

the CIE 1931 XYZ color space [Smith and Guild 1931], which encompasses all color

sensations that an average person can experience. It is mathematically derived

from CIE RGB color space [Wright 1929] by modifying the primaries so as to avoid

negative stimulus values. The CMFs of CIE RGB color space r̄(λ), ḡ(λ)andb̄(λ) were

directly constructed from experiments where each monochromatic test primary was

matched by normal observers through the adjustment of the combination amounts

of the three CIE RGB primaries. In this way, the estimation of LMS cone sensitivity,

which is difficult to measure directly, was avoided. The CMFs of CIE 1931 XYZ is

derived by defining Y as the luminous efficiency curve, which is roughly analogous

to the spectral sensitivity of M cones, Z quasi-equal to blue stimulation, or the S

cone response, and X as a mix (a linear combination) of cone response curves

chosen to be nonnegative. Defining Y as luminance has the useful result that for

any given Y value, the XZ plane will contain all possible chromaticities at that

luminance. The CIE 1931 XYZ color space serves as a standard reference against

which many other color spaces are defined.

In analogy to LMS tristimulus, XYZ tristimulus are given in terms of standard
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2.1. Color and Image Formation

(a) (b)

Figure 2.2: (a) CIE XYZ and (b) CIE RGB color matching functions1. There are
negative values in the CMFs of CIE RGB color space (R color matching function),
which do not exist in that of CIE XYZ color space.

observer by:

X =

∫
λ∈Ω

l(λ)x̄(λ)dλ,

Y =

∫
λ∈Ω

l(λ)ȳ(λ)dλ,

Z =

∫
λ∈Ω

l(λ)z̄(λ)dλ.

(2.4)

Figure 2.2 also shows the CMFs of CIE RGB and CIE XYZ color spaces. Note

that there are negative values in the CMFs of CIE RGB color space, which do not

exist in that of CIE XYZ color space. And LMS sensitivity functions, CIE RGB

matching functions and CIE XYZ matching functions are mathematically related

by linear transformations.

1Data and figures adapted from http://www.cvrl.org (color and vision research laboratory and
database).
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2.1.2 Camera Pipeline and Image Formation

Digital color cameras are also tristimulus color systems. To simulate the effect of

the human vision system (outputting images interpretable by human perception),

it has on board processes following a scheme of several generic stages [Ramanath

et al. 2005; Kim et al. 2012; Chakrabarti et al. 2014]: image sensor response (RAW

values), white balancing, de-mosaicing, sharpening, color space transformation,

color rendering, re-quantization and compression. These various stages affect the

final output image to different extent. However, the first two stages, RAW image

sensor response and white balancing, are the key to the problem of this thesis -

computational color constancy.

Scene radiance (light spectra) goes through the camera lens, followed by the

color filters and hits the cameras photosensors (CCD or CMOS), causing RAW

sensor responses. Generally, these color filters above the photosensors are com-

posed from three different colored filter: red, green and blue, thus resulting in a

RGB tristimulus camera RAW responses. These color filters are generally arranged

according to a particular pattern, named the Bayer pattern, where 50% of the filters

are green filters, 25% are red and the other 25% are blue. Due to the presence of

these color filters, only the response value of one color channel is recorded for each

pixel. Therefore, a process called de-mosaicing must be applied to interpolate the

other missing two values of each pixel from the neighboring pixels to generate

a full color image. Without considering the effect of de-mosaicing, the physical

formulation of RAW responses are similar to the tristimulus image formation of

the human retina:

ρi =

∫
λ∈Ω

l(λ)si(λ)dλ, i ∈ {R,G,B}, (2.5)
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2.1. Color and Image Formation

(a) Canon EOS 5D Mark II (b) Nikon D3x (c) Sony NEX-5N

Figure 2.3: Examples of camera sensor sensitivity functions from [Jiang et al. 2013].

where [ρR, ρG, ρB]T is the camera RAW responses and si(λ) is the effective sensitivity

of the camera photosensors under of the i-th type of color filter at wavelength λ.

This RAW color space is generally unique for each camera model. It is worth

noting that RAW color responses differs from the standard CIE XYZ color spaces or

LMS spaces. Figure 2.3 shows some example CMFs/sensor sensitivity functions for

different digital camera models. White balance is applied to achieve color constancy

in a simple manner so that white objects appear white in the image. Usually white

balance in the camera is presented as a diagonal linear model (independent scaling

of each color channel).

Due to the difference of RAW color space and standard colorimetry color space,

the original RAW values, even after white balancing, still need to be transformed to

a standard reference color space, for example, the CIE XYZ color space. From this

space, the colors are finally transformed to an output color space, such as standard

RGB (sRGB) or Adobe RGB output color space for display. In this pipeline, different

cameras may apply “color rendering” to further modify the tristimulus in-between
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the reference color space and the output color space to represent them within

the limited gamut. Re-quantization and compression serve for the purpose of

storage. In general, de-mosaicing, sharpening, re-quantization, and compression

are less critical in generating the final image compared to white balance, color space

transformation, and color rendering.

Focusing on the RAW image sensor response, we see that there two important

physical factors to be taken into account for image formation. First, there are objects

in the scene with varying surface reflectance properties; second, the illumination

condition under which the scene is viewed should be consider. The term l(λ) is

the result of the illuminant signal e(λ) interacting with the surface being viewed.

Ideally, it is a linear function of the incident light and the reflectance of the surface,

as well as the direction of the illumination and the direction of the camera, which is

expressed as the bi-directional reflectance distribution function (BRDF). However,

the BRDF is a function of four geometric parameters, measuring the BRDF for even

one surface is very tedious. It is clear that we need simpler models.

The simplest possible form of the BRDF is a constant. This corresponds to a

perfectly diffuse reflection, also referred to as Lambertian reflection. A Lambertian

reflector appears equally bright, regardless of the viewing direction. As a result,

the interaction of surface, light and sensor can be elucidated as

ρi(x) =

∫
λ∈Ω

e(λ)r(λ, x)si(λ)dλ i ∈ {R,G,B}, (2.6)

where each RAW response (R, G and B) at pixel location x is an integrated signal

resulting from the camera’s sensitivity si(λ), the spectral scene content r(λ, x) and

the scene illumination e(λ) over the visible spectrum Ω. Figure 2.4 shows an
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Wavelength (λ)

Reflectance (𝑟)

Illuminant 1 spectrum (𝑒1) 

X

Illuminant 2 spectrum (𝑒2) 

X

Illuminant 3 spectrum (𝑒3) 

X

Camera sensor sensitivity (𝑠𝑅, 𝑠𝐺, 𝑠𝐵) 

Figure 2.4: Illustration of the Lambertian image formation model.

illustration of this simple Lamertian image formation model. Although simple,

this equation is sufficiently accurate [Wandell 1987]: if all spectral functions for

surface reflectance, lighting and sensor sensitivity are measured and provided, the

camera responses can be predicted well from the synthetic tristimulus values. In

fact, the images in Figure 1.1 are synthetically generated using this model and most

computational color constancy approaches in the published literature assumes a

Lambertian reflection model due to its simplicity.

Equation (2.6) does not account for other reflecting phenomena such as specu-

larity and surface roughness. Sometimes, a more complex model of dichromatic

reflection model [Shafer 1985] considering both body reflection and specular re-
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flection is used when specularity information is explicitly used:

ρi(x) = mb(x)
∫
λ∈Ω

e(λ)r(λ, x)si(λ)dλ + ms(x)
∫
λ∈Ω

e(λ)si(λ)dλ i ∈ {R,G,B}, (2.7)

where mb(x) and ms(x) are scale factors that model the relative amount of body

and specular reflectance that contribute to the overall scene radiance reflected at

location x.

Both Lambertian and the dichromatic reflection model here assume that the

scene is illuminated by one single light source uniformly as e(λ) is constant for

different pixel location x. The observed color of the uniform illumination light

source ρe depends on the spectra power distribution of the light source e(λ) as well

as the effective camera sensor sensitivity functions:

ρe =


ρe

R

ρe
G

ρe
B

 =


∫
λ∈Ω

e(λ)sR(λ)dλ∫
λ∈Ω

e(λ)sG(λ)dλ∫
λ∈Ω

e(λ)sB(λ)dλ

 . (2.8)

2.2 Models for Computational Color Constancy

2.2.1 Two Interpretations

As discussed in the previous chapter and sections, the RAW camera responses

directly depends on the scene illumination, as illustrated in Figure 1.1. Achieving

color constancy is of importance for many computer vision applications as well

as photo reproduction. The goal of computational color constancy therefore is to

diminish the effect of the illumination to obtain data which more precisely reflects
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2.2. Models for Computational Color Constancy

the physical content of the scene. However, minor difference in the interpretation

may lead to two different general approaches.

For the first group, computational color constancy is commonly characterized as

finding illuminant independent descriptors of the scene. The aim here is to repre-

sent images by features which are invariant with respect to the light source [Healey

and Slater 1994; Funt and Finlayson 1995; Healey and Wang 1995; Finlayson et al.

1996; Gevers and Smeulders 1999; Gevers and Smeulders 2000; Geusebroek et al.

2003; Van De Weijer and Schmid 2006]. Such invariant representation not only

results in a color image but are still useful for image retrieval. For these methods

the actual estimation of the illuminant is not necessary. These illuminant inde-

pendent descriptions are usually mathematically derived but with many further

assumptions, like the narrow band property of the camera sensor sensitivity and

the black body radiator of the light source spectral power distribution. Since these

assumptions can be violated in real applications, this group of approaches have

found limited adoption.

For the second group of approaches, the aim is to correct images such that they

appear as if taken under a canonical lighting condition. Contrary to methods in the

first group, solutions to this problem do estimate the color of the illuminant, after

which the image is corrected based on the estimated illuminant. This approach can

be used as pre-processing before use in a computer vision system or to normalize

an image before photo finishing. The work in this thesis falls into this second group

of color constancy methods. More details to existing methods in this category will

be discussed in Section 2.3. Before going into the details of existing methods,

we briefly discuss that this approach consists of two sub-problems: illuminant

estimation and image correction. Methods for image correction are discussed in
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the following.

2.2.2 Image Correction Models

One common simple model of image correction for different illuminant is a single

linear transformation. Thus each pixel value of the image taken under the unknown

illuminant, ρU = (ρU
R , ρ

U
G , ρ

U
B )T, is mapped to the corresponding color the image

taken under the canonical illuminant, ρC = (ρC
R, ρ

C
G, ρ

C
B)T, by

ρC = MρU, (2.9)

where M is a single 3 × 3 matrix used for all pixels. It is clearly that this lin-

ear transformation is only an approximation as information has lost during the

mathematical projection/integration from high dimensional space spectral power

distribution signal to a much lower dimensional tristimulus as shown in Equation

(2.6). It is important to note that this is not a one-to-one mapping due to the ex-

istence of metamerism, which is the matching of apparent color of objects with

different spectral power distributions. This inherently cannot be avoided because

of the low dimension nature of the tristimulus color matching system.

Diagonal Model The M in Equation (2.9) can be further restricted to be a diagonal

matrix. The diagonal model has a long history in computational color constancy

research. This approach is attributed to von-Kries [Von Kries 1878] as a model for

human eye adaptation and is thus often referred to as the von-Kries diagonal model,

or diagonal model for short. The diagonal model maps the image taken under one

illuminant to another by simply scaling each channel independently. Suppose a

white patch in the scene under the unknown illuminant has response (RU,GU,BU)T
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and response under the canonical illuminant is (RC,GC,BC)T, the diagonal model is

ρC = diag
(

RC

RU ,
GC

GU ,
BC

BU

)
ρU, (2.10)

where diag(·) indicates the operator of creating diagonal matrix from vector. This

model has been used for most computational color constancy algorithms. Under

ideal white light, the neutral object should remain achromatic in the camera’s color

space. This is effectively known as white-balancing that ensures the neutral colors

appear as “white” in the corrected image. However, the ability of this diagonal

matrix to correct non-neutral colors are ignored. In practice, the basic idea is to

place a neutral (white) calibration object in the imaged scene.

Extended Diagonal Model It is observed that the diagonal model holds exactly if

the camera sensor sensitivities are delta functions (narrow band assumption about

the sensor sensitivity), however the fact is not this case (as can be seen in Figure

: the sensitivity function of common digital camera sensors span a large range of

wavelength). It was proposed by [Finlayson et al. 1994] to use a linear combination

of the vision system’s sensors to improve the diagonal model which is equivalent

as applying transformation to make effective sensor sensitivity more sharp, so that

in the transformed color space, diagonal model works better. They termed this the

generalized diagonal model. This can be formulated as:

ρC = T−1diag
(

RC

RU ,
GC

GU ,
BC

BU

)
TρU, (2.11)

where T is the color space transform from the input sensor color space to a interme-

diatecolor space where diagonal model works better (termed as sharpening matrix),
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and T−1 is the inverse transformation. The main thing is finding the transformation

T and three methods for finding T were proposed: “sensor based sharpening”,

“database sharpening”, and “perfect sharpening”. Finlayson et al. showed that a

two-dimensional linear space of illuminants and a three-dimensional linear space

of reflectances (or vice versa) were sufficient to guarantee the generalized diago-

nal model. Estimating T, however, requires accurate camera responses of known

materials under controlled illumination. To achieve this, the camera responses

are simulated from spectral data of illumination and reflectances using camera

sensitivity functions.

Chong et al. [Chong et al. 2007] also studied this idea of generalized diago-

nal model but from the perspective of tensor factorization and revealed that the

generalized diagonal compatibility conditions are impositions only on the sensor

measurements, not the physical spectra. They formulated the problem as a rank

constraint on an order three measurement tensor to compute the matrix T. Once

again, Chong et al. [Chong et al. 2007] require that the spectral sensitivity of

the camera’s sensor to be known. The use of this spectral sharpening matrix M

effectively meant the color correction transform was a full 3 × 3 matrix.

Another type of non-diagonal model was a result from the analysis of transfor-

mation space [Funt and Jiang 2003; Huang and Huang 2013]. It was found that

three basis are enough to recover nine parameters in the original 3 × 3 full-matrix

model by using a large set of hyperspectral reflectance and illumination data to syn-

thetically generate all possible full matrix linear illuminant correction mappings.

This finding resulted in an PCA-based representation of the illuminant correction

model:

ρC = MρU = (M0 + α1M1 + α2M2 + α3M3)ρU, (2.12)
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where M1,M2,M3 are the PCA basis, M0 is the mean transformation and α1, α2, α3

are the parameters determine the final full matrix.

While these methods helped to lay the foundation on how to estimate full

3 × 3 color correction matrices, the reliance on spectral information makes them

impractical.

2.2.3 Illuminant Estimation

The task of illuminant estimation algorithms is to infer the prevailing illumination

on the imaged scene, after which the image can be corrected as it was taken under

the canonical light. Illuminant estimation is the key to computational color con-

stancy, as the image correction step is considered to be straightforward. However,

I will show here how hard this problem is.

The integral in Equation (2.6) makes it impossible to recover the original illumi-

nant spectral power distribution e(λ), as information has lost during the projection

from the high dimensional spectral space to the low dimensional RGB measurement

space. The linear models for the light e(λ) and reflectance r(λ) [Maloney 1986] have

been extensively studied to reduce of the dimension of the data representation:

e(λ) =

m∑
i=1

εiei(λ),

r(λ) =

n∑
i=1

σiri(λ),

(2.13)

where ei(λ) and ri(λ) are basis functions and εi and σi are coefficients to determine

the representation. The model dimensions m and n are found to be three (for

daylights) and six to eight for reflectances. This is encouraging because the model
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numbers are small. However, they are still not small enough to enable us to

decouple light and reflectance.

Even if we forget about the original spectral power distribution of the illumi-

nant, with admitting it suffices to solve for the RGB responses for the illuminant

only, as defined in Equation (2.8), it is still hard to solve the illuminant estima-

tion problem. To see why, suppose a single illumination is presented across the

scene, and a corresponding image with N pixels is captured, there will be 3N + 3

unknowns (N surfaces at every pixel location and 1 global light, each with 3 RGB

channels), but only 3N RGB measurements known. Because a bright lit on dark

surfaces is indistinguishable from a bright scene dimly lit, it turns out to be im-

possible/unnecessary to recover the brightness of the light (magnitude of the RGB

tristimulus). Thus the number of unknowns reduces to 3N + 2 and this is still less

than the number of known quantities: 3N < 3N + 2. As such, color constancy is an

ill-posed problem that remains a challenge to solve.

2.3 Existing Computational Color Constancy Approaches

Most early work has addressed the problem in the context of synthetic data and

quite simple physical conditions. Recent research has focused effectiveness on prac-

tical usage. All the reviewed methods follows the second category of approaches

discussed in section 2.2.1. The vast majority of methods focus only on illuminant

estimation methods, as the image correction is considered to be straightforward.
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2.3.1 Grey-world Assumption

Perhaps the simplest general approach to computational color constancy is to

compute a single statistic of the image, and then use this statistic to estimate the

global illumination. An obvious candidate for such a statistic is the average/mean,

and this leads to the so called Grey-world assumption [Buchsbaum 1980]. In

physical terms, the assumption is that the average reflectance in a scene under a

neutral light source is achromatic, therefore any deviation from achromaticity in

the average scene color is caused by the effects of the illuminant. This implies that

the color of the light source ρe can be estimated by computing the average color in

the image.

Although this is a very simple approach, there are a number of possible varia-

tions. First, The average could be computed among regions as opposed to pixels

[Gershon et al. 1987]. An image segmentation step is needed and this preprocessing

step can lead to improvements because the Grey-world assumption is sensitive to

large uniformly colored surfaces, which often leads to scenes where this assumption

obviously fails. Segmenting the image before computing the scene average color

will reduce the biasing effect of these large uniformly colored regions. Another de-

viation to the original Grey-world assumption is to compute the average spectra of

a reflectance database to obtain the practical RGB measurements of “grey”, instead

of assuming uniform reflectance. This is so called database Grey-world [Barnard

et al. 2002a].
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2.3.2 Retinex Theory and White-patch Assumption

A very important early work in color constancy is the Retinex theory [Land and

McCann 1971]. The original aim of the theory is a computational model of human

vision, but it has also been used and extended for many other computer vision

tasks, like intrinsic image decomposition. The Retinex theory models presumes that

slowly spatially varying frequency in an image is related to the scene illumination.

If the illumination is assumed to be uniform, then the Retinex theory amounts to the

White-patch assumption – the maximum response in the RGB-channels is caused

by a perfect reflectance. A surface with perfect reflection will reflect the full range

of light that it captures. Consequently, the color of this perfect reflectance is exactly

the color of the light source. In practice, the assumption of perfect reflectance is

alleviated by considering the color channels separately, resulting in the max-RGB

algorithm.

Related algorithms apply some sort of smoothing to the image [Shi and Funt

2012], before finding the maximum value in each channel. This preprocessing step

shares similar effects on the performance of the White-patch algorithm as image

segmentation on the Grey-world method. With this preprocessing, the effect of

noisy pixels (with an accidental high intensity) is reduced, improving the accuracy

of the White-patch method. In [Finlayson and Trezzi 2004], the White-Patch and

the Grey-World algorithms are shown to be special instantiations of a more general

Minkowski-framework:

(∫
ρp

i (x)d(x)
) 1

p

i ∈ {R,G,B}, (2.14)

where substituting p = 1 in Equation (2.14) is equivalent to computing the average
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of all the pixels, i.e. Grey-world assumption, and when p = ∞Equation (2.14) results

in computing the maximum response in each channel, i.e. White-patch assumption.

In general, to obtain a better performance, the value of p is neither 1 nor ∞. To

arrive at a proper value, p is tuned for the data set; hence, the optimal value of this

parameter may vary for different data sets. This is referred as “shades-of-gray”.

Recently, other bio-inspired mechanisms have also been explored to the content of

computation color constancy and achieved competitive results for modern eval-

uation datasets, e.g. [Gao et al. 2013] adopted double-opponency mechanism and

[Gao et al. 2014] used local surface reflectance statistics.

2.3.3 Grey-edge Assumption

Instead of using color distribution, i.e. pixel values, the incorporation of high-order

image spatial information was proposed in [Van De Weijer and Gevers 2005], where

another assumption, similar to Grey-world, Grey-edge was proposed. Specifically,

the average of the reflectance differences in a scene (i.e. image gradient) is achro-

matic. This method is based on the observation that the distribution of color

derivatives exhibit the largest variation in the light source direction and a general

computing framework can be formulated as:

(∫ ∣∣∣∣∣∂nρi,σ(x)
∂xn d(x)

∣∣∣∣∣p)
1
p

i ∈ {R,G,B}, (2.15)

where | · | indicates the Frobenius norm, p is the Minkowski-norm like in Equation

(2.14) and derivatives of the image are defined as convolving the images with

Gaussian derivative filters with scale parameter σ.

Later, the authors of the original Grey-edge work found that different types of
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edges might contain various amounts of information and extended the Grey-edge

method to incorporate a general weighting scheme (assigning higher weights to

certain edges), resulting in the weighted Grey-Edge [Gijsenij et al. 2012a]. Several

different weighting schemes were tried, concluding that specular edges are the best

for illuminant estimation.

This first work of using image spatial information has also inspired many

learning-based methods. Image derivatives are utilized in the original framework

of gamut-mapping method to deliver derivative-based gamut-mapping [Gijsenij

et al. 2010]. With extensive experiments, it was shown that the best performance is

obtained by taking the intersection of feasible sets from different order and direc-

tion (vertical or horizontal) image derivatives. [Chakrabarti et al. 2008; Chakrabarti

et al. 2012] used a parametric long-tail distribution to explicitly model spatial de-

pendencies between neighboring pixels. The advantage of these learning based

methods to the original Grey-edge is that it is able to learn some effective rules

with the help of training data, which is beyond a simple statistical assumption

about the image derivatives distribution.

2.3.4 Gamut-mapping Algorithms

The gamut-mapping algorithm was introduced by Forsyth [Forsyth 1990]. It is

based on an assumption that in real world natural images for a particular illumi-

nant, only a limited number of colors can be observed. As a result, any variations in

the observed colors of the image (i.e. colors that are different from the colors which

can be observed) are caused by the presenting illumination and this unknown il-

luminant can be found by mapping the sensor responses to the observable colors
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based on an appropriate image correction model as discussed in Section 2.2.2. The

set of limit colors which are observable under the canonical illuminant is called

the canonical gamut. It is important to be noted that the gamut is convex. If two

colors are observed, then it is possible to observe any convex combination of these

two responses. Thus the gamut of all possible observed colors to a given illumi-

nant must be convex. To obtain the canonical gamut, a training phase is needed

by observing as many samples as possible under the known canonical illuminant.

Given an image which we want to estimate the unknown illuminant, we must use

the observed sensor responses in the input image as an estimate of the unknown

gamut. Since these colors from one single input image, are only a subset of the

whole, there must be a number of possible mappings that result in a gamut that

lies completely within the canonical gamut. Each such map is a possible solution,

and a second part of the algorithm is to choose a solution from the set of feasible

mappings. The original work [Forsyth 1990] used the heuristic that the mapping

resulting in the most colorful scene, i.e. the diagonal matrix with the largest trace,

is the most suitable mapping. Other alternatives are the average of the feasible set

or a weighted average [Barnard 2000].

Several extensions have been proposed. First of all, difficulty in the method

implementation was addressed by computing the gamut in the 2-D chromaticity

space instead of 3-D color space [Finlayson 1996; Finlayson and Hordley 2000].

One advantage of working in the 2-D chromaticity space is that the algorithm is

immediately robust with respect to illumination intensity variation arising from

the ubiquitous effects of indistinguishable brightness of the surfaces and light.

However, the performance of this 2-D chromaticity approach is slightly worse

than the performance of the 3-D color approach. Another simpler version of
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the gamut mapping was proposed to use a simple cube rather than the convex

hull of the pixel values [Mosny and Funt 2010]. One of the disadvantages of

the original gamut mapping method is that a null-solution result can occur if

the diagonal model fails. Alternatively, to avoid this null-solution, the size of

the canonical gamut can be extended to find feasible mappings [Finlayson 1996;

Barnard et al. 2002a] or an extension of the diagonal model called diagonal-offset

model can be used [Finlayson et al. 2005b]. The most recent modification to the

gamut mapping method, called the derivative-based gamut mapping [Gijsenij et al.

2010] has been introduced in Section 2.3.3, where not only raw pixel values but also

image derivatives can be used to compute the gamut.

2.3.5 Probabilistic Approaches

Probabilistic frameworks have also been applied to the color constancy problem.

In the Bayesian color constancy approach, if the probability of the occurrence of

the illuminants and the surface reflectances are known, then the illuminant can

be estimated from the posterior distribution conditioned on the observed sensor

responses. If we let y be the observed sensor responses, and let l contain parameters

describing the illuminant, then Bayess method estimates the probability of P(l) by:

P(l|y) =
P(y|l)P(l)

P(y)
(2.16)

With further assumptions of a diagonal imaging model from Equation (2.10), il-

lumination and the reflectances are independent and exchangeability of the re-

flectances for each pixel, the illuminant can be solved using the maximum like-

lihood. However, the assumptions that independent reflectance is Gaussian dis-

34



2.3. Existing Computational Color Constancy Approaches

tributed [Brainard and Freeman 1997] were proved to be too strong and later Gaus-

sian assumptions were replaced with non-parametric models [Rosenberg et al.

2001; Gehler et al. 2008].

Color-by-correlation [Finlayson et al. 2001] can be considered to be a discrete

implementation of the Bayesian concept in the 2-D chromaticity space. More im-

portantly, the method is free from the complexities of implicitly estimating surface

parameters. In Color-by-correlation, the probability of seeing a particular chro-

maticity, given each expected plausible illuminant, is calculated, known as the

correlation matrix. Then all correlation matrices are used, together with Bayess

method, to estimate the probability that each of the potential illuminants is the ac-

tual illuminant. Finally, one specific light is selected as the best estimate of the scene

illuminant using maximum likelihood [Finlayson et al. 2001] or Kullback-Leibler

divergence [Rosenberg et al. 2001]. It is worth noting that the Color-by-correlation

method can be considered as the probabilistic version of the Finlaysons 2-D chro-

maticity version of gamut mapping (“Color in Perspective”) [Finlayson 1996] in

the sense that they both choose an illuminant among a set of expected ones.

2.3.6 Learning with Semantic Information

Semantic information is likely used by the the human vision system in its ability to

perform color constancy. Motivated by this, several methods have been proposed

to adopt semantic information into the estimation of the illuminant.

A number of method that use semantic information work on the assumption

that despite the large variety of illuminant estimation methods, none of them are

yet universal to be applied to real world data sets; thus, to be able to obtain accept-
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able results on the whole set of images rather than on a (small) subset, multiple

algorithms should be considered together to estimate the illuminant. Several dif-

ferent combination/fusion strategies are employed in [Bianco et al. 2008; Bianco

et al. 2010] based on the indoor-outdoor classification or complex image features

training from a decision tree. In [Gijsenij and Gevers 2007; Gijsenij and Gevers

2011], the most appropriate statistical color constancy algorithm is dynamically se-

lected for a specific image depending on the scene category from the characteristics

of natural images captured by the Weibull parameterization.

Other methods in this area use high-level visual information. Rather than

classifying images into a different scene category and selecting/fusing different low

level statistical illuminant estimation methods depending on the specific middle-

level semantic information, image is semantically segmented, and for each semantic

content, prior knowledge about the world is used to estimate the illuminant [Van

De Weijer et al. 2007b; Rahtu et al. 2009]. In other words, an illuminant estimate

should generate physically plausible images, e.g. images with a blue rather than

purple sky and green rather than reddish grass. The term “memory color” is used

to refer to color that are specifically associated with object categories. But the

problem with these approaches is obviously from of the semantic segmentation

of the image, which itself is a very hard problem. Thus, in [Bianco and Schettini

2012], a reliable specific object category - the human face, is explored to deliver

good color constancy for images with faces, even for scenes with spatially varying

illumination [Bianco and Schettini 2014].
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2.3.7 Machine Learning Techniques

Among all the learning-based methods, there is a particular interesting group of

method, where no explicit physical assumption is made, but instead, machine

learning techniques are directly used as a black box to give the illuminant esti-

mation. The success of these methods actually relies on the prevalence of large

amounts of accessible data.

Earliest explorations [Funt et al. 1996; Cardei et al. 1998; Cardei et al. 2002] used

artificial neural networks to estimate the chromaticity of the illuminant. The binary

form of the chromaticity histogram of the image was used as the input to the neural

network. Back-propagation was used to adjust the internal weights in the network

so that it thus learns to estimate the illuminant based on the input. They were

proved to achieve good results on synthetic image data. Similar methods replace

the black box using artificial neural networks with kernel regression [Agarwal et al.

2006] and thin-plate spline interpolation [Shi et al. 2011].

Most recent work from these group has achieved the best practical results for

modern datasets. In [Joze and Drew 2012; Joze and Drew 2014], a data-driven

approach or, equally, nearest neighbor method was used on surface regions seg-

mented from the image. The K nearest neighbor models in the given exemplar

images for each surface in a test image can be found based on surface descriptor

matching. The illuminant candidate for this surface is then obtained from these

exemplar surfaces. The final illumination estimation results are obtained by com-

bining these candidate illuminants over the surfaces to generate a unique estimate.

The proposed method has the advantage of overcoming multi-illuminant situations

while has a disadvantage of slow evaluation. A much simpler and more efficient
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work was presented in [Finlayson 2013] where the final illuminant estimation is a

direct linear mapping from image statistical moments. In this work, the moments

can be 1st, 2nd or higher order moments and can also be of image raw colors or

image spatial features such as color derivatives. This approach, although simple,

achieved some of the best results among all major data sets.

2.3.8 Methods Based on Specularities

As previously mentioned, most methods are based on the simpler Lambertian

model following Equation (2.6), however, some methods adopt the dichromatic

reflection model of image formation, following Equation (2.7). These methods ex-

ploit physical clues in the scene from the presence of specular reflection. As a result,

these methods are often referred to as physics-based methods. The dichromatic

reflection model reveals that all pixel colors of a surface are a linear combination

of the body color and the specular reflection color; thus they lie in a plane through

the origin in the three-dimensional RGB color space or fall on a line segments in a

two-dimensional chromaticity space. If two or more of such surfaces are identified,

corresponding to various different planes or line segments, then the color of the

light source is estimated using the intersection of those planes or line segments.

Various approaches [Lee 1986; Tominaga and Wandell 1989; Finlayson and

Schaefer 2001; Tan et al. 2004; Toro and Funt 2007; Drew et al. 2012] have been

proposed based on this idea. However, all these methods suffer from two disad-

vantages: retrieving the specular reflections is challenging and color clipping can

occur. The first one is obvious as detection of specularities involves its own degree

of difficulty. The latter one arises from the limitation of the dynamic range of the

38



2.4. Summary

camera. Specular regions tend to be very bright and when exceed the dynamic

range of a camera, saturated and clipped off, they are no longer reliable to use.

2.4 Summary

Computational color constancy is an important problem in computer vision and is

often the first significant process that takes place in the digital camera pipeline. This

claim is supported by the existence of a large body of work addressing this problem

and the progress in this area has led to improvements in image understanding,

object recognition, image indexing, image reproduction, and image enhancement.

This chapter discussed color and image formation, as well as several represen-

tative approaches in computational color constancy. The classification of existing

approaches is not trivial, however, these methods can generally be classified ac-

cording to two different perspectives: simple statistics-based (Section 2.3.1, 2.3.2,

2.3.3, 2.3.8) or learning-based where training set is needed to learn some model from

(2.3.4, 2.3.5, 2.3.6, 2.3.7 2.3.8), and whether the method utilize raw pixel values only

(Section 2.3.1, 2.3.2, 2.3.4, 2.3.5, 2.3.6, 2.3.7 2.3.8) or high order spatial information

is used (2.3.3). Our work on illuminant estimation (Chapter 5 and Chapter 6) for

color constancy explored from these two perspectives.

Possible image correction models have also been discussed. Specifically, we

discussed that most existing methods use a simple diagonal model to ensure that

achromatic colors are appropriately mapped to a canonical illuminant (generally

selected to be “white”, thus the term, white-balancing). This approach, however,

does not guarantee that all colors in the scene can be corrected. Work that focused

on computing more comprehensive color correction using full 3 × 3 matrices were
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also discussed, however, many rely on the availability of spectral information

about either the camera, light, or surface materials. This makes them impractical

for many applications. In Chapter 7 we describe our work targeting improved

color correction for computational color constancy.
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Chapter 3

Performance Evaluation and Existing

Data Sets

The previous chapter provided an overview of color and existing illuminant es-

timation approaches were given. Given the large body of computational color

constancy and illuminant estimation algorithms, a common evaluation framework

is needed to fairly assess and compare different methods. In this chapter, we dis-

cuss how the standard approaches used in the literature to measure accuracy on a

single images, as well as suitable methods for summarizing errors over a set of im-

ages. We also discuss existing public data sets for the evaluation of computational

color constancy algorithms.

3.1 Ground Truth

Ground truth data is needed to evaluate the algorithm performance. Because of

this, the vast majority of the images on-line cannot be used for the evaluation.
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Figure 3.1: Illustration of reference objects commonly used to get the ground truth
illuminant color1. On the right side, it is a gray ball and on the left side, it shows
the MacBeth ColorChecker chart.

Instead, specifically captured images are needed. Commonly used evaluation data

sets will be discussed in the Section 3.4. To get the ground truth of the illuminant

color from the RGB-images, usually, a reference neutral object is placed in the

scenes. Examples include a solid neutral object (such as a gray ball or gray card)

or an object with neutral patches, such as a MacBeth ColorChecker chart (example

of these two reference can be found in Figure 3.1). Usually, the reference object

should be masked out during the algorithm evaluation not to bias the estimation.

It is assumed that the spectral reflectance of the gray ball or the white/gray patches

from the MacBeth ColorChecker chart is flat, thus the measured color from these

reference can serve as the ground truth illuminant color. Interestingly, even the

MacBeth ColorChecker chart provides more than just white/gray color patches, the

other patches are ignored in the evaluations. The problem is that unlike a neutral

material (i.e. gray patches), the ground truth RGB values of the color patches are

not known in the camera’s color space, and as a result, they cannot be used in the

1Image adapted from http://cgcompo.blog134.fc2.com/blog-entry-49.html.
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evaluation process. We will discuss this in detail in Chapter 7 and will describe

how to overcome this limitation.

3.2 Error Metrics

Given the ground truth illuminant for an image, two error metrics are commonly

used to quantify illuminant estimation error: the Euclidean distance between the

2-D chromaticity vectors and the angular difference between the 3-D representation

(Equation (2.8)) of the two vectors. As discussed in Section 2.2.3, it is impossible to

recover the brightness of the illuminant. As a result, illuminant estimation methods

instead compute the 2-D chromaticity or 3-D color representation that indicates the

direction in the 3-D color space, as the output. Suppose that the algorithm gives

eest or (cest
1 , c

est
2 ) as the output when the ground truth illuminant is egt or (cgt

1 , c
gt
2 ),

where
e = (e1, e2, e3)T,

c1 =
e1

e1 + e2 + e3
,

c2 =
e2

e1 + e2 + e3
,

c3 =
e3

e1 + e2 + e3
,

(3.1)

satisfying c1 + c2 + c3 = 1, then Euclidean distance is calculated as

εEuclidean(cest
1 , c

est
2 ) =

√
(cest

1 − cgt
1 )2 + ((cest

2 − cgt
2 )2 (3.2)
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and angular error is calculated as

εangle(eest) = cos−1

(
eest
· egt

‖eest‖ ‖egt‖

)
, (3.3)

where eest
· egt is the dot product of the estimated illuminant and the ground truth

illuminant and || · || is the Euclidean norm of a vector. Typically, there is a high

degree of correlation between these two error measurements, and so it is sufficient

to evaluate performance by using just one of them: angular error is used throughout

this thesis, since it is more widely used in the literature and is correlated to the

perceptual Euclidean distance [Gijsenij et al. 2009a].

3.3 Evaluation and Comparing Algorithm Performance

3.3.1 Summary Statistics

The error metrics that have been introduced tell us the accuracy of a particular

algorithm on a single image and allow us to easily compare the relative performance

of two or more algorithms on a single image. Of course, algorithm performance will

vary from image to image, and so to obtain an accurate assessment of algorithm

performance we must consider its performance over a large and diverse set of

images.

An intuitive and straightforward measure would be to simply compute the

average error over the full database, e.g. the mean angular error or the root mean

square (RMS) chromaticity error over a set of images. However, practically the error

measurements are often not normally distributed, but rather skewed resulting in a

non-symmetric distribution. In such cases, the mean is known as a poor summary
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statistic and the median is often taken to be a more reliable estimate of the central

tendency [Hordley and Finlayson 2006]. Another common summary is the tri-

mean [Gijsenij et al. 2009a]. The median gives an indication of the performance of

the method on the majority of the images, while the tri-mean also takes extreme

values of the distribution into account. Besides these summary statistics, other

statistics are usually shown together, like the average of the best 25% cases, the

average of the worst 25% cases and the maximum error, to give more comparison

dimension.

3.3.2 Significance Test

In addition to these summarizing statistics, hypothesis tests should be used to

formally determine the statistical significance of the differences between algorithms

performance. Since the error distributions are not well described by standard

statistical distributions (e.g. a Gaussian distribution), commonly used statistical

tests such as the Student’s t-test are inappropriate and nonparametric tests, which

are independent of the underlying distribution such as the Wilcoxon sign test [Hogg

and Tanis 2001] and the Kolmogorov-Smirnov (K-S) test [Hogg and Tanis 2001], should

be used.

The Wilcoxon sign test can be used to determine the significance of the dif-

ference between the median of two different error distributions, and the K-S test

can be used to investigate the statistical significance of the differences between the

distributions themselves. Essentially, the Wilcoxon sign test shows if the median

of error measurements (x1) from a method is significantly lower than the median of

error measurements (x2) from another method. The K-S test compares cumulative
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distributions corresponding to the two error distributions (x1 and x2) from the two

algorithms under investigation and infers the performance of two algorithms by

the fact that if the data values in x1 tend to be larger than those in x2, the empirical

distribution function of x1 tends to be smaller than that of x2, and vice versa.

3.4 Evaluation Data Sets

Two types of data can be distinguished that are used to evaluate color constancy

methods: hyperspectral data and RGB-images. Databases containing hyperspec-

tral data sets are often smaller (fewer images) and contain less variation than data

sets with RGB-images. The main advantage of hyper-spectral data is that many dif-

ferent illuminants can be used to realistically render the same scene under various

light sources, and consequently a systematic evaluation of the methods is possi-

ble. However, the simulation of illuminants generally does not include real-world

effects like inter-reflections and non-uniformity. Consequently, the evaluation on

RGB-images results in a more realistic performance evaluation. Ideally, both types

of data should be used for a thorough evaluation of color constancy methods.

3.4.1 Hyperspectral Data

There are two existing data sets containing hyperspectral data. One from a group at

Simon Fraser University [Barnard et al. 2002c], consisting of 1995 surface reflectance

spectra and 102 illuminant spectra and the other from a group at the University

of Manchester [Foster et al. 2006] which is essentially 16 natural scene reflectance

images. Synthetic images can be composed randomly from the spectra data, but the

generated images are meaningless from the real scene. Hyperspectral reflectance
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image set is advantageous in the sense that they are nature scenes (urban and rural

scenes) containing real objects. However the inconveniences of using a hypespctral

camera and costly acquisitioning of the data makes it very hard to capture a large

number of different scenes, restricting it from being used to test color constancy

algorithms.

3.4.2 SFU Laboratory Object Image Set

A commonly used RGB image set is from the same group at Simon Fraser Uni-

versity (SFU) [Barnard et al. 2002c], in a laboratory setting where several different

objects were placed and arranged differently in the laboratory with 11 different

indoor man-made light sources. The complete data set contains 22 scenes with

minimal specularities, 9 scenes with dielectric specularities, 14 scenes with metallic

specularities and 6 scenes with at least one fluorescent surface. Usually, a subset

of 321 images that only consists of the scenes with minimal and with dielectric

specularities is used for evaluation of color constancy algorithms (see Figure 3.2

for some sample images). The 11 different lights include three different fluorescent

lights, four different incandescent lights and four incandescent lights combined

with a blue filter. The ground truth of the illuminant is provided separately from

the image itself. The variation of the scene objects, however, is limited and the

data set contains many unusual blue and yellow lights. Another problem with this

data set is the images are not camera RAW images (back at that time, no camera

could provide RAW images directly) and may be affected by on board camera color

manipulation.
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Figure 3.2: Sample images from the SFU laboratory object image set [Barnard et al.
2002c].

3.4.3 Gray Ball Image Set

A little after the release of the SFU laboratory object image set in 2002, the SFU came

with another, larger, RGB image set [Ciurea and Funt 2003] with 11,000 images.

This image set was actually extracted from 2 hours of video and was divided

into 15 different clips taken at different locations (see Figure 3.3 for some sample

images). The ground truth is acquired by attaching a gray ball to the camera,

which is presented in the bottom right corner of every image and obviously, this

gray ball should be masked during evaluation to avoid biasing the algorithms.

The main disadvantage of this image set is that strong correlation exists between

images. Since the images are extracted from video sequences, some images are

very similar in content (nearly identical) and the number of uncorrelated images

are much less than the original number of images. Other issues of this set include

the low resolution (360× 240) and heavy post-processing on the images, which can
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Figure 3.3: Sample images from the gray-ball image set [Ciurea and Funt 2003].

not be eliminated.

3.4.4 Gehler-Shi Image Set

Except the previous two relatively older image data sets (both longer than 10 years

old), there is one modern image set commonly used. At the Vision Group at

Microsoft Research Cambridge, Gehler et al. [Gehler et al. 2008] collected this set of

images around Cambridge as part of their Bayesian framework revisited. Later in

[Shi and Funt ], it was suggested use the linear reprocessed version of it. This data

set (see Figure 3.4 for some sample images) contains 568 images from Canon 1D

and Canon 5D, including a variety of indoor and outdoor scenes with challenging

cases. The ground truth illuminant of these images is obtained using a MacBeth

ColorChecker chart that is placed in every scene. The main advantage of this

database is the quality of the images from modern digital cameras (large resolution

and totally free of any color correction). The sufficiently large number of images
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Figure 3.4: Sample images from Gehler-Shi image set [Gehler et al. 2008; Shi and
Funt ].

and variation in the scene also give ability to explore learning-based methods.

3.5 Summary

In this chapter, color constancy algorithm evaluation topics have been discussed,

including the measurement metrics, summary statistics on a whole data set and

available data sets for the evaluation. The angular error is a commonly accepted

metric on a single image and it is correlated to perceptual difference. For a data

set of many images, summary statistics should include mean, median and trimean

together. In addition, statistics significance tests, like the Wilcoxon sign test and the

K-S test, are recommended but not necessarily needed. For the choose of evaluation

data sets, although there are two distinct type of data sets: hyperspectral data sets

and RGB image sets, conclusions about the performance based on hyperspectral

data sets should be avoided as much as possible, since it is relatively easy to tune
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any algorithm to obtain a high performance on such data sets. The real-world RGB

images are more suited to compare algorithms, and such data are probably the

target data of the intended application of most color constancy algorithms.
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Chapter 4

A New Multiple-Camera Image Set

In the previous chapter, some existing data sets are discussed. Each of them,

however, suffers some limitations. The most notable, is that number of cameras is

limited. This is important to note, since learning-based methods are evaluated per

camera. In order to evaluate computational color constancy algorithms with more

cameras/sensors, we have collected a new data set from multiple digital cameras.

This new image data set is similar in nature to the Gehler-Shi image set [Gehler

et al. 2008; Shi and Funt ] and SFU laboratory object image set [Barnard et al.

2002c], however, with more images and up to date camera models. In short, our

new data set (NUS Multiple-Camera image set) has images of the same scene with

the different cameras, something not done in the previous methods and datasets.

This gives a way to compare the performance across different cameras on the

same input. The data set can be accessed from http://www.comp.nus.edu.sg/

˜whitebal/illuminant/illuminant.html.
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4.1 Description

Our new image set is composed of images from 9 commercial cameras with the

ability to shoot and save RAW images. The cameras are as follows: Canon EOS 1Ds

Mark III, Canon EOS 600D, Fujifilm X-M1, Nikon D40, Nikon D5200, Olympus PEN

Lite E-PL6, Panasonic Lumix DMC-GX1, Samsung NX2000 and Sony SLT-A57. For

these cameras, we captured about or more than 300 images each.

The images were taken from two different time periods. In the first period, im-

ages were taken around Singapore in natural settings (not in laboratory) of colorful

scenery, both indoor and outdoor. For outdoor images, both sunny and shady

conditions are considered. For indoor, various common commercial lightings are

considered (e.g. tungsten, fluorescent, and etc.). Example images from the dataset

are shown in Figure 4.1 and Figure 4.3. This first set of images was dominated

by outdoor scenes with limited indoor scenes. Therefore, we than expanded the

image set with more indoor scenes but with laboratory setups. Using the same

cameras, we captured 18 scenes under six different indoor illuminations for each

camera. Example images for laboratory settings can be found in Figure 4.2. These

additional images make the distribution of outdoor and indoor illuminations much

more uniform. Specifically, the new data set contains 364 images for Canon EOS

1Ds Mark III, 305 images for Canon EOS 600D, 301 images for Fujifilm X-M1, 221

images for Nokon D40, 305 images for Nikon D5200, 313 images for Olympus PEN

Lite E-PL6, 308 for images Panasonic Lumix DMC-GX1, 307 images for Samsung

NX2000 and 373 images for Sony SLT-A57. Table 4.1 shows the numbers of outdoor

images and indoor images for each camera. It can be seen that the distribution of

different illuminations (outdoor/indoor) is nearly uniform.
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Figure 4.1: Sample natural images from our newly collected data set. Images are
colorful and contain common lighting conditions.
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Figure 4.2: Sample laboratory images from our newly collected data set. Images
are colorful and contain 6 different indoor lights.

Camera Model No. of outdoor images No. of indoor images
Canon EOS 1Ds Mark III 197 167

Canon EOS 600D 145 160
Fujifilm X-M1 144 157

Nikon D40 80 141
Nikon D5200 151 154

Olympus PEN Lite E-PL6 153 160
Panasonic Lumix DMC-GX1 147 161

Samsung NX2000 153 154
Sony SLT-A57 207 166

Table 4.1: The numbers of outdoor images and indoor images for each camera set.
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Camera Model Lens Model
Canon EOS 1Ds Mark III EF 50mm f/2.5 Compact Macro

Canon EOS 600D EF-S 18-55mm f/3.5-5.6 IS II
Fujifilm X-M1 Fujinon Super EBC XC 16-50mm f/3.5-5.6 OIS

Nikon D40 AF-S DX NIKKOR 18-55mm f/3.5-5.6G ED
Nikon D5200 AF-S DX NIKKOR 18-55mm f/3.5-5.6G VR

Olympus PEN Lite E-PL6 M.ZUIKO DIGITAL 14-42mm f/3.5-5.6 II R
Panasonic Lumix DMC-GX1 Vario 14-42mm f/3.5-5.6 ASPH

Samsung NX2000 20-50mm f/3.5-5.6 ED II i-Function
Sony SLT-A57 DT 18-55m f/3.5-5.6 SAM

Table 4.2: Lens used for each camera in our NUS Multiple-Camera image set. The
focal length are not exactly the same for different cameras, resulting in different
viewing perspectives for different cameras.

The most important feature of this new data set is that the scenes and illumina-

tions are roughly the same for all the cameras for most scenes. This gives the ability

to evaluate the computational color constancy algorithms on different sensors in

a fair setup. It should be noted that there are misalignments in the images due to

many reasons: (1) camera positions cannot be exactly ensured to be the same; (2)

the camera sensor size and image resolution is different for these cameras; (3) lens

used for different cameras are different (lens used for each camera are listed in Table

4.2) resulting in different perspective viewing effects for different cameras. How-

ever, these errors were kept as small as possible during image capturing. Example

images (different cameras for the same scene) can be found in Figure 4.3.

4.2 Processings

RAW processing One reason we have chosen these cameras is that they all

provide the ability to save images in RAW format that has minimal on-camera
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Figure 4.3: Sample images from our newly collected data set - the same scene
from eight different cameras. Images cannot be aligned perfectly, but we adjust the
position of the camera and the focal length to obtain the best match during capture.
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(a) (b)

Figure 4.4: Camera sensor color filter array comparison. (a) An example of Bayer
pattern in front of photo sensors1. It is composed by 2× 2 repeating pattern, where
50% of the filters are green filters, 25% are red and the other 25%. To down-sample
color image from the original RAW image, in each 2 × 2 block, red, green and
blue color channel can be dumped. (b) An example of Fujifilm X-Trans color filter
pattern. It is composed by 6 × 6 repeating pattern, where green filters occupies
more than half, and red and blue filters are arranged more randomly so that it
can reduce moire effect. However, we don’t have to down-sample the image by 6,
because in every 3 block, red, green and blue can be found and extracted.

processing. To use the unprocessed image data from the RAW image files (file types

are different for different camera manufacturers), DCRAW software (accessed from

https://www.cybercom.net/˜dcoffin/dcraw/) was used with arguments “-D -4

-T” to extract the original linear image data. No further demosaicing was done,

but only down-sampling according to the Bayer pattern [Bayer 1976] to create a

color image. Color patterns of all 8 cameras, except the Fujifilm X-M1, are all

variations to the standard RGGB Bayer pattern (see Figure 4.4), so the original

DCRAW converted images were down-sampled by factor 2. The pattern used

by the Fujifilm X-M1 is a novel 6×6 pattern, which is termed X-Trans2 by Fujifilm,

but in every 3×3 block, there exists RGB pixels, so the images from Fujifilm X-M1

camera were down-sampled by factor 3.

1Image adapted from Wikipedia page: http://en.wikipedia.org/wiki/Bayer_filter.
2see http://fujifilm-x.com/x-pro1/en/about/sensor/ for more details
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Black level and saturation level The resulting images are still not ready to

be used as the input to the color constancy algorithms, since the CMOS sensor

readouts have black level (which means for an absolutely black scene with no

light, the CMOS still has some readout) and in addition, the saturation level is not

always the maximum range of bit numbers (e.g. 14-bit RAW sensor may not have

possibility to reach 214 = 16384 before saturation). Consequently, these black levels

and saturation levels should be estimated to normalize the RAW images before

using for computational color constancy algorithms. Black levels are estimated by

taking multiple images with the lens cap covered and averaging these multiple

images. Saturation level are estimated by taking multiple images pointing a bright

light with very long exposure time to make sure saturated for the sensor. Our

estimated black level and saturation level values for these cameras are consistent

with the values that Adobe used in their products, e.g. camera raw plug-in for

Photoshop.
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Chapter 5

Spatial Domain Methods and the

Role of the Color Distribution

Motivated with the computational color constancy problem and given enough

background knowledge in the previous chapters, this chapter describes our first

study of the illuminant estimation - the relationship between methods directly

using color information and methods using spatial image information. Based on the

findings in this study, a simple statistics-based illuminant estimation method is then

proposed. Experiment results show that our proposed statistics-based method,

although simple, can achieve competing performance as complex learning-based

methods.

5.1 Introduction

It was shown in Section 2.1.2 that an image captured by a camera is an integrated

signal resulting from the camera’s sensitivity of the spectral scene content and
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scene illumination. It is clear that the RGB colors are biased by the color of the

scene’s illumination. Thus a popular two-step work flow of estimating the scene

illuminant and correct the image as it was taken under a canonical illumination

(Section 2.2) is used to remove the unwanted color casts. Research in illuminant

estimation has a long history spanning several decades (reviewed in Section 2.3)

and these methods have different perspectives of categorization as discussed in

Section 2.4.

In this chapter, we distinguish previous methods by the type of information they

use to estimate the illuminant: (1) methods based on color distribution and work

directly from color values, and (2) methods based on spatial information such as

image gradients or other spatial differences. The obvious question to ask is why do

the spatial domain methods (e.g. Grey-edge [Van De Weijer et al. 2007a] as well as

learning based on spatial information such as spatio-statistical [Chakrabarti et al.

2012] and edge-based gamut-mapping [Gijsenij et al. 2010]) work? In addition,

what is their connection to the methods that work directly in the color domain

[Buchsbaum 1980; Finlayson and Trezzi 2004; Shi and Funt 2012].

While the spatial information is known to be important for color constancy

in human vision [Green 1968], it is intriguing to consider why spatial derivatives

might give insight to the scene illumination direction for computational color con-

stancy. While spatial-domain methods clearly show a correlation between spatial

changes and illumination direction, the underpinning reason is not clear. Spatial

derivatives and their variations (e.g. examining various spatial frequencies) are re-

lated to scene albedo changes from surface texture and depth discontinuities. More

importantly, they are dependent on the spatial relationship of objects in the scene.

This makes such approaches sensitive to the scene content. Yet, these methods
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have seen reasonably good success.

From our analysis, we find that the spatial information serves merely as a means

of obtaining samples of color differences in the color domain, and, that the majority

of the spatial information is not useful. More specifically, spatial domain methods

benefit from the large gradients in the scene which correspond to differences from

colors far apart in the color domain (see Figure 5.1). This observations lead us

to question whether computing this information directly from the color domain

might be a better strategy than relying on spatial content. To this end, we introduce

a novel illumination estimation method that works from the color domain and

selects pixels that describe the illumination well. Our method is simple, efficient,

and gives state-of-the-arts results.

The rest of this chapter is as follows. Section 5.2 gives more background on

color domain and spatial-domain methods. Section 5.3 provides analysis into

why spatial methods work. Section 5.4 presents our methods followed by results

Section 5.5 and a summary in Section 5.6.

5.2 Color and Spatial Domain Methods

We discuss color domain and spatial domain methods here. Given the long history

of color constancy research, only representative examples are discussed. As previ-

ously mentioned, we categorize the approaches based on the information used to

estimate the illumination, i.e. RGB values (i.e. color domain) or spatial information.

Let an image I be denoted as a collection of vectors I(x) = [IR(x) IG(x) IB(x)],

where x indicates the pixels (or corresponding color points in the color domain)

and Ic(x) denotes the color value of c ∈ R,G,B color channels.
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Image’s color distribution plot in RGB
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Figure 5.1: In the spatial domain methods, gradients serve as a mean of computing
color differences. Spatial gradients with strong responses can be attributed to scene
content whose color values are far apart in the color domain as shown in this figure.
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5.2.1 Color Domain Approaches

Among the methods based on the color domain distribution, the most popular

methods are the max-RGB [Shi and Funt 2012; Brainard and Wandell 1986] and

the Grey-world method [Buchsbaum 1980], along with their variants such as those

employing p-norm averages [Finlayson and Trezzi 2004]. All these methods are

based on statistical hypotheses about the spectral properties of the scene. For

example, the Grey-world method [Buchsbaum 1980] and variants assume that the

average of a particular Minkowsky norm of a scene’s RGB values is achromatic (in

other words a constant for all the three color channels). Thus, performing such a

norm average on the color data of an image will estimate the illumination direction.

Mathematically, for such approaches, the color constancy matrix T = diag(T)−1 is

given by the illumination direction T = [tR tG tB] which is estimated as:

tc =
(
∑

x |Ic(x)|p)
1
p

N
, (5.1)

where |◦| denotes the absolute value and N is the number of pixels in the image.

The max-RGB method is also a subset of this since it considers (p = ∞) Minkowsky

norm. Here, we note that the average is typically taken on all the pixels (after

possibly removing the pixels corresponding to the saturation and dark noise). This

is a general approach however, more specific choice of pixels is also considered at

times. For example, pixels corresponding to specularity only may be chosen [Joze

et al. 2012].
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5.2.2 Spatial Domain Methods

In the spatial domain methods, a spatial domain operator f (I) is applied on the

image I to obtain a transformed image J:

J(x) = f (I(x)) (5.2)

These methods operate directly on the transformed image J. For example, the

Grey-edge [Gijsenij et al. 2011; Van De Weijer et al. 2007a] hypothesizes that the

derivatives of an image in the spatial domain represent achromatic color. As with

Grey-world, a pth Minkowsky norm can be used as in Equation (5.1) to estimate

the illumination direction operating on the J instead of I.

An enhanced version of the Grey-edge method is the weighted Grey-edge

[Bianco et al. 2008; Gijsenij et al. 2012a] where the edges are classified accord-

ing to physical properties such as specularity, shadows, etc. The operator f (I) can

be represented as a weighted nth order derivative:

J(x) = w(x)∇nI(x) (5.3)

where w(x) is the weight given to a pixel based on photometric classifications, such

as discussed above.

Other spatial domain methods use operators such as difference of Gaussian,

discrete cosine transform [Chakrabarti et al. 2012], discrete wavelet transform

[Celik and Tjahjadi 2012] etc. The idea is to suppress/remove the smooth portion

of the data and keep only the spatial high frequency components (equivalent to

derivatives) in the image [Celik and Tjahjadi 2012].
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5.3 What Makes Spatial Domain Methods Work

As stated in Section 5.1, our focus is to investigate what makes spatial domain

methods work. Here, we provide a direct analysis to give insight into why spatial

domain methods work. We do this using two experiments to help reveal the

relationship of the spatial information to image samples in color domain.

5.3.1 Introducing Artificial Gradients

We first look at synthetically introducing gradients in an image by dividing the

image into uniform blocks and randomly shuffling the blocks to create a new

image. For this new image, neither the illumination, color distribution, nor the net

image content has changed. This new image does have new image gradients due to

the boundaries created by the shuffled blocks, but these gradients are artificial and

do not represent anything physical about the scene. Such manipulation will have

no effect on color domain approaches. However, for spatial domain approaches

this has a surprisingly positive effect on the illumination estimation.

Figure 5.2 and Figure 5.3 show two examples. The top row shows two images

divided into different number of blocks that have been shuffled. The bottom rows

shows the ground truth illumination (the grey arrow) and plotted gradients against

the R-G and R-B planes. As the number of blocks increases, the number of large

gradients increases. These new gradients correspond to large color differences at

the edges of the blocks. More importantly, these new gradients are completely

artificial and have no physical meaning. It is interesting to see that these new large

gradients also appear to be following the direction of the illumination. The addition

of these artificial gradients improves the Grey Edge algorithm [Van De Weijer et al.
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Figure 5.2: This figure shows an example images from the Gehler-Shi [Gehler et al.
2008; Shi and Funt ] data set, where synthetic gradients are introduced by shuf-
fling the image by blocks (top row). Note that the scene content and overall color
distribution does not change. The gradients of these images projected on differ-
ent color planes show that introduction of new gradients makes the distribution
more elongated and directional. This shuffling actually improves the illumination
estimation for a well known spatial technique [Van De Weijer et al. 2007a].
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Figure 5.3: This figure shows another example images from the Gehler-Shi [Gehler
et al. 2008; Shi and Funt ] data set, where synthetic gradients are introduced by
shuffling the image by blocks (top row). Note that the scene content and overall
color distribution does not change. The gradients of these images projected on dif-
ferent color planes show that introduction of new gradients makes the distribution
more elongated and directional. This shuffling actually improves the illumination
estimation for a well known spatial technique [Van De Weijer et al. 2007a].
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2007a]. This is shown by the angular error from the ground truth which decreases

as the shuffling increases.

5.3.2 Gradient Analysis

Our second experiment examines how gradients contribute to illumination esti-

mation. It is well known that natural images have significantly large number of

small valued gradients and a sparse number of large gradients [Weiss and Freeman

2007]. This means that we should expect the majority of the gradients obtained for

spatial methods to be small valued. This is shown in Figure 5.4 on two example

images. The gradients probability map shows the relative occurrence of a particu-

lar gradient value. Here we have considered the horizontal spatial derivative for

simplicity; the vertical derivative shows a similar trend.

The goal here is to investigate the contribution of low valued gradients (i.e. the

majority of the gradients) to the illumination estimation. For this we consider the

gradients inside the yellow boxes shown in Figure 5.4. Using the pixels that lie

inside the yellow box only, we compute and plot the dominant direction in this

distribution using principal component analysis (PCA). The result is shown in

Figure 5.4) using a magenta colored line. The ground truth illuminant is shown as

a black line. Further, we consider if the large gradients are helpful in illumination

estimation. For this, we consider the pixels outside the grey box and compute the

PCA of the large gradients in Figure 5.4), which is shown using green colored line.

It can be seen that the illumination estimation for small gradients (inside yellow

box) have more angular deviation from the ground truth than the pixels with higher

gradients (outside grey box). Thus, small gradients can actually bias the solution in
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Figure 5.4: Probability map of the image (from the Gehler-Shi [Gehler et al. 2008;
Shi and Funt ] data set) gradients and the illumination information in the various
regions of this map are shown. The magenta lines show the PCA vector of the pixels
inside the yellow box (i.e. illumination information in small gradients) and the
green lines show the PCA vector of the pixels outside the grey box (i.e. illumination
information in large gradients). Black lines show the ground truth.
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an erroneous manner. Thus, removing these small gradients through heuristics is a

way to improve the performance of spatial methods. Such heuristics may involve

identification of the pixels lying along edges, specularities, or shadows [Gijsenij

et al. 2012a].

Both of these experiments serve to underscore that large color differences are

key to illumination estimation. Moreover, our first experiment shows that relying

on the scene content to provide these differences may not be the best strategy.

Simply by shuffling the image content to introduce artificial gradients, we were

able to obtain better results. This begs the question if we can design a method to

obtain similar large color differences in the color domain directly and bypass the

reliance on the spatial content to give us these differences.

5.4 Proposed method

Based on our findings in Section 5.3 we propose a new method that selects colors

in the color domain distribution that effectively provide large differences. This is

similar to examining large gradients without the reliance on the scene content to

guide the selection of the colors. Our method is described in the following.

5.4.1 Selection of Colors

It was empirically shown for the gradient domain in [Gijsenij et al. 2011] that spec-

ular pixels and shadow pixels help in reducing the error of illumination estimation.

Such observations were also reported in [Lee 1986; Joze et al. 2012; Drew et al. 2012;

Tan et al. 2004; Chang et al. 2012]. It is interesting to note that the pixels that lie on

the edges of specular and shadow regions generally represent regions with notable
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GE: 7.83⁰
WGE:7.97⁰

GE: 1.02⁰
WGE:0.97⁰

Figure 5.5: These images (from the Gehler-Shi [Gehler et al. 2008; Shi and Funt
] data set) of different scenes are taken in the same illumination, but the error in
illumination estimation using spatial domain methods is quite different for the two
images. The labels in the top corners of the images show the angular errors of
the Grey-edge (GE) [Van De Weijer et al. 2007a] and weighted Grey-edge (WGE)
[Gijsenij et al. 2009b] algorithm.

color differences between them in the color domain. In practice, however, selecting

specular and shadow pixels only from an image is not straight forward. For exam-

ple, we have to distinguish between specularities and bright surfaces and shades

and dull surfaces. This requires additional image processing and the knowledge

of scene and camera’s spectral properties could give a good classification for them.

In this sense, if we choose just the bright and dark pixels in the image, we

can have the clusters of points with largest color differences between the clusters.

Doing so has several advantages. First, we are not dependent on the scene’s

actual content and spatial correspondence for color estimation. This is important

because sometimes two images of different scenes under the same illumination

may result in drastically different estimation using spatial domain methods, see
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Figure 5.5 for example. Second, such an approach does away with the computation

involved in spatial domain processing such as filtering. Third, we do not need to

compute photometric pixels having qualities such as specularity or shade. This is

quite handy since either the classification of such pixels require sophisticated and

advanced processing or very crude approximations are used to classify them with

large error probability.

5.4.2 Our Algorithm

An illustration of our proposed method is shown in Figure 5.6. We first compute

the projection of all the color points in the color domain on the direction of the

mean vector. The projected distances be denoted as dx, where x is the index of a

color point. The term dx is a scalar distance given as:

dx =
I(x) · I0

‖I0‖
, (5.4)

where ‖A‖ denotes the Euclidean norm of a vector A, A ·B represents the vector dot

product of the vectors A and B, and the vector I0 is given as:

I0 = [tR tG tB] , (5.5)

where tc is given by Equation (5.1) with p = 1. Further, I(x) = [IR(x) IG(x) IB(x)]

is the vector containing the RGB color values of a color point x. The projection

distance is illustrated in Figure 5.7. We then sort the color points in the ascending

order of the projection distances dx. Then we choose the top n% and bottom n% of

color points, thus selecting the color points with largest and smallest projections
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Figure 5.6: This figure shows the framework of the proposed method. The illustra-
tion of computing projection distance is illustrated in Figure 5.7.
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ProjectionsMean
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Figure 5.7: Illustration of the projection distance used in Equation (5.4).

on the mean vector.

Then we compute the first PCA vector of the data matrix formed using I(x)

corresponding to the selected pixels only. This vector is taken as the estimated

illumination direction. The effect of control parameter n on the performance of our

method is shown in Figure 5.8 using the mean and median errors for the Gehler-Shi

[Gehler et al. 2008; Shi and Funt ] data set. It is seen that the median error is the

lowest at n = 3.5%. We note that while our method is simple, our results show that

it is quite effective in estimating the illumination.

5.5 Experimental Results

As showed in Section 3.4, there are several data sets for evaluation. We show our

results on three datasets. The first is the well established SFU Laboratory Object

image set [Barnard et al. 2002c] comprising of 321 images taken in a laboratory

setting with controlled scenes and illuminants. The second is the more recent the
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Figure 5.8: Effect of the control parameter n on the performance of the proposed
method.
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Gehler-Shi [Gehler et al. 2008; Shi and Funt ] data set comprising of 568 images of

natural scenarios with natural scenes and illuminations. These two data sets are

currently the standards used when comparing color constancy algorithms. The

third is our own NUS Multiple-Camera data set, which provides the possibility to

evaluate different algorithms on different cameras.

We compare our results against 14 existing techniques that represent a wide

range of color constancy techniques from Section 2.3 (see Tables 5.1 and 5.2). As

discussed in Section 3.2, we have used angular error (Equation 3.3) as the error

to evaluate the methods as it is most widely used in evaluating color constancy

algorithms [Gijsenij et al. 2011] and is correlated to the perceptual Euclidean dis-

tance [Gijsenij et al. 2009a]. For the summary statistics, unlike most of the previous

work which examine only the mean and the median of the AEs, we provide a more

thorough comparison with additional statistical metrics, including the tri-mean,

the mean of the best 25% AEs and the mean of the worst 25% AEs, as discussed in

Section 3.3.1. The mean, median, tri-mean, and maximum angular errors of most

state of the art methods and our method for various datasets are reported in Table

5.1. The error for best 25% images and worst 25% images are listed in Table 5.2.

We have used n = [0.5, 3.5]% for generating our results. The control parameters

of the other methods are shown in Table 5.3. The control parameters have been

chosen as recommended in the respective papers and the color constancy web-

site http://colorconstancy.com/. With these guidelines, the control parameters

producing optimal results (minimum mean errors) were chosen for reporting the

results of other methods for our NUS Multiple-Camera data set. Results for the

SFU data set [Barnard et al. 2002c] and the Gehler-Shi [Gehler et al. 2008; Shi and

Funt ] data set are reported as reported in http://colorconstancy.com/. Results
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of few methods for SFU Laboratory and Gehler-Shi datasets are kept blank as the

data was not reported previously.

The training and test times for our Canon1 dataset are reported in Table 5.4. All

the results were generated on Intel Core i5 @3.2GHz with 4GB RAM using Matlab

2010.

It is seen that our method performs reasonably well for all the datasets in

terms of the mean, median, tri-mean errors, and errors for best 25 % images. Our

method performs the poorest on the SFU Laboratory image dataset. The reason

for the poor performance is discussed in the failure cases below. In all the other

datasets, the error of our method compete well against the other methods. Our

method often has the least error and in other cases error quite close to the least

value. Often, the methods that perform better than our method for a given metric

and dataset are based on machine learning or gamut fitting (collectively called

learning based methods). Methods in both these classes use images in the same

dataset for 3-fold training and validation before testing is done on the same images.

The 3-fold learning is used for maintaining consistency with previously reported

results on http://colorconstancy.com/. Thus, it is not too surprising that error

of these methods are often quite small. Nevertheless, it is not guaranteed that these

methods will always result in very small errors since their performance is quite

sensitive to the choice of control parameter.

Training also imposes a high computational requirement on learning based

methods, as is confirmed in the large training times reported in Table 5.4. In

addition, as noted in Table 5.4, the test times are also large for such methods. On

the other hand, our method takes just a few minutes (including image read time)

for the 259 images of dataset Canon1. Thus, it is seen that our method provides a
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Statistics based methods Learning based methods
Method Our GW WP SoG GGW BP GE1 GE2 PG EG IG BL ML GP NIS
Dataset Mean angular error (degrees ◦)
Gehler-Shi 3.52 6.36 7.55 4.93 4.66 − 5.33 5.13 4.20 6.52 4.20 4.82 3.67 3.59 4.19
SFU Laboratory 6.07 9.78 9.09 6.39 5.41 − 5.58 5.19 3.70 3.92 3.62 − 5.63 − −

Canon 1Ds Mark III 2.93 5.16 7.99 3.81 3.16 3.37 3.45 3.47 6.13 6.07 6.37 3.58 3.58 3.21 4.18
Canon 600D 2.81 3.89 10.96 3.23 3.24 3.15 3.22 3.21 14.51 15.36 14.46 3.29 2.80 2.67 3.43
Fujifilm X-M1 3.15 4.16 10.20 3.56 3.42 3.48 3.13 3.12 8.59 7.76 6.80 3.98 3.12 2.99 4.05
Nikon D5200 2.90 4.38 11.64 3.45 3.26 3.07 3.37 3.47 10.14 13.00 9.67 3.97 3.22 3.15 4.10
Olympus E-PL6 2.76 3.44 9.78 3.16 3.08 2.91 3.02 2.84 6.52 13.20 6.21 3.75 2.92 2.86 3.22
Lumix DMC-GX1 2.96 3.82 13.41 3.22 3.12 3.05 2.99 2.99 6.00 5.78 5.28 3.41 2.93 2.85 3.70
Samsung NX2000 2.91 3.90 11.97 3.17 3.22 3.13 3.09 3.18 7.74 8.06 6.80 3.98 3.11 2.94 3.66
Sony SLT-A57 2.93 4.59 9.91 3.67 3.20 3.24 3.35 3.36 5.27 4.40 5.32 3.50 3.24 3.06 3.45
Dataset Median angular error (degrees ◦)
Gehler-Shi 2.14 6.28 5.68 4.01 3.48 − 4.52 4.44 2.33 5.04 2.39 3.46 2.96 2.96 3.13
SFU Laboratory 3.01 7.00 6.48 3.74 3.32 − 3.18 2.74 2.27 2.28 2.09 − 3.45 − −

Canon 1Ds Mark III 2.01 4.15 6.19 2.73 2.35 2.45 2.48 2.44 4.30 4.68 4.72 2.80 2.80 2.67 3.04
Canon 600D 1.89 2.88 12.44 2.58 2.28 2.48 2.07 2.29 14.83 15.92 14.72 2.35 2.32 2.03 2.46
Fujifilm X-M1 2.15 3.30 10.59 2.81 2.60 2.67 1.99 2.00 8.87 8.02 5.90 3.20 2.70 2.45 2.95
Nikon D5200 2.08 3.39 11.67 2.56 2.31 2.30 2.22 2.19 10.32 12.24 9.24 3.10 2.43 2.26 2.40
Olympus E-PL6 1.87 2.58 9.50 2.42 2.15 2.18 2.11 2.18 4.39 8.55 4.11 2.81 2.24 2.21 2.17
Lumix DMC-GX1 2.02 3.06 18.00 2.30 2.23 2.15 2.16 2.04 4.74 4.85 4.23 2.41 2.28 2.22 2.28
Samsung NX2000 2.03 3.00 12.99 2.33 2.57 2.49 2.23 2.32 7.91 6.12 6.37 3.00 2.51 2.29 2.77
Sony SLT-A57 2.33 3.46 7.44 2.94 2.56 2.62 2.58 2.70 4.26 3.30 3.81 2.36 2.70 2.58 2.88
Dataset Tri-mean error (degrees ◦)
Gehler-Shi 2.47 6.28 6.35 4.23 3.81 − 4.73 4.62 2.91 5.43 2.93 3.88 3.10 3.04 3.45
SFU Laboratory 3.69 7.60 7.45 4.59 3.78 − 3.74 3.25 2.53 2.70 2.38 − 4.33 − −

Canon 1Ds Mark III 2.22 4.46 6.98 3.06 2.50 2.67 2.74 2.70 4.81 4.87 5.13 2.97 2.97 2.79 3.30
Canon 600D 2.12 3.07 11.40 2.63 2.41 2.47 2.36 2.37 14.78 15.73 14.80 2.40 2.37 2.18 2.72
Fujifilm X-M1 2.41 3.40 10.25 2.93 2.72 2.82 2.26 2.27 8.64 7.70 6.19 3.33 2.69 2.55 3.06
Nikon D5200 2.19 3.59 11.53 2.74 2.49 2.44 2.52 2.58 10.25 11.75 9.35 3.36 2.59 2.49 2.77
Olympus E-PL6 2.05 2.73 9.54 2.59 2.35 2.36 2.26 2.20 4.79 10.88 4.63 3.00 2.34 2.28 2.42
Lumix DMC-GX1 2.31 3.15 14.98 2.48 2.45 2.30 2.25 2.26 4.98 5.09 4.49 2.58 2.44 2.37 2.67
Samsung NX2000 2.22 3.15 12.45 2.45 2.66 2.64 2.32 2.41 7.70 6.56 6.40 3.27 2.63 2.44 2.94
Sony SLT-A57 2.42 3.81 8.78 3.03 2.68 2.73 2.76 2.80 4.45 3.45 4.13 2.57 2.82 2.74 2.95
Dataset Maximum angular error (degrees ◦)
Gehler-Shi 28.35 24.83 40.58 22.40 22.04 − 26.35 23.88 23.18 28.99 24.22 24.48 21.58 21.64 26.20
SFU Laboratory 44.00 37.31 36.22 29.60 28.93 − 31.55 26.74 27.10 27.70 27.10 − 21.56 − −

Canon 1Ds Mark III 16.20 22.37 39.12 15.74 16.72 18.87 17.69 15.73 29.09 33.59 28.96 13.54 13.54 16.62 21.43
Canon 600D 17.33 15.93 22.76 15.08 18.38 17.56 17.86 17.68 22.54 22.48 22.59 15.60 15.43 15.54 20.16
Fujifilm X-M1 21.16 21.06 25.10 18.55 20.83 21.45 22.79 24.44 21.73 21.89 19.68 18.32 18.75 15.07 28.54
Nikon D5200 15.50 20.61 53.08 15.53 15.54 15.61 23.57 24.33 33.72 60.87 33.73 17.85 17.65 16.63 56.44
Olympus E-PL6 23.28 16.46 25.11 16.99 22.20 18.11 20.57 19.58 18.85 53.56 34.03 22.22 15.14 14.21 16.53
Lumix DMC-GX1 16.59 16.74 23.89 18.47 17.61 17.97 21.15 20.03 26.91 52.08 24.75 19.51 15.29 14.54 21.34
Samsung NX2000 15.52 17.32 23.99 13.80 12.41 14.11 20.90 20.85 18.09 29.40 18.35 18.12 15.76 14.04 15.25
Sony SLT-A57 12.39 17.84 39.78 13.79 17.89 12.94 15.04 15.78 50.45 32.70 50.42 18.05 15.63 14.78 12.96

Table 5.1: Comparison of mean, median, tri-mean, and maximum angular errors of
our method with other methods for various datasets is shown here. Abbreviations
of methods: Grey World [Buchsbaum 1980] (GW), White Patch [Brainard and
Wandell 1986] (WP), Shades of Grey [Finlayson and Trezzi 2004] (SoG), Generalized
Grey World [Barnard et al. 2002b] (GGW), Bright-Pixels [Joze et al. 2012] (BP),
Grey Edge - 1st order [Van De Weijer et al. 2007a] (GE1), Grey Edge - 2nd order
[Van De Weijer et al. 2007a] (GE2), Pixels based Gamut [Barnard 2000] (PG), Edge
based Gamut [Barnard 2000] (EG), Intersection based gamut [Barnard 2000] (IG),
Bayesian learning [Gehler et al. 2008] (BL), Spatio-spectral learning [Chakrabarti
et al. 2012] (ML), Spatio-spectral learning using Gen-prior [Chakrabarti et al. 2012]
(GP), Natural Image Statistics [Gijsenij et al. 2009b] (NIS). Separate tables for each
sub data set with larger-font numbers can be found in Chapter 6.
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Statistics based methods Learning based methods
Method Our GW WP SoG GGW BP GE1 GE2 PG EG IG BL ML GP NIS
Dataset Error for best 25% images (degrees ◦)
Gehler-Shi 0.50 2.33 1.45 1.14 1.00 − 1.86 2.11 0.50 1.90 0.51 1.26 0.95 0.91 1.00
SFU Laboratory 0.67 0.89 1.84 0.59 0.49 − 1.05 1.10 0.46 0.51 0.50 − 1.23 − −

Canon 1Ds Mark III 0.59 0.95 1.56 0.66 0.64 0.62 0.81 0.86 1.05 1.38 1.18 0.76 0.76 0.88 0.78
Canon 600D 0.55 0.83 2.03 0.64 0.63 0.67 0.73 0.80 9.98 11.23 10.02 0.69 0.72 0.68 0.78
Fujifilm X-M1 0.65 0.91 1.82 0.87 0.73 0.76 0.72 0.70 3.44 2.30 2.18 0.93 0.75 0.81 0.86
Nikon D5200 0.56 0.92 1.77 0.72 0.63 0.59 0.79 0.73 4.35 3.92 4.05 0.92 0.91 0.86 0.74
Olympus E-PL6 0.55 0.85 1.65 0.76 0.72 0.63 0.65 0.71 1.42 1.55 1.38 0.91 0.86 0.78 0.76
Lumix DMC-GX1 0.67 0.82 2.25 0.78 0.70 0.66 0.56 0.61 2.06 1.76 1.54 0.68 0.84 0.82 0.79
Samsung NX2000 0.66 0.81 2.59 0.78 0.77 0.81 0.71 0.74 2.65 3.00 2.25 0.93 0.80 0.75 0.75
Sony SLT-A57 0.78 1.16 1.44 0.98 0.85 0.81 0.79 0.89 1.28 0.99 1.11 0.78 0.93 0.87 0.83
Dataset Error for worst 25% images (degrees ◦)
Gehler-Shi 8.74 10.58 16.12 10.20 10.09 − 10.03 9.26 10.72 13.58 10.70 10.49 7.61 7.43 9.22
SFU Laboratory 16.82 23.45 20.97 16.49 13.75 − 14.05 13.51 9.32 9.91 9.38 − 12.90 − −

Canon 1Ds Mark III 6.82 11.00 16.75 8.52 7.08 7.82 7.69 7.76 14.16 13.35 14.47 7.95 7.95 6.43 9.51
Canon 600D 6.50 8.53 18.75 7.06 7.58 7.22 7.48 7.41 18.45 18.66 18.29 7.93 5.99 5.77 7.76
Fujifilm X-M1 7.30 9.04 18.26 7.55 7.62 7.68 7.32 7.23 13.40 13.44 12.51 8.82 6.93 5.99 9.37
Nikon D5200 6.73 9.69 21.89 7.69 7.53 7.01 8.42 8.21 15.93 24.33 16.18 8.18 6.88 6.90 10.01
Olympus E-PL6 6.31 7.41 18.58 6.78 6.69 6.30 6.88 6.47 15.42 30.21 14.41 8.19 6.09 6.14 7.46
Lumix DMC-GX1 6.66 8.45 20.40 7.12 6.86 6.95 7.03 6.86 12.19 11.38 10.70 8.00 6.07 5.90 8.74
Samsung NX2000 6.48 8.51 20.23 6.92 6.85 6.57 7.00 7.23 13.01 16.27 11.98 8.62 6.46 6.22 8.16
Sony SLT-A57 6.13 9.85 21.27 7.75 6.68 6.78 7.18 7.14 11.16 9.83 11.93 8.02 6.55 6.17 7.18

Table 5.2: Comparison of best-25% and worst-25% of our method with other meth-
ods for various datasets is shown here. Separate tables for each sub data set with
larger-font numbers can be found in the Chapter 6.

Method SoG GGW BP GE1 GE2 PG EG IG
Parameters p p, σ p,% p, σ p, σ σ σ σ

Gehler-Shi 4 9,9 2,2 1,6 1,1 4 4 9
SFU Laboratory 7 10,5 2,0.5 7,4 7,5 4 2 4

Canon EOS 1Ds Mark III 3 1,9 2,3 3,6 9,9 10 7 9
Canon EOS 600D 3 3,9 4,3 9,3 3,3 8 10 9

Fujifilm X-M1 3 3,9 4,3 3,3 3,3 10 10 10
Nikon D5200 3 3,9 4,3 3,3 9,3 8 3 8

Olympus PEN Lite E-PL6 9 1,1 2,3 3,1 3,1 9 10 9
Panasonic Lumix DMC-GX1 9 1,1 1,5 1,1 3,1 10 10 10

Samsung NX2000 9 1,1 4,3 1,1 9,3 10 4 10
Sony SLT-A57 3 1,9 2,3 9,9 3,3 7 8 7

Table 5.3: Control parameters used by various methods. Abbreviations of methods
and datasets are the same as Table 5.1.
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Training Testing
St

at
is

ti
cs

-b
as

ed
Our Proposed - 9.9 mins
Grey-world
[Buchsbaum 1980] - 7.8 mins

White-patch
[Land and McCann 1971] - 8.0 mins

Shades-of-grey
[Finlayson and Trezzi 2004] - 14.6 mins

General Grey-world
[Van De Weijer et al. 2007a] - 27.3 mins

1st-order Grey-edge
[Van De Weijer et al. 2007a] - 29.5 mins

2nd-order Grey-edge
[Van De Weijer et al. 2007a] - 34.6 mins

Bright Pixels
[Joze et al. 2012] - 13.6 mins

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 254.5 mins 254.1 mins

Edge-based Gamut
[Gijsenij et al. 2010] 245.2 mins 184.3 mins

Intersection-based Gamut
[Gijsenij et al. 2010] 251.7 mins 235.9 mins

Bayesian
[Gehler et al. 2008] 32.2 mins 2316.8 mins

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 133.2 mins 168.3 mins

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 126.9 mins 61.7 mins

Natural Image Statistics
[Gijsenij et al. 2011] 453.2 mins 25.2 mins

Table 5.4: Training and testing time (in minutes) for our Canon 1Ds Mark III dataset
(trends are similar for the other 8 cameras in our dataset). The statistical methods
do not require training time.

good combination of accuracy and speed and does not need prior learning. It has

been observed that training and testing times increases rapidly with the increase

of the control parameters σ (most learning methods require higher sigma to obtain

better results) and increase in size of the image in the dataset. Further, it was noted
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5.5. Experimental Results

Figure 5.9: Strongly axial color distribution causes failure for most methods of color
constancy. The black vectors in the bottom row are the actual illumination vectors
(i.e. ground truth).

in [Finlayson et al. 2005a; Fredembach and Finlayson 2008] that an angular error

of 3◦ is perceptually acceptable. As noted in our statistics for median and tri-mean

errors, the performance of our method is perceptually acceptable for most cases.

Failure cases It is well-known that if the scene is biased to contain shades of only

one or two colors, then the projection of the illuminated scene on the camera sensor

is strongly biased along one or two directions in the color domain. This makes the

illumination estimation to lie along either of these direction or somewhere between

them. Two such examples from the Gehler-Shi [Gehler et al. 2008; Shi and Funt

] data set are shown in Figure 5.9. In such cases, most methods that effectively

use color domain statistics (which includes spatial domain methods), including

ours, result in poor estimation of illumination. Most images in the SFU Laboratory
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image dataset are illuminated using unusual red and blue illuminants. This gives

a similar effect as having only one or two colors in the scene and biases the color

domain distribution to lie along only one or two directions in the color domain.

As a result, many statistical methods, including ours, perform poorly for the SFU

Laboratory image dataset as can be observed in Table 5.1 and Table 5.2.

Gamut mapping and machine learning methods are expected to perform better,

since they do not use single image to estimate the illumination and rather use pre-

learnt priors. Indeed this assumes that hopefully diverse set of images were used

for training such that large part of the color domain is spanned by the training data

and the test image is a subset of the color domain portion used for training.

5.6 Discussion and Summary

We have observed that spatial and gradient domain methods works because of

color differences, which can be easily obtained from color domain. Our method

based on bright and dark pixels chosen using the projection distance in the color do-

main performs better than most non-machine learning methods for natural images

across various consumer cameras. We have compared our method with both non-

learning based methods (GW [Buchsbaum 1980], WP [Land and McCann 1971],

SoG [Finlayson and Trezzi 2004], GGW [Barnard et al. 2002b], BP [Joze et al. 2012],

GE1 [Van De Weijer et al. 2007a], GE2 [Van De Weijer et al. 2007a]) as well as learn-

ing based methods (PG [Barnard 2000], EG [Barnard 2000], IG [Barnard 2000], BL

[Gehler et al. 2008], ML [Chakrabarti et al. 2012], GP [Chakrabarti et al. 2012], NIS

[Gijsenij et al. 2011]). Our method performs better than most non-learning based

methods and performs similar or close to the learning based methods in terms of
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several practically useful error metrics. Further our method is computationally fast

and practically more useful than the learning based methods.

We conclude with three highlights of our method. First, instead of using statis-

tical moments such as in Equation (5.1), we use the first PCA vector for estimating

the illumination direction that inherently considers the first and second order mo-

ments of the data. Second, instead of using intensity values for determining bright

and dark pixels, we use a projection based distance measure to determine the bright

and dark pixels. This allows the pixels to be ranked according to their deviation

from the statistical mean of the data. Third, unlike other works such as [Joze et al.

2012], we consider the dark pixels as well for illuminant estimation.
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Chapter 6

An Effective Learning-Based Method

Using Simple Color Features

In the previous chapter, it was demonstrated that image spatial information does

not provide additional clue for illuminant estimation other than pure color distri-

butions in the image. In other words, color information alone is sufficient. In this

chapter, we follow up on this idea by using image color distribution features in

a learning framework. Extensive experiments show our proposed learning-based

method achieve the best performance among three major evaluation data sets with

different evaluation statistics.

6.1 Introduction

The work in Chapter 5 focused on the study of the reasons why the spatial do-

main methods work by categorizing illuminant estimation methods into spatial

domain and color domain. Although our proposed method works well, it cannot
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achieve the best performance consistently. As shown in Section 2.2.3, the illu-

minant estimation is an ill-posed problem. Given the difficulty of this problem,

many learning-based methods utilizing the power of training data show their ef-

fectiveness to solve this ill-posed problem. However, both statistical methods and

learning-based methods have their own advantage as well as disadvantage.

Statistics-based methods examine some statistical correlations between the RGB

color space and the scene illumination [Brainard and Wandell 1986; Buchsbaum

1980; Finlayson and Trezzi 2004; Shi and Funt 2012]. These methods include the well

known Grey-World and White-Patch methods that make assumptions about the

relationship between color statistics and achromatic colors. Other methods rely on

the correlation of statistics from spatial derivatives or other frequency information

in the image and the scene illumination [Bianco et al. 2008; Bianco et al. 2010; Celik

and Tjahjadi 2012; Drew and Funt 1992; Gijsenij et al. 2011; Gijsenij et al. 2012a; Van

De Weijer et al. 2007a]. Recent works [Gao et al. 2014; Gao et al. 2013] use statistics

inspired from the human vision system (e.g. color opponency). Other methods

examined scene content looking for physics-based insight to illumination, such as

specularity and shadows [Drew et al. 2012; Lee 1986; Tan et al. 2004]. Statistics-

based methods remain popular because they are efficient to compute, however,

they do not always deliver the best performance.

On the other hand, learning-based methods have shown to be more accurate

in illumination estimation, as can be seen from the results tables in Chapter 4 that

some of the best performance are achieved by them. Learning-based methods

started from the early gamut-based method [Forsyth 1990] which learns gamuts

for different cameras and uses this to constrain the solution space for an input

image. 2-D chromaticity histograms have been used as an input feature for various
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Figure 6.1: Computational time vs. performance of illumination estimation meth-
ods. Statistics-based methods are fast but have lower accuracy than learning-based
methods. The slow speed of learning-based methods makes them impractical for
real applications, such as onboard camera white balancing. Our proposed learning-
based method achieves both high accuracy and fast computation. (Mean angular
error and time statistics for this plot are based on the Gehler-Shi [Gehler et al. 2008;
Shi and Funt ] data set. Exact numbers can be found in Table 6.1 and Table 6.11.)

learning-based methods [Cardei et al. 2002; Finlayson et al. 2001; Funt and Xiong

2004; Rosenberg et al. 2001]. This was successfully extended to a full 3-D RGB

histogram used in a Bayesian framework [Gehler et al. 2008; Rosenberg et al. 2003].

Several works incorporate derivative and frequency features into learning-based

frameworks [Bianco et al. 2010; Chakrabarti et al. 2012; Gijsenij et al. 2011] to learn

the expected distributions of spatio-statistics for different cameras. Recently, a

data-driven method using a surface descriptor feature to match image segments

was studied in [Joze and Drew 2014]. It can be seen that during the evolution of

learning-based methods, features are becoming more and more complex in order

to achieve an improved performance. While these methods give superior results
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compared to statistics-based methods, they are notably slower due to the complex

features used and often have long training times. As a result, these methods are not

suitable for applications requiring real-time performance, like a camera. Figure 6.1

helps to illustrate this with a plot of various statistics-based and learning-based

methods in terms of accuracy versus computation time.

Based on the pros and cons of statistical methods and learning-based methods

respectively, the goal of this chapter is to develop a learning-based illumination

estimation method with a running-time of statistical methods. Our work is in-

spired in part by the recent successful learning-based method [Finlayson 2013] that

showed that relatively simple features (color/edge moments) could be used to give

good performance in a learning-based framework. In this chapter, we simplify the

learning-based procedure further to use only four simple features. Unlike in [Fin-

layson 2013], where spatial information is still used, all four features used in our

proposed learning framework are restricted to color domain as we have already

shown that image spatial information provides no additional clue. A key technical

contribution of chapter is a method for training an ensemble of decision trees on

these simple features that can accurately predict the chromaticity of the illumina-

tion. This method achieves our goal by producing the best results to date on a

number of illumination data sets with a running-time on par with statistics-based

methods.

The remainder of this chapter is organized as follows. In Section 6.2, the pro-

posed machine learning framework is described in details. Section 6.3 provides

extensive performance evaluations of the proposed algorithm on real camera RAW

image datasets. Finally, a discussion and concluding remarks are given in Section

6.4.
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6.2. Learning Illumination Estimation with Simple Color Features

6.2 Learning Illumination Estimation with Simple Color

Features

An overview of our method is shown in Figure 6.2. Given an image, four features

are extracted, each of these feature are given to a bank of regression trees to generate

many illuminant candidates. Results from the multiple regression trees that are in

agreement are combined to estimate the illumination. The following subsections

details each step of our procedure, including feature extraction, training of the

regression trees, and forming the final consensus.

6.2.1 Image Features

Our approach uses only four features derived directly from the input image color

distribution. We use normalized chromaticity, rather than color, as it is intensity

invariant. This is useful requirement for illuminant estimation since two images

related only by a scale factor (e.g. due to the exposure or light source energy

difference) should have the same illuminant estimation. Chromaticity is calculated

as:  r = R/(R + G + B)

g = G/(R + G + B)
, (6.1)

where R, G and B are the camera Red, Green and Blue channel measurements, and

r and g are the chromaticity values.

Our four features are as follows: (1) average color chromaticity, (2) brightest

color chromaticity, (3) dominant color (RGB histogram mode) chromaticity and (4)

chromaticity mode of the image color palette. Note that as with other illuminant
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Input image
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f 2: brightest color chromaticity
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Figure 6.2: An overview of our proposed learning-based framework for illuminant
estimation. Given an input image, we extract four features from the image (Section
6.2.1): 1) the average color chromaticity; 2) the brightest color chromaticity; 3) the
dominant color chromaticity; 4) the mode of the color palette. For each feature, a
bank of K regression trees is evaluated (Section 6.2.3). Each regression tree outputs
a prediction of the illumination. The final illumination is estimated by combining
the results of regression trees that cross-feature consensus (Section 6.2.4).
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estimation methods, the standard pre-processing to the input images is applied,

namely black offset correction and the removal of saturated pixels.

Average color chromaticity (f1) is the chromaticity (ra, ga) of the average RGB

value (Ra,Ga,Ba) where

Ca =
1
n

n∑
i=1

Ci, C ∈ {R,G,B}, (6.2)

where n is the number of pixels in the image excluding saturated pixels.

Brightest color chromaticity (f2) is the chromaticity (rb, gb) of the color (Rb,Gb,Bb)

of the pixel k which has the largest brightness (R + G + B):

(Rb,Gb,Bb) = (Rk,Gk,Bk),

where k = arg max
i

(Ri + Gi + Bi).
(6.3)

This differs from the maxRGB (i.e. White Patch) method that treats each RGB

channels independently.

Dominant color chromaticity (f3) is the chromaticity (rd, gd) of the average RGB

color (Rd,Gd,Bd) of the pixels belonging to a histogram bin which has the largest

count (i.e. the RGB histograms mode):

Cd =
1
|Hk|

∑
j∈Hk

C j, C ∈ {R,G,B},

where k = arg max
i
|Hi|,

(6.4)

where Hm is the set of pixels in the mth bin of the histogram, m ∈ [1,M]. We used 128

bins per color channel (i.e. M = 1283). Figure 6.3 shows one example illustration of
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Figure 6.3: Illustration of the dominant color. This figure shows the 3-D RGB
histogram of the color space. The blue circles denote the encountered discretized
color and the size of the blue circle is related to the number of pixels in that particular
bin cell (not linearly but in logarithm relationship). The circle filled with red is the
color with most number of pixels, i.e. dominant color. This information is useful
in the scene that it captures the biasing color which may be common in the natural
scenes.

the dominant color.

Chromaticity mode of the color palette (f4) is the mode of the image color

palette in the chromaticity space. We construct the color palette by taking the

average value of each bin in the RGB histogram that is greater than a predefined

threshold. In our implementation, a threshold of 200 pixels per bin was used. This

results in a palette of approximately 300 colors for a typical image. Each color in

the palette is projected onto the normalized chromaticity plane, and an efficient 2-D

kernel density estimation (KDE) [Botev et al. 2010] is applied. The mode (rm, gm) is

the chromaticity with the highest density. This feature is useful because it provides

a mode of the chromaticity that is independent of the number of pixels of each

color. Figure 6.4 shows one example illustration of this chomaticity mode.
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Figure 6.4: Illustration of the chromaticity mode of the color palette. This figure
shows the chromaticity density estimation plot from the color palette (binned color
histogram, i.e. blue circles in Figure 6.3) after being projected into the 2-D chro-
maticity space. The color palette is used, instead of original pixel colors, to reduce
the bias of the color distribution in the image. The chromaticity mode is marked
with a red dot and its density is so larger than the rest. This mode means many
color with the same chromaticity but with different intensity and it capture the
dynamic range of the image which is highly related to the scene illumination.

6.2.2 Regression Tree

Our learning-based method is based on variance reduction regression trees [Breiman

et al. 1984] that have been shown to be a powerful nonlinear predictive model. In

particular, for each feature a series of K regression trees is estimated. In our ap-

proach, regression trees are estimated in pairs, one for the r and g chromaticity.

Thus to obtain an illumination estimate for a feature, we compute two regression

trees r j
i = Tr

i (f
j) and g j

i = Tg
i (f j), where i is the index of the regression tree, f j (where

j = 1, 2, 3, 4) represents the feature the regression tree is trained for, and super-

scripts r and g represent the chromaticity output respectively. For example, Tr
1(f1)
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would mean the r chromaticity for the first regression tree for feature f1. Each of

the i trees are trained based on the data sampled more densely to particular region

in the chromaticity space. This will be discussed in Section 6.2.3.

In the training stage, regression trees are obtained using a fast divide and

conquer greedy algorithm that recursively partitions the given training data into

two smaller subsets to minimize the sum of in-subset variances [Breiman et al.

1984]:
1
|S1|

∑
p∈S1

∑
q∈S1

||fp − fq||
2 +

1
|S2|

∑
p∈S2

∑
q∈S2

||fp − fq||
2, (6.5)

where fp, fq are input features of the training data and S1,S2 are the resulting split

subsets.

After training, the regression tree works in a straightforward manner, where

the tree nodes are evaluated starting from the root according to the rule learned by

the optimal splitting point in the training stage until reaching a leaf node, where a

regression output can be given. Figure 6.5 shows one real example of the regression

tree from our training experiment.

6.2.3 Sampling for Multiple Trees

As mentioned in the previous section, our approach estimates K pairs of trees per

feature. Each of these trees is computed from samples in the training data that are

biased to a local region in chromaticity space of the ground truth illuminations.

Figure 6.6 illustrates this sampling procedure where the ground truth illuminant

chromaticity for the training images are plotted in the chromaticity space. The

plotted illuminant follow the well-known quadratic shape of the Planckian locus

of the black body radiance that is commonly used to describe the color temperature
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f1 = (𝑟𝑎, 𝑔𝑎)

Figure 6.5: An example of the trained regression trees Tr
1(f1) and Tg

1(f1) (the r-
chromaticity and g-chromaticity illuminant prediction on image mean color input
feature with the training subset 1). The orange dots denote non-leaf nodes where a
decision is made according to the split rule. The blue dot denotes a leaf node where
the final regression value is determined. This tree has more than four layers but not
every layer is full. This figure shows only the first four layers which already contain
leaf (end) nodes. This figur also demostrates that r-chromaticity and g-chromaticity
are estimated separately from two distint trees.
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Group 1

r

g

Group 2 Group K
Group 3

Training images

Figure 6.6: Illustration of sorting the training images and separate them into groups.
The red dots indicate the ground truth illuminant rg-chromaticities from Gehler-Shi
data set [Gehler et al. 2008; Shi and Funt ] and the curve shows a quadratic fitting
to these illuminant chromaticities. A number of training example images from the
data set having different illuminant from blueish to reddish are also shown. The
whole training data set is separated into K local overlapping groups.

of real-world and man-made illuminants.

Our method sorts the training data based on its r ground truth chromaticity

to capture the relationship of the illuminations along the color temperature. The

training data is then divided into K groups which have equal number of training

images and overlap 50% with their neighbor groups. For each tree pair, the samples

in their local regions are weighted K times more than the other samples in the train-

ing data when building the regression tree, thus biasing the result of the regression

tree to the local region. We experimented with different number of trees and found

that K = 30 provided good performance and computation efficiency. More details

to this strategy versus alternative strategies are discussed in Section 6.4.
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6.2.4 Tree Ensemble Consensus

The K trees per feature form an ensemble of decision trees from which the final

results need to be estimated. We expect that neighboring trees for the same fea-

ture will likely give similar results due to the training-data weighting in the tree

construction. The power in the ensemble comes when the different features’ trees

estimations are in agreement. To find this cross-feature consensus, we examine the

output of all r j
i = Tr

i (f
j) and g j

i = Tg
i (f j) for each i ∈ [1,K] trees and j ∈ {1, 2, 3, 4}

features. When any three out of four features from trees from the same training

data (i.e Ti) give output candidates within a 0.025 2-D Euclidean distance to one

another, we take all the output from those trees and add to the output sets, R

for r-chromaticity and G for g-chromaticity (see Figure 6.2). The final estimated

illuminated chromaticity is taken as:

ρr,g = (median(R),median(G)), (6.6)

where ρr,g is the chromaticity of the estimated illuminant and median finds the

median of the set. In the unlikely scenario that none of the K feature trees have any

agreement, the result is computed as the “median” of all the trees’ outputs.

6.2.5 Training

The training and testing of the proposed method follows the standard 3-fold cross

validation of existing learning-based methods [Gijsenij et al. 2011] common in the

illuminant estimation literature. To do this, the whole data set is randomly divided

into three sets and each time two sets are used for training while the remaining
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image set is used for testing. Three times of training-and-testing is needed to test

all the images in the whole image set.

6.3 Experimental Results

The setups for the evaluation of the proposed learning-based method is almost the

same as what we have done in the previous Chapter for the proposed statistical

method. Among the available data sets from Chapter 3 and Chapter 4, Gehler-Shi

image set [Gehler et al. 2008; Shi and Funt ], our own NUS Multiple-Camera image

set [Cheng et al. 2014] and SFU Laboratory image Set [Barnard et al. 2002c] are

used to evaluate different algorithms. Gehler-Shi data set and the NUS Multiple-

Camera image set represent modern white-balance images indicative of real world

images and illuminations. The SFU Laboratory data set is an older data set of

objects captured in a laboratory under often unusual lighting. It is included here

for sake of completeness. The angular error (AE) (Equation. 3.3) is used as the error

metric as it is most widely used. For each data set, we give a thorough summary

(mean, median, tri-mean, the mean of the best 25% AEs and the mean of the worst

25% AEs) of the performance statistics that is available and always include the

best prior-art result known to us. Visual correction results comparison and timing

comparison are also provided. Additional statistical metrics are also provided in

the end.

6.3.1 Gehler-Shi Image Set

We compare against 19 previous methods as shown in Table 6.1. Most of the results

from other methods have been evaluated by [Gehler et al. 2008] or collected on the
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Gehler-Shi Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 6.36 6.28 6.28 2.33 10.58

White-patch
[Land and McCann 1971] 7.55 5.68 6.35 1.45 16.12

Shades-of-grey
[Finlayson and Trezzi 2004] 4.93 4.01 4.23 1.14 10.20

General Grey-world
[Van De Weijer et al. 2007a] 4.66 3.48 3.81 1.00 10.09

1st-order Grey-edge
[Van De Weijer et al. 2007a] 5.33 4.52 4.73 1.86 10.03

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 5.13 4.44 4.62 2.11 9.26

Bright-and-dark Colors PCA
[Cheng et al. 2014] 3.52 2.14 2.47 0.50 8.74

Local Surface Reflectance
[Gao et al. 2014] 3.31 2.80 2.87 1.14 6.39

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 4.20 2.33 2.91 0.50 10.72

Edge-based Gamut
[Gijsenij et al. 2010] 6.52 5.04 5.43 1.90 13.58

Intersection-based Gamut
[Gijsenij et al. 2010] 4.20 2.39 2.93 0.51 10.70

SVR Regression
[Funt and Xiong 2004] 8.08 6.73 7.19 3.35 14.89

Bayesian
[Gehler et al. 2008] 4.82 3.46 3.88 1.26 10.49

Spatio-spectral
[Chakrabarti et al. 2012] 3.59 2.96 3.10 0.95 7.61

CART-based Combination
[Bianco et al. 2010] 3.90 2.91 3.21 1.02 8.27

Natural Image Statistics
[Gijsenij and Gevers 2007] 4.19 3.13 3.45 1.00 9.22

Bottom-up+Top-down
[Van De Weijer et al. 2007b] 3.48 2.47 2.61 0.84 8.01

Exemplar-based
[Joze and Drew 2014] 2.89 2.27 2.42 0.82 5.97

19-Edge Corrected-moment
[Finlayson 2013] 2.86 2.04 2.22 0.70 6.34

Our Proposed 2.42 1.65 1.75 0.38 5.87

Table 6.1: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the Gehler-Shi data
set [Gehler et al. 2008; Shi and Funt ].
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colorconstancy.com website and we directly report them here. In order to have

other statistical metrics for the 19-Edge Corrected-moment method other than just

mean and median, we implemented the method as described in [Finlayson 2013]

and achieved a similar performance as reported by the original paper. Table 6.1

shows that our proposed method produces state-of-the-art results for all metrics.

6.3.2 NUS Multiple-Camera Image Set

We report the results on this data set from [Cheng et al. 2014] for 14 methods,

and compare with two additional methods. To compare to Local Surface Re-

flectance [Gao et al. 2014], we downloaded the source code from author’s webpage.

The 19-Edge Corrected-moment [Finlayson 2013] and the Local Surface Reflectance

Statistics [Gao et al. 2014] are reported with the best result achieved with several

different parameter settings. Table 6.2 - Figure 6.9 list results on the entire data set

for all 8 cameras. From these tables, we can see that among the multiple methods

considered, the proposed algorithm gives the best performance.

6.3.3 SFU Laboratory Object Image Set

For sake of completeness, we also compare results the SFU Laboratory Object

Image Set [Barnard et al. 2002c]. As we have discussed in Section 3.4, this data

set has two main disadvantages: (1) the variation of the scene objects is limited

and (2) the images are not linear camera RAW images. Because of these issues,

statistical methods do not perform well on this data set and it is even difficult for

learning-based methods. Thus, instead using a 3-fold cross validation, the Gamut-

based [Gijsenij et al. 2010] and Spatio-spectral [Chakrabarti et al. 2012] methods
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Canon EOS 1Ds Mark III Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 5.16 4.15 4.46 0.95 11.00

White-patch
[Land and McCann 1971] 7.99 6.19 6.98 1.56 16.75

Shades-of-grey
[Finlayson and Trezzi 2004] 3.81 2.73 3.06 0.66 8.52

General Grey-world
[Van De Weijer et al. 2007a] 3.16 2.35 2.50 0.64 7.08

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.45 2.48 2.74 0.81 7.69

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.47 2.44 2.70 0.86 7.76

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.93 2.01 2.22 0.59 6.82

Local Surface Reflectance
[Gao et al. 2014] 3.43 2.51 2.81 1.06 7.30

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 6.13 4.30 4.81 1.05 14.16

Edge-based Gamut
[Gijsenij et al. 2010] 6.07 4.68 4.87 1.38 13.35

Intersection-based Gamut
[Gijsenij et al. 2010] 6.37 4.72 5.13 1.18 14.47

Bayesian
[Gehler et al. 2008] 3.58 2.80 2.97 0.76 7.95

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 3.58 2.80 2.97 0.76 7.95

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 3.21 2.67 2.79 0.88 6.43

Natural Image Statistics
[Gijsenij and Gevers 2007] 4.18 3.04 3.30 0.78 9.51

19-Edge Corrected-moment
[Finlayson 2013] 2.94 1.98 2.19 0.65 6.93

Our Proposed 2.26 1.57 1.69 0.54 5.17

Table 6.2: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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Canon EOS 600D Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 3.89 2.88 3.07 0.83 8.53

White-patch
[Land and McCann 1971] 10.96 12.44 11.40 2.03 18.75

Shades-of-grey
[Finlayson and Trezzi 2004] 3.23 2.58 2.63 0.64 7.06

General Grey-world
[Van De Weijer et al. 2007a] 3.24 2.28 2.41 0.63 7.58

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.22 2.07 2.36 0.73 7.48

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.21 2.29 2.37 0.80 7.41

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.81 1.89 2.12 0.55 6.50

Local Surface Reflectance
[Gao et al. 2014] 3.59 2.72 2.95 1.17 7.40

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 14.51 14.83 14.78 9.98 18.45

Edge-based Gamut
[Gijsenij et al. 2010] 15.36 15.92 15.73 11.23 18.66

Intersection-based Gamut
[Gijsenij et al. 2010] 14.46 14.72 14.80 10.02 18.29

Bayesian
[Gehler et al. 2008] 3.29 2.35 2.40 0.69 7.93

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 2.80 2.32 2.37 0.72 5.99

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 2.67 2.03 2.18 0.68 5.77

Natural Image Statistics
[Gijsenij and Gevers 2007] 3.43 2.46 2.72 0.78 7.76

19-Edge Corrected-moment
[Finlayson 2013] 2.76 1.85 2.12 0.65 6.28

Our Proposed 2.43 1.62 1.80 0.48 5.63

Table 6.3: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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Fujifilm X-M1 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 4.16 3.30 3.40 0.91 9.04

White-patch
[Land and McCann 1971] 10.20 10.59 10.25 1.82 18.26

Shades-of-grey
[Finlayson and Trezzi 2004] 3.56 2.81 2.93 0.87 7.55

General Grey-world
[Van De Weijer et al. 2007a] 3.42 2.60 2.72 0.73 7.62

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.13 1.99 2.26 0.72 7.32

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.12 2.00 2.27 0.70 7.23

Bright-and-dark Colors PCA
[Cheng et al. 2014] 3.15 2.15 2.41 0.65 7.30

Local Surface Reflectance
[Gao et al. 2014] 3.31 2.48 2.65 0.99 7.06

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 8.59 8.87 8.64 3.44 13.40

Edge-based Gamut
[Gijsenij et al. 2010] 7.76 8.02 7.70 2.30 13.44

Intersection-based Gamut
[Gijsenij et al. 2010] 6.80 5.90 6.19 2.18 12.51

Bayesian
[Gehler et al. 2008] 3.98 3.20 3.33 0.93 8.82

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 3.12 2.70 2.69 0.75 6.93

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 2.99 2.45 2.55 0.81 5.99

Natural Image Statistics
[Gijsenij and Gevers 2007] 4.05 2.96 3.06 0.86 9.37

19-Edge Corrected-moment
[Finlayson 2013] 3.23 2.11 2.33 0.75 7.66

Our Proposed 2.45 1.58 1.81 0.53 5.73

Table 6.4: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].

105



CHAPTER 6. An Effective Learning-Based Method Using Simple Color Features

Nikon D5200 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 4.38 3.39 3.59 0.92 9.69

White-patch
[Land and McCann 1971] 11.64 11.67 11.53 1.77 21.89

Shades-of-grey
[Finlayson and Trezzi 2004] 3.45 2.56 2.74 0.72 7.69

General Grey-world
[Van De Weijer et al. 2007a] 3.26 2.31 2.49 0.63 7.53

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.37 2.22 2.52 0.79 8.42

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.47 2.19 2.58 0.73 8.21

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.90 2.08 2.19 0.56 6.73

Local Surface Reflectance
[Gao et al. 2014] 3.68 2.83 3.03 1.16 7.57

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 10.14 10.32 10.25 4.35 15.93

Edge-based Gamut
[Gijsenij et al. 2010] 13.00 12.24 11.75 3.92 24.33

Intersection-based Gamut
[Gijsenij et al. 2010] 9.67 9.24 9.35 4.05 16.18

Bayesian
[Gehler et al. 2008] 3.97 3.10 3.36 0.92 8.18

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 3.22 2.43 2.59 0.91 6.88

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 3.15 2.26 2.49 0.86 6.90

Natural Image Statistics
[Gijsenij and Gevers 2007] 4.10 2.40 2.77 0.74 10.01

19-Edge Corrected-moment
[Finlayson 2013] 3.46 2.04 2.30 0.66 8.64

Our Proposed 2.51 1.65 1.82 0.52 5.98

Table 6.5: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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Olympus PEN Lite E-PL6 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 3.44 2.58 2.73 0.85 7.41

White-patch
[Land and McCann 1971] 9.78 9.50 9.54 1.65 18.58

Shades-of-grey
[Finlayson and Trezzi 2004] 3.16 2.42 2.59 0.76 6.78

General Grey-world
[Van De Weijer et al. 2007a] 3.08 2.15 2.35 0.72 6.69

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.02 2.11 2.26 0.65 6.88

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 2.84 2.18 2.20 0.71 6.47

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.76 1.87 2.05 0.55 6.31

Local Surface Reflectance
[Gao et al. 2014] 3.22 2.49 2.59 1.15 6.55

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 6.52 4.39 4.79 1.42 15.42

Edge-based Gamut
[Gijsenij et al. 2010] 13.20 8.55 10.88 1.55 30.21

Intersection-based Gamut
[Gijsenij et al. 2010] 6.21 4.11 4.63 1.38 14.41

Bayesian
[Gehler et al. 2008] 3.75 2.81 3.00 0.91 8.19

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 2.92 2.24 2.34 0.86 6.09

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 2.86 2.21 2.28 0.78 6.14

Natural Image Statistics
[Gijsenij and Gevers 2007] 3.22 2.17 2.42 0.76 7.46

19-Edge Corrected-moment
[Finlayson 2013] 2.95 1.84 1.92 0.51 7.39

Our Proposed 2.26 1.52 1.62 0.46 5.38

Table 6.6: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].

107



CHAPTER 6. An Effective Learning-Based Method Using Simple Color Features

Panasonic Lumix DMC-GX1 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 3.82 3.06 3.15 0.82 8.45

White-patch
[Land and McCann 1971] 13.41 18.00 14.98 2.25 20.40

Shades-of-grey
[Finlayson and Trezzi 2004] 3.22 2.30 2.48 0.78 7.12

General Grey-world
[Van De Weijer et al. 2007a] 3.12 2.23 2.45 0.70 6.86

1st-order Grey-edge
[Van De Weijer et al. 2007a] 2.99 2.16 2.25 0.56 7.03

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 2.99 2.04 2.26 0.61 6.86

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.96 2.02 2.31 0.67 6.66

Local Surface Reflectance
[Gao et al. 2014] 3.36 2.48 2.78 0.82 7.42

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 6.00 4.74 4.98 2.06 12.19

Edge-based Gamut
[Gijsenij et al. 2010] 5.78 4.85 5.09 1.76 11.38

Intersection-based Gamut
[Gijsenij et al. 2010] 5.28 4.23 4.49 1.54 10.70

Bayesian
[Gehler et al. 2008] 3.41 2.41 2.58 0.68 8.00

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 2.93 2.28 2.44 0.84 6.07

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 2.85 2.22 2.37 0.82 5.90

Natural Image Statistics
[Gijsenij and Gevers 2007] 3.70 2.28 2.67 0.79 8.74

19-Edge Corrected-moment
[Finlayson 2013] 3.10 1.77 2.00 0.64 7.81

Our Proposed 2.36 1.61 1.71 0.47 5.65

Table 6.7: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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Samsung NX2000 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 3.90 3.00 3.15 0.81 8.51

White-patch
[Land and McCann 1971] 11.97 12.99 12.45 2.59 20.23

Shades-of-grey
[Finlayson and Trezzi 2004] 3.17 2.33 2.45 0.78 6.92

General Grey-world
[Van De Weijer et al. 2007a] 3.22 2.57 2.66 0.77 6.85

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.09 2.23 2.32 0.71 7.00

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.18 2.32 2.41 0.74 7.23

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.91 2.03 2.22 0.66 6.48

Local Surface Reflectance
[Gao et al. 2014] 3.84 2.90 3.24 1.26 7.98

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 7.74 7.91 7.70 2.65 13.01

Edge-based Gamut
[Gijsenij et al. 2010] 8.06 6.12 6.56 3.00 16.27

Intersection-based Gamut
[Gijsenij et al. 2010] 6.80 6.37 6.40 2.25 11.98

Bayesian
[Gehler et al. 2008] 3.98 3.00 3.27 0.93 8.62

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 3.11 2.51 2.63 0.80 6.46

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 2.94 2.29 2.44 0.75 6.22

Natural Image Statistics
[Gijsenij and Gevers 2007] 3.66 2.77 2.94 0.75 8.16

19-Edge Corrected-moment
[Finlayson 2013] 2.74 1.85 2.10 0.66 6.27

Our Proposed 2.53 1.78 1.87 0.51 5.96

Table 6.8: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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Sony SLT-A57 Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 4.59 3.46 3.81 1.16 9.85

White-patch
[Land and McCann 1971] 9.91 7.44 8.78 1.44 21.27

Shades-of-grey
[Finlayson and Trezzi 2004] 3.67 2.94 3.03 0.98 7.75

General Grey-world
[Van De Weijer et al. 2007a] 3.20 2.56 2.68 0.85 6.68

1st-order Grey-edge
[Van De Weijer et al. 2007a] 3.35 2.58 2.76 0.79 7.18

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 3.36 2.70 2.80 0.89 7.14

Bright-and-dark Colors PCA
[Cheng et al. 2014] 2.93 2.33 2.42 0.78 6.13

Local Surface Reflectance
[Gao et al. 2014] 3.45 2.51 2.70 0.98 7.32

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 5.27 4.26 4.45 1.28 11.16

Edge-based Gamut
[Gijsenij et al. 2010] 4.40 3.30 3.45 0.99 9.83

Intersection-based Gamut
[Gijsenij et al. 2010] 5.32 3.81 4.13 1.11 11.93

Bayesian
[Gehler et al. 2008] 3.50 2.36 2.57 0.78 8.02

Spatio-spectral (ML)
[Chakrabarti et al. 2012] 3.24 2.70 2.82 0.93 6.55

Spatio-spectral (GenPrior)
[Chakrabarti et al. 2012] 3.06 2.58 2.74 0.87 6.17

Natural Image Statistics
[Gijsenij and Gevers 2007] 3.45 2.88 2.95 0.83 7.18

19-Edge Corrected-moment
[Finlayson 2013] 2.95 2.05 2.16 0.59 6.89

Our Proposed 2.15 1.40 1.56 0.49 4.99

Table 6.9: Performance comparison of our proposed learning-based method against
various other statistics-based and learning-based methods on the NUS Multiple-
Camera data set [Cheng et al. 2014].
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train using images from all 31 objects using a single light (termed syl-50MR16Q) as

the target light source. To test our method with this ideal training approach (and to

re-evaluate the corrected-moment method [Finlayson 2013]), all the images in the

data set were used for training. We also note that the corrected-moment method

has been evaluated without the extra step to raise the image to the power of 2 as

mentioned in the original paper.

Table 6.10 reports performance from the few methods which have been tested

on this data set (http://colorconstancy.com/). Our proposed method gives ex-

cellent results for this hard data set when using ideal training (indicated with

ideal), which is far better than the second best result from corrected-moment

method [Finlayson 2013]. As the ideal training allows overfitting to the test set, we

also performed the standard 3-fold cross validation for our proposed method and

corrected-moment method (indicated with CV). In this case, our proposed method

is still the best over three of the error metrics while for the other two metrics, our

results are second to the best achieved by the corrected-moment method (results

from the ideal training are not highlighted).

6.3.4 Visual Comparison

By visually comparing the results of the proposed method with other algorithms

on the examples in Figure 6.7, we can see that for scenes where simple assumptions

like the Grey-World assumption are not valid, learning-based methods achieve

better results. Compared to other learning-based methods, our proposed method

achieves good performance even for extreme cases. Additionally, Figure 6.8 to

Figure 6.10 provide more subjective comparisons on a number of images and
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SFU Mean Median Trimean Best-25% Worst-25%

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980] 9.78 7.00 7.60 0.89 23.45

White-patch
[Land and McCann 1971] 9.09 6.48 7.45 1.84 20.97

Shades-of-grey
[Finlayson and Trezzi 2004] 6.39 3.74 4.59 0.59 16.49

General Grey-world
[Van De Weijer et al. 2007a] 5.41 3.32 3.78 0.49 13.75

1st-order Grey-edge
[Van De Weijer et al. 2007a] 5.58 3.18 3.74 1.05 14.05

2nd-order Grey-edge
[Van De Weijer et al. 2007a] 5.19 2.74 3.25 1.10 13.51

Local Surface Reflectance
[Gao et al. 2014] 5.69 2.43 3.51 0.47 15.84

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010] 3.70 2.27 2.53 0.46 9.32

Edge-based Gamut
[Gijsenij et al. 2010] 3.92 2.28 2.70 0.51 9.91

Intersection-based Gamut
[Gijsenij et al. 2010] 3.62 2.09 2.38 0.50 9.38

Spatio-spectral
[Chakrabarti et al. 2012] 5.63 3.45 4.33 1.23 12.90

19-Edge Corrected-moment
[Finlayson 2013] (ideal) 2.71 2.25 2.39 0.91 5.26

19-Edge Corrected-moment
[Finlayson 2013] (CV) 3.22 2.53 2.65 0.91 6.68

Our Proposed (ideal) 0.25 0.10 0.13 0.00 0.77
Our Proposed (CV) 3.26 1.75 2.12 0.31 8.90

Table 6.10: Performance comparison of our proposed learning-based method
against other methods on the SFU laboratory data set [Barnard et al. 2002c].

methods to give a better idea of the visual impact of the results.

6.3.5 Timing Comparison

The run-time required to train and test machine learning-based methods is impor-

tant in determining if a particular method is practical or not. The training and

test time were measured on a PC with Intel Xeon 3.5GHz CPU using Matlab 2010.

Table 6.11 reports all the training and testing time for the whole Gehler-Shi data set
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Original Ground truth Proposed

2.8°

Moment correctionGray-world

7.8° 6.3°

Spatio-spectral

4.5°11.7°0.1° 5.7°

6.7°

11.9°2.8°2.4° 7.8°

2.8°2.9°2.7° 9.2°

Figure 6.7: Corrected images using the estimated illuminant from 4 different meth-
ods including our proposed one. The angular error is given at the lower right
corner of the image. The RAW images have been applied gamma function to boost
the contrast for a better visualization. It is best viewed online.

including image read time. As seen in Table 6.11, our proposed method is clearly

the fastest learning-based method in terms of both training and testing, and requires

less than half the run time of the previous fastest learning-based method [Finlayson

2013]. Compared with statistical methods, our proposed method is on par with the

fastest methods (e.g. Grey-World and White-Patch).

6.3.6 More Performance Evaluations

Besides the common used summary statistics metrics, like mean, median, tri-mean,

best-25% and worst-25%, which have been presented before, here we examine three

additional performance indicators. As discussed in Section 3.3.2, the first two fol-

low the recommendation by Hordley and Finlayson [Hordley and Finlayson 2006]

by using hypothesis test to determine if there is a statistical significant difference in
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Original Ground truth 

Grey-world

12.6°
Proposed

4.8°

White-patch

11.8°

Moment correction

8.6°

Exemplar-based 

7.7°

Natural Image Statistics

10.4°

Spatio-spectral

7.4°

Bayesian

7.6°

Original Ground truth 

Proposed

Grey-world White-patch

Bayesian

Spatio-spectral Natural Image Statistics

Exemplar-based Moment correction

13.6°

3.6°

11.4°

8.4°6.6°

12.4°8.8°

17.0°

Figure 6.8: Corrected images using the estimated illuminant from two statistical
methods and six learning-based methods (including our proposed one). The an-
gular error is given at the lower right corner of the image. The RAW images have
been applied gamma function to boost the contrast for a better visualization. It is
best viewed online.
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Original Ground truth 

Proposed

Grey-world White-patch

Bayesian

Spatio-spectral Natural Image Statistics

Exemplar-based Moment correction

8.5°

2.8°

14.0°

10.1°5.1°

11.25°4.4°

24.5°

Original Ground truth 

Proposed

Grey-world White-patch

Bayesian

Spatio-spectral Natural Image Statistics

Exemplar-based Moment correction

21.5°

2.7°

20.6°

5.9°19.4°

22.9°21.6°

19.1°

Figure 6.9: Corrected images using the estimated illuminant from two statistical
methods and six learning-based methods (including our proposed one). The an-
gular error is given at the lower right corner of the image. The RAW images have
been applied gamma function to boost the contrast for a better visualization. It is
best viewed online.
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Original Ground truth 

Proposed

Grey-world White-patch

Bayesian

Spatio-spectral Natural Image Statistics

Exemplar-based Moment correction

13.6°

1.2°

19.3°

10.1°6.9°

7.2°14.8°

7.3°

Original Ground truth 

Proposed

Grey-world White-patch

Bayesian

Spatio-spectral Natural Image Statistics

Exemplar-based Moment correction

11.1°

1.4°

14.8°

7.3°5.3°

14.8°6.8°

7.3°

Figure 6.10: Corrected images using the estimated illuminant from two statistical
methods and six learning-based methods (including our proposed one). The an-
gular error is given at the lower right corner of the image. The RAW images have
been applied gamma function to boost the contrast for a better visualization. It is
best viewed online.
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Training Testing

St
at

is
ti

cs
-b

as
ed

Grey-world
[Buchsbaum 1980]

- 185 s

White-patch
[Land and McCann 1971]

- 189 s

Shades-of-grey
[Finlayson and Trezzi 2004]

- 365 s

General Grey-world
[Van De Weijer et al. 2007a]

- 615 s

1st-order Grey-edge
[Van De Weijer et al. 2007a]

- 698 s

2nd-order Grey-edge
[Van De Weijer et al. 2007a]

- 817 s

Bright-and-dark Colors PCA
[Cheng et al. 2014]

- 237 s

Local Surface Reflectance
[Gao et al. 2014]

- 225 s

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010]

1345 s 1575 s

Edge-based Gamut
[Gijsenij et al. 2010]

1986 s 2143 s

Bayesian
[Gehler et al. 2008]

764 s 54935 s

Spatio-spectral
[Chakrabarti et al. 2012]

3159 s 3992 s

Natural Image Statistics
[Gijsenij et al. 2011]

10749 s 948 s

19-Edge Corrected-moment
[Finlayson 2013]

584 s 517 s

Proposed 245 s 240 s

Table 6.11: Training and testing times (in seconds) for different methods on Gehler-
Shi’s data set [Gehler et al. 2008; Shi and Funt ], which contains 568 images. The
time calculated here contain image reading time and the processing time. The
statistical methods do not require training time.

the results between two methods, specifically, Wilcoxon sign test [Hogg and Tanis

2001] and the Kolmogorov-Smirnov (K-S) test [Hogg and Tanis 2001]. Table 6.12 and

Table 6.13 report the sign test and K-S test of every pair of algorithms (20 different

algorithms including ours) on the Gehler-Shi [Gehler et al. 2008; Shi and Funt ] data
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Statistics-based Learning-based
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
2 0 0 -1 -1 0 0 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
3 +1 +1 0 -1 +1 +1 -1 -1 0 +1 0 +1 0 -1 -1 -1 -1 -1 -1 -1
4 +1 +1 +1 0 +1 +1 -1 -1 0 +1 0 +1 +1 -1 -1 -1 -1 -1 -1 -1
5 +1 0 -1 -1 0 -1 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
6 +1 0 -1 -1 +1 0 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
7 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 0 0 -1
8 +1 +1 +1 +1 +1 +1 -1 0 0 +1 0 +1 +1 0 +1 +1 -1 -1 -1 -1
9 +1 +1 0 0 +1 +1 -1 0 0 +1 0 +1 +1 -1 0 -1 0 -1 -1 -1

10 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
11 +1 +1 0 0 +1 +1 -1 0 0 +1 0 +1 +1 -1 0 -1 0 -1 -1 -1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
13 +1 +1 0 -1 +1 +1 -1 -1 -1 +1 -1 +1 0 -1 -1 -1 -1 -1 -1 -1
14 +1 +1 +1 +1 +1 +1 0 0 +1 +1 +1 +1 +1 0 +1 0 0 -1 -1 -1
15 +1 +1 +1 +1 +1 +1 -1 -1 0 +1 0 +1 +1 -1 0 0 -1 -1 -1 -1
16 +1 +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 +1 +1 0 0 0 -1 -1 -1 -1
17 +1 +1 +1 +1 +1 +1 -1 +1 0 +1 0 +1 +1 0 +1 +1 0 -1 -1 -1
18 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0 0 -1
19 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0 0 -1
20 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0

Table 6.12: Sign test results on the Gehler-Shi data set [Gehler et al. 2008; Shi and
Funt ] with 98% confidence level. A positive value (+1, indicated by green cells)
at table location (row = i, column = j) means algorithm i has statistically significant
lower errors. A negative value (-1, indicated by red cells) means the opposite. Zero
(indicated by yellow cells) means the different in the methods errors is not statically
significant. The proposed method is in the last row and column. The “+1”s in
the last row show that the proposed method produces statically significant better
results on the sign test than all other methods.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
2 0 0 -1 -1 -1 0 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
3 +1 +1 0 0 +1 +1 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
4 +1 +1 0 0 +1 +1 -1 -1 -1 +1 -1 +1 0 -1 0 -1 -1 -1 -1 -1
5 +1 +1 -1 -1 0 0 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
6 +1 0 -1 -1 0 0 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
7 +1 +1 +1 +1 +1 +1 0 0 0 +1 0 +1 +1 +1 +1 +1 +1 0 0 -1
8 +1 +1 +1 +1 +1 +1 0 0 0 +1 0 +1 +1 +1 +1 +1 -1 -1 -1 -1
9 +1 +1 +1 +1 +1 +1 0 0 0 +1 0 +1 +1 0 +1 +1 0 0 -1 -1

10 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1
11 +1 +1 +1 +1 +1 +1 0 0 0 +1 0 +1 +1 0 +1 +1 0 0 -1 -1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
13 +1 +1 +1 0 +1 +1 -1 -1 -1 +1 -1 +1 0 -1 -1 -1 -1 -1 -1 -1
14 +1 +1 +1 +1 +1 +1 -1 -1 0 +1 0 +1 +1 0 0 0 -1 -1 -1 -1
15 +1 +1 +1 0 +1 +1 -1 -1 -1 +1 -1 +1 +1 0 0 0 -1 -1 -1 -1
16 +1 +1 +1 +1 +1 +1 -1 -1 -1 +1 -1 +1 +1 0 0 0 -1 -1 -1 -1
17 +1 +1 +1 +1 +1 +1 -1 +1 0 +1 0 +1 +1 +1 +1 +1 0 0 -1 -1
18 +1 +1 +1 +1 +1 +1 0 +1 0 +1 0 +1 +1 +1 +1 +1 0 0 0 -1
19 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0 0 -1
20 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0

Table 6.13: K-S test results on the Gehler-Shi data set [Gehler et al. 2008; Shi and
Funt ] with 98% confidence level. A positive value (+1, indicated by green cells)
at table location (row = i, column = j) means algorithm i has statistically significant
lower errors. A negative value (-1, indicated by red cells) means the opposite. Zero
(indicated by yellow cells) means the different in the methods errors is not statically
significant. The proposed method is in the last row and column. The “+1”s in
the last row show that the proposed method produces statically significant better
results on the K-S test than all other methods.
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set with confidence level of 98%. It can be seen that both hypothesis testings for

the mean test and K-S test indicate the proposed approach outperform the others.

We also provide an additional test that computes the percentage of images in

the data set that a particular algorithm outperforms another. Table 6.15 reports this

metric for every pair of 20 different algorithms including ours, again on the Gehler-

Shi [Gehler et al. 2008; Shi and Funt ] data set. Table 6.15 provides an average

summary statistic of Table 6.14. It can be seen that learning-based methods usually

outperform statistical methods over more than 50% of the images. The proposed

method outperforms all other methods.

6.4 Discussion and Summary

This work has presented a learning-based method for illumination estimation that

uses four 2-D features with an ensemble of regression trees. We have demonstrated

on three standard data sets that our approach can produce excellent results with a

running-time on par with statistical methods. Our fast running time is attributed to

our features that are based on simple 2-D descriptors computed on the input image’s

RGB color distribution. There is no need for convolution, spatial derivatives,

distribution moments, or frequency decomposition. In addition, the K tree pairs

can be evaluated very quickly given the binary tree structure. Moreover, the

training of these trees is reasonably fast.

It is worth noting that we tried a number of alternative designs for our tree

ensemble that we briefly describe here. In particular, we tested our results using a

single regression tree trained using all four features described in Section 6.2.1 com-

bined as a single input feature. This resulted in a 30% worse performance in terms
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Statistics-based Learning-based
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4 75.0 71.0 54.8 - 63.7 62.0 35.2 35.7 48.8 73.2 48.9 75.7 54.6 35.0 44.7 37.3 37.1 31.3 32.7 24.8
5 65.3 52.1 40.7 36.3 - 41.7 26.1 24.8 30.3 65.1 30.1 67.6 33.1 22.9 30.3 31.5 27.5 17.4 21.0 18.1
6 65.0 53.5 43.5 38.0 58.3 - 25.7 22.4 30.5 63.4 30.6 69.4 37.3 22.0 30.1 31.7 28.0 17.4 21.3 19.0
7 79.0 75.7 68.1 64.8 73.9 74.3 - 57.7 57.2 77.8 57.4 81.3 66.4 53.7 60.9 59.7 55.3 48.9 47.2 37.9
8 82.6 75.5 68.0 64.3 75.2 77.6 42.3 - 52.1 78.7 52.5 87.1 63.6 52.5 60.2 56.3 44.2 37.9 37.7 28.3
9 68.3 83.1 51.1 51.2 69.7 69.5 42.8 47.9 - 82.7 50.4 78.5 62.3 44.0 51.8 44.7 48.8 41.9 43.1 36.8

10 53.3 46.1 28.7 26.8 34.9 36.6 22.2 21.3 17.3 - 17.1 61.4 24.1 21.8 22.0 21.3 21.8 16.9 14.3 13.9
11 68.0 82.7 50.9 51.1 69.9 69.4 42.6 47.5 46.5 82.9 - 77.8 62.3 43.8 51.8 44.5 48.4 41.7 42.8 36.6
12 42.1 43.0 26.9 24.3 32.4 30.6 18.7 12.9 21.5 38.6 22.2 - 23.8 14.4 21.5 20.2 13.6 10.9 11.4 9.3
13 66.5 64.1 47.4 45.4 66.9 62.7 33.6 36.4 37.7 75.9 37.7 76.2 - 35.2 43.0 37.7 35.4 27.6 26.1 21.3
14 84.0 72.5 70.2 65.0 77.1 78.0 46.3 47.5 56.0 78.2 56.2 85.6 64.8 - 58.6 53.9 45.8 37.9 35.4 30.3
15 74.8 70.2 58.5 55.3 69.7 57.0 39.1 39.8 48.2 78.0 48.2 78.5 57.0 41.4 - 45.6 43.0 32.2 34.5 27.5
16 76.2 76.6 64.8 62.7 68.5 68.3 40.3 43.7 55.3 78.7 55.5 79.8 62.3 46.1 54.2 - 42.3 34.3 34.3 28.2
17 79.6 76.4 66.4 62.9 72.5 72.0 44.7 55.8 51.2 78.2 51.6 86.4 64.6 54.2 57.0 57.7 - 45.4 40.7 31.0
18 84.9 80.1 72.9 68.7 82.6 82.6 51.1 62.1 58.1 83.1 58.3 89.1 72.4 62.1 67.8 65.7 54.6 - 46.8 37.5
19 82.6 79.8 73.4 67.3 79.0 78.7 52.8 62.3 56.9 85.7 57.2 88.6 73.9 64.6 65.5 65.7 59.3 53.2 - 39.4
20 85.6 82.4 77.5 75.2 81.9 81.0 62.1 71.7 63.2 86.1 63.4 90.7 78.7 69.7 72.5 71.8 69.0 62.5 60.6 -

Table 6.14: Outperforming percentage on the Gehler-Shi data set [Gehler et al. 2008;
Shi and Funt ]. Number at location (row = i, column = j) means the percentage of
images on which algorithm i outperforms algorithm j.
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Method Average outperforming percentage
St

at
is

ti
cs

-b
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ed

Grey-world
[Buchsbaum 1980] 28.8%

White-patch
[Land and McCann 1971]

30.8%

Shades-of-grey
[Finlayson and Trezzi 2004]

46.4%

General Grey-world
[Van De Weijer et al. 2007a]

49.6%

1st-order Grey-edge
[Van De Weijer et al. 2007a]

35.9%

2nd-order Grey-edge
[Van De Weijer et al. 2007a]

37.2%

Bright-and-dark Colors PCA
[Cheng et al. 2014]

63.0%

Local Surface Reflectance
[Gao et al. 2014]

59.8%

Le
ar

ni
ng

-b
as

ed

Pixel-based Gamut
[Gijsenij et al. 2010]

56.2%

Edge-based Gamut
[Gijsenij et al. 2010]

27.5%

Intersection-based Gamut
[Gijsenij et al. 2010]

55.9%

SVR Regression
[Funt and Xiong 2004]

23.1%

Bayesian
[Gehler et al. 2008]

46.1%

Spatio-spectral
[Chakrabarti et al. 2012]

60.2%

CART-based Combination
[Bianco et al. 2010]

52.6%

Natural Image Statistics
[Gijsenij et al. 2011]

56.4%

Bottom-up+Top-down
[Van De Weijer et al. 2007b]

60.4%

Exemplar-based
[Joze and Drew 2014]

67.4%

19-Edge Corrected-moment
[Finlayson 2013]

67.7%

Our Proposed 74.0%

Table 6.15: Average outperforming percentage on the Gehler-Shi data set [Gehler
et al. 2008; Shi and Funt ] for each methoed agaist all other 19 methods. Number for
each method is actually the average for each row in Figure 3 (without the diagonal
entries). This provides a summary statistic of Table 3 which is easier to interpret. It
can be seen our proposed method has the largest average outperforming percentage
against other methods.
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6.4. Discussion and Summary

of the average error obtained using the proposed method. We also modified the

local weighting scheme described in Section 6.2.3 to randomly sample the training-

data for each K tree, effectively resulting in an ensemble of random forests. This

strategy resulted in a 25% worse performance from our proposed implementation.

Initially, we also tried constructing a naive random forest. The best result we could

obtain using 100 trees was 20% worse than our reported results. However, this

result from naive random forest has achieved almost the best and thus we started

working from it. As a result, we feel justified in the approach presented in this

chapter.

To summarize, this chapter has demonstrated a learning-based approach that

gives excellent results with running time comparable with statistical methods. The

larger implication of this work is that learning-based methods can be viable real-

time options and suitable for onboard camera processing.
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Chapter 7

Ground Truth Colors for Color

Constancy Correction

In the previous two chapters, illuminant estimation using color domain informa-

tion was studied, which is the first step for the computational color constancy

framework. In this chapter, we will study the second step – image correction. As

discussed in Chapter 2, there is a large body of work targeting color constancy, with

the vast majority focused on illumination estimation while there is significantly less

work focusing on correcting images. It is generally assumed that the three RGB

channels from the camera sensor act as independent gain controls to scene illu-

mination. This is similar to the von Kries hypothesis [Von Kries 1878] on human

retinal cones. Working from the von Kries assumption, a diagonal 3× 3 matrix can

be used to correct the three RGB channels by normalizing their individual channel

bias, which effectively only ensure the correction for the white/neutral colors, while

the other colors are neglected. In this chapter, we describe how to overcome this

limitation.
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CHAPTER 7. Ground Truth Colors for Color Constancy Correction

7.1 Introduction

As we know from Section 2.2.1, computational color constancy is often approached

as a two-step procedure: 1) estimate the color of the illumination; 2) apply a

transform to remove the effects of the illumination. The majority of published

literature addresses step 1 and several datasets (Section 7.3) have been created

to assist in evaluating illumination estimation (e.g. [Barnard et al. 2002c; Cheng

et al. 2014; Ciurea and Funt 2003; Gehler et al. 2008; Shi and Funt ]). The basic

idea is to place a neutral (white) calibration object in the imaged scene. Under

ideal white light, the neutral object should remain achromatic in the camera’s color

space. A chromatic color cast on the neutral object is considered to be the color of

the illumination in the camera’s color space. While most methods do not elaborate

on image correction, the de facto approach is to compute a 3×3 diagonal matrix

(Section 2.2.2) to map the estimated illumination RGB values to lie along R=G=B.

This is effectively known as white-balancing that ensures the neutral colors appear

as “white” in the corrected image. However, the ability of this diagonal matrix to

correct non-neutral colors is ignored.

This is a significant limitation, because the goal of color constancy is to make

all colors correct, not just neutral colors. Figure 7.1 shows one example of image

correction from a 3×3 diagonal matrix and a full 3×3 matrix. Early color constancy

datasets are suitable only for illumination estimation as they only contain a neutral

calibration pattern. Newer datasets, such as the widely used Gelher-Shi [Gehler

et al. 2008; Shi and Funt ] and the recent NUS multiple-camera dataset [Cheng et al.

2014] include a color rendition chart in every image. However, only the neutral

patches on these color charts are used for performance evaluation. The problem
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2

4

>6o

Input Image Diagonal Correction Our Full Correction
(pre-correction) (neutral patches only) (all colors considered)

Reproduction error
of color patches
(mean: 0.77°)

Reproduction error
of color patches
(mean: 2.94°)

Reproduction error
of color patches
(mean: 22.29°)

A CB

Figure 7.1: (A) input image before illumination correction. (B) corrected image
using a conventional diagonal 3×3 matrix (i.e. white-balancing). (C) corrected
image using a full 3×3 matrix estimated from the ground truth colors obtained by
our approach. The reproduction angular errors for each 24 color patches are shown
below each image as a heat map (red=high error, blue=low error).

is that unlike a neutral material, the ground truth RGB values of the color patches

are not known in the camera’s color space. While color rendition charts have

known mapping values in the CIE XYZ color space, color constancy correction is

performed in the camera’s color space [Chakrabarti et al. 2014; Kim et al. 2012].

Currently, the only way to estimate these colors is through simulations requiring

spectral information, including the camera sensor sensitivity functions, spectral

reflectances of the patches, and spectra of the illumination. Such spectral data

is challenging to obtain, and as a result, most existing color constancy datasets

cannot be used to evaluate the performance of color correction. As we have shown

in Section 2.2.2, early work by Finlayson et al. [Finlayson et al. 1993a; Finlayson et al.

1993b] proposed a method to address this problem with what was termed as the

generalized diagonal model. In this work, a 3×3 spectral sharpening matrix transform,
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CHAPTER 7. Ground Truth Colors for Color Constancy Correction

M, was computed to map the sensor’s RGB values to an intermediate color space,

for which the diagonal correction model works well. Finlayson et al. [Finlayson

et al. 1993b] showed that a two-dimensional linear space of illuminants and a three-

dimensional linear space of reflectances (or vice versa) were sufficient to guarantee

the generalized diagonal model. Estimating M, however, requires accurate camera

responses of known materials under controlled illumination. To achieve this, the

camera responses are simulated from spectral data of illumination and reflectance

using camera sensitivity functions. Chong et al. [Chong et al. 2007] later revealed

that the generalized diagonal compatibility conditions are impositions only on

the sensor measurements, not the physical spectra. They formulated the problem

as a rank constraint on an order of three measurement tensor to compute the

matrix M. Once again, Chong et al. [Chong et al. 2007] required that the spectral

sensitivity of the camera’s sensor to be known. The use of this spectral sharpening

matrix M effectively meant that the color correction transform was a full 3×3

matrix. Work in [Funt and Jiang 2003; Huang and Huang 2013] examined the

dimensionality of the 9-parameter space of the full 3×3 color correction matrices.

Using PCA decomposition, they found that only 3 bases were required to recover

the 9 parameters in the full matrix model. The full matrices used in their PCA

decomposition were synthetically generated using a known camera sensitivity

function and a large database of material spectral reflectances and illumination

spectra.

While these methods helped to lay the foundation on how to estimate full

3×3 color correction matrices, the reliance on spectral information makes them

impractical. In the following section, we describe how to estimate the ground truth

colors directly from camera images, without the need for spectral information.
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7.1. Introduction

In this chapter, we study the second step of computational color constancy,

image correction, and make four contributions towards better image correction for

color constancy.

1. We show that a diagonal matrix is able to correct scene colors for certain

illuminations (including daylight) well enough to define the ground truth

colors for the other illuminations.

2. Based on the findings in 1, we describe a robust method to select the images

in the existing color constancy datasets to provide the ground truth colors for

the imaged rendition chart. This allows us to re-purpose these datasets for

color constancy correction by estimating full 3×3 color correction matrices for

all the images in the dataset.

3. Using the re-purposed datasets from 2, we demonstrate how these full matri-

ces can be immediately used to modify existing color constancy algorithms

(the Bayesian and Corrected Moment methods) to produce better color cor-

rection results. We also describe the potential improvements that can be

obtained using an oracle-based method.

4. Finally, we find that existing datasets have a strong bias of images captured

in daylight scenes. To create a more uniformly sampled dataset for studying

color constancy correction, we have captured an additional 944 images under

indoor illuminations to augment an existing dataset.

We believe this work will have significant implications for improving color con-

stancy by allowing the evaluation of color correction algorithms beyond neutral

(white) correction.
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CHAPTER 7. Ground Truth Colors for Color Constancy Correction

The remainder of this chapter is organized as follows. Section 7.2 describes how

to use the diagonal model to provide ground truth colors. Section 7.3 describes

a robust method to estimate the full matrices for existing datasets. Section 7.4

demonstrates how to use the re-purposed datasets for improving color constancy

correction. A discussion and summary concludes the chapter in Section 7.5.

7.2 Diagonal Model for Ground Truth Colors

This section performs an analysis which reveals that for certain illuminations, the

3×3 diagonal correction model is useful for full color correction of the scene, and not

just neutral colors. This analysis is performed empirically in Section 7.2.1 working

from spectral data. This empirical experiment alone may not be sufficient to prove

the finding, therefore in the subsequent four sections (Section 7.2.2 - 7.2.5), we

provide four different types of additional analysis to support our finding. Section

7.2.2 shows our mathematical model of the color constancy problem that lends

corroborative evidence to our empirical observation. Section 7.2.3 extends the

experiment in Section 7.2.1 to include 2700+ materials. This section also shows how

well the 24 Macbeth ColorChecker chart patches model these expanded materials.

Section 7.2.4 performs experiments showing the optimal illumination spectra for a

camera compared with the selected illumination from the SFU illumination dataset.

Section 7.2.5 discusses the shape of the camera sensitivity function and its effect on

the diagonal and full correction model.
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7.2. Diagonal Model for Ground Truth Colors

7.2.1 Empirical Analysis

Here we show empirically that 3×3 diagonal correction matrices are sufficient to

correct the scene’s colors for certain illuminations. Our analysis starts by examining

how RGB camera values are formed in the spectral domain. Let C represent the

camera’s sensitivity functions that is written as a 3 × N matrix, where N is the

number of spectral samples and the rows of C = [cR; cG; cB] correspond to the

R, G, B channels. The camera response for a particular scene material, r under

illumination l can be written as:

ρ = C · diag(l) · r = C · L · r, (7.1)

where l and r are N × 1 vectors representing the illumination spectra and material

spectral reflectance respectively, diag(·) indicates the operator that creates a diagonal

matrix from a vector, i.e. L is an N × N illumination matrix with diagonal elements

l, and · stands for matrix multiplication.

The goal of color constancy is to map an RGB value taken under an unknown

illumination, ρI = C·LI
·r, to its corresponding color under a canonical illumination,

ρC = C · LC
· r. Although the canonical illumination can be any specific spectra,

ideal white light that has equal energy for every wavelength (i.e., the CIE standard

illuminant E) is generally chosen. In such a case, LC becomes the identity matrix,

I, and gives us ρC = C · r. This mapping can be written as:

ρC = T · ρI,

C · r = T · C · LI
· r,

(7.2)
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Figure 7.2: (A) Illustration of the difference between the diagonal white-balancing
correction and the full matrix image correction transform. White-balancing only
requires the observations of the neutral colors. To estimate the full matrix, the
observed color chart and its ideal colors are needed. (B) Shows the residual error
comparison of the two different correction models. While the full matrix has
consistently lower error, for certain illuminations the error from the diagonal model
is close to that from the full matrix. A heatmap visualization of the diagonal matrix
errors for each color patch is shown for three illuminates. The chromaticity position
of the illuminations with respect to the Plankian color temperature curve and their
corresponding correlated color temperature (CCT) are also shown.
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7.2. Diagonal Model for Ground Truth Colors

where T is a 3 × 3 linear matrix that maps ρI to ρC. In general, we have a scene

composed of many different materials, and not just one. In this case, if we assume

that the scene is illuminated by a single illumination, we have:

C · R = T · C · LI
· R, (7.3)

where R is a matrix of many material reflectances (see Figure 7.2 (A)). In this over

determined situation, the optimal linear transform T+ is the one that can minimize

the Frobenius norm:

T+ = argmin
T

||C · R − T · C · LI
· R||2F, (7.4)

where || · ||2F indicates the matrix Frobenius norm. A solution to this optimization

problem can be obtained using the Moore-Penrose pseudoinverse. Note that, to

solve this problem, we need observations of the ideal (ground truth) colors, C · R,

and the input image under the scene illumination, C · LI
· R.

Let’s now consider computing a diagonal, 3×3 correction matrix, Dw, as done

by most white-balancing methods. We assume our camera has observed a special

neutral r that reflects spectral energy at every wavelength equally. This means: our

camera response is the direct response of the illumination lI, thus giving us:

Dw = diag(C · lI)−1, (7.5)

where lI is the input illumination (i.e., LI = diag(lI)). This only requires the obser-

vation of the neutral patches. Figure 7.2 (A) illustrates the difference between these

methods.
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Canon 5D mark II Canon 20D

Nikon 3Dx

Nikon D3

Sony Nex5N Olympus EPL-2

Canon 500D

Nikon D5100

Pentax K-5 Grasshopper 2

Diagonal error 𝐸𝑟𝑟𝐷𝑤 Full matrix error 𝐸𝑟𝑟𝑇+

Figure 7.3: The correction error (using 24 Macbeth ColorChecker chart materials)
comparison of the two different correction models, ErrDw and ErrT+ , for additional
cameras. At the top left of each plot, the camera sensitivity functions are shown.
The horizontal axis is shows the illumination index by the temperature from high
to low.
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28 CCT: 6462K
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Close-up of 𝐸𝑟𝑟𝐷𝑤 for illuminant index around 20-60 in Fig. 2 (B)
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Figure 7.4: Spectra (400-720nm) for illuminations on which diagonal white-
balancing correction works well. The bottom blue curve corresponds to the blue
curve of the diagonal correction error in Figure 7.2 (B) for illuminations index
around 20-60. The correlated color temperate (CCT) is also shown. These spectra
are indicative of broadband sunlight/daylight illumination.

The residual errors for the two solutions over all observed scene materials R

can be expressed as the Frobenius norms:

ErrT+ = ||C · R − T+
· C · LI

· R||2F

ErrDw = ||C · R −Dw
· C · LI

· R||2F.
(7.6)

The question we are interested in is: When does Dw provides a good approxi-

mation to T+? To determine this, we compute the residual errors in Equation 7.6

for 28 different cameras using the camera sensitivity functions from [Jiang et al.

2013]. We examined these errors for 101 different real world illuminations captured

by [Barnard et al. 2002c]. The reflectance materials used were those estimated from

the 24 color patches on the Macbeth ColorChecker.
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Figure 7.5: The trend of off-diagonal-to-diagonal ratio of T∗ and T+ for all the
illuminations and their correlation. Plots from two specific cameras are shown
here, but all the other cameras share this similar trend: for certain illuminations,
the off-diagonal-to-diagonal ratio is low and high correlation can be found from
the ratios of two different matrices.

Figure 7.2 (B) shows a plot of the residual errors for both T+ and Dw. The

horizontal axis is the index of the 101 illuminants. We sort the illuminations by their

correlated color temperature in the CIE-xy chromaticity space. Figure 7.3 shows the

comparison for more cameras. We can see that for many illuminations, the errors

of these two methods are similar. In particular, for illuminations close to range

6000K, the diagonal Dw is very close to the full matrix T+. Figure 7.4 shows several

of the illumination spectra in this range. We note that these spectra resemble those

caused by sunlight, including direct daylight and shadows. For other illuminations,

especially indoor artificial ones, the correction error from Dw is much larger than

that from T+. We acknowledge that this empirical error observation is limited in

using only 24 reflectance values from the MacBeth Chart. In Section 7.2.3, we will

show that the trend is similar when we perform this experiment using over 2000

reflectance materials.

Another useful interpretation of this observation is to examine under what
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𝜅+ for 𝑇+ 𝜅∗ for 𝑇∗ 𝐸𝑟𝑟𝐷𝑤

Figure 7.6: The trend of off-diagonal-to-diagonal ratio of T∗ and T+ for all the
illuminations for additional cameras. At the top left of each plot, the camera
sensitivity functions are shown. The horizontal axis is shows the illumination
index by the temperature from high to low.
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illuminations T+ becomes more like a diagonal matrix. For this, we can define the

off-diagonal-to-diagonal ratio κ of matrix T+ as:

κ =

∑3
i=1

∑3
j=1, j,i |ti, j|∑3

i=1 |ti,i|
, (7.7)

where ti, j is the (i, j) element of matrix T and | · | indicates the absolute value. On

careful inspection of Equation 7.7, we see that κ decreases in value as the diagonal

entries in the T matrix become more dominant than the off-diagonal entries of T.

When κ = 0 the matrix T is a diagonal matrix. Figure 7.5 plots κ+ for T+ against

the 101 illuminations for two different cameras, Canon 1D Mark III and Nikon

D700. The trend of κ+ closely follows the observation of the residual errors from

diagonal white-balancing correction, ErrDw . Figure 7.6 shows the same correlation

for additional 10 cameras.

7.2.2 Mathematical Support for Our Observation

To have further support for this finding, we performed another analysis that does

not rely on the scene reflectance R. This can be considered as estimating a full

matrix that is optimal over all possible reflectance values. In this case, we drop R

from Equation 7.3 to obtain:

C = T · C · LI. (7.8)

Similar to Equation 7.4, the optimal linear transform T∗ is the one that minimizes

the Frobenius norm of the difference:

T∗ = argmin
T

||C − T · C · LI
||

2
F, (7.9)
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and it can also be computed directly from the Moore-Penrose pseudoinverse:

T∗ = C · LI
· C′ · (C · LI

· LI
· C′)−1. (7.10)

Using this T∗ that does not rely on any reflectance materials, we plot its corre-

sponding κ∗ against the plot for the κ+ in Figure 7.5. We can see that the two plots

are highly correlated, providing corroborative evidence to our empirical observa-

tion. The overall relationship of T∗ to the illumination, L, and camera sensitivities,

C, is complex given the number of parameters involved.

Additional three analysis experiments in the following sections provide more

insight into the underlying reasons why some illuminations are more suitable than

others. For the purpose of establishing ground truth colors in existing datasets, we

will rely on the use of images captured in daylight illumination as indicated by the

experiments in this section.

7.2.3 Experiments with More Materials Reflectance Properties

As mentioned in Section 7.2.1, Figure 7.2 and Figure 7.3 only examines the 24 Mac-

beth ColorChecker chart materials. In this section, we perform the same experi-

ment, but increase the number of materials to 2747. These include 1997 materials

provided in the SFU spectral dataset [Barnard et al. 2002c]. In addition, we captured

another 750 materials including paper, paint chips, and cloth materials. Figure 7.7

shows some examples of our material patches and the calculated reflectances.

As the same with Section 7.2.1, we compare the error of the diagonal correc-

tion matrix with the error of the full correction matrix using this expanded set of

materials. In addition, we also compare the correction error of all the materials
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Figure 7.7: Examples of material patches and calculated spectral reflectances.

with the full matrix model calculated by just using 24 Macbeth ColorChecker chart

materials, which provides the idea of how good the color correction using Mac-

beth ColorChecker chart in the real image can be. To be specific, let R24 be the

reflectance matrix for the 24 Macbeth ColorChecker chart materials and Rall denote

all the reflectance in our expanded dataset of 2747 materials. We have the diagonal
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white-balancing correction matrix (exactly the same as Equation 7.5):

Dw = diag(C · lI)−1. (7.11)

The full matrix correction for all the materials is:

Tall = argmin
T

||C · Rall
− T · C · LI

· Rall
||

2
F. (7.12)

The full matrix correction for only 24 Macbeth ColorChecker chart materials is:

T24 = argmin
T

||C · R24
− T · C · LI

· R24
||

2
F. (7.13)

Figure 7.8 compares correction errors from these three corrections:

ErrDw = ||C · Rall
−Dw

· C · LI
· Rall
||

2
F

ErrTall = ||C · Rall
− Tall

· C · LI
· Rall
||

2
F

ErrT24 = ||C · Rall
− T24

· C · LI
· Rall
||

2
F

(7.14)

We see that the trend in Figure 7.3 and Figure 7.8 based on 24 Macbeth Col-

orChecker is virtually identical when we use the expanded dataset of 2700+ mate-

rials. In fact, the correction error for all the materials from the full matrix calculated

using Macbeth chart color samples T24 is so close to the error from the full-matrix

for all the materials Tall that the plotted lines overlap. From this experiment, we

feel the use of the 24 colors Macbeth ColorChecker chart to calculate the full color

correction matrix is a good approximation of a much wider range of real world

scene materials.
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Canon 5D mark II Canon 20D

Nikon 3Dx

Nikon D3

Sony Nex5N Olympus EPL-2

Canon 500D

Nikon D5100

Pentax K-5 Canon 1D mark II

Diagonal error 𝐸𝑟𝑟𝐷𝑤 Full matrix error 𝐸𝑟𝑟𝑇𝑎𝑙𝑙 Full matrix error 𝐸𝑟𝑟𝑇24

Figure 7.8: The correction error comparison of the three different correction models,
ErrDw , ErrTall and ErrT24 , for 10 different cameras. Here, ErrDw represents error with
the diagonal correction, ErrTall uses the expanded material dataset of 2747 materials,
and ErrT24 uses only the 24 materials from the color chart. At the top left of each
plot, the camera sensitivity functions are shown. The horizontal axis is shows the
illumination index by the temperature from high to low.
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7.2.4 The Optimal Illumination Spectra for Diagonal Correction

Model

In this section, we provide additional analysis regarding the optimal illumination

spectra for the diagonal white-balance correction matrix. Given the camera sensi-

tivity functions C and the real input illumination spectrum lI, we know the diagonal

white-balancing correction Dw by Equation 7.11.

We know from our experiments in Section 7.2.1 that only for certain illumina-

tions the diagonal white-balancing Dw can do a good job correcting non-neutral

colors. In this analysis, we reserve the mapping processing to find the optimal

illumination that would allow a given Dw to correct all the scene materials and not

just neutral. What we want to observe is how different the input illumination (used

to compute Dw) is from the optimal illumination that would make this Dw work for

all colors. Similar to Section 7.2.2, we performed this analysis without considering

the scene reflectance R. Specifically, we are interested in:

L∗ = argmin
L

||C −Dw
· C · L||2F,

s.t. Dw = diag(C · lI)−1 = diag([d1, d2, d3]),

L = diag([l1, l2, ..., lN])

(7.15)

where N is the dimension of the spectral information and l j is the j-th element of

the input illumination spectra vector l. To solve for this optimal L∗, suppose we

have
f (l1, l2, ..., lN) = ||C −Dw

· C · L||2F

=

3∑
i=1

N∑
j=1

(ci j − dici jl j)2,
(7.16)
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Figure 7.9: Comparison of optimal illumination spectrum for diagonal correction
model versus the real illumination spectrum. At the bottom, the correction errors
of the diagonal white-balance and the full matrix correction model are shown
for 102 SFU illuminations. The optimal spectrum for diagonal correction versus
the real spectrum for these 6 illuminations are shown above. For 44 and 52,
the diagonal correction errors are close to the full matrix correction error and
the optimal spectrum are also close to the real spectrum. For 15, 87, 93 and 98
illuminations, the diagonal correction errors are large and the optimal spectrum
are clearly different from the real illumination spectrum.
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where ci j is the (i, j) element of the camera sensitivity matrix C. Simple calculus

shows the derivative:

∂ f
∂l j

= −2
3∑

i=1

dici j(ci j − dici jl j), for j = 1..N (7.17)

and setting this derivative to zero produces:

l j =

∑3
i=1 c2

i jdi∑3
i=1 c2

i jd
2
i

. (7.18)

Assembling l j into matrix form, we will have:

L∗ = diag(C
′

·Dw
· C) ·

(
diag(C

′

·Dw
·Dw
· C)

)−1
, (7.19)

where C′ is the transpose of matrix C. Given a camera (with C known), we

can examine what this diagonal model optimal illumination spectra will look like

for all the real illumination spectra. Figure 7.9 shows the optimal illumination

spectrum for diagonal correction versus a real illumination spectrum that also

provides similar error. We can see that for diagonal matrices that work well for all

colors, their input illumination and optimal illumination are very similar. For those

illuminations where the diagonal does not perform well, the optimal illumination

is different than the illumination used to compute the diagonal matrix.

7.2.5 The Role of the Camera Sensitivity Functions

Finally, we perform an experiment to examine the effect of the camera sensitivity

functions (C) on the role of the diagonal and full correction matrix. As mentioned
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Figure 7.10: Averaged camera sensitivity functions calculated from 28 measured
real camera sensitivity functions in [Jiang et al. 2013] and there Gaussian fittings.
The Gaussians fit the average camera sensitivity functions well.

before, it is often assumed that the camera sensitivity functions act as independent

gain controls to scene illumination. This happens when the camera’s individual

channels uniquely sample different parts of the illumination spectra. In the follow-

ing analysis, we model the camera sensitivity functions by Gaussian distributions

and see how Gaussian distributions changes can affect the diagonal correction.

To start, we calculated the average camera sensitivity functions for all 28 differ-

ent cameras in [Jiang et al. 2013] and fit Gaussians to represent these sensitivity

functions. Figure 7.10 shows the averaged sensitivity functions and the fitted

Gaussians. It can be seen that the Gaussians represent the real camera sensitivity

functions well. Then we decreased the standard deviations (σ) of these Gaussians,

and calculated the correction errors from the diagonal white-balancing correction

ErrDw and the errors from the optimal full matrix correction ErrT+ . Figure 7.11

shows the comparison for different Gaussian camera sensitivity functions. As the

Gaussians narrow, the overlap between the channels decreases and the diagonal
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Figure 7.11: Camera sensitivity functions modeled by Gaussian distributions, and
their effect on the correction errors. The first row shows the original Gaussians fit
to the averaged 28 camera sensitivity functions and in following rows, standard
deviations of Gaussians are halved from the previous row producing narrower
sensitivity functions. As the sensitivity functions narrow and the overlaps in the
distributions decrease, the diagonal and full matrix performance converges.
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white-balancing correction better approximates the optimal full matrix correction

for all the possible illuminantions. The extreme situation, which is known as the

narrow band assumption, happens when the camera sensitivity functions only re-

spond to single wavelength and can be modeled by Dirac’s delta functions. This

narrow band assumption has been used in many research works [Finlayson et al.

2006a; Kawakami et al. 2007; Zhang and Sato 2011], however, as our plots have

shown, very few cameras have such narrow sensitivity functions.

Note that there are a few illuminations for which the correction errors for both

full matrix correction and diagonal correction are relatively larger than the rest

even with very narrow Gaussians. Actually, these illuminations spectra are similar

to those in Figure 7.9 (labeled 87 and 98). It has been previously noted that these

kind of illuminations cause “unacceptable” mismatches [Wyszecki and Stiles 1982]

and have been removed for analysis in [Chong et al. 2007].

7.3 Re-purposing Existing Datasets

The findings in Section 7.2 revealed that a diagonal correction model is as effective

as a full matrix for certain illuminations including daylight. In this section, we

describe how to use this finding to re-purpose existing datasets, namely the Gelher-

Shi and the NUS datasets, for color correction estimation. We also discuss an

appropriate error metric for evaluating color correction.

7.3.1 Robust Estimation of Patch Colors

As discussed in Section 7.1, the Gelher-Shi and NUS datasets have color rendition

charts in every scene. This means there are 24 common materials present in all
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3. Select reference images that have ground truth 
illuminant close to the refined illuminant 

chromaticity in the previous step

Final patch chromaticity selected as the (KDE) 
distribution maximum peak

Dataset images plotted by their chromaticity
r

g

1. Manually select an image captured 
in daylight from dataset

2. Examine the dataset distribution (using KDE) 
to refine the reference illuminant chromaticity 

… …
peak

6. Obtain the final corrected ground truth patch 
chromaticity from the patches distribution

4. Extract each patch 
color in every image

5. Use the traditional 
diagonal white 

balancing model to 
correct all the colors

Figure 7.12: Procedure to calculate the “ground truth” RGB colors for the color chart
patches. First, an outdoor image captured under sunlight is manually selected.
A kernel density estimation (KDE) method is applied on nearby ground truth
illuminations to refine the illumination chromaticity as the peak location of the
local illumination chromaticity distribution. Images with illuminations close to
this refined reference illumination are selected automatically. Each image in this
reference image set is corrected using the diagonal model and each color patch is
extracted. KDE is applied to each color patch’s corrected colors over the entire set
and the KDE peak is selected as the ground truth color.
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the images. In this section, we describe how to use the images in these datasets to

compute the ground truth values of the color patches in the color rendition charts.

While we could use a single image captured under daylight to provide the

reference colors of the rendition chart, this naive approach risks selecting an image

that may possibly be corrupt by factors such as nonuniform illumination and

camera noise. Instead, we have devised a robust procedure for selecting the colors.

An overview of this procedure is provided in Figure7.12. We start with the entire

dataset of the images captured from the same camera under different illuminations.

The ground truth illuminations for these images are available from the chart’s

neutral patches. We manually select an image that is clearly captured in daytime.

We then look for a set of images that have similar ground truth illuminations. This

is done by performing a 2D kernel density estimation (KDE) [Botev et al. 2010]

on the chromaticity distribution of the ground truth illuminations. We find the

peak of the KDE closest to our manually selected image. We then take dataset

images whose ground truth illumination chromaticity distance to this KDE peak

are smaller than a threshold to form our reference image set. For each image in

this reference image set, we correct the image using the diagonal correction matrix

based on its ground truth illumination. Note from Figure 7.12 that this reference

image set may contain a few images which are not outdoor sunlight images. To

prevent our ground truth colors from being contaminated by these outliers, we

again apply KDE on the corrected chromaticity for each patch and select the peak

of the distribution as the ground truth color for each patch. This procedure provides

a robust mechanism for finding the ground truth colors for all the patches. When

we applied this on the Gehler-Shi dataset (Canon 5D subset), any manually-chosen

reference image that was captured in direct sunlight resulted in identical ground
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Full matrix correction Diagonal matrix correction
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Figure 7.13: This figure shows the ability of the full matrix to produce better image
correction. It shows the distribution (modeled by Gaussians) of each color patch
in the color checker chart in the entire Gelher-Shi Canon1D dataset after correction
using the proposed full matrix and the diagonal matrix. The full matrix correction
clearly decreases the variance in the color distributions after correction.

truth estimations.

After obtaining the ground truth checker chart colors, we can now compute full

matrices to transform all the images in the dataset based on the color checker colors.

This can be done using the Moore-Penrose pseudo-inverse similar to Equation 7.4.

However, as noted by Funt et al. [Funt and Bastani 2012], the illumination across the

color rendition chart is generally not uniform. As a result, we follow the approach

in [Funt and Bastani 2012] to minimize the sum of angular error:

T = argmin
T

24∑
i=1

cos−1

 TρI
i · ρ

C
i∥∥∥TρI

i

∥∥∥ ∥∥∥ρC
i

∥∥∥
 , (7.20)

where ρI
i is the patch color in this input camera image for patch i and ρC

i is the

estimated ground truth color for patch i. Figure 7.13 shows the ability of the T

estimated for each image to provide a better mapping than the traditional diagonal
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Full matrix correctionDiagonal matrix correction

Figure 7.14: This figure shows the ability of the full matrix to produce better image
correction. It shows images (from both Gelher-Shi and NUS datasets) corrected
using a diagonal matrix (left) and a full matrix (right). The color coded reproduction
angular errors for each 24 color patches are also shown (red=high error, blue=low
error).
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correction. The two plots in Figure 7.13 show the distribution of corrected colors of

the color patch using the full matrix T and the diagonal matrix. The colors are much

more coherent across the entire Gelher-Shi dataset. Figure 7.14 shows comparisons

of four images selected from the datasets. This is accompanied with a per patch

error map which is shown through this chapter. The metric used to measure error

is described next.

7.3.2 Correction Error Metric

For illumination estimation, the most common error metric is known as the recovery

error, and is computed as the angular error between the estimated illumination

and the ground truth illumination in the camera’s color space. This is shown in

Figure 7.15 (A). Note that this can be estimated without correcting the image.

As we are interested in correcting the image, the angular error is computed after

correction. This can be defined as:

Erri = cos−1

 ρT
i · ρ

C
i∥∥∥ρT

i

∥∥∥ ∥∥∥ρC
i

∥∥∥
 i = 1..24, (7.21)

where Erri is the angular error for patch i and ρT
i is the color of each patch after

correction. Figure 7.15 (B)-(C) demonstrates the difference for the neutral color

and color patch colors respectively. Interestingly, this approach (termed the repro-

duction error) was recently advocated by Finlayson and Zakizadeh [Finlayson and

Zakizadeh 2014] for illumination estimation as an improved metric. We adopt it

here for estimating all the patch colors in the rendition chart.
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Figure 7.15: Illustration of recovery angular error (A) and reproduction angular
error for neutral (B) and reproduction angular error for non-neutral color (C). Dot-
ted lines represent ground truth colors; solid lines represent estimated or corrected
colors.

7.4 Application to Color Constancy

Here we describe how the re-purposed datasets described in Section 7.2 can be

immediately used to improve existing methods. In particular, we show how to

modify two specific learning-based methods, the Bayesian method [Gehler et al.

2008; Rosenberg et al. 2003] and the Corrected-Moments method [Finlayson 2013] to

use the full color matrix. To give an insight into the potential of our newly computed

datasets, we have also implemented an oracle prediction method that is used to test

our idea beyond the limit of current illumination estimation performance.

Bayesian method The work by Gehler et al. [Gehler et al. 2008] revisited the original

Bayesian color constancy method from [Rosenberg et al. 2003]. The approach begins

by correcting all the images in the training set with diagonal white-balancing

matrices based on the ground truth illumination color. This is used to build a

likelihood probability distribution of the corrected/reflectance colors. Then the

prior information of diagonal correction matrices is used to help predict the most
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possible illumination in the scene within a Bayesian inference framework. We

modified this approach by changing the image correction model, as well as the

prior information, to be the full matrix correction model. This will effectively

output a full matrix transform T by searching for the MAP (maximum a posteriori)

of the posterior probability for T:

p(T|ρI) ∝ p(ρI
|T)p(T). (7.22)

Corrected-Moments We can also extend a recent method proposed by Finlayson [Fin-

layson 2013] that does not assume any explicit image correction model. This

method only requires the original (pre-corrected) input image color/edge moments,

denoted by pm comprising of m moments. In the training stage, a regression matrix

Cm×3 is learned to map the moments to the final illumination estimation:

eest = pmCm×3. (7.23)

We followed this procedure to estimate the illumination, but replaced the image

correction step to use the 3×3 full matrix associated with the image in training-set

whose ground truth illumination is closest to eest.

Oracle prediction The use of the Bayesian and Corrected-Moments are intended

to show how the new full color datasets can be immediately used to improve

color correction based on the existing illumination estimation methods. We expect,

however, continuous improvements in illumination estimation and hope that our

datasets will be useful in this effort. We show results using what we term the

“oracle method” that assumes an ideal illumination estimation method that can
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Outdoor images Indoor images All images
Neutral Color All Neutral Color All Neutral Color All
D T D T D T D T D T D T D T D T D T

Bayesian
Gehler-Shi Canon 1D (15/71) 5.53 6.25 3.76 4.32 4.20 4.80 6.16 6.55 5.91 5.85 5.97 6.03 6.05 6.50 5.54 5.58 5.66 5.81
Gehler-Shi Canon 5D (307/175) 3.31 3.20 2.96 2.75 3.04 2.86 7.56 7.00 6.45 6.15 6.73 6.36 4.85 4.58 4.22 3.98 4.38 4.13
NUS Canon 1Ds Mark III (197/167) 4.27 4.42 3.46 3.60 3.66 3.80 5.41 5.30 5.16 4.57 5.22 4.75 4.79 4.83 4.24 4.04 4.38 4.24
NUS Canon 600D (145/160) 5.05 4.79 4.36 3.98 4.53 4.18 4.39 4.69 4.63 4.16 4.57 4.29 4.70 4.74 4.50 4.08 4.55 4.24
NUS Fujifilm XM1 (144/157) 3.52 3.77 2.72 2.91 2.92 3.12 4.05 4.51 4.34 3.75 4.27 3.94 3.80 4.15 3.57 3.35 3.63 3.55
NUS Nikon D40 (80/141) 5.16 4.54 3.93 3.56 4.24 3.80 5.97 5.29 5.85 4.59 5.88 4.77 5.68 5.02 5.15 4.22 5.28 4.42
NUS Nikon D5200 (151/154) 5.07 5.29 3.89 3.99 4.18 4.31 5.06 5.43 4.89 4.33 4.93 4.61 5.06 5.36 4.39 4.16 4.56 4.46
NUS Olympus EPL-6 (153/160) 3.82 3.91 3.18 3.26 3.34 3.43 5.16 4.95 4.94 4.78 4.99 4.82 4.50 4.44 4.08 4.04 4.18 4.14
NUS Lumix DMC-GX1 (147/161) 5.19 5.23 3.97 3.86 4.28 4.21 4.91 5.49 5.17 4.65 5.10 4.86 5.04 5.36 4.60 4.28 4.71 4.55
NUS Samsung NX2000 (153/154) 4.89 5.15 3.79 4.00 4.06 4.29 5.28 5.44 5.21 4.61 5.22 4.81 5.09 5.29 4.50 4.31 4.65 4.55
NUS Sony STL-A57 (207/166) 4.22 4.16 3.71 3.62 3.84 3.76 5.60 5.04 5.09 4.21 5.22 4.42 4.83 4.55 4.32 3.89 4.45 4.05

Corrected-moment
Gehler-Shi Canon 1D (15/71) 3.11 3.12 2.05 2.23 2.32 2.46 3.20 3.36 4.12 3.60 3.89 3.54 3.19 3.32 3.76 3.36 3.62 3.35
Gehler-Shi Canon 5D (307/175) 2.37 2.39 2.11 2.17 2.17 2.22 5.15 5.12 4.77 4.34 4.87 4.53 3.38 3.38 3.08 2.95 3.15 3.06
NUS Canon 1Ds Mark III (197/167) 2.69 2.70 2.28 2.41 2.38 2.48 3.49 3.59 3.53 3.09 3.52 3.21 3.06 3.11 2.85 2.72 2.90 2.82
NUS Canon 600D (145/160) 2.29 2.29 2.14 2.03 2.18 2.10 2.79 3.12 3.05 2.72 2.99 2.82 2.55 2.72 2.62 2.39 2.60 2.48
NUS Fujifilm XM1 (144/157) 2.59 2.55 2.08 2.10 2.21 2.21 3.54 3.68 3.87 3.08 3.79 3.23 3.09 3.14 3.01 2.61 3.03 2.74
NUS Nikon D40 (80/141) 3.18 3.21 2.19 2.37 2.44 2.58 3.49 3.30 3.77 3.01 3.70 3.08 3.38 3.26 3.20 2.78 3.24 2.90
NUS Nikon D5200 (151/154) 2.77 2.84 2.26 2.24 2.39 2.39 3.29 3.34 3.62 3.10 3.54 3.16 3.04 3.09 2.95 2.67 2.97 2.78
NUS Olympus EPL-6 (153/160) 2.21 2.30 1.98 1.93 2.04 2.02 3.33 3.44 3.66 3.12 3.58 3.20 2.79 2.88 2.84 2.54 2.83 2.62
NUS Lumix DMC-GX1 (147/161) 2.50 2.54 1.89 1.87 2.04 2.04 2.95 3.11 3.68 2.87 3.50 2.93 2.73 2.84 2.83 2.39 2.80 2.50
NUS Samsung NX2000 (153/154) 2.66 2.75 2.26 2.13 2.36 2.28 3.18 3.15 3.67 2.88 3.55 2.94 2.92 2.95 2.97 2.50 2.95 2.61
NUS Sony STL-A57 (207/166) 2.72 2.50 2.65 2.37 2.67 2.40 3.69 3.59 3.46 3.02 3.52 3.16 3.15 2.98 3.01 2.66 3.05 2.74

Oracle prediction
Gehler-Shi Canon 1D (15/71) 2.16 1.74 1.41 1.03 1.58 1.18 1.45 1.68 3.23 1.88 2.84 1.84 1.57 1.69 2.91 1.73 2.62 1.72
Gehler-Shi Canon 5D (307/175) 0.42 0.49 0.98 0.60 0.86 0.57 1.04 1.19 2.72 1.65 2.35 1.55 0.64 0.74 1.61 0.98 1.40 0.93
NUS Canon 1Ds Mark III (197/167) 0.54 0.55 0.90 0.59 0.82 0.58 0.90 0.89 2.48 1.12 2.14 1.07 0.71 0.70 1.62 0.83 1.43 0.80
NUS Canon 600D (145/160) 0.57 0.59 1.24 0.64 1.09 0.63 0.66 0.76 2.18 1.06 1.85 0.99 0.61 0.68 1.73 0.86 1.49 0.82
NUS Fujifilm XM1 (144/157) 0.72 0.67 1.02 0.61 0.95 0.62 0.82 0.97 2.64 1.10 2.24 1.07 0.77 0.83 1.86 0.87 1.62 0.86
NUS Nikon D40 (80/141) 1.61 1.58 1.21 0.96 1.29 1.09 1.06 1.05 2.67 1.16 2.32 1.13 1.26 1.24 2.14 1.09 1.95 1.12
NUS Nikon D5200 (151/154) 0.67 0.70 0.96 0.70 0.89 0.70 0.87 0.98 2.43 1.13 2.09 1.09 0.77 0.84 1.70 0.92 1.50 0.90
NUS Olympus EPL-6 (153/160) 0.49 0.50 0.82 0.54 0.75 0.53 1.13 1.28 2.67 1.28 2.34 1.28 0.82 0.90 1.77 0.92 1.56 0.91
NUS Lumix DMC-GX1 (147/161) 1.32 1.10 1.14 0.70 1.18 0.79 1.17 1.05 2.95 1.09 2.57 1.08 1.24 1.07 2.09 0.91 1.90 0.94
NUS Samsung NX2000 (153/154) 1.16 0.95 1.14 0.73 1.14 0.78 1.11 1.08 2.61 1.25 2.28 1.21 1.13 1.01 1.88 0.99 1.72 1.00
NUS Sony STL-A57 (207/166) 0.67 0.75 1.54 0.76 1.35 0.76 0.84 0.82 2.28 1.11 1.97 1.05 0.74 0.78 1.87 0.92 1.62 0.89

Table 7.1: Mean reproduction angular error for different methods with the diagonal
correction (indicated as D) and the full matrix correction (indicated as T). Results
are summarized for outdoor, indoor and all images. The numbers of outdoor im-
ages and indoor images for each camera set are shown after the camera’s name.
For each category, results are summarized for neutral patches, color (non-neutral)
patches and all patches. For each category (e.g. Indoor Images/Color), the mini-
mum error result for D versus T is in bold. The Gehler-Shi dataset is divided into
two subsets according to the camera used. For color patches only, our method is
consistently better for all indoor image and combined image datasets (highlighted
by the red background color), with the exception of the Canon 1D images in the
Gehler-Shi, which represents the smallest dataset tested.
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select the image in the training set with the closest illumination in the ground truth

dataset to an input test image. We use this oracle method to help reveal the full

potential of better color image correction.

Table 7.1 lists all the results for these three comparison settings using the re-

production error described in Section 7.3.2. To maximize the performance of the

learning-based methods, the results were obtained using a leave-one-out cross

validation as performed in [Bianco and Schettini 2012]. Results are reported on

outdoor, indoor, and all the images. For outdoor images, our results are compara-

ble to the existing methods. This is not surprising as Section 7.2 indicates that the

current diagonal correction method works well for outdoor images. In addition,

since our method attempts to minimize the error across all the color patches and

not just neutral, our results on the neutral only patches are not always as good

as the diagonal method. However, for indoor illuminations we see significant

gains. These gains are more noticeable in the augmented NUS dataset that has

a better balance between indoor and outdoor images. Moreover, for the oracle

prediction, the full matrix correction wins every camera in the “Color” and “All”

categories, which indicates the possible color constancy improvements with better

illumination estimation methods in the future. Figure 7.16 shows a few examples

of subjective comparisons from the Bayesian method.

7.5 Discussion and Summary

This chapter describes how to obtain ground truth colors for use in color constancy

image correction. To the best of our knowledge, this is the first work to show how

to estimate these colors directly from camera images without the need for careful
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CHAPTER 7. Ground Truth Colors for Color Constancy Correction

Figure 7.16: Visual comparison of Bayesian method results (from both Gelher-Shi
and NUS datasets). The left column shows the result from the diagonal model
and the right column shows the results from the modified Bayesian method with
full matrix model. The color coded reproduction angular errors for each 24 color
patches are shown at the left-bottom of each image (red=high error, blue=low
error).
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spectral calibration of the camera and imaged materials. Our findings have allowed

us to re-purpose existing illumination estimation datasets to be used for evaluating

image correction. Our results in Section 7.4 represent that for the first time full

matrices can be estimated and evaluated for these datasets. These re-purposed

datasets, along with the new indoor images described in Section 7.3 will be made

publicly available. Our modifications to existing algorithms have just scratched the

surface of the usefulness of these new datasets and we believe this work will have

significant implications to researchers in this area who can finally move beyond

white-balancing and towards true color constancy.
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Chapter 8

Conclusion and Future Directions

This chapter concludes this thesis by giving a short summary for all the work de-

scribed in the previous chapters, including the two works on illuminant estimation

(relationship between the methods using raw pixel values and the methods adopt-

ing high order image spatial information and an efficient and effective learning-

based illuminant estimation) and the work regarding image correction. This is

followed by a review of the thesis objectives. Finally, a description of possible

future research directions is discussed.

8.1 Summary

The goal of this thesis is to improve computational color constancy for both il-

luminant estimation and image correction. The ability of color constancy is a

prerequisite for many computer vision tasks, as well as image reproduction and

image enhancement. Chapter 1 introduced and motivated the problems addressed

in this thesis by briefly describing the problems and current research followed by
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the main contributions of this thesis. Chapter 2 provided the necessary background

knowledge and related work, including the definition of color, the physics of image

formation, and the models for illumination change/image correction. Several exist-

ing illuminant estimation methods were detailed. Chapter 3 described evaluation

metrics used in color constancy and discussed the existing evaluation data sets.

Chapter 4 presented our newly captured data set composed from multiple recent

commercial digital cameras.

Chapter 5 introduced work that studied illuminant estimation beginning with

distinguishing methods depending on whether they work directly from color val-

ues (i.e. color domain) or from values obtained from an image’s spatial information

(e.g. image gradients/frequencies). Two empirical experiments, introducing artifi-

cial gradients and analyzing contribution of low valued gradients (i.e. the majority

of the gradients) with respect to illumination estimated showed that large color

differences are the key to illumination estimation and relying on the scene contents

to provide these differences may not be the best strategy. Working from this obser-

vation, a statistical illuminant estimation method relying on extracting large color

differences directly from the color domain was developed and was demonstrated

to achieve a competing performance even compared with the result produced from

complex learning-based methods on three major data sets.

Chapter 6 proposed a learning-based illuminant estimation method. The method

takes four simple and easy-to-compute features as input: average color chromatic-

ity, brightest color chromaticity, dominant color chromaticity and the chromaticity

mode of the color palette. For each feature, a bank of K regression trees was eval-

uated. Each regression tree computed a prediction of the illumination. The final

illumination was estimated by combining the results of the regression trees that
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have a cross-feature consensus. To show our learning-based method is not only

efficient but also effective, exhaustive experiments have been performed, including

performance statistics and significance tests. Results from our proposed method

consistently achieved the best result on all experiments.

Chapter 7 made an attempt towards better image correction for color constancy.

In particular, this work discussed that there is a significant limitation for color con-

stancy evaluation when the diagonal correction model is assumed. However, this

assumption is often necessary because the ground truth colors are not known in the

camera’s color space without the simulation from spectral information. Towards

this end, we revealed that for certain illuminations, the 3 × 3 diagonal correction

model is adequate for full color correction of the scene, and not just neutral/gray

colors. We then described how to use this finding to re-purpose existing datasets

for color correction estimation with robust estimation of a Macbeth ColorChecker

chart that is present in many existing color constancy data sets. Finally, we showed

this can be immediately used to improve existing methods by modifying two spe-

cific learning-based methods, the Bayesian method and the Corrected-Moment

method, to use the full color correction matrix.

8.2 Review of Objective

The objectives of this thesis have been achieved as follows:

• It has been shown that relying on spatial information obtained from the image

scene does not provide any additional information that cannot be obtained

directly from the color distributions. This finding allowed us to develop

a statistics-based method which can achieve competing result on par with
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complex learning-based methods.

• A learning-based method based on four simple color features (no spatial

information) was developed. A specially designed ensemble of regression

trees using these four features was detailed. The proposed method is not

only faster than existing learning-based methods in terms of both evaluation

and training time, but also gives the best results reported to date on modern

color constancy data sets.

• We showed that under certain illuminations the diagonal model can suffi-

ciently correct the colors in an image scene. This allowed us to find the true

colors in a camera raw color space without the need for spectral information.

We showed how we can use this information to build ground truth data sets

that correct all the colors in the scene. To the best of our knowledge, this is the

first work to go beyond the diagonal correction directly from camera images

without the need of spectral information of camera sensitivity and images

materials.

• As a part of this thesis, an image data set from multiple modern consumer

digital cameras with more than 2600 high-quality camera RAW images was

collected. This data set provides a much needed update to the existing data

sets and can be used not only for color constancy but also for other research

targeting color.
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8.3. Future Directions

8.3 Future Directions

There are several future research directions possible for the work presented in this

thesis. They are summarized in the following:

Non-uniform Illumination Spatially constant illumination is a huge assump-

tion that is often not true for many images. Even when there is a single illumination

in the scene, illumination effects from inter-reflection and complex physical phe-

nomena are currently not accounted for. A first step that could fit to most of

scenarios would be to assume only two different illuminations presented in the

scene, like most common shadows-and-sun and indoor-and-outdoor. However,

automatic segmentation or matting of these two different lit areas is still a chal-

lenging problem. One possible work-around could be adding the user into the

loop. Human interactions would provide additional useful information for the

algorithm to figure out the non-uniform illumination. But the key is to keep the

interactions simple and intuitive.

Insight to the Statistical Methods Although learning-based methods have

been shown to consistently outperform statistical methods, statistical methods

remain popular, especially for real-time usage in cameras. On the other hand,

while statistical methods can give good estimations for certain images, they often

lack a proper physical explanation of why they work. As for our proposed statistical

method in Chapter 4, it is also not clear why the color distribution provides useful

information for illuminant estimation. The experiments only suggest a strong

correlation to help estimate the illuminant. We are keen to explore the insight to

these working statistical methods. We believe the insight of the reason why they

work will also help improve the illuminant estimation methods.
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Easy Adaption of Learning-based Methods In this work, we have assumed

(like others) that training and testing are performed with images taken from the

same camera. This is important for learning-based methods, because as shown

in Figure 2.3, different cameras have different sensitivity functions, resulting in

different RAW color space. This is actually one of the advantages of statistics-

based methods that they do not need per-camera training. But for learning-based

methods, the pre-learned model from one camera cannot be directly used for images

from another camera. Every camera model must be trained in advance to apply

the learning-based method. This requires RAW image data set with calibration

chart for each camera model, which is often challenging to collect. This limitation

restrains the application of learning-based methods. It would be interesting and

useful to investigate how to allow training data from one camera to be adapted to

a new camera, with minimal additional information.
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