15 research outputs found

    A Semantic Approach to Illative Combinatory Logic

    Get PDF
    This work introduces the theory of illative combinatory algebras, which is closely related to systems of illative combinatory logic. We thus provide a semantic interpretation for a formal framework in which both logic and computation may be expressed in a unified manner. Systems of illative combinatory logic consist of combinatory logic extended with constants and rules of inference intended to capture logical notions. Our theory does not correspond strictly to any traditional system, but draws inspiration from many. It differs from them in that it couples the notion of truth with the notion of equality between terms, which enables the use of logical formulas in conditional expressions. We give a consistency proof for first-order illative combinatory algebras. A complete embedding of classical predicate logic into our theory is also provided. The translation is very direct and natural

    The language theory of Automath

    Get PDF

    A general approach to define binders using matching logic

    Get PDF
    We propose a novel shallow embedding of binders using matching logic, where the binding behavior of object-level binders is obtained for free from the behavior of the built-in existential binder of matching logic. We show that binders in various logical systems such as lambda-calculus, System F, pi-calculus, pure type systems, etc., can be defined in matching logic. We show the correctness of our definitions by proving conservative extension theorems, which state that a sequent/judgment is provable in the original system if and only if it is provable in matching logic. An appealing aspect of our embedding of binders in matching logic is that it yields models to all binders, also for free. We show that models yielded by matching logic are deductively complete to the formal reasoning in the original systems. For lambda-calculus, we further show that the yielded models are representationally complete---a desired property that is not enjoyed by many existing lambda-calculus semantics.Ope

    A hierarchy of languages, logics, and mathematical theories

    Get PDF
    We present mathematics from a foundational perspective as a hierarchy in which each tier consists of a language, a logic, and a mathematical theory. Each tier in the hierarchy subsumes all preceding tiers in the sense that its language, logic, and mathematical theory generalize all preceding languages, logics, and mathematical theories. Starting from the root tier, the mathematical theories in this hierarchy are: combinatory logic restricted to the identity I, combinatory logic, ZFC set theory, constructive type theory, and category theory. The languages of the first four tiers correspond to the languages of the Chomsky hierarchy: in combinatory logic Ix = x gives rise to a regular language; the language generated by S, K in combinatory logic is context-free; first-order logic is context-sensitive; and the typed lambda calculus of type theory is recursively enumerable. The logic of each tier can be characterized in terms of the cardinality of the set of its truth values: combinatory logic restricted to I has 0 truth values, while combinatory logic has 1, first-order logic 2, constructive type theory 3, and categeory theory omega_0. We conjecture that the cardinality of objects whose existence can be established in each tier is bounded; for example, combinatory logic is bounded in this sense by omega_0 and ZFC set theory by the least inaccessible cardinal. We also show that classical recursion theory presents a framework for generating the above hierarchy in terms of the initial functions zero, projection, and successor followed by composition and m-recursion, starting with the zero function I in combinatory logic This paper begins with a theory of glossogenesis, i.e. a theory of the origin of language, since this theory shows that natural language has deep connections to category theory and since it was through these connections that the last tier and ultimately the whole hierarchy were discovered. The discussion covers implications of the hierarchy for mathematics, physics, cosmology, theology, linguistics, extraterrestrial communication, and artificial intelligence

    The Lambda Calculus

    Get PDF
    The Ξ»-calculus is, at heart, a simple notation for functions and application. The main ideas are applying a function to an argument and forming functions by abstraction. The syntax of basic Ξ»-calculus is quite sparse, making it an elegant, focused notation for representing functions. Functions and arguments are on a par with one another. The result is a non-extensional theory of functions as rules of computation, contrasting with an extensional theory of functions as sets of ordered pairs. Despite its sparse syntax, the expressiveness and flexibility of the Ξ»-calculus make it a cornucopia of logic and mathematics. This entry develops some of the central highlights of the field and prepares the reader for further study of the subject and its applications in philosophy, linguistics, computer science, and logic

    Framework for binding operators

    Get PDF

    Verovatnosno zaključivanje u izračunavanju i teoriji funkcionalnih tipova

    Get PDF
    This thesis investigates two different approaches for probabilistic reasoning in models of computation. The most usual approach is to extend the language of untyped lambda calculus with probabilistic choice operator which results in probabilistic computation. This approach has shown to be very useful and applicable in various fields, e.g. robotics, natural language processing, and machine learning. Another approach is to extend the language of a typed lambda calculus with probability operators and to obtain a framework for probabilistic reasoning about the typed calculus in the style of probability logic. First, we study the lazy call-by-name probabilistic lambda calculus extended with let-in operator, and program equivalence in the calculus. Since the proof of context equivalence is quite challenging, we investigate some effective methods for proving the program equivalence. Probabilistic applicative bisimilarity has proved to be a suitable tool for proving the context equivalence in probabilistic setting. We prove that the probabilistic applicative bisimilarity is fully abstract with respect to the context equivalence in the probabilistic lambda calculus with let-in operator. Next, we introduce Kripke-style semantics for the full simply typed combinatory logic, that is, the simply typed combinatory logic extended with product types, sum types, empty type and unit type. The Kripke-style semantics is defined as a Kripke applicative structure, which is extensional and has special elements corresponding to basic combinators, provided with the valuation of term variables. We prove that the full simply typed combinatory logic is sound and complete with respect to the proposed semantics. We introduce the logic of combinatory logic, that is, a propositional extension of the simply typed combinatory logic. We prove that the axiomatization of the logic of combinatory logic is sound and strongly complete with respect to the proposed semantics. In addition, we prove that the proposed semantics is the new semantics for the simply typed combinatory logic containing the typing rule that ensures that equal terms inhabit the same type. Finally, we introduce the probabilistic extension of the logic of combinatory logic. We extend the logic of combinatory logic with probability operators and obtain a framework for probabilistic reasoning about typed combinatory terms. We prove that the given axiomatization of the logic is sound and strongly complete with respect to the proposed semantics.Π’Π΅Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΡ˜Π΅ Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° приступа Π·Π° вСроватносно Π·Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΠ΅ Ρƒ ΠΌΠΎΠ΄Π΅Π»ΠΈΠΌΠ° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ°. ΠΠ°Ρ˜Ρ‡Π΅ΡˆΡ›ΠΈ приступ сС ΡΠ°ΡΡ‚ΠΎΡ˜ΠΈ Ρƒ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅ΡšΡƒ Π»Π°ΠΌΠ±Π΄Π° Ρ€Π°Ρ‡ΡƒΠ½Π° вСроватносним ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ·Π±ΠΎΡ€Π° ΡˆΡ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΈΡ€Π° вСроватносним ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ΅ΠΌ. Π’ΠΎ сС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π²Π΅ΠΎΠΌΠ° корисним ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠΈΠ²ΠΈΠΌ Ρƒ Ρ€Π°Π·Π½ΠΈΠΌ областима, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρƒ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈΡ†ΠΈ, ΠΎΠ±Ρ€Π°Π΄ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ јСзика ΠΈ машинском ΡƒΡ‡Π΅ΡšΡƒ. Π”Ρ€ΡƒΠ³ΠΈ приступ Ρ˜Π΅ΡΡ‚Π΅ Π΄Π° ΠΏΡ€ΠΎΡˆΠΈΡ€ΠΈΠΌΠΎ јСзик Ρ€Π°Ρ‡ΡƒΠ½Π° вСроватносним ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΈΠΌΠ° ΠΈ добијСмо ΠΌΠΎΠ΄Π΅Π» Π·Π° вСроватносно Π·Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΠ΅ ΠΎ Ρ‚ΠΈΠΏΠΈΠ·ΠΈΡ€Π°Π½ΠΎΠΌ Ρ€Π°Ρ‡ΡƒΠ½Ρƒ Ρƒ стилу вСроватноснС Π»ΠΎΠ³ΠΈΠΊΠ΅. ΠΠ°Ρ˜ΠΏΡ€Π΅ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΠΌΠΎ вСроватносни Π»Π°ΠΌΠ±Π΄Π° Ρ€Π°Ρ‡ΡƒΠ½ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ Π»Π΅Ρ‚-ΠΈΠ½ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ Π³Π΄Π΅ јС ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° лСња ΠΏΠΎΠ·ΠΈΠ²-ΠΏΠΎ-ΠΈΠΌΠ΅Π½Ρƒ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜Π° Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Π΅, ΠΈ ΠΈΠ·ΡƒΡ‡Π°Π²Π°ΠΌΠΎ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ° Ρƒ ΠΎΠ²ΠΎΠΌ ΠΎΠΊΡ€ΡƒΠΆΠ΅ΡšΡƒ. Како јС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ доказивања контСкстнС Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Π΅ доста ΠΈΠ·Π°Π·ΠΎΠ²Π°Π½, истраТивали смо СфикаснС ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° доказивањС Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ°. ВСроватносна Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Π° Π±ΠΈΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° сС ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΠΊΠ°ΠΎ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈ Π°Π»Π°Ρ‚ Π·Π° доказивањС Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ° Ρƒ вСроватносном ΠΎΠΊΡ€ΡƒΠΆΠ΅ΡšΡƒ. Π”ΠΎΠΊΠ°Π·ΡƒΡ˜Π΅ΠΌΠΎ Π΄Π° јС вСроватносна Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Π° Π±ΠΈΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° ΠΏΠΎΡ‚ΠΏΡƒΠ½ΠΎ апстрактна Ρƒ односу Π½Π° контСкстну Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ†ΠΈΡ˜Ρƒ Ρƒ вСроватносном Π»Π°ΠΌΠ±Π΄Π° Ρ€Π°Ρ‡ΡƒΠ½Ρƒ са Π»Π΅Ρ‚-ΠΈΠ½ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ. Π—Π°Ρ‚ΠΈΠΌ ΡƒΠ²ΠΎΠ΄ΠΈΠΌΠΎ ΠšΡ€ΠΈΠΏΠΊΠ΅ΠΎΠ²Ρƒ сСмантику Π·Π° Ρ†Π΅Π»Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Ρƒ Π»ΠΎΠ³ΠΈΠΊΡƒ са Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ°, односно ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Ρƒ Π»ΠΎΠ³ΠΈΠΊΡƒ са Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½Ρƒ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π°, Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° сумС, ΠΏΡ€Π°Π·Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠΌ ΠΈ Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠΌ. ΠšΡ€ΠΈΠΏΠΊΠ΅ΠΎΠ²Ρƒ сСмантику Π΄Π΅Ρ„ΠΈΠ½ΠΈΡˆΠ΅ΠΌΠΎ ΠΊΠ°ΠΎ ΠšΡ€ΠΈΠΏΠΊΠ΅ΠΎΠ²Ρƒ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρƒ структуру, која јС СкстСнзионална ΠΈ ΠΈΠΌΠ° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π΅ који ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜Ρƒ основним ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€ΠΈΠΌΠ°, ΠΈ којој јС ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ΅Π½Π° Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ™ΠΈΠ²ΠΈΡ…. Π”ΠΎΠΊΠ°Π·ΡƒΡ˜Π΅ΠΌΠΎ Π΄Π° јС Ρ†Π΅Π»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π° Π»ΠΎΠ³ΠΈΠΊΠ° са Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° сагласна ΠΈ ΠΏΠΎΡ‚ΠΏΡƒΠ½Π° Ρƒ односу Π½Π° ΡƒΠ²Π΅Π΄Π΅Π½Π΅ сСмантикС. Π£Π²ΠΎΠ΄ΠΈΠΌΠΎ Π»ΠΎΠ³ΠΈΠΊΡƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π΅ Π»ΠΎΠ³ΠΈΠΊΠ΅, Ρ‚ΠΎ Ρ˜Π΅ΡΡ‚ исказно ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅ΡšΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π΅ Π»ΠΎΠ³ΠΈΠΊΠ΅ са Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ°. Π”ΠΎΠΊΠ°Π·ΡƒΡ˜Π΅ΠΌΠΎ Π΄Π° јС Π°ΠΊΡΠΈΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π»ΠΎΠ³ΠΈΠΊΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π΅ Π»ΠΎΠ³ΠΈΠΊΠ΅ сагласна ΠΈ ΠΏΠΎΡ‚ΠΏΡƒΠ½Π° Ρƒ односу Π½Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρƒ сСмантику. Π”Π°Ρ™Π΅, ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Π΅ΠΌΠΎ Π΄Π° јС ΡƒΠ²Π΅Π΄Π΅Π½Π° сСмантика Π½ΠΎΠ²Π° сСмантика Π·Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Ρƒ Π»ΠΎΠ³ΠΈΠΊΡƒ са Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΠΌΠ° ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½Ρƒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ Ρ‚ΠΈΠΏΠΈΠ·ΠΈΡ€Π°ΡšΠ° којС осигурава Π΄Π° јСднаки Ρ‚Π΅Ρ€ΠΌΠΈ ΠΈΠΌΠ°Ρ˜Ρƒ исти Ρ‚ΠΈΠΏ. На ΠΊΡ€Π°Ρ˜Ρƒ, ΡƒΠ²ΠΎΠ΄ΠΈΠΌΠΎ вСроватносно ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅ΡšΠ΅ Π»ΠΎΠ³ΠΈΠΊΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π΅ Π»ΠΎΠ³ΠΈΠΊΠ΅. Π›ΠΎΠ³ΠΈΠΊΡƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½Π΅ Π»ΠΎΠ³ΠΈΠΊΠ΅ смо ΠΏΡ€ΠΎΡˆΠΈΡ€ΠΈΠ»ΠΈ са вСроватносним ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΈΠΌΠ° ΠΈ Π΄ΠΎΠ±ΠΈΠ»ΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° вСроватносно Π·Π°ΠΊΡ™ΡƒΡ‡ΠΈΠ²Π°ΡšΠ΅ ΠΎ Ρ‚ΠΈΠΏΠΈΠ·ΠΈΡ€Π°Π½ΠΈΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½ΠΈΠΌ Ρ‚Π΅Ρ€ΠΌΠΈΠΌΠ°. ΠŸΠΎΠΊΠ°Π·ΡƒΡ˜Π΅ΠΌΠΎ Π΄Π° јС Π°ΠΊΡΠΈΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π»ΠΎΠ³ΠΈΠΊΠ΅ сагласна ΠΈ јако ΠΏΠΎΡ‚ΠΏΡƒΠ½Π° Ρƒ односу Π½Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρƒ сСмантику.Teza istraΕΎuje dva različita pristupa za verovatnosno zaključivanje u modelima izračunavanja. NajčeΕ‘Δ‡i pristup se sastoji u proΕ‘irenju lambda računa verovatnosnim operatorom izbora Ε‘to rezultira verovatnosnim izračunavanjem. To se pokazalo veoma korisnim i primenjivim u raznim oblastima, na primer u robotici, obradi prirodnog jezika i maΕ‘inskom učenju. Drugi pristup jeste da proΕ‘irimo jezik računa verovatnosnim operatorima i dobijemo model za verovatnosno zaključivanje o tipiziranom računu u stilu verovatnosne logike. Najpre proučavamo verovatnosni lambda račun proΕ‘iren let-in operatorom gde je primenjena lenja poziv-po-imenu strategija evaluacije, i izučavamo problem ekvivalencije programa u ovom okruΕΎenju. Kako je problem dokazivanja kontekstne ekvivalencije dosta izazovan, istraΕΎivali smo efikasne metode za dokazivanje ekvivalencije programa. Verovatnosna aplikativna bisimulacija se pokazala kao odgovarajuΔ‡i alat za dokazivanje ekvivalencije programa u verovatnosnom okruΕΎenju. Dokazujemo da je verovatnosna aplikativna bisimulacija potpuno apstraktna u odnosu na kontekstnu ekvivalenciju u verovatnosnom lambda računu sa let-in operatorom. Zatim uvodimo Kripkeovu semantiku za celu kombinatornu logiku sa funkcionalnim tipovima, odnosno kombinatornu logiku sa funkcionalnim tipovima proΕ‘irenu tipovima proizvoda, tipovima sume, praznim tipom i jediničnim tipom. Kripkeovu semantiku definiΕ‘emo kao Kripkeovu aplikativnu strukturu, koja je ekstenzionalna i ima elemente koji odgovaraju osnovnim kombinatorima, i kojoj je pridruΕΎena valuacija promenljivih. Dokazujemo da je cela kombinatorna logika sa funkcionalnim tipovima saglasna i potpuna u odnosu na uvedene semantike. Uvodimo logiku kombinatorne logike, to jest iskazno proΕ‘irenje kombinatorne logike sa funkcionalnim tipovima. Dokazujemo da je aksiomatizacija logike kombinatorne logike saglasna i potpuna u odnosu na predloΕΎenu semantiku. Dalje, pokazujemo da je uvedena semantika nova semantika za kombinatornu logiku sa funkcionalnim tipovima proΕ‘irenu pravilom tipiziranja koje osigurava da jednaki termi imaju isti tip. Na kraju, uvodimo verovatnosno proΕ‘irenje logike kombinatorne logike. Logiku kombinatorne logike smo proΕ‘irili sa verovatnosnim operatorima i dobili model za verovatnosno zaključivanje o tipiziranim kombinatornim termima. Pokazujemo da je aksiomatizacija logike saglasna i jako potpuna u odnosu na predloΕΎenu semantiku

    Simultaneous Abstraction and Semantic Theories

    Get PDF
    Institute for Communicating and Collaborative SystemsI present a simple Simultaneous Abstraction Calculus, where the familiar lambda-abstraction over single variables is replaced by abstraction over whole sets of them. Terms are applied to partial assignments of objects to variables. Variants of the system are investigated and compared, with respect to their semantic and proof theoretic properties. The system overcomes the strict ordering requirements of the standard lambda-calculus,and is shown to provide the kind of "non-selective" binding needed for Dynamic Montague Grammar and Discourse Representation Theory. It is closely related to a more complex system, due to Peter Aczel and Rachel Lunon, and can be used for Situation Theory in a similar way. I present versions of these theories within an axiomatic, property-theoretic framework, based on Aczels Frege Structures. The aim of this work is to provide the means for integrating various semantic theories within a formal framework,so that they can share what is common between them, and adopt from each other what is compatible with them

    University of Wollongong Annual Report 1982

    Get PDF
    corecore