

The language theory of Automath

Citation for published version (APA):
van Daalen, D. T. (1980). The language theory of Automath. [Phd Thesis 2 (Research NOT TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR85774

DOI:
10.6100/IR85774

Document status and date:
Published: 01/01/1980

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR85774
https://doi.org/10.6100/IR85774
https://research.tue.nl/en/publications/b0e504e3-6b3f-478b-b532-338a76f21b3f

THE

LANGUAGE THEORY

OF

AUTO MA TH

D.T. VAN DAALEN

THE

LANGDAGE THEORY

OF

AUTO MA TH

PROEFSCHRIFT
TER VERKRIJGING VAN DE GRAAD VAN DOCTOR
IN DE TECHNISCHE WETENSCHAPPEN
AAN DE TECHNISCHE HOGESCHOOL EINDHOVEN,
OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. IR. J. ERKELENS,
VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN DEKANEN
IN HET OPENBAAR TE VERDEDIGEN
OP VRIJDAG 15 FEBRUARI 1980 TE 16.00 UUR
DOOR

DIEDERIK TON VAN DAALEN

GEBOREN TE BERGEYK

DAUK WIBRO HELMONO

Dit proefschrift is goedgekeurd

door de promotoren

Prof.dr. N.G. de Bruijn

en

Prof.dr. w. Peremans

ACKNOWLEDGEMENTS

To all my farmer colleagues in the Automath project, for the

fine cooperation. Especially to Bert Jutting, Rob Nederpelt and

Roel de Vrijer, for their help during the last stage of the pre

paration of the manuscript.

To Marlène Beunis, for her hospitality.

ToLiekeJanson, Janna Blotwijk and Adele Hendriks, for the

typing, and to Franka van Neerven, for her kind assistanse.

To Prof.Ir. w. Baarda, who so generously affered the facilities

to finish the thesis.

To the Netherlands Organization for the Advancement of Pure

Science (Z,W.O.), for financial support during my workin the

Automath project.

CONTENTS

Chapter

I.l

I.2

I.J

I.4

I.S

1.6

I Introduetion and summary

Preliminary remarks

A survey of the Automath project

Something on bound variables

The Automath languages

Mathematica in Automath

The contents of this thesis

Chapter II Miscellanea

II.O Preliminaries

II.l Expresslons

11.2 syntactic identity, a-equality and substitution

II.3 Elementary and one-ste~ reduction

II.4 Reduction and definitional equality

II.5 Some important properties

II.6 CR continued

II.7 Combined reductions

II.8 An' informal analysis of CR
1

II.9 An informal analysis of postponement

II.lO Multiple substitution

II.ll Reduction under substitution; Barendregt's lemma

Chapter III The theory of abbreviations; LSP
III.l Introduetion

III.2 The definition of LSP
III.J Some properties

III.4 Normalization

III.S Streng normalization

III.6 Decidability

Chapter IV Strong normalization for first order pure

typed À-calculus with application to AUT-QE

IV .1 Introduetion

IV.2 Normalization and strong normalization

for normable expresslons

IV.J The strictly normable expresslons

rv.4 The normability of AUT-QE

1

8

16

18

32

47

53

53

56

59

62

67

69

73

76

82

87

91

92

96

96

97

98

99

100

106

109

109

114

123

129

Chapter V The E-definition and the closure property

for pure regular Automath Languages

V.l Introduetion

V.2 On the E-definition

V.3 The actual closure proof

V.3.1 Reuristics

V.3.2 Closure for Sn-AUT-QE

V.3.3 Extension to Sno-AUT-QE+

V.3.4 Some easier closure proofs

V.4 The equivalence of the E-definition with

the algorithmic definition

V.4.1 Introduetion

V.4.2 The algorithmic definition

V.4.3 The equivalence proof

V.4.4 The actual verification

Chapter VI The Sn-Church-Rosser problem for

generalized typed À-calculus

136

136

142

156

156

159

165

174

178

178

182

188

194

203

VI.1 Introduetion 203

VI.2 A first result concerning Bn-CR for regular languages 204

VI.3 A proof of CR for full Bn-reduction

from closure and streng normalization

Chapter VII The algorithmic definition and the

theory of Nederpelt's A: the big tree

theorem, closure and Church-Rosser

VII.l Introduetion and summary

VII.2 The definition of A and An

VII.3 The closure proef for A

VII.4 The big tree theerem

VII.S Closure and Church-Rosser for

VII.6 Various equivalence results

Chapter VIII Some results on AUT-Pi

VIII.l Introduetion and summary

VIII.2 A short definition of AUT-Pi

An

VIII.3 A short proof of closure for AUT-Pi

VIII.4 A first SN-result for an extended system

208

218

218

220

225

230

242

248

263

263

267

274

277

VIII. 5 Three proofs of 811'+-SN ,, wi th

application to AUT-Pi

VIII.6 Some additional ramarks on AUT-Pi

Raferences

Samenvatting

Curriculum vitae

288

300

303

308

309

I INTRDDUCTION AND SUMMARY

This thesis gives an account of the author's lan,guage theoretiaal

studies on the Automath lan,guages, during his work in the project

Mathematiaal Lan,guage AUTO~TH (under supervision of Prof. De Bruijn)

at the Eindhoven University of Technology. These studies can be con

sidered as a continuatien and completion to previously publisbed work

of Nederpelt [51] and De Vrijer [70].*)

Actually, an introduetion to the remaining chapters of the thesis

is hardly necessary because they are formally self-contained and pro

vided with lengthy introductions themselves. However, we like to make

some general remarks on the Automath project, hoping to clarify some

points which have sametimes given rise to misunderstanding. Most views

expressed are common in the Automath project, but some are personal

views, not necessarily shared by other workers in the project.

We start with preliminary remarks, followed by a survey of the

Automath project. We discuss the language theory and its role in the

project. We give an informal introduetion to the various Automath

languages and explain how mathematiaal reasoning can be represented.

Finally we summarize the contents of this thesis. Occasionally we make

a comparison with related logical systems and related enterprises else

where. For more information on the subjects of this chapter we refer to

De Bruijn [13,20], Jutting [37], Zucker [77) and Van Daalen [27].

I.l Preliminary remarks

1. 1 - Reliabili ty and formal rigour

The Automath project originally arose (around 1966} from the idea

that it was desirable to increase the dependability of pieces of mathe

matics by having them checked by a computer. To this end the rnathematics

involved was to be formalized in a mathematiaal Zan,guage allowing

computer verification.

First sarnething about this part of the motivation. One might wonder

whether greater dependability is desirable at all and if so, in what

parts of mathernaties -, and whether formal rigour (as imposed by the

in brackets refer to items on the list of references.

2

computer) contributes at all to dependability, Critics sametimes argue

that correctness of a mathematica! text, or of a proof, after all depend

on human insight in the situation and understanding of the concepts in

volved. And, consequently, they sometimes suggest that forma! rigour

can be opposed to reliability, because the presence of tóo many formal

details may spoil the understanding.

There is, generally, some point in this criticism, but all the same,

many mathematicians sometimes produce faulty proofs and, even, false

theorems. This just means that they have been cheated by their intuition

Such mistakes cannot be said to be aaused by lack of rigour but, rather,

would have been prevented by being more rigoreus. E.g. by tormalizing

the subject matter in a well-chosen formalism. In general, the possibil

ity of computer verification plays a minor role here and, as De Bruijn

puts it, thè computer is just there to set the standards, Serieus errors

won't survive the process of formalization and will never be fed into

the machine. However, after having taken the trouble to produce a

"fully forma!" proof with possibly lots of technica! details it is nice

to have a patient computer actually waiting to read it and relish the

details. In particular, because on rereading, the details indeed may

spoil one's own understanding.

Besides (this is our second point against the criticism), wethink

that the latter situation can be avoided by using a good formalism,

which allows a formalization faithful to the informal ideas one had in

mind (see also 1.4). *)

It has, of course, never been intended that computer verification

might rep~ae human understanding, and that formalization might cover

all of mathematics. We just note that formalization sometimes can

support our understanding and guide our intuition.

1.2 The "data bank" aspect

According to the above criticism one never can rely on results one

does not fully understand. Such an orthodox point of view we think un

satisfactory; one sometimes wants to use what might be called "more or

less black boxes", e.g. one sometimes wants to believe a theerem without

knowing, or without quite understanding, its proof (e.g. one does not

understand the proef any more).
*) __

Numbers not in brackets refer to sections in the present volume; if
not starting with a Roman numeral they indicate sections inside the
current chapter.

Here we touch a certain "data bank" aspect (as opposed to the

checking aspect) of such a formalization project: the codification and

storing of a large amount of dependable and unambigous mathematica.

1.3 The experimental character of the project

Thus far about the original motivation. The present author likes

to consider the Automath project as an experiment in order to answer

the question: can we develop formalisros (mathematica! languages), in

which mathematica! texts aetually can be formulated in such a way that

mechanica! verification (by a computer} is aatualZy possible. Apart

from the emphasis on computer verification there is another difference

as compared with aarlier formalization projects: it is required that

both writing (i.e. translating rnathematics into Automath) and eheaking

are practiaally feasible (and it would be nice if it were readable

too), and that the formalismis kind of universal, i.e. suitable for

large parts of mathematics.

1.4 The correspondence with ordinary reasoning

In Automath it is attempted to achleve the feasibility of the

writing stage by keeping as close as possible to ordinary informal

mathematical reasoning, and to existing good mathematical habits. This

then was to result in the possibility of a fully formal proof net

blurring the understanding - campare a well-structured computer pro

gram -

Keeping close to ordinary reasoning also serves the feasibility

of the checking process: in principle we do nat expect more from the

machine than we would expect from a human checker - though of course

we expect the machine to be much faster and more accurate than a

3

human -. The feasibility of the checking requires that all of the rea

soning is formalized in the language, whereas usual logical systems

generally formalize only part of it and leave the rest to informal meta

language. In particular we mention the handling of proofs, the handling

of variables and the handling of abbreviations (i.e. the introduetion

of new defined constante, see 4.3).

4

1.5 The didactica! aspect

A side effect of the analysis of mathematica! reasoning needed for

the development of a formalism meeting the above Specificatiens might

be a better insight into ways of presenting and teaching mathematica.

This, didaatiaaZ, aspect of Automath (beside the aforementioned aheak

ing and storing aspects) proves indeed to ba important: Nederpelt and

De Bruijn have used Automath-like systems to explain first-year mathe

matica! students and matbematics teachers-to-be some principles of

mathematica! discipline. Research in this direction now falls under the

WOT project ("Wiskundige Omgangs Taal", this is Dutch for: mathematica!

vernacular), which is going on in Eindhoven. One trias to codify ele

ments of natural mathematica! reasoning into a rather precise language

which is inspired by Automath but does not particularly aim at computer

verification.

1.6 The possible foundational contribution

From the modest statement of the aims of Automath, above, it will

be clear that Automath has no streng foundationaZ aZaim - in the usual

logica! sense - or philosophical position to defend like some of its

forerunners. But if one wants to hear such a claim it might be the

following one: that it is possible to present large parts of ordinary

matbematics in Automath in a naturaZ way. In particular that large

parts of even al-assiaaZ reasoning fit quite well in t:he "minimaZ Zogic:"

of Automath (see 5.10) and that large parts of classica! matbematics

can be founded on the typed >..-aaZcmZus frame work of Automath (see 5.3)

rather than on axiomatic set theory. (In fact this claim is a sine qua

non to the Automath project.)

Besides, the original, simple wish to increase the reliability of

matbematics can, from a practical point of view, also be considered as

a foundational contribution.

1.7 The nature of Automath

A more ambitieus, less carefull phrasing of the aim of Automath,

viz. the development of a language in which aZZ matbematics can be

5

expressed so meticulously that syntaatiaat correctness would entail

mathematiaat correctness, has sametimes given rise to confusion.

Logicians then argued that such an enterprise was doomed to failure,

firstly, because it would contradiet the inaompteteness theorema and,

secondly, because it would contradiet the undeaidability: the computer

certainly would not be able to check for correctness (to deaide, as one

says) any substantial part of mathematica.

We will explain that such criticism is hardly to the point. The

basic system of Automath just covers a tiny part of mathematica, so to

say minimal prediaate logia. The Automath user himself has to add to

this basic system all the axioms and constants necessary for his specific

area of interest, and he has to supply more axioms and constants when

ever he wants to increase the expressive power of his language or the

strength of his theory. Further, the computer is certainly not supposed

to decide the truth of the axioms, it is even not supposed to decide

derivability from the axioms, but just verifies derivations (i.e.

1.8 Some proof checking systems

In the Automath project the computer is not expected to check (e.g.

to prove) theorems but, rather, is expected to check whether something

is a proof and whether it proves a certain theorem. Thus, the project

can be compared with two other major proof-aheaking projects: the FOL

(First Order Logia) project of Weyhrauch c.s. in Stanford [21, 73], and

the LCF (Logia Of Computable Funations) of Milner c.s. in Edinburgh

[32] •

FOL is based on classical first order logic, in natural deduation

style, and is intended to be universal like Automath. However, according

to Bulnes [21], the system (still) has some difficulties in asping

with sorts (or types) which seems to make the system less appropriate

for parts of rnathematics not based on classica! set theory.

The kernel of LCF is a system called PPÀ (polymorphia prediaate

À-calculus) a system of typed À-calculus plus fixed point induction

plus logic, also in natural deduction style, based on Scatt's work in

the theory of computations. It is especially intended for problems con

cerning algorithms and programming languages.

6

In principle, these two systems are not more inte~ctive than

Automath, since in Automath as well line after line can be fed into the

machine, thus incrementally constructing pieces of correct mathematica.

However, recently both systems have been enriched by a strong beuristic

mechanism allowing socalled top-dOwn proof {i.e. working from the result

backwards to the assumptions). In fact, by these mechanica, called

GOAL_{for FOL) and ML {for LCF) respectively, a kind of clever mixture

between a proof-checker and a theorem-prover bas been created {in fact

the "top-down tacticals" are just a par>t of ML, which also contains

some other useful mechanisms).

The basic elements of Automath just include what may be called

"constructive reasoning", as borrowed from ordinary, informal, sound

mathematica! practice. Of these we mention the "linear" natural deduct

ion system (see 4.5,p.23)used in the construction of both proofs and

objects, the facility to abbreviate expressions by a new name (with para

meters) at any desired moment (see 4.3, and the introduetion to

eb. III) , and the supp:ression meahanism for "fixed" parameters (see,

e.g., [27, sec. 2.15]). A consequence of the logical weakness of the

basic system is the required universality:

free in the use of his Zogical axioms.

1. 9 Proof checking vs. theorem proving

the Automath user is even

When constructing a proof-checking or theorem-proving system one

bas to decide how to devide the total amount of work between the human

writer and the machine. In general it is assumed that easier writing

makes more difficult checking and vice-versa. A distinctive principle

of Automath languages always has been that the computer actualZy must

be able to cope with its task. So, at least, the system the machine is

supposed to decide must be formally decidable. In fact we want feasible

decidability (cf. 2.10). On the other hand it is required that the

writer's burden is as light as possible.

A nice point is that, in contrast with the above stated general

view, easier writing sametimes makes checking easier too. Viz. if the

system allows the writer to omit parts of the argumentation these parts,

of course, do not need to be checked: But, on the other hand, a certain

redundancy will help the machine to detect the, almost inevitable, minoi

errors at an early stage.

7

In view of feasible decidability general theorem proving is out of

the question. But it ie in the spirit of the Automath project to success

ively extend an existing, working, verification system with new tools

that handle additional, feasible tasks. In such a way one might turn

one's proof-checking system into a partial truth-checking (i.e. theorem

proving) system, notably in well-defined restricted domains. Put differ

ently, the machine might be allowed sametimes to aalculate facts, rather

than proving them. Although, if one would allow the user of the system

toprogram such attached mechanisms himself, it would be preferable,

if also a proof would be generated and checked (cf. 2.3).

In fact, the Automath proof-checking system has always contained

such a partial truth-checker, viz. a decision procedure for the formulae

<definitional equations and typing fo~ulae) of the underlying typed

À-calculus (see 4.1).

1.10 Same characteristic features of Automath

We just mention here (but will come back to it) that the parallel

natural deduction treatment of objects and proofs, which we think quite

natural, and characteristic for Automath, gives rise to a generalized

typed À-calculus, By "generalized" we mean that the types are nat given

beforehand, but are rather constructed along with the terms and can

have complicated form (cf. 4.1). In IV.l there is given a further

classification of such systems, into pure, extended and arithmetical

systems. The pure systems have the ordinary À-calculus operations only,

the extended ones have additional logical operations, and the arith

metical systems have arithmetic built in in the farm of a recursion

operation. The pure and extended systems are the subject of this thesis.

The Automath languages AUT-68 and AUT-QE (4.5-4.7) belang to the

pure, the language AUT-Pi (in Ch. VIII) belengs to the extended systems

and there are no arithmetiaal Automath languages. This is a fundamental

choice: the addition of a built-in recursor might give rise to definit

ional equations which are nat feasibly decidabie and, besides, we don't

think that the presence of a recursion would make the representation

of ordinary mathematica! reasoning any easier. Consequently, the natura!

number structure is not built in, but has to be introduced axiomatically,

just like any other mathematica! structure. Needless to say that the

8

Church {or, any other) representation of numbers in À-calculus does not

come in.

1.11 Propositions as types

The parallelism between objects and proofs, types and propositions,

defiriitional equality and proof theoretic conversion, for short: the

propositions-as-types notion of construction, was first hinted at by

Curry and Feys [25]. Later on it was developed further by Howard [34]

and employed by him and other logicians (Scott[62], Prawitz [60], Martin

Löf [45], Girard [31]) in faunding a theory of constructions, in proof

theory, and in constructing an intuitionistic theory of types. In the

meantime, it was independently discovered by De Bruijn (he also inspired

Scott [62]) and used in the Automath project.

1.2 A survey of the Automath project

2.1 The AUT-QE stage

The experimental, practical character of the project clearly re

quired: (i) the development of appropriate languages, (ii) the construct

ion of programs for verifying these languages, {iii) the actual writing

and checking of large pieces of mathematica.

There exists not just one Automath language, but a whole family of

Automath languages. The first language (around 1968) which had the

characteristic typed À-calculus structure was AUT-68. Befere 1968 there

were just some sub-languages: LSP (see eh. III) which codified the

abbreviation device, PAL which already had type structure but still

lacked À-calculus (see [11]). Experience with AUT-68 led almost imme

diately to the construction of AUT-QE, which proved to be quite suitable

for the then adopted propositions-as-types style of writing mathematica.

So the first language around which the project was centered was

AUT-QE. De Bruijn's sketch of a verifying program was elaborated and

implemented by Zandleven [75]. Jutting translated Landau's "Grundlagen

der Analysis", and his translation was completely checked by the veri

fying program. This enterprise has been extensively documented in [37].

The Chapters V, VI of this thesis are mainly devoted to AUT-QE.

2.2 The AUT-Pi stage

It was always foreseen that, on the basis of the experience with

AUT-QE, higher-level, easier-to-write, so called super-Zanguages were

to be developed, possibly for "special purposes", i.e. specific areas

9

of mathematics. The second language playing a central role in the project

was AUT-Pi, developed by Zucker.

This is indeed a kind of super-language extending AUT-QE in two

respects. Firstly, the mathematical basis of AUT-Pi is somewhat stronger

(it is an extended system, i.e. there is slightly more logic built in).

This answered, e.g., in combination with the principle of irreZevance

of proofs (see 5. 2, and [20]) Jutting's need for easier embedding

and "exbedding" facilities (see [37]). Secondly it contains some handy

"syntactical features" which make life for the Automath user somewhat

more comfortable. We mention the synt-facility for syntactical operat

ions on expressions (which, i.a., allows to omit redundant parameters

(but see 1.3)), and the presence of strings and teZescopes. More about

this can be found in [37, 77].

However, the use of these syntactical mechanisrns is not restricted

to AUT-Pi, they can as well be added to AUT-68 and AUT-QE. This seerns

to be particularly worthwile, because the strings-and-telescopes in

some sense duplicate the pairs-and-products of AUT-Pi (see VIII.l.S).

Zucker (assisted by A. Kornaat) ernployed the new language for a

modern, thoroughly classical (in the sense of "classical logic")

treatise on the principles of real analysis, thus contributing to the

foundational claim rnentioned above. A survey of the AUT-Pi part of the

project is to be found in [77].

A new verifying program was designed by Zandleven, developed by

him and Kornaat, and is now being finished by Jutting. Apart frorn the

fact that this new verifying program accepts AUT-Pi as well as the older

languages, it also contains improved facilities for handling bound

variables (see 3.4) and for storage manipuZation. The latter proved

necessary because with the first verificator, which left the handling

of the extensive storage requirernents to the computer systern, working

in interactive mode turned out to be curnbersome.

Apart frorn the two major Autornath texts produced by Jutting, Zucker

and Kornaat there have been forrnalized rnany smaller pieces of rnathematics

10

into Automath by a variety of authors, mostly students. In Bulnes

it has been suggested that the size and scope of the proof checking

projects performed in FOL were comparable with size and seope of e.g.

Jutting's opus. The present author disagrees: The amount of material

handled in FOL is in no way comparable to what has been done in Auto

math.

2.3 The multi-level approach

The words "higher-level languages" suggest a separation between an

object language, and a formal super-lanquage which provides easier

writing. Texts in the latter lanquage may then be mechanically trans

lated into object-language, which in turn is to be verified by the

machine. In AUT-Pi, contrarily, there is, in principle, no such separat·

ion of levels: all the additional features are incorporated into the

language. we write "in principle", because the synt-facility is indeed

somewhat related to this multi-level approach.

There have also been certain proposals actually directed towards ti

multi-level framework. E.g. Wieringa (now working on the application of

Automath to programming language theory), bas once constructed a system

that answers simple arithmetical questions (n * m = ?) and provides the

resulting equation with a proof in AUT-QE. This AUT-QE proof turns out

to be correct, of course! Similarly, there has been constructed a mecha

nism that decides propositional formulas and provides the true ones

with an AUT-QE proof [53,74]. Compare also the discussion in 1.8 about

partial theorem-provinq mechanisms.

In FOL and LCF partial theoremprovers and multi-level approach are

present too. We mention the FOL procedure MONADIC, which decides formulë

of menadie predicate calculus, and the ATTACH facility, allowing the

machine to establish combinatorial facts by actual calculation. As for

LCF, the meta-language ML is presented as a kind of programming languagE

for manipulating the objects of the PPÀ system.

2.4 The theoretical aspects

Of course the development task in the project, viz. of developing

languages and verifying programs, and of writing mathematica in Automatl

also gave rise to theoretica! studies. Here we distinguish:

(1) language theoretica! studies,

11

(2) studies concerning the way mathernaties is formalized in Auto

math.

This thesis deals with the language theory (1), which wedefine as

the theory of the underlying typed À-calculus of the Automath languages.

Object of study is the syntactical structure consisting of the Automath

expressions, provided with the relations reduotion,

and the typing reZation (or typing funotion). See

equaUty

As regards (2), we mention some typical logical questions: what do

we gain and loose by such formalizations, and: what is the relation

between the Automath formalization and, say, some standard formulation

of a piece of mathematics. Such questions are interesting, mostly be

cause of the unconventional way in which rnathematics is formulated in

Automath. In particular, the fact that the proofs explicitly enter the

Automath formalization is important. E.g. it allows detailed analysis

of proofs, and of reasoning, and it gives rise to, as we say, generalized

Zogie (see 5.10,[20] or [77]).

Then the studies (2} can, i.a., indicate what Automath language is

suitable for what kind of mathematics. Roughly speaking, we might say

that (2) concerns semantiaal questions, in contrast with the basically

syntaetie questions of the language theory, treated below.

2.5 What is language theory?

The results of the language theory are important for the construct

ion of the verifying program and for proving its correctness. Further

they serve as a foundation for the study of rnathematics in Automath,

i.e. the studies (2) mentioned above. E.g. the consistency of the under

lying typed À-calculus (as provided by Churah-Rosser theorema and the

like, see below) is clearly a prerequisite for the consistency of mathe

matics formalized in Automath.

Nevertheless, the language theory concerns the expresslons and

formulas as mere syntaatiaal constructs, thus abstracting from possible

mathematica! content. Hence, the language theory also abstracts from

particular sets of constants and axioms (socalled hooks) belonging to

a particular piece of mathematics.

12

We take the point of view that the languages of the Automath family

are characterized by their set of aorreat (i.e. well-formed according

to the rules and restrictions of the various languages) books~ formulas

and expressions, rather than by a certain specific definition, i.e. a

specific set of rules. Two definitions are said to be equivalent if they

define the same language. One language is said to be an extension of

another language if its set of correct expressions, books etc. contains

the set of correct expressions, bcoks etc. of the other one.

2.6 The aims of the language theory

Now we mention some typical theoretica! aims. On the one hand, the

design and comparison of language definitions, in particular the compa

rison of socalled E-definitions, which generate the language in question

by a set of production rules, with the algorithmia definitions which

describe the language by giving its verifying program.

On the other hand there is the comparison of the distinct languages

leading to aonservativity and unessentiaZ- or definitional extension

results (see V.3.3 for the terminology).

Last but not least we mention the deaidability of the Automath

languages, which is, in principle,essential for the aim of the project,

mechanica! proof-checking. The latter goal (to prove the decidability)

consists of: (1) indicating a decision procedure, (2) proving its equi

valence with a given language definition (these parts can be skipped if

the language in question is given by a definition of the algorithmic

type}, (3) proving the terminatien of the indicated procedure.

2.7 Three desirable properties

The main tool of the language theory is the detailed study of the

socalled reduation relations involved. Roughly speaking, reduction of

expressions amounts to step by step evaluating, step by step transformir.

the expression (cf. 4,3), until possibly an irreduaible (or: no~al)

expression is reached. Definitional equality is the equivalence .relatior.

generated by reduction (the precise definitions are in II.3-4).

Now three important desirable properties of the systems, in con

neetion with reduction and definitional equality, are: (1) no~alizatior.

and strong normalization, (2) the alosuve property, (3) the Church

Rosser property.

13

Normalization states that all the correct expressions indeed reduce

into a normal expression, i.e. there is a reduction sequence, a sequence

of expressions produced by successive evaluation steps (reduction

steps), ending in an irreducible expression. Strong normalization says

that all the reduction sequences of correct expressions terminate. The

alosure property (this term is due to Nederpelt) says that correct ex

pressions remain correct under reduction. Finally the Church-Rosser

theerem (a corollary of the Churah-Rosser property) states that two de

finitionally equal expressions have a common reduct, i.e. an expression

to which they both reduce. For precise definitions see II.S.

2.8 Formal vs. feasible decidability

A typical application of Church-Rosser theerem and normalization

is the deaidability of the definitional equality on the set of correct

expressions. First, by the Church-Rosser theorem we have socalled

uniqdeness of normal forms: An expression has at most one normal reduct.

So by combining this with normalization we can define the normal form

of an expression. Then, thanks to these properties, two expressions are

definitionally equal iff they have the same normal form. These can be

effectively computed, thus yielding decidability (of definitional

equality, from which the decidability of the typing relation fellows).

However, computing normal forms is not a very practical way of de

ciding definitional equality, because normal farms can be very long and

complicated eXPressions, and the reduction sequences leading to them

often require many reduction steps. A more practical decision procedure

rather relies on streng normalization. Namely, when confronted with two

expressions A and B we can try to successively apply well-chosen re

duction steps on either A or B until we possibly arrive in a common reduct

(thus establishing definitional equality) or we arrive in reducts

A' (of A) and B' (of B) which can be recognized not to be definitionally

equal. Strong normalization warrants that this process anyhow terminates,

no matter what reduation strategy has been chosen. Although, in the

worst case it might end in normal forms A• and B', in particular this

might happen if A and B are not definitionally equal.

14

Since reducing to normal forms is simply not acceptable in feasibl

verification procedures, the importance of the formal decidability resul

and of the cornp~eteness of the indicated more practical decision proce

dure must not be overemphasized (as observed by De Vrijer in [79]) -

though these facts are, of course, important for a good understanding

of the procedure - In practica, in the Automath project, the action of

the verifier can be explicitly bounded by giving a suitable upper limit

to the amount of work (e.g. number of steps) it is allowed to perform

when trying to establish a definitional equation. If, within this bound

no common reduct is reached the equality of the two expressions is pro

visionally refused and the verifier will ask for further information.

This, we think, is in full accordance with the fact that, in principle,

the verifier is not expected to do more than a human checker, For more

comment on áctual verification see III.6, V.4.4 and VIII.6.

Strong normalization has, apart from this, more or less practical

application, some theoretically useful consequences. E.g. it simplifies

the Church-Rosser proof in any case, and it seems indispensable for the

case where surjective pairing is present. Besides, certain proofs of

closure (for Nederpelt's A) depend on strong normalization (in fact on

an even strenger terminatien property, the big tree theorem).

Cf. VII.1.2, VII.3, VII.S.

2.9 The consequences of closure

As an application of closure it is somatimes mentioned that it

saves time for the verifier. Namely that the verifier does not need to

check for correctness again and again when reducing an expression.

More specific, the combination of closure and Church-Rosser is

important in the verification procedure. First, the Church-Rosser

theerem says that definitional equality (via any sequenae of correct

expressions) can be replaced by definitional equality established via

a common reduct. Secondly the closure proparty states that the latter

equality passes through correct expressions only.

Besides, closure is connected with many other interesting propertie

which are in fact characteristic for the Automath languages, like pre

servation of types (under reduction; this proparty is elsewhere soma

times called c~osure of the types under reduction), uniqueness of types

(this means that proper inclusion of types is impossible), uniqueness

of domains, and soundness of (definitional) equality with respect to

expression formation and typing relation. See 4.1, 5.4 and V.1.3.

Further, closure is necessary in the Sn-Church-Rosser proofs

15

(see VI), for showing the equivalence of various language definitions,

and for showing the connections between the various languages.

2.10 The "unstability" of the difficulties of language theory

When proving the nice properties connected with closure one often

uses induction on the definition of correctness (for terminology about

induction see II.O). This means that the choice of definition, i.e. the

order in which the expressions are generated, can be important.

In fact, the present author thinks it surprising how important the

choice of definition can be in this respect. Example: A proof of closure

directly from the algorithmic definition turns out to be rather involved

(see VII.3.3), whereas De Vrijer [70] formulated his system ÀÀ-~

(essentially AUT-QE+, see 4.9) in such a way that closure was straight

forward. (On the other hand, De Vrijer had to prove his big tree theorem

in order to get decidability, whereas decidability for the algorithmic

system just fellows from normalization).

Similarly, there is much difference between closely related

languages, as regards the difficulties they pose in proving their nice

properties: Seemingly harmless modifications of the languages - hardly

increasing their expressive power can make some parts of their

language theory considerably more difficult. We mention the transition

from AUT-68 to AUT-QE, from AUT-QE to AUT-QE+, or the extension from

AUT-QE+ (even without type-inclusion) to Nederpelt's system A. See sec.

4 for the characteristics of these 1anguages. And there is the addition

of the "extensional" reductions n, a and c: (II.3) which essentially

complicate the Church-Rosser proof (c: even spoils the property) without

contributing much to the expressive power (see e.g.[37, p. 42]). By the

way, the phenomenon that hardly impressive modifications can give rise

to considerable extra difficulties is itself the raison d'être of a

large part of the Automath language theory: Some properties (closure,

i3n-church-Rosser) are interesting properties in Automath, but in ordinary

typed À-calculus just trivialities, though the Automath languages can

be considered as mere generalizations of the latter system!

16

Returning te the Automath languages: generally, we have chosen the

strategy of first proving the nice properties for a - in this respect -

simple system, and then trying to extend these results to more compli

cated languages. See v.3, VII.6.

1.3 Sarnething on bound variables

3.1 In this thesis we consider expressions moduto a-conversion (re

naming of bound variables), i.e. our relation of syntaaticat identity

actually stands for a-convertibility (II,2.2). So, in the sequel, we

leave the complications concerning the handling of bound variables out

of the discussion. This can be accounted for, e.g., by referring to

Curry's classica! exposition on substitution [25], to Nederpelt's notion

of distinctly bound expressions [51], or via the correspondence with

one of the proposals to eliminate the names of bound variables altc

gether (De Bruijn [1 0], Staples [66]) •

3.2 Both these proposals for nameless dummies reflect the idea that a

bound variabie occurrence is just an open position in an expression,

which has to be uniquely linkable to its binding À. De Bruijn performs

this unique linking by replacing such an open position with a positive

number, the referenae depth, viz. the distance to its binding À. I.e.

the number of À's one encounters scanning the expression from within

until one arives at the binding À (the latter included). E.g. the bound

occurrence ~ in ~·y(y~) has depth 2, the two bound y's have depth 1.

Of course the bindine variables going with a À can he skipped in this

notation. Staples, on the other hand, replaces all such open positions

with one and the same standard symbol (one might as well leave them

open) and provides the linking information by attaching a list of posit

ions to every À. These positions are coded in the form of binary strings

with 0 standing for left part and 1 for right part of the expression.

E.g. the position ~ in Ày•y(y~) is coded 111, and the y's in y(y~) have

codes 0,10 respectively,

In other words, in De Bruijn's notatienone counts backwards from

a bound position to its binding À, in Staples' notatien one counts for

wards from a binding À to the positions it binds. Example: the name-

17

carrying expression ÀXy•y(y~becomes À(À(1(12))) and À(lll) (À(Q,lO)(X(XX)))

respectively, where we have taken x for Staples' standard symbol.

3.3 De Bruijn admits that his system is not particularly suitable for

(i) easy reading and writing, but claims it to be good for both (ii)

metalingual discussion and (iii) mechanica! manipulation - what is was

invented for, in the context of the Automath project • In fact, De

Bruijn's system is just the symbolic representation of the most straight

forward computer implementation of À-expressions.

Staples thinks his system is better than De Bruijn's for purposes

(i) and (ii) and does not know about (iii). The present author thinks

there is not much difference between the two systems as regards (i)

and (ii) (probably De Bruijn's is somewhat better for (i)), but thinks

that De Bruijn's is definitely superior for (iii). He ~inks further

that both systems, when compared to ordinary name-carrying À-calculus,

are better for (ii) - unless, of course, one wants to study a-conversion -

but so much inferior for (i) - at least to people accustomed to ordinary

notatien but probably to others as well - that he has preferred the

ordinary approach in this thesis.

3.4 Zandleven has actually used De Bruijn's system in the implementation

of Automath, extending it to a system of socalled substitution:

substitution instructions are incorporated into the syntax of the sys

tem, and so, they can be postponed until needed {e.g. for establishing

definitional equality). Since the substitution instructions are also

coded by means of reference depths, we call the system a system of

iterated referenaea (documented in [38]). Closely related are De Bruijn's

system of referenee transforming mappings [16] and Wadworth's system of

graph reduation [72]. Wadsworth's system is not namefree, but he surely

hints at namefree implementation. De Bruijn and Wieringa[19,80] have also

studied even more general namefree À-calculuses.

3.5 In a review [63] of De Bruijn's artiele [10], Seldin suggested that

combinatory logic is as good as any other system for nameless represent

ation of bound variables. Since most À-calculus theories can only parti

ally be represented in combinatory logic (see, e.g., Hindley [33]), and

since the usual translations are rather clumsy (though perhaps Turner's

18

recent proposal [78] might be satisfactory) we think that Seldin's

remark is not quite correct. (Lately (Swansea, 1979, oral communication)

Seldin seemed to agree with this view himself.)

1.4 The Automath languages

4.1 General language rules

We give a tutorial survey of the characteristics of the saveral

Automath languages. Other introductory raferences on AUT-68 and AUT-QE

are [27,11], for AUT-SL see VII.l or [51], forAUT-Pi see VIII.! or [77},

See also the discussion in IV.l.

We have already announced the generalized type-structure of Auto

math: the types can be complicated expressions themselves (e.g. they

can depend on variables), they are constructed along with the terms and

hence, the typestructure cannot be given befarehand - as is usual in

ordinary typed À-calculus -.

So the type-assignment is itself part of the system and does not

belong to metalanguage. Consequently the system has besidee formulas

A Q B

expressing the definitional equality of the expressions A and B, also

formulas

A EB

standing for A has type B. An alternative notation for Q is ~ or just

(e.g. in[ll, 37 ,70)), forA E B one somatimes writes A B (in [;20 ,77]).

In fact, in accordance with the implicit character of definitional

equality (see below), the Q-formulas are not written down, when actually

using the Automath system, but are just introduced in the language

theory for formal purposes.

All Automath languages have the right hand equality PUle (or rule

of type conversion)

A E B, B Q C • A E C

19

Most languages also have the left hand equality rule LQ

AEC,AQB,..BEC

as a derived rule (contrarily to the right hand rule, which is part of

the language definition}. Further, most languages satisfy uniqueness

of types

A E B, A E C ,.. B Q C

i.e. the "converse" of type conversion. In such languages there can be

defined an operatien typ, such that, for all correct A,

A E typ(A), and

A E B,.. B Q typ(A)

(this explains why the decidability of Q entails the decidability of EJ.

The expressions are formed from variables x, y etc. and constant

expressions e(A
1

,•••,Ak) by the operations of À-abstraation and appliaat

ion (in the socalied pure languages AUT-68, AUT-QE, AUT-SL) and possibly

other operations (in the extended system AUT-Pi). Expressions formed

according to the rules and the restrictions (in particular the type

restrictions)of the various languages are said to be the oorreet express

ions of those languages, in contrast with the (general) expressions just

resulting from unrestricted use of the formation operations.

4.2 Abstraction and application

The eperation À-abstraotion leads to abstraation-expressions

[x:A]B. Generally such an expression can be interpreted as the funetion

Àx:A·B, with domain A and producing values B[D] when applied to argu

ments D E A. Here the postfix [D]I belongs to the metalanguage; it is

short for [x/D]J, i.e. substitution of D for the variabie x.

The appliaation eperation constructs the applieation expression

{A}B. This expression must be interpreted as the result of applying the

funation B to the argument A, i.e. the object usually denoted B(A) or

BA. The choice of putting the argument in front, between brackets,

combines nicely with the notational habit of putting the binding variable

x:A in front too, between a different kind of brackets, and is generally

20

preferred in the Automath project. Of course, people grown up with the

usual À-calculus conventions find it difficult to get used to such a

new notation. {Admittedly, it would have been consistent with our notat

ion for application to put the substitution operator in front too. How

ever we do not find this too important because substitution just belengs

to metalanguage.)

4.3 Reduction and definitional equality

The definitional equality is a restricted form of equality, just

covering certain identifications which in ordinary matbematics are

understood without any explicit justification. It is defined in a com

binatorial, syntactical way, viz. as the equivalence relation generated

by socalled reduation steps. Each reduction step replaces a part of an

expression, a redex, by another expression, a socalled aontractum. This

is the usual terminology in À-calculus, where definitional equality is

often called aonvertibility. In order that the so-defined relation is

acceptable as definitional equality, it must clearly be required that

redex and contracturn are intuitively equal. Our notatien for reduction

is ~. The reductions associated with abstraction and application are

B- and n-reduction:

8-reduction: {A}[x:B]C ~ CKA]

n-reduction: [x:B]{x}C ~ C if C does not depend on x.

There is also associated a reduction (called o-reduction) to the

expressions d(A
1

, • • • ,Ak) where d is a defined constant. For such defineé

constants defining axioms (abbreviations, with parameters)

are given. Here the postfix [x1,··•,xk] is to indicate that D may depené

on the variables shown.

The ö-reduction reads

21

substitution of A1,···,Ak for ~ 1 ,•··,~k. Our ê-reduction is distinct from

ether ê-reductions in the literature (cf. II.3.2.4).

The equality generated by 6, n and ê indeed corresponds to the in

tuitive interpretation of abstraction and application, and to the idea

of abbreviation. However, certain restrictions have to be fulfilled. In

particular, n-equality is only acceptable if the C (in the n-redex,

above) is also a function, with domain B. Since in the general, unre

stricted expressions such provisions are not necessarily satisfied, we

define Q between correct expressions A and B only, and also require

that the expressions "in between" A and B (i.e. via which the conversion

from A to B can be established) are correct as well. For precise defi

nitions of reduction and equality see II.3-4, for Q see V.2. For the

additional operations (with associated reductions) of AUT-Pi see VIII.l.

4.4 Type assignment

Type assignment takes place tagether with expression formation.

The variables get a type by assumption (of the form ~ E A). Formulas

are derived and expressions are constructed in natural deduction style,

i.e. relativa to a set (in our case: a string) of assumptions, called

the aonte~t of the formula, resp. the expression. Such a context has the

farm

where all the ~i are distinct. (This notion of context is only vaguely

related to the notion of context nowadays used in À-calculus theory.)

If ~ is a context we sametimes write

~~A, t,;~A E B, t,;~A Q B

to indicate that an expression ar formula is correct, resp. derivable,

with respect to ~. Here ~ contains so to say the type declarations of

the variables on which A (resp. A E B, A Q B) depends.

The constant expressions obtain a type by instantiating of (i.e.

substitution in) a saheme. A scheme consists of an axiomatic type

assignment with parameters

22

relative to a context

Only such instantiations a(A
1
,···,Ak) are admitted, where the A

1
meet

the type requirements of the context, i.e.

Then the type assiqnment to the constant expression bacomes

() (,1 I ••• ,A) E C[A I ••• ,A D •
ï k 1 k

A list of constant schemes is called a book and the constants a

are called book aonstants (to distinquish them from the lanquaqe con

stants). Thère are two kinds of constants, viz. primitive constants,

having a type-assignment only, and defined constants, having a defining

axiom (as mentioned in 4.3) and a corresponding type-assignment (see

below). Allconstantsin the book are distinct so each book constant

has a unique type-assignment (resp. unique defining axiom). If d has

defining axiom d(x1,··•,xk) := D and typinq d<x1,•••,xk) E C then, for

the sakeofthe intuitive interpretation, it must be required that

D E C w.r.t. the context of the scheme. This is the compatibility con

dition of def and typ. For more precise definitions see IV.3.2,IV.3.3,

V.2.1.

4.5 The rules of AUT-68

As for the application and abstraction rules, we first describe

the simplest language, now named AUT-68. This language has three kinds

of expressions: te~s (also called expressionsof degree3, or: 3-ex

pressions), types (with degree 2, or :· 2-expressions) and a single un

typed constant type (also denoted T, and called a supertype or 1-ex

pression, of degree 1). Languages with expressiena of degree 1, 2 and

3 only are said to be regular.

The 1-expressions generally serve as types for the 2-expressions,

but do not have a type themselves. Notice that the word "type" is used

ambiguously here, viz. to name the 2-expressions and in the sense of:

"being the type of". Typically, the types are the types of the terms

and (in AUT-68) type is the type of the types.

23

So, in AUT-68 there are two cases A E B: either A is a term and

Bis a type, or A is a type and B type<= means syntactical identity).

In termsof degrees: if A EB, B has degree i then A has degree i+l.

This property holds generally, also in the irregular languages, like

AUT-SL, where expressions of all positive degrees are admitted.

Now we give the term formation rules for AUT-68. First notice that

all variables have a type, so must be a type variable (of degree 2) or

a term variable (of degree 3). The abstraction rule reads: if from an

assumption x E A, and possibly ether assumptions net depending on x, it

can be derived that B E C, where x is a term Variable and B is a term,

then ene can conclude that [x:A]B E [x:A]C and disaharge the assumption

x E A. In natural deduction notatien

[x E A]

term abstraction rule degree(x) degree (B) 3

B E C

[x:A]B E [x:A]C

Actually, in Automath only the last assumption in the context is allowed

to be discharged. The remaining assumptions clearly satisfy the above

mentioned restrietion (of not depending on X). We refer tothefact that

the context is a string rather a set (and consequently, that the assumpt

ions can be removed according to the last-in first-out principle) by

speaking of the linear natural deduction character of Automath. In the

notatien of this thesis the rule becomes:

~2A, (x E A~3B E C) ,. [x:A]B E [x:A]C

with ~ standing for correctness, resp. derivability, with the super

scripts indicating the degrees (for the precise conventions see V.2.1.1).

In order to guarantee that the type of correct expressions are

correct toe, there must be an abstraction rule for types as well. This

one reads

24

type abstraction

rule AUT-68

In our notation

[.x E AJ

c E type

[.x :A]C E type

~ 2A, C.x E A~C E type} .,.. l.x:A]C E type

degree(.x) 3

Then there is the application rule for AUT-68:

application

rule AUT-68 .

4.6 Interpretation

DE A B E [.x:A]C

{D}B E CffD]

Now something about interpretation. With the 3-expressions [.x:A]B

and {D}B constructed above there is no problem: [.x:A]B is the function

À.x:A•B, {D}B is the result of applying function B to argument D. But

consider the 2-expression [.x:A]C occurring in the rules above. Under

the most convenient interpretation, maintaining that a type is a kind

of set or claas, and that the E-relation is a kind of element relation,

[.x:A]C must stand for the object usually denoted n C or n(À A•C) •
.x:A .x:

I.e. the cartesian product of all the CffD], forD E A. IncaseC does

not depend on .x, this product reduces to the function space A ~ C which

in type theory would be denoted CAC) or the like. In other words, (.x:A](

is the "set" (class, aggregate) consisting of all the functions B with

domain A which, when applied to arguments D in A, produce values be

longing to C[D]. This is precisely what the appl rule says. So in this

interpretation the abatpactoP [.x:A] has two different meanings: when

used with a term it gives a function, when used with a type it gives a

kind of set. Or, we can say that [x:A] has just one meaning, viz. ÀX:A,

but that the n has been omitted, for brevity, in a situation where no

confusion is reasonably possible. This is the standard interpretation

corresponding with the notatien in related typed À-calculus systems and

in AUT-Pi (see VIII.l).

25

However there is a second, alternative, interpretation, too. It is

not necessary to stick to the idea that types are sets and that E is a

kind of element relation. Namely, we can very well interpret [x:A]C as

the function Àx:A•C, if only we accept that a funetion can act a type.

Then, the term abatr rule says (i.a.) that the type of a function is

again a function, with the same domain, and, conversely, the appl rule

says (i.a.) that the functions of degree 3 are eharaeterized by having

a function for their type, from which their domain can be read off. In

this interpretation the conclusion of the term abstraction rule

([x:A]B E [x:A]C) just mean VD E A (B[D] E C[D]), i.e. the rule abstracts

the formula B E C rather than the expresslons involved. In algebraic

terms: the rule can be considered as a diatribution rule of the ab

stracter [x:A] w.r.t. the E-relation.

This, second, interpretation has given rise to several extensions

of the language, viz. to AUT-QE, to socalled +-lanquages (AUT-68+ and

AUT-QE+), and even to AUT-SL (i.e. Nederpelt's A).

4. 7 AUT-QE

First the extension to AUT-QE. Since we interpret the 2-expression

[x:A]C as a (type valued) function, and since we want a uniform metbod of

type assignment for both term valued and type valued functions, we

drop the restrietion to B of degree 3 in the term abstraction rule of

AUT-68, thus getting the

general abstraction rule: ~ 2A, (x E A~B(E C)) ~ r[x:A]B(E [x:A]C)

so the degree restrietion for the variable x is maintained. In the new

rule there is included (skip the two E-parts between parentheses) the

abstraction rule for 1-expressions, to guarantee that the types of

correct expresslons are correct again:

so in AUT-QE there are other supertypes than just type, of the

form

26

These expressions have or1g1nally been named quasi-expressions, whence

the name of the language AUT-QE.

The application rule of AUT-68 is maintained in AUT-QE:

application rule I D E A, B E [x:A]C • {D}B E C[D)

but is more general here, because it can be used with Bof dégree 3 and

2 now (in AUT-68 only with Bof degree 3). Besides, AUT-QE has, in

accordance with the proposed interpretation, another appl rule:

application rule II E E A, B E C E [x:A]D • {E}B E {E}C

Namely, [x:A]D is a function with domain A, so C is a function with

domain A, so B is a function with domain A and can be applied to the

argument E E A. (In fact, this rule can be derived from appl rule I by

n-equality, which confirms the agreement with the interpretation.)

Just like a degree 2 abstr expression of AUT-68 allows different

interpretations,viz. as a set or as a function, a degree 1 abstr ex

pression of AUT-QE has such different interpretations too. Under the

first interpretation the expression [x1 :A
1
J·••[xk:Ak]type stands for

the object

This corresponds with the notation of AUT-Pi, see VIII.1. Under the

second interpretation it stands for the object

À- ·A .À- ·A .••·À- ·A .type "'1. 1 ""2. 2 ""k. k

4.8 Type inclusion

Now let x E A~C E type. Two rules of type assignment are applicable

viz. the type abstr rule of AUT-68 and the general abstr rule, giving

rise to

[x:A]C E type, resp. [x:A]C E [x:A]type

Generally a 2-expression [x
1

:A
1

J•••[xk:Ak]C of AUT-QE has as its

possible types

27

This ambiguity of types, which is typical for AUT-QE, is usually imple

mented by adding a rule of type inalusion

and dropping the type abstraction rule of AUT-68, which now becomes a

derived rule. In fact, the type inclusion rule is somewhat strenger

than the type abstraction rule of AUT-68 (or, similarly, the product

rule of AUT-Pi). See VIII.1.5 and VIII.6. 1.

Clearly the property of uniqueness of types

A E B, A E C * B Q C

is, for 2-expressions A, not valid any more in AUT-QE. This is,however,

the only case of proper type-inclusion in Automath languages. We intro

duce C to denote type-inclusion, i.e.

B C C :- VA (A E B ,. A E C}.

For the precise definition see V.2.13 or V.3.2. The possible types of

a 2-expression appear to be linearly ordered under C, so

A E B, A E C ,. B C C or C C B

and it is still possible to define a oanonioal type which is minimal,

w.r.t. C, among the possible types (and hence gives maximal information),

i.e. such that

A E B ,. A E typ (Al C B.

4.9 +-languages

Now the extension to +-languages. Reeall that in AUT-68 there were

abstr expressions of degree 3 and 2, but appl expressions of degree 3

only. We say the value degrees are 2 and 3, and the funation degree

is 3. Here we use the terminology of V.2.7: Bis called the Value paPt

of [x:A]B and the function part of {A}B. Similarly AUT-QE has value

28

degrees 1, 2 and 3 and function degrees 2 and 3. Such languages, where

the minimal value degree is not a function degree are named non-+

laniJuagee.

However, if the abstraction expressions of minimal value degree

are functions, it is reasonable to have an appl rule for them too:

appl rule
+-languages D E A~ B Q [x:A]C ~ r{D}B

In particular, if D EA~ r[x:A]C then HDHx:A]C. Indeed, by adding the

above rule for B of degree 2 to AUT-68 we arive at the +-language

AUT-68+. And by adding it to AUT-QE for B of degree 1 we arive at

AUT-QE+ (which is essentially ÀÀ-~, the Zegitimate fragment of De

Vrijer's ÀÀ [70]). In principle, the new ruleis a derived rule for B

not having minimal value degree. The words "in principle" here refer to

certain problems with type inclusion and defined constants, explained

at length in V.1.7, V.3.3 and V.4.2.

It will be shown (V.3.3 , V.3.4) that a +-language is an un

eaaential (and even, definitional) extenaion of the corresponding

non-+-language (see v.3.3):

~ A ~ 3A I (~A ' & A Q A ') + +

i.e. to each A in the +-system there corresponds a definitionally equal

A' correct inthesmaller system.

In all the languages now defined, the rule

general application
rule B E C~ r{A}C ~ {A}B E {A}C

is a derived rule. Alternatively, this rule can be adopted in the

language definition, either with the application rule I (in the non

+-languages), or with the application rule for +-languages, to generate

all the appl expresslons of the various languages. The nice point about

the general application rule is that it (similar to the general ab

straction rule) can be considered as a kind of distribution rule, viz.

of the applicator {A} w.r.t. ~e E-relation.

Though in AUT-QE+ we have achieved a fairly uniform treatment of

expresslons of all degrees, we still have maintained the restrietion

that only abstractors [x:A] with degree(x) = 3, degree(A) 2 are

29

formed. In other words, only term variables are quantified. So there

is na quantification over type variables and we say that our systems are

first-order (this term refers ta the fact that in the propositions-as

types interpretatian quantificatian over types gives rise ta higher

order Zogie). Cansequently only applicators {A} with degree(A) = 3

are admitted. We say that the only domain degree is 2, and the only

argument degree is 3 (A is said to be the domain of [x:A]B and the

argument part of {A}B). Apparently there is a certain duplication in

having bath instantiation and application in the system. However,

because of the aforementioned application restrietion instantiation

cannot be missed: substitution of 2-expressions (for type-variables)

cannot be performed by means of application so has to take place by

means of instantiation. (See also 5.6)

4.10 AUT-SL

Now we explain haw AUT-SL (i.e. Nederpelt's A) can also be con

sidered a result of our extended interpretation of the E-symbol. Namely,

now that we have accepted that funetions can be inhabitabte, i.e. can

be the type of ether expressions, there seems to be no principal ob

jection against allowing eaeh expressian to be inhabitable. This is

indeed the most striking characteristic of A: there are expressions af

all positive degrees admitted, soA is irregutar (sec. 4.5). (Here is

an analogy with the tanguage af set theory where a priori na term is

excluded from being inhabitable, i.e. from being a set}.

Further, in A all degrees are domain degrees, sa all degrees but

are argument degrees, sa instantiation can be missed and, indeed,

has been dropped. Still, we shall not call A a higher-order language

(IV.l.5.3, VII.l) because any farm of type inclusion has been omitted.

Sa, AUT-68 and AUT-QE which are based on type-inclusion, are nat in

cluded in A, and uniqueness of types holds in A. For more informatian

about the background of A see VII.l.

The definition of A either must contain the general application

rule, above, ar for Bof degree k, k ~ 2,

D E A, B Ck E ••• E c1 _ [x:A]E ~ {D}B E {D}Ck-l

30

In fact, Nederpelt gives an a~orithmia definition of A, in terms

of a type function typ, and in terms of unrestricted reduction 2, in

stead of a socalled E-definition in terms of E- and Q-formulas, such

as the definitions given above. For a discussion of algorithmic definit

ion vs. E-definition see V.1.2 and for the equivalence of both definit

ions see V.4.

Because of the simple form of the general abstraction and applicat

ion rule, the function typ has a very simple definition too, in partic

ular

typ({A}B) ·- {A}typ(B), typ([x:A]B) ::: [x:A]typ(B)

Nederpelt gives a socalled appliaation aandition which in our

notation, for B of degree k would read

(where typk-l stands for k-1 successive applications of the function

typ), completely in accordance with our application rule for Bof degre'

k, above. By the way, we write, like Nederpelt, typ* for the typk-l of

expressions of degree k.

The language A was invented for theoretica! purposes. It is in

teresting because it has a very simple and elegant definition and exhi

bits some typical Automath features. However, because it is in some

sense weaker (no type inclusion) than AUT-68 and AUT-QE, results valid

for A cannot directly be transferred to these, from a practical point

of view, more important languages. In particular, the "stnat" noma

bility of A (proved by Nederpelt) is easier to prove than the '~eak"

nol'mability of AUT-QE (see IV. 3-4) because of the weak seaond order

aspect AUT-68 and AUT-QE. See IV.l.S See also VIII.4.2.2 for an in

teresting interpretation of these normability results (inspired by

Ben-Yelles [6]).

Conversely, the facts that A is a +-language, is irregular, and

has no abstraction restrictions, pose certain difficulties which in

the theory of AUT-68 and AUT-QE can be avoided.

The present author has mainly devoted his lanquage theoretica!

attention directly towards the lanquages actually being in use:

AUT-68, AUT-QE and AUT-Pi. In this theses we have indeed at some places

introduced new languages (for technica! or expository reasons), but we

31

have tried to exhibit the precise connections with existing languages.

Also, we have devoted a chapter (VII) to A, which deserves some interest

of its own.

4.11 AUT-Pi

For an informal introduetion toAUT-Pi see VIII.1. In AUT-Pi the

standard mathematica! distinction between types (being inhabitable) and

functions (not being so) is made by putting in n•s at the proper places

(whence the name AUT-Pi). In VIII.6 the difference has been indicated

between the rule for inserting D's (the produet ru~e) and the rule of

type-inclusion of AUT-QE.

4.12 Two higher-order languages

For completeness reasans we mention two proposals for higher order

languages. First, De Bruijn once proposed a language AUT-4 [14], where

the proofs come in as degree 4 expressions (whence AUT-4), instead of,

as usual (5.9, 5.2}, as degree 3 expressions. AUT-4 would have provided

an application of the higher degrees of irregular languages, but has

never been used or implemented. Secondly, the author has introduced a

language (let us name it AUT-2) which has expresslons of degree 1 and

2 only, with unrestricted type-inclusion rule (sec. 4.8) and without

abstraction restrictions. This language proved to be essentially

identical to a system of type-assignment to À-calculus terms invented

by Dezani and Coppo[22,23] for quite different purposes. These two

languages are not discussed in this thesis. It seems that (strong)

normalization for AUT-4 can only be proved by Girard-like methods Do,
31],whereas for AUT-2 we haveastrong normalfzation proof in the style

of this thesis.

32

1.5 Mathernaties in Automath

5.1 Survey of this sectien

Because of the presence of a type (type) of types, the presence

of type-variables and the generalized type-structure, people often tend

to overestimate the expressive power of (i.e. what can be said in) the

Automath languages. Here we refer to the expressive power of the

languages as auch, i.e. to what can be said directly in the basic

system, without any constants added. (B~cause, with additional constant!

as we shall see, almest anything can be expressed, just like in the

language of first order predicate logic.)

Below we sketch what has become the standard development of mathe

matics in Automath. The emphasis wil! be on the inherent limitations

of Automath. Occasionally we make a comparison with closely related

systems: Seldin's system of generalized functionality [64], Scott's

system of constructive validity [62] and Martin-Löf's systems of in

tuitionistic type theory[45,46], and Girard's systems for analysisDl].

Throughout we camment on the typical Automath features.

5.2 The t-part and the p-part of Automath

Let us, for the sake of the exposition, divide rnathematics in two

parts: one part, let us say the object part, dealing with the construct·

ion of mathematica! objects (resp. types), and one part, the logical

part, for reasoning about these objects. Our framewerk of Automath

languages, above, is formulated in terms of objects and types, rather

than in logica! terms: there are, indeed, Q- and E-formulas expressing

facts about the objects, but they just play an auxiliary role, viz. to

control the construction of the correct (sec. 2.6) objects.

Following[37,77] we name the fragment of Automath that deals with

the object part the t-fragment (for terms, types and type-valued funct

ions), and the fragment of Automath repreaenting the logical part the

p-fragment (for proofs, propositions, predicates). Degree i (sec. 4.5)

expressions of the t-fragment and the p-fragment are said to be i-t

expressions and i-p-expressions respectively.

33

So, whereas the preceding sections suggest how the t-fragment can

be developed (3t-expressions for objects, 2t-expressions for types), it

is a priori net clear how the p-fragment will express the logical part.

Essential is that the E-formula A E B, of the p-fragment, with A a 3p

expression and B a 2p-expression, is interpreted as expressing the truth

of the proposition B (i.e. as expressing B itself). So, a proposition

is true (asserted) if "we have sernething in it", i.e. if we have a (3p-)

expression having the proposition for its type.

There are several ways of interpreting the realizer A (we borrow

this term from Pottinger [58] who borrowed it from Helman), i.e. the

expression we have in the proposition B: as an abstract proof construct

ion proving B, as a symbolic translation of a natural deduction proof

figure (with Bas its end formula), or as just some indication (some

reference to the fact) that B holds. If we are interested in constructive

foundations the first interpretation is appropriate. If we want to study

proof figures (e.g. in view of normalization properties) the second

i~terpretation is the best one. If we just want classica! logic the

third point of view seems to be right, and it also seems justified to

identify (in the sense of definitional equality) all the realizers of

one and the same proposition. This identification principle is called

irreZevance of proofs[77,37,20].

We will explain that the propositions-as-types way, as sketched

above, of fitting the logical part of rnathematics into a typed À-calculus

framewerk arises quite naturally from the idea of mechanica! proof

checking (and, on the other hand, that it is the only way of expressing

actual reasoning in termsof theE- and Q-formulasl.

5.3 The t-fragment

Generally speaking, the systems introduced in sec. 4 are as yet

still empty because we have not introduced any ~onstants. Here we adopt

the common point of view that the meaningful objects (resp. types) of

a theory correspond to lts closed expresslons (i.e. those not depending

on variables). One way to construct closed terms is from constants,

another way is by binding the variables in an expression, i.e. by À

abstraction. Since in most Automath languages abstraction over type

variables is forbidden we need at least one primitive type-aonstant

34

befare we can start generating closed expressions. (Here A is an ex

caption: In A the basic constant T (this is just an alternative notatioJ

for type) can be used as a ground type and we can directly start con

structing functions of type T ~ t etc.

In the Automath project it has sametimes been stated, that there

is no essential difference between a constant without parameters - i.e.

introduced in an empty context - and a variable. This is formally right

a constant can be conceived as a variable one does not want to get rid

of, and for which no substitution is possible. conceptually however,

it seems better to maintain the distinction.

We just sketch very briefly how the typed À-calculus framewerk of

Automath can be used te construct the objects (numbers, functions,

functionals) forming the universe of discourse of ordinary mathernaties

(say, analysis). one first introduces some primitive type aonstants

(2t-expressions) for the greund types, the natuval and the real numbers

say, by statingas an axiom (i.e. an axiom scheme in an empty context):

nt E type, rl E type. (Of course, if ene knows a bit more one can also

define the reals in terms of the natural numbers, but that does not

concern us here.) Secondly, one introduces some primitive te~ constant.

(3t-expressions) for generating the objects of these types. E.g. in

order to construct the natural numbers one states axioms one E nt,
sucfun E nt ~ nt (the successar function, which can alternatively be

introduced by a scheme, see below). From these constants we get the

natural numbers, which we can give a new name by introducing defining

eonstants: two := {One}sucfun, three := {two}sucfun(Q{{one}sucfun}sucfu
etc. If one likes, ene can also introduce primitive constants

plusfun E nt ~ (nt + nt) and timesfun E nt + (nt + nt) for plus and

times on the naturals. Additional (equality) axioms will be needed to

fix the properties of the thus constructed objects, but these rather

beleng to the logical part. Similarly, constants can be introduced

(with the additional axioms) to generate the objectsof type rl.
By À-abstraction closed expressions of higher type are constructed

These higher types themselves {we already used some of them) are also

constructed by À-abstraction (in AUT-QE etc.) or by À-abstraction and

product formation (in AUT-Pi). E.g. we get nt ~ rl, the type of real

number sequences, (rl + rl) ~ rl the type of real functionals etc.

We see that up to now there seems to be no possibility to introduce

non-trivial type-valued functions: the higher types shown are just

(products of) the aonstant type-valued functions

[x:ntJnt, [x:ntJ(nt + nt) etc.

35

In fact, the type-valued functions do not become essential befere

we arrive at the p-part. However, we give an example of a typical type

valued function in the t-part (see [37]): In the context x E nt we can

introduce the primi tive 2t-constant 1 to (x) intended to contain the

natura! numbers up to x, as fellows

x E ntr1to(x> E type

(This cannot become an actual subtype of nt (cf. 5.4), injection funct

ions and equality axioms wil! be needed.) From this scheme we can con

struct the non-trivia! type-valued function [x:ntJ1to(x) (a 2t-express

ion). It dependsof course on the additional axioms what objects will

belang to this type.

It is an interesting question what higher type objects (functions

and functionals) can actually be defined by mere À-abstraction (either

from object constants, or just from variables): of course we have

aonstant functions and seleators Àx1 ···xn.xj, and we can define composit

ion of functions, but what else? For an answer see Plotkin [54] •

5.4 Some camment on the t-part

From the examples, above, several characteristic features and limit

ations of Automath become clear. First, that the whole development is

based on typed À-calculus rather than on set theory. More about this

in the next section. Then a point on defined aonstants: from our present

point of view (What objects are actually constructed?) they are irrele

vant, because they just serve as new names for objects already present.

From a practical point of view, however, they form an indispensable

feature of Automath.

Another characteristic facility of most Automath languages is that

a function can be introduced in two ways, viz. either as a single higher

type constant or, by a scheme, as a constant depending on parameters

(in this case the constant rather stands for the function value). Above,

sucfun, plusfun and timesfun were introduced by the first method. Alter

natively, one might introduce suc, plus and times by an axiomatie typing

36

scheme; i.e. depending on variables of type nt:

x E nt~suc(x} E nt

x E nt, y E nt~plus(x,y) E nt etc.

That these mechanisms really farm a duplication is shown by the fact

that they can be defined in termsof each other, e.g.

sucfun := [x:ntJsuc(x), resp.

x E n~suc(x) := {x}sucfun etc.

More about schemes can be found in section 5.6.

Now we arrive at some mutually related characteristic limitat

ionsof the Automath languages (further elaborated in 5.7). First that

hardly any mathematica! structure is given beforehand: even the natural

numbers have to be introduced by a series of constants and axioms (this

point we have mentioned before).

Secondly that a type must be present befare it can be postulated

to be inhabited, i.e. a type must be introduced befo~e the objects of

that type. This contrasts with the common ideas about the set theoretic

hierarochy where sets cannot be constructed unless their elements are

given (and g~asped, as one says). In fact, this distriction between

types and sets suggests that, after all, the ground types must be

understood as syntactic linguistic categories rather than as actual

mathematica! objects themselves (compare [46]). Then, the higher types

can be understood in terms of the ground types.

A third limitation of Automath (related to the secend one, though)

is the uniqueness of types. In the above development one might think

it handy if the number one of type nt would be of type rl as well and,

more general, if nt would be an actual subtype of rl (in the sense of

C, see 4.8). such proper incZusion of types is not expressibZe in

Automath, and non-triviaZ inte~sections of types are not p~esent either

(Whether the identification of the natural number one with the eerras

ponding real number would be justified is another question. See De

Bruijn [12].)

37

5.5 The typed À-calculus framewerk

This sectien tries to support the choice of basing Automath on the

concept of function rather thah on the concept of set. The first point

is, that in aûnost any interesting part of mathernaties some farm of

abstraction is needed, either as À-abstraction, or as a comprehension

axiom. (The alternative to abstraction is a development in the style of

combinatory logic, as in von Neumann-Bernays-Gödel set theory.) As

stipulated by De Bruijn[lO], À can be consideredasthe, neutral binding

operator, not to be explained in more primitive terms. E.g.the camprehens

ion set {x!A} can be defined in terros of À by, say, setof(ÀX.A).

The secend point is, that the primitive concept of function is

basic in ordinary rnathematics (analysis, say). It is, of course, well

known that the graph of a function can be coded (implemented, say) as

a set and we don't deny that the graph concept itself can be clari-

fying -, but in ordinary rnathematics there is usually no point in this

implementation. In fact it just shows the well-definedness of the

function concept (i.e. of a function on a given domain) in terros of the

commonly accepted formal development of axiomatic set theory - which for

a practical mathematician is hardly doubtful and probably uninteresting-.

Campare [12]. Similarly the possibility of implementing other familiar

concepts (the natural numbers, the reals, the complex numbers) in axio

matic set theory, or in any other form, is usually of no practical im

portance.

By basing one's function concept on Sn-À-calculus one gets the

possibility of making explicit definitions of functions (by À-abstract

ion), and of making these identifications (by definitional equality)

that fellow from these explicit definitions. Clearly, the graph concept

of functions gives more, viz. extensionality, whereas Bn-equality just

pins down the function intensionally, i.e. as a rule. Additional equal

ity axioms (not for definitional, but for hook equality) are needed

for extensionality. We stress that n just gives a very weak form of

extensionality. According to Scott, the n-equality Àx.fx = f (in ordinary

À-calculus notation) must not be understood as extensionality but rather

as stating that f is a function. So, in a typed setting n seems to be

anyhow justified: the mere correctness of [x:~]{x}f (in Automath no

tation) warrants that fis a function. However, n-equality presupposes

uniqueness of types!

38

Above we have taken for granted that the appro~riate practical

function concept is a typed one. Indeed, free, untyped À-calculus is a

farreaching,a priori just formal, extension of this concept (compare,

e.g., the notations for limits and formal series, in analysis). It is

an extension useful for studying computations but which does not seem

very well applicable to "ordinary" mathematica. Compare LCF, being in

tended for the farmer purpose and actually based on the polymorphic

typed À-calculus PPÀ, where the type conventions are not quite as stric

as in ordinary typed À-calculus.

We note that these two restrictions of the definitional equality

(that it just covers intensional equality, between ordinavy typed À

calculus objects) are essential for its being decidable (in contrast

with, e.g., the convertibility in PPÀ).

5.6 Axioms vs. schemes, abstraction vs. abbreviation

In 5.4 we saw that there are two possibilities to introduce primi

tive constants for the construction of functions, either at low type

level (example: suc) in a acheme, or in a higher type by an axiom

(example: SUCfUn). The difference between the two approaches is that

from a scheme objects are constructed by inatantiation (example:

SUC(One)), and from the corresponding higher type axiom by application

(example: {one}sucfun). In most logical formalisms the distinction

between instantiation and application cannot be stated in such an ex

plicit form, since their instantiation mechanisms beleng to meta

language.

Similarly there are in Automath (usually) two possibilities for

making explicit definitions of functions: by À-abstraction and by a

definitional axiom scheme.These definitions are respectively eliminated

by application plus 8-reduction and instantiation plus ó-reduction

{this duplication is eliminated in Nederpelt's A).

Apart from the fact that writing schemes allows a form of (sub

stitutional) quantification of variables not quantifiable by À (viz.

type variables), it also allows quantification of more variables at a

time. However, as one knows, this simultaneous quantification can be

simulated by successively quantifying one variabie at a time.

So, roughly speaking, what can be done by schemes can also be done

39

by À-abstraction. In some sense schemes are simpler than abstraction:

higher type objects are avoided. Indeed, in the Automath project a

schematic introduetion of constants (i.e. SUC instead of sucfun etc.)

would generally be preferred. And, rather than asking how instantiation

can be dismissed in faveur of application, one should ask what abstract

ion, application and higher type objects actually contribute. We think

that À-calculus only comes in when one wants to express nested quanti

fications (either substitutional or by À-abstraction) such as, e.g.,

needed when quantifyingoverfunctions or defining functionals. Example:

the proposition cont(f) expressing the continuity of f depends on the

higher type variable f. If one wants to use this proposition (by in

stantiation), higher type objects (like [x:rl]F) must be substituted.

De Bruijn has, accordingly, conjectured that up to 18th century mathe

matics is expressible without À-calculus and, hence, that the primitive

Automath language PAL would do for that subject.

5.7 More on the language restrictions (as mentioned in 5.4)

The fact that no arithmetic is built in, distinguishes Automath

from systems meant to give a foundation for constructive mathematics.

In particular, we want to make a cernparisen with the system of Scott

[62] and Martin-Löf [45] because these two systems have the same gene

ralized type-structure as Automath, and the same way to represent

reasoning, viz. a propositions-as-types way.

Scott sketches a general recursive construction mechanism that

allows the definition of the natural numbers from a finite set of given

ground objects. Martin-Löf's introduetion of the natural numbers is

more like ours: he introduces zero and suaaessor but additionally he

has reaureion over the natural numbers built-in in his language.

The main difference between built-in arithmetic and arithmetic

introduced axiomatically (as in Automath) is that in the case of built

in arithmetic ene gets the equations following from the recursive

definition of a function for free, i.e. as definitional In

Automath one can also introduce a constant intended for primitive recurs

ion but the point is that the additional equality axioms,needed to give

such a constant its meaning, concern book equality, not definitional

equality. This limitation also distinguishes Automath from LCF, where

40

recursive definitions of functions is. indeed possible.

Now we come back to the second and the third limitation: that a

type must be present before its inhabitants and, that in Automath uniquE

ness of types holds. These limitations prevent any inductive constructit

of a type, in a general sense: both the recursive definition of a type,

and, even, the construction of a new type consisting of, e.g., a finite

number of previously given objects, are impossible. Such previously

given objects have a type already and it is simply not possible to statE

as an axiom (neither as an assumption) that such an object aZso belongs

to a different type. In AUT-Pi (and in Scott's and Martin-Löf's system

as well) there is the possibility to construct binary disjoint unions

of previously given types but, even there, the objects of the old types

cannot be identified with the object of the new types: injeation funat

ions are needed.

5.8 A comparison with generalized functionality

Uniqueness of types seems a good starting point for a comparison

with Saldin's system of generaZized funationaZity [64]. This is a gene

ralization of Curry's systems of basia funationality [25, 26]. Basic

functionality has the usual function types a~ B (there denoted FaS),

but generalized functionality has the generaZized type-struature of

Automath and the other two systems, above. Actually we took the word

"generalized" from Seldin. The product types denoted above as [x:a]S

or O([x:a]S) or n S are in Saldin's system written as Ga(~.S). This
x:a

is, including the introduetion and eliminatien rules for G (i.e. our

abstraction rules) all quite similar to the product types of Automath.

However, an important difference is that in Saldin's system the

variables do not get a fixed type and consequently, the system rather

must be viewed upon as a system of type assignment to (certain) terms

of the type free À-calculus. E.g. the identity I belengs to every type

a~ a (where a is a type), whereas in Automath we have different 's,

denoted [x:a]x, at every type a. Consequently, a term can indeed belong

to different types.

In functionality theory the statement A has a type B is denoted

BA (the prediaate B applies at the subjeat A, as one says) and is it

self an object (ob) of the system. In principle, interference of B and

41

A (by reduction, where B acts as a function, with argument A) is not ex

cluded. However, in the separated systems, where the equality rules

operate on subject and predicate separately, the interterenee is tor

bidden and BA is just an alternative notatien of our A E B. (Notice that

this kind of interterenee in the case of Automath, where (except in

AUT-Pi) [x:A]B can be both a function and a type, would be disastrous.)

A point of difference between Seldin's system [64] and our systems is

that the type formation rather belengs to his meta-language (and is less

restricted then ours: he just respects the arity (i.e. number of argu

ments) of the type valued functions). Seldin proves for his system the

subject reduction theorem (our closure theorem) and the normal form

theorem (our normalization theorem) .

The systems of functionality are said to be systems of illative

(combinatory) logic. The word "illative" now refers to the presence of

other basic constants (viz. F and G) than just the combinatars (or,

alternatively, than just À-abstraction). Originally, Curry rather meant

the word "illative" to stand for inferential, i.e. also dealing with

the logica! part (cf. 5.2) of mathematics. In view of the facts, that

the Automath languages are quite similar to functionality systems, and

that Automath is indeed intended to represent both the object part and

the logica! part of mathematics, it seems justified to call Automath

a system of illative combinatory logic (or rather illative À-calculus).

5.9 The p-fragment

Reeall that the logica! part of rnathematics (the reasoning) is

represented in Automath by a propositions-as-types method. The standard

way of developing propositions-as-types in the p-fragment of Automath

is as fellows. The propositions enter as special types (2p-expressions

of type prop, where prop is another basic constant, a lp-expression,

that behaves just like type).
We saw that a proposition is true if we have a realizer, a 3p

expression in it. A proposition B is assumed by introducing a variable

realizing (i.e. of type) B, and a proposition B is stated as an axiom

(resp. axiom saheme) by introducing a primitive constant (resp. primitive

constant depending on parameters) realizing B. The impliaation B • C

is represented by the function type B + C (in AUT-68- and AUT-QE-notation

42

[x:B]C); Introduction- and elimination. rules for ~ correspond with the

abstraction and application rules of Automath.

The standard development of (classica!) logic in Automath starts

with the introduetion of a primitive 2p-constant con E prop, to repre

sent the Contradietory proposition, i.e. falsum. Clearly COn is intended

to remain empty. sa, the negation of a propaaition a (i.e. a ~falsum)

can be represented by [x:a]con, which we abbreviate by non(a). Hence

the double negation of a becomes non(non(a)) (Q [x:[y:a]conJconJ. Then,

for classica! logic, a primitive realizer, called dnl, for the double

negation law is introduced by a scheme

a E prop, a E noncnon(a))~dnl(a,x) E a

We also promised some book equality axioma for giving the express

ions of the t-part their meaning. To this end a primitive propaaition

eq, for book equality between objects of the same type, is introduced

by a scheme

a E type, Q E a, b E c4-eq(a,a,b) E prop

tagether with, e.g., primitive realizers for reflexivity (i.e. in

eq(a,a,a)), symmetry (i.e. to infer eq(a,b,a) from eq(a,a,b)) etc.

Prediaates are special type-valued, viz. proposition-vaZued funct

ions, formed from propositions by À-abstraction. In constant with the

type-valued functions of the t-fragment (cf. 5.3), predicates are

usually non-tl'ivia"l type-valued functions. E.g. the proparty "being

equal to one" on type nt is expressed by the predicate

[x:nt]eq(nt,one,x). The (minima!) type (cf. 2.10) of this predicate is

nt ~ prop, in AUT-QE written [x:nt]prop and in AUT-Pi written

n<[x:nt]propl.
These typical lp-expressions of AUT-QE and AUT-Pi allow the intro

duetion of predicate variabLes and, hence, the formulation of schemes

depending on predicate parameters. An important scheme containing a

predicate parameter is the axiom scheme forinduction over the natura!

numbers.

If P is a predicate on type a (having type a ~ prop) then the

product n P(re) (in AUT-Pi this is written O(P), in AUT-QE it is just
x:a

P itself) stands for the proposition V P(x). Introduetion and eliminre:a

43

ation rules for Y correspond with the abstraction and application rules

of Automath.

5.10 Same camment on the p-part

The above examples illustrate why the formulation of schemes with

type-variables (and prop- and predicate-variables) are useful. Other

wise we would have needed e.g. separate dnl's for every proposition,

separate book-equalities at every type, and a separate induction axiom

for each predicate on type nt. And it also becomes evident why abstract

ion over degree 2 variables is called higher order quantifieation:

proposition and predicate variables are 2-variables and abstraction

correspcnds to universal quantification. See further sec. 5.12.

By using Automath in this propositions-as-types fashion we get an

almast ordinary many sorted first-order predieate logio, viz. over a

pure (or extended) typed À-calculus. It depends mainly on the axioms

concerning falsum what kind of logic we get: minimal logie (without

axioms), intuitionistia logia (with absurdity rule), or alassieal logie

(as above, with the double negation law, or the like). Additional

constants and axioms can be added for the introduetion of further mathe

matical structures {see, e.g. Jutting [37]).

We wrote that Automath is an aûnost ordinary predicate logic,

"almost" because there is one unconventional feature: Expressions for

proofs {i.e. realizers) can occur inside the expressions for mathematical

objects and for propcsitions, i.e. mathematical objects and propositions

can become dependent on the truthof (other) propositions. Example: Let

P be ft predicate on type a, let 3!x.P{x) (how this is defined does not

matter here). Then the axiom of individuals [37], which is usual in the

standard development, introduces a constant (a iota-symbol) ind(a,P,t)

tagether with the appropriate axioms, for the unique object satisfying

P; bere t realizes 3!x.P(x). Of course, ind(a,P,t
1

) and ind(a,P,t2)

are book-equal. However, irrelevanoe of proofs is needed to make these

expressions definitianally equal (cf. 5.2).

In this way implications « • S (generalized impliaations, as we

say) are formed where S cannot be stated unless a holds, and similarly

we can get generalized conjunations. Such prapositions are said to

beleng to generalized logio (see[20,37,77]).

44

The propositions-as-types development of sec. 5.9 is not the only

one possible. Alternatively, the propositions can be introduced as

ordinary types (of type type), or as 3-expressions of a new type bool.

Since in the first alternative no distinction is made between proposit

ions and ordinary types (in fact there is no p-fragment, only a t

fragment) the realizers enter the discussion as ordinary objects (con

structions) too. This seems to be the proper choice if we want to s~udy

constructive foundations. Of course, irrelevance of proofs is out of

the question here. The secend implementation, where the propositions

enter as degree 3 expressions, gives rise to higher order logic. In

this case the truth of a proposition B is expressed by a formula

tE B1
, where B1 is an ordinary type (the "proo[-type" of B) associated

with the proposition B. This "proof-type" of B (usually denoted TRU[(B),

or ~(B) or proof(B)) has to be introduced because Bitself is not in

habitable {unless we use AUT-4, see 4.12}. In Jutting [37] there is also

a development in the bool-style.

5.11 On propositions-as-types

In fact, Automath is not just a predicate logic but rather the

proof system of a predicate logic, because a formula A of the logic is

not expressed directZy but via a statement of the underlying typed À

calculus, of the form t E A. so it is reasonable to ask for the decida

bility of the system: proof systems have to be decidable. One might

wonder, though, why we took such a peculiar proof system, this formulae

as-types kind of formalization.

Our main point is that the formulae-as-types way of implamenting

a proof system is a straightforward one. The classical notion of formal

proof is: a finite sequence of formulae, each of which is either an

axiom or fellows from the preceding ones by application of an inference

rule. This meagre notion of proof is already decidable but useless for

our purposes because the decidability is not feasible. For ether pur

poses as well (proof theory) this notion of proof is considered too

uninformative.

The first impravement coming to mind is to provide each formula

(let us say: Zine) in the sequence with additional information: (1)

a ZabeZ (e.g. a mere line number, or a more expressive identification),

45

for later reference, (2) some ~eason, some justifiaation for that line.

The information (2) has to indicate: (a) what inference rule is used

far establishing that line, (b) on which previous formulas (indicated

by their labels) that inference rule has to operate. The axioms in the

sequence do not get a justification but just a flag AXIOM, say. Notice

that the justification part of a line can also be conceived as an in

struction to operate with the indicated inference rule on the indicated

preceding lines. If the proof is correct, the formula part of the line

will be the result of this operation.

Another, independent, impravement is to allow praofs f~om assumpt

ions, in natural deduction style. In this case additional information

must be given with each line to indicate the context in which it is

valid (i.e. the assumptions on which it depends).

The proof system we have now arrived at seems to be a natural one

for mechanical proof-checking: each line consists of four parts, a aon

text part, an identifier part, a justifiaation part and a fo~Za part.

Just a slight generalization leads us to Automath. First, we allow the

justification part to be a compound expression coding ite~ated use of

inference rules. This will save a lot af lines in the proaf. Secondly

we allow each theorem from assumptions and depending on propositional

or predicate variables to be used in subsequent lines as a new

inference rule. This gives the system on the flexibility and generality

af ordinary mathematical reasoning.

Still one step has to be made: to recognize that what happens in

our proof system is completely parallel with what happens in our typed

À-calculus framework. That making assumptions amounts to introducing

variables, that stating axioms amounts to introducing primitive con

stants, and that deriving theorems can be conceived as introducing de

fined constants. Finally, the abstraction and application rules of the

typed À-calculus amount to the introduetion and eliminatien rules for

implication and universal quantification. Then the abbreviation line

a E A, y E B * d : D E C

(this is the proper book-and-line format, we would rather write

x E A, y E Bf-d(x,yl := D E C or the like) can be understood as "from

the assumptions A, B the formula C can be derived by using the compound

instructien D; this theerem can be referred to as line d".

46

· So, we can explain formulae-as-types as just a practical way of

implementing a proof-checking system. Fitting the proof system into

typed À-calculus gives rise to an unusual interpretation of the E-symbol

but 'there is noharm in that (compare 4.6). The third interpretation

of realizers (cf. 5.2) seems appropriate to the above explanation: a

realizer is a mere indication that its formula holds.

A completely different question is: would there be anymore direct

way of repreaenting reasoning via the E- and Q-formulas of the under

lying typed À-calculus of Automath? The answer to this question (no)

sheds some light on the particular limitations (see 5.7) of Automath.

The first point is that the E- and Q-formulas themselves do not allow

any reasoning. The only E-assumptions we can make are the typing assumpt

ions for variables, and the only E-axioms we can make are the typing

axioms for the primitive aonstants. The Q-formulas are even more im

plicit: Q-assumptions are not allowed at all, and the only Q-axioms are

the abbreviations. (Scott [62] indicates that allowing Q-formulas for

assumptions would spoil the decidability). For the rest, E- and Q-formu

las just hold or not: if they do not hold they cannot even be stated as

an axiom or as an assumption. Consequently they cannot be negated

or used in a reasoning ad absurdum. Then, we might look for another tric

{different from propositions-as-types) to repreaent reasoning. One idea

might be to introduce a type of truth-values and to see to it that

each proposition {or some object associated to it) would be definition

ally equal to a truth value. Another idea might be to introduce a type

for the true propositions (or objects associated to them) and a type

for the false ones(or objects associated to them). Apart from the fact

that these proposals simply are not feasible (just try) they would

imply that all propositions would become decidable (because E and Q are

so) and that is not what we want.

5.12 A comparison with higher order systems

We have mentioned before that abstraction over type-variables is

not allowed in Automath. In this respect Automath is distinct from

both Martin-Löf's system and Girard's systems. Martin-Löf distinguishes

small types and large types. An example of a small type is the type of

the natura! numbers, examples of large types are: the type V of smal!

types (like our type) and the types which reprasent propositions (in

47

the propositions-as-types sense). Now variables ranging over small types

can be quantified, but quantification over, e.g., propositional variables

is still not permitted, so Martin-Löf's system does nothave higher order

logic.

However, Martin-Löf's system is higher-order in our technical sense

(see IV.1.5) because, by his built-in recursion mechanism, a type-valued

function, T say, can be defined such that e.g. T(O) = nt, T(n+l) =
T(n) ~ nt (where nt is the type of natural numbers). Then the product

n(T) consists of functions with values (numbers, functions, functionals)

of arbitrary high complexity (Seldin would say rank). Note that in

Automath such functions of unbounded functional complexity cannot be

defined: crucial in the recursive definition of T is the presence of

the function Ày:V. (y ~ nt) (with y a type-variable!) which takes T(n)

to T(n+l).

Girard's systems actually contain higher-order logic, because

quantification over all type-variables is admitted. E.g. (we use Auto

math notation) the object [a:type][x:a]x of type [a:type][x:a]a can be

constructed. In fact Girard would write that DTa.ÀXa.xa is of type

Aa.(a ~a).

I.6 The contents of this thesis

6.1 This thesis has become a comprehensive volume on results and

methods in the language theory of Automath: most of the language theo-

retical questions, as they are stated above, are treated for most of

the current Automath languages.

Since many results are quite technical we aften, for better access

ibility, give a double exposition. First an informal, heuristic one, to

explain the ideas, followed by a more rigarous one with some (sometimes

many) technical details. If one likes, one can skip the latter.

Most chapters are almast independent and self-contained: they have

their own introductions, definitions are repeated etc. For many results

some different proofs are given, and some known theorems from [51] and

[70] get new proofs.

The discussion is mainly directed towards the Automath languages

and the Automath project. However we think that some results may be of

more general interest: to À-calculus and, by the propositions-as-types

isomorphism, to proof-theory.

48

6.2 This thesis {apart from the introduction) can be divided into three

parts: (1) a general, preparatory part in a type-free setting (Chs. II

and III), (2) a part on pure (see 1.10) typed systems, with application

to AUT-68, AUT-QE and AUT-SL (Chs. IV-VII), (3) a part on the extended

(1.10) language AUT-Pi (Ch. VIII).

Ch. II deals with the preliminary definitions: expressions, sub

stitution, reduationB, definitional equality. The expressions are al

ready internally decorated with type labels, but a typing relation is

not yet defined and, hence, the types do not restriet the expression

formation. Various properties are introduced and discussed in a gene

ral setting: noPmalization and strong normalization, alosure, Churah

Rosser and postponement. The possible interference of the various kinds

of reduction is analyzed, in conneetion with the latter two properties.

Finally the important reduation-under-substitution lemma of type-free

À-calculus is proved.

It is advised not to miss II.0.4.2: we introduce some handy but

slightly unusual notational conventions (in particular on tacit exist

ential quantification).

Ch. III deals with the isolated study of one specific kind of re

duction, viz. o-reduction (see 4.3). A Church-Rosser proef is given,

and various ways of proving strong normalization are indicated. Partic

ularly interesting is De Bruijn's strong normalization proof for o-re

duction, which simply calculates the maximum length of a reduction

sequence.

6.3 Each of the chapters IV, V, VI is devoted to one specific aspect

of the pure typed systems: (streng) normalization, closure and Church

Rosser (cf. 2.7) respectively. Ch. IV starts with an introduetion on

typed À-calculus systems in genera!. Like Nederpelt in [51] we use the

following strategy to prove (strong) normalization for our languages:

first we introduce a general system of normable expressions (for short:

a normable system), then we prove (strong) normalization for this systea

. fihally we prove that both AUT-SL {i.e. A) and a liberal, comprehensive

version of AUT-QE (including all the current versions of AUT-QE and

AUT-68} are normable.

There are given three new proofs of strong B-normalization for

normable systems. Because the usual pure first-order (see p. 29) typed

systems are clearly normable, these proofs are quite generally applicab]

Like Nederpelt's proof of strong normalization in [51], these proofs

are not based on a notion of computability.

49

Ch. IV also contains the precise definitions of hook, context and

degree, and there is defined a typing re~ation (or rather: a typing

funotion). However, in the normable expressions the typing restrictions

on the expression formation are not fully respected, but only a weak

form of them.

6.4 Ch. V gives a framewerk (the E-definition) for generating the

oorreet expressions and formulas of the various Automath languages. It

mainly concentrates on the regu~ar languages (see 4.5) AUT-QE, AUT-68

and their variants.

Then the o~osure proofs are given: first of AUT-QE with Bn-reduct

ion (so without Ö) then of some more liberal versions AUT-QE+, AUT-QE*

with full reduction. Several unessentia~-extension results are presented.

Since the closure proofs of Sn(ö)-AUT-QE are technically somewhat com

plicated, we also indicate how, e.g., 8-AUT-QE and Bno-AUT-68 allow a

simp~er closure proof.

In the last section of Ch. V we prove - anticipating the Church

Rosser result of Ch. VI - the equivaZenae of the E-definition with the

aZgcrithmic definition (see 2.6). Quite some attention is paid to the

choice of a typing function and a domain funation for the various

languages. Finally we make a few remarks on practica~ verifiaation of

Automath languages.

6.5 InCh. VI we prove the Churah-Rosser property for the pure Automath

languages. In particular we solve the Bn-Ghurah-Rosser problem caused

by the presence of the type-Zahels (which are themselves expressions)

inside the abstraction expressions in Automath. Nederpelt [51] first

indicated this Bn-problem and correctly conjectured that Bn-Church

Rosser holds in the correct expressions. Except for the Sn-case, the

Church-Rosser property for pure systems can be proved in the genera!,

unrestricted expressions (as indicated inCh. II.6).

In fact, we first prove Bn-church-Rosser for a weak form of n-re

duction, just sufficient to cover the n-reductions needed in the veri

fication of Jutting's Landau-translation. Afterwards we tackle full

n-reduction.

50

Resuming, Chs. IV-VI show that the pure Automath languages satisfY

the three desirable properties (cf, 2.7).

6.6 Ch. VII deals exclusively with the language theory of Nederpelt's

A (or: AUT-SL). Here our pcint of departure (in contrast with Ch. V) is

the a~orithmia definition.We introduce the socalied degree-norm correct

expressions. We show that alosure and Churah-Rosser can directly be

proved from the algorithmic definition, with the help of the big tree

theorem. We give two new proofs of this theorem, the first one being a

mere extension of the secend streng normalization proof of Ch. IV, the

secend one rather based on the first streng normalization proof in IV

and making use of the book-keeping pairs from de Vrijer's proof of the

big tree theerem for his system ÀÀ [70].

Finally we campare various versionsof A: withand without constant<

(resp. defined aonstants), the single-line version and the book-and

aontext version etc.

As regards the three celebrated desirabie properties for A, Ch. VII

just duplicates the Chs. IV-VI.

6.7 Chapter VIII discussas extended systems, in particular AUT-Pi. In

the first sectien the additional type forming operations: binary union

{$), disjoint sum (~J, aartesian product (n}, the additional term

forming operations: injeation (i
1

and i 2), plus($) and pairs (<•,•>),

and the additional reduations: +, ~, ~, a are introduced ~nformally,

and the conneetion with full intuistionistia prediaate logia is ex

hibited.

we generata AUT-Pi by an E-definition and prove the alosure proper~l

We tackle strong normalization as in IV (and VII) : we extend the notion

of form and define two systems AUT-Pio and AUT-Pil which are extended

normable. For these systems we prove a variety of streng normalization

results. First we show that the methods of IV immediately cover the

s~no-case, but that the presence of +-reduction requires additional

· attention {the socalled dead end set becomes unmanageable).

Three new proofs for strong B~+na-normalization are presented, two

of them making use of some additional technica! reductions (permutative

and improper reduations}, the third one using aomputability. Then these

streng normalization results are transferred to AUT-Pi,

51

However, for fu~~ (i.e. STI+ncrE-) AUT-Pi the language theory is not

finished, fu~~ ChuPoh-Rosser is simply false, and full strong normaZ

ization we have not been able to settle (though we strongly believe in

it).

6.8 The results of this thesis, even when pertaining to type-free À

calculus, are derived by syntactic, combinatoPiaî methods (in contrast

with the model theoretic and recursion theoretic reasoning aften used

in À-calculus nowadays) •

Another point about methods is, that we have been able to avoid

the notion of residuaî (and we don't employ the underîining method of

Barendregt [2] either). Cf. the reduction-under-substitution lemma in

II.ll.

Finally we mention that (except in VIII, the last proof) we have

not used any notion of computability or the like in our streng normal

ization proofs, but have restricted ourselves to a priori elementary

methods (cf. IV.1.6.3).

6.9 Now we list some language theoretical subjects which we think to

require further attention.

In view of 6.7 a further analysis of the definitional equality in

AUT-Pi is needed. In particular a decision procedure is wanted (though

not absolutely necessary, see 2.8) that does not rely on Church-Rosser

(a suggestion is made in VIII.6.2). Or, alternatively, a new reduction

relation may be indicated that generates e-equality and does satisfy

Church-Rosser.

Secondly, some more work on the comparison of languages would be

welcome. E.g. the pPecise connections between AUT-68 and AUT-QE have

never been made explicit. Here we do not mean the connections between

their rules, but rather between what aan be said in these languages.

To be specific, we think that AUT-QE books can be translated into

AUT-68 hooks, and that AUT-synt might play a role in this respect as

well.

Another point deserving interest is the role of the "extensional"

reductions n, a and E. Notably, we think that these reductions can be

avoided by first translating (performing n-expansion etc.) and after

wards performing the corresponding intPoduation-e~imination reductions

52

8, ~ and + (compare [37, sec. 4.1.1]). Actually we have·tried the n

case but got stuck in technical difficulties with the type-labels.

In ~III.2.7 we describe a natural extension of AUT-Pi, which never·

theless causes our treatment of strong normalization to fail hopelessly.

This is an interesting point of study too.

Finally we mention some subjects that fall somewhat outside the

scope of this thesis but are very important for the actual implementat

ion: (1) iterated referenaes etc. (see 3.4) , (2) AUT-synt, (3) strings

and-telesaopes. Work in this direction has been done by Zandleven, De

Bruijn, Jutting and Wieringa (see 3.4) but we think that further study

is required,

53

CHAPTER II. MISCELLANEA

Sectien 0 of this chapter gives some camment on methods (inductive

definition and inductive proof) and introduces some notational conventions.

The sections 1-4 form a brief introduetion to the various À-cal

culus systems considered in this thesis. The sections 5-7 contain some

general considerations on the ciosure property, the Church-Rosser prop

erty, (streng) normalization and postponement (for a combination of

reductions). Also some results of this kind are stated, and a proof of

the Sr,-Church-Rosser property for untyped À-calculus is included.

In the sections 8 and 9 the Church-Rosser property anà postponement

are discussed for the specific reduction relations considereà.

Section 10 defines the concept of multiple substitution, and

sectien 11 proves a lemma (the reduction-under-substitution lemma)

which has interestinq applications in untyped À-calculus.

II. 0. Preliminaries

0.1. Inductive definitions

Throughout this thesis many notions (predicates and relations) are

given by so-called ordinary induative definitions. An ordinary inductive

definition of, e.g., the predicate P consistsof a finitesetof indue

tive alauses or ruZes of the form:

"if P(a1J and P(a2) ... and P(ak) then P(<j>(a
1

, ... ,ak))",

where k ~ 0, <j> is a k-ary operatien and , ••• ,ak are variables. *)

In such an inductive definition it is, without further notice,

intended that P(a) holds, only if this fellows from iterated applica

tion of the rules. We may assume that there is at least one clause

with k = 0 and <j> a constant - a starting clause - We say that P is

inductively generated from the starting clauses by closure under the

ether clauses.

It will be clear how inductive definitions of binary relations,

or of several notions simultaneously have to be interpreted. With in

ductive definitions of (partial) functions, we have to be more care-

ful, of course.

*) In fact, the definition of eomputability in VIII.5.3 is of a more
general nature .•

54

0.2. Inductive proofs

Let< be a partial orderand let< be well-founded, i.e. thereare

no infinite (strictly) deseending sequences a
1

> a
2

> •••• Call ba

desae~-dant of a if a > b; b is a direet descendant of a if a > b and

there is no a in between. If we can show, for all b,

(V bP(a)) ~ P(b) a<

then we can conclude Va P(a). This is called proof by induction on<,

If there are no infinite (strictly) increasing, bounded above,

sequences al < a2 < ••• < b either, then for all b, bis either an

endpoint - i.e. minimal with respect to < - or b has a direct descendan·

So, in this case, if for all b, a,

b endpoint ~ P(bl ,

and

(P (b) A b direct descendant of a) • P (a}

then Va P(a). This principle of proof is also induction on<.

Call < finitary, if each a has only a finite number (possibly zero

of direct descendants. If < is finitary and well-founded and has no in

finite increasing, bounded above, sequences, then by the lemma of

Brouwer-König, for each a there is a maximum to the length of descendin<

sequences startingin a. Call this maximum 6(a). Then the various in

ductive proofs of P(a} can simply be reduced to mathematica! induction,

viz. to induction on 6(a).

0.3. Induction on definitions

Let p be given by an ordinary inductive definition. If, for each

clause in the definition of P, as above,

then, clearly, P(a) • Q(a) for arbitrary a.

This kind of inductive proofs can be considered as proofs by in

duction on the finitary, well-founded partial order generated by the

definition of P (in fact, this order pertains to the objects a ~e~~ed

with a derivation of P(a). The ai (with labels) are the direct descen

dantsof +<a , ... ,a) (with its label)).
1 n

we shall speak about proofs by induation on P, or over P or on the

lengthof proof of P(a).

55

0.4. Notational conventions

0.4.1. Syntactic variables

Syntaetia variahZes are the variables of our meta-language, denoting

syntactical objects such as, e.g.,the expressionsof an Automath language.

Often we reserve some specific syntactic variables (possibly indexed

or primed) to denote exclusively objects of a specific syntactic cate

gory. E.g. ~, r denote expressions, x, y denote variables, B denotes

books etc.

0.4.2. Logical symbolism

We freely include logical symbols in our meta-language, to shorten

and to clarify the discussion. As an example of our notational conventions

concerning the logical symbolism consider:

A ~ B, A ~ C ~ B ~ D, C ~ D

tne so-called Church-Rosser property. Written out in full, it would

re ad

V B

So, the conventions are:

~ C) ~ 3 (B ~ D A c ~ Dl) •
D

(i) • binds loosely, the comma denotes A

(ii) free variables are tacitly quantified: by an existentiaZ quanti

fier if their first occurrence shows up after the main =-symbol,

otherwise by a universal quantifier.

0.4.3. Reasoning about inductive definitions

Let P be a predicate given by an ordinary inductive definition. Let

~ 1 , ••. ,~m and ~ 1 , ..• ,~n be additional inductive clauses for P. Let P'

be generated by adjoining ~ 1 , ..• ,~m to the definition of P (so clearly

V a (P (a) .. P' (a))) • we say that ~
1

, ••• , <Pm are derived rules of P if

V (P (a) ~ P' (a)) •
a

Let P" be generated by adjoining '1' 1 , ... ,'l'n to the definition of P.

Then, the rules ~ 1 , ••• ,'l'n are derived rules of P' if and only if

Va (P" (a) .., P' (a)). As an easy shorthand notatien for this situation we

write (sic)

~l'''''~m ~ 'l'l'''''~n

(Le,by adjoining ~ 1 , ... ,~m' the rules ~ 1 , ••• ,'1'n become derived rulesl

56

II.l. Expressions

1.1. Herewedefine our universe of discourse, the expressions of ge

neralized typed À-calculus. The expressions are formed from variables

and constante using various operations such as abstraotion, appliaation

etc. We take (as in de Bruijn [10]) À as our only variable binding

operatien and denote the other operations by so-called basio constants,

such as abstr, appl etc.

1.2. Variables and constants

The constants are distinguished in basia or language constants

and the book constants. The latter fall apart in primitive and defineà

constants. All constants have a certain arity, the number of arguments

going with them. The arity of a constant f is denoted lfl.

Th ere is only a small number of basic constants, as listed below

arity 0 type, prop
arity prod, sum, proj 1, proj2
arity 2 appl, abstr, plUS, i nj 1, inj2
arity 3 pair

In contrast with this, any alphanumeric string can serve as a

variable or a book constant. The syntactic categories: variables,

primitive constants, defined constants, and basic constants, are

assumed to be mutually disjoint.

we use x,y,z,u,v as syntactic variables for variables, f for con

stants, a for book constants, p, q for primitive constants, d for de

fined constants and E,r,~, •• ,A,B,C,,.,a,a,y, ••• as syntactic variables

for expressions.

1.3. The expressions are inductively defined:

(i) variables: x is an expression

(ii) À-expressions: ÀX•E is an expression

(iii) constant expressions: 1. lfl 0 => f is an expression

2. lfl k => f<E 1, ••• ,Ek) is an expression

1.4. Various systems of expressionscan be defined inside this frame

werk by specifying the set of (basic) constants. Thus we have free,

57

i.e. untyped X.-calculus with appl as its only constant, the abbreviation

calculus LSP ~h. III) with book constants only and, of course, the

Automath languages.

In the latter languages, the À-expressions are not present as such,

but only inside abstraotion expressions: abstr (E 1 ,Àx·~ 2 J. And only

such abstraction expressions abstr (E 1 ,1: 2) are allowed where r
2

is a

À-expression.

The Automath languages AUT-68, AUT-QE and A have type (and

possibly prop), abstr and appl astheir only basic constants, and are

called the pure Automath languages, Besides these basic constants, AUT-Pi

has all the additional operations mentioned, such as prod, sum, plus,

injl etc.

l.S. We use the ordinary Automath notations:

T for type, rr for prop, n for prod and L for sum

{A}B for appl (B,Aj , [.x:A]B for abstr (A,À.x•B),

A(l) for projl(A), A(
2

) for proj2(AJ, <A,B,C> for pair(A,B,C)

·i
1

(A,B) for injl(A,B), i
2

(A,B) for inj2(A,BJ

and A~ B for plus(A,BJ

In free À-calculus simple juxtaposition is used to denote application:

BA for {A}B.

1.6. In {A}B we call A the argument part and B· the funotion part.

In [x: A]B we call A the domain part and B the vaZue part.

The domain part A of [.x :A]B and further: the A of <A, B, C>, the

B of i 1 (A,B) and the' B of i 2 (A,B) are just type-Z.abûs_, present in

order to fix the type of the expression. For an explanation we refer

to I. 4. 2 and VIII .1.3. In case we are not interested in thé .type of the

expression, we simply leave out the type-labels, writing [x]B, <B,C>

i
1

(A), i
2

(A) respectlvely.

The symbol ~ is assumed to have less binding power than the

other symbols for expression formation. Additional parentheses are in

serted whenever useful to avoid ambiguity.

58

1, 7. Strings

Expression strings E
1

, ••• ,Ek are denoted by Ë, variable strings

~ 1 , ••• ,~k by x. The empty string is nota priori excluded, The muZti

pZiaity of a string E1, ••• ,Ek is kandis denoted by Ir!. So we can

rephrase clause 1,3. (iii)2 by

Further, if IÄI = k, lxl = k then

{Ä}B is shorthand for {Ak} ••• {A
1

}B, BA for \ ••• (BA 1) ••• Ak) and

[x:Ä]B for [~ 1 :A 1 J ••• [~k:Ak]B.

Sometimes, by abuse of notation, we treat variable strings as sets,

writing, e.g. y € X insteadof : y is among ~1 , ••• ,~k' etc.

1.8, Length, subexpressiena

In agreement with 0.3, induction on the definition 1,3 is called

induction on~ressionsor, also, on the structure of expressions.

Counting variables and constants as single atomie symbols, the Zer~th

i(E} of an expression E can be defined by:

k
.1'.(~} 1, .I'.(À~·E) .I'.(El + 1, R.<f<Ë» 1 + I 9, (E.) •

i=l ~

Similarly, r is said to be a sub~ression of E, for short

r c E, according to the following inductive definition:

(i} E c E

(iil r c E ~ r c ~·E

(iii} r c Ei~ r c f<E1, ••• ,Ei'''''Ek) (i= l, ••• ,k) •

Clearly, c is a partial order. we say that E is a direct sub~ression

of À~·E and that E
1

is a direct sube~ression of f<E 1, ••• ,Ek).

We want that the Aut.omath expressions are closed under taking sub

expressions. So, when discussing these, insteadof (ii) we include (ii')

(ii'} E c A or E c B ~ E c [~;A]B

and we restriet clause (iii) to constants f different from abstr. In

this case A and B are the direct subexpressions of [~:A]B.

59

1.9. Occurrences, suggestive dots

If E c r, then E can have several oeaurrenaes inside :. such oc

currences can be distinguished by their positions inside r, e.g. like

in Nederpelt [51, p.18].we shall treat occurrences in an informal way.

Two occurrences are disjoint if they have no occurrences of symbols in

common.

Often, to denote an arbitrary expression with one or possibly

more specific occurrences of a Subexpression E we write:

•• • z ... , resp. • • • z •.. l: •••

The meaning of these suggestive dot? will be clear from the context.

We formulate the fUndamental property of sube~ressions in terros

of suggestive dots: if ••• z ... r ... is an expression then one of the

following alternatives holds

(il l: and r disjoint, or (ii) l: c r, or (iii) r ç l:.

Notice that these cases do not exclude each ether.

II.2. Syntactic identity, a-equality and substitution

2.1. Pree and bound variables

The free variables and the binding variables of an expression can

be defined informally, as fellows:

(i) the first occurrence of x in Àx•E is called a bindir~ oaourrenae;

l: is called the saope of the binding x.

(ii) an occurrence of x, not being a binding occurrence, is called

free if it does not fall inside the scope of a binding x.

(iii) a free occurrelilce of x in l: is calledbound in ÀX•E (by the bind

ing X)

(iv) x is a free variable of l: (resp. a binding variable of l:} if there

is a free (resp. binding) occurrence of x in E.

Thesetof free variables of l: is called FV(l:}. If we write

••. x ••. x •.. , we intend an expression with some free occurrences of x.

Fora string Ë, FV(Ë) =U FV(E.}.
~

60

2.2. Syntactic identity and a-equality

By • we denote syntaatia identity, i.e. symbol-for-symbol-equalit~

of expressions, module a-equaZity, i.e. renaming ofboundvariables.

So a name-aarrying expression is considered to repreaent a certain

name free skeleton - or, alternatively, an equivalence class of

a-equal name~carrying expressiena -. Our point of view,*) viz. of simpl

identifying ••• {ÀX• •• • x •• • x •••) ••• and ••• (Ày• •• • y •• • y •••) •• , can be

justified by referring to Curry [25], Nederpelt [51] or de Bruijn

[10] • The latter reference gives a treatment of a formalism of

namelees duromies (see 1.3), which is actually used in the current-

ly implemented verifièr for Automath languages.

The notatien = extends to strings: Ë • r, if lil = lfl and, for

i 1, ••• ,1~1, E. = r .• Further, E' r means: not (E • f), and similar·
~ ~

ly for strings.

2.3. Now that we have introduced • we return to the notion of subex

pression. We say that E is a proper sube~ression of f, for short

E sub r, if E c rand E + r. Clearly, sub is the transitive relation,

inductively generated by the relation

• We have such properties as:

E c r , r a variable or constant ~ E • r

is direct Subexpression of

And we can make the fundamental property of subexpressiena more

precise: if r c t., r c 1:. then precisely one of the following alterna

tives holds: (i) E and r disjoint, {ii) E and rare the same occurrence

(so E = f), (iii) E sub r, or {iv) r sub E.

2.4. Substitution

By E[x/A] we denote the result of substituting the expression A

for all free occurrences of x in r. Similarly by the operator [x/Ä]

we denote simuZtaneous substitution of A. for the free occurrences of
~

xi' for i l, ... ,k (where k = lxl = IÄI and all xi are mutually dis-

tinct). The notatien extends tostringsin a straightforward way. One

has to take care that no free variables of the substituted expressions

come under the "wrong influence" and become bound after substitution.

For definiteness we give the definition of simultaneous substi

tution, Let E* locally abbreviate E[~/ÄD. Then by induction on E, we

*) Actually inChs. IV, VII and VIII there are used certain methods
which are not completely compatible with this approach.

define r*, as fellows:

(i) a. * y !! x. *Y :=A.
~ ~

{. - * y X*Y := y b.

(ii) y t x, V._1 1
-

1
(x . .:: FV(EJ • y 1 FV(A.ll -

~- , •.• , x ~ 1

* * {;\y •l:) : = >.y •l: - otherwise re name y in Ay •l: -

(iii)a. * f :af

b.

Single substitution [x/A] amounts to the case lxl = 1 above.

Sometimes, if the x are not relevant or clear from the context,

then we wr i te

l:[Ä] instead of l:[X/A] •

2.5. Two fundamental substitution properties

Substitution property I: If all free variables of l: are among y

1:hen

Substitution property II: If no free variables of Ä are among y

and x and y have no variables in common, then

Both proofs are by induction on r. To illustrate I (in the

case of single substitution), let l: = .•• y ••• • Then

61

l:[y/B] = ••• B ••• = ••• (,,.:;c,,,), •• and there are no free variable occur

rences outside B. So l:[y/B][x/A] = •. ,{ .•• A •••) ••• = l:[y/B[x/A]] q.e.d.

And to illustrate II. (in the•case of single substitution the conditions

read: y I. FV(A) and y Ij; :r), let r e .. • y ••• x ... • Then

l:[y/B] e ... B ••• x ••• e ••• (... x ...) •.• x ••• ,

l:[y/B][x/A] a ••• (••• A ••• l •• • A ••• • Further l:[x/A] = .. . y ••• A ••• and

Ux/A][y/B[x/AU = ... (... A ...) ••• A ... q.e.d.

2.6. Substitution and subexpressions

Let, again, = l:[x/Ä]. Then of course, if l: = ... r .•. then

* * 1: = ••• r .•. , And about the "converse" question: where do occurrences

62

of subexpressions in r* arise from? Let r* s ,,,r,,, , Then precisely

one of the following alternatives holds:

* (i) E = ••• r
0

••• , r
0

= r, forsoma r
0

c E, or

* (ii) 1: • • • .x i •.. , E s •• • A . ••• = ... (... r •••) ••• , r sub A. forsome i.
~ ~

(I.e. r occurs as a proper subexpression inside one of the substituted

accurences A .) •
~

If, e.g., r = f(~) then (i) specializes to:

(i) a. 1: = ... f<~o> ... , -*
t:.o .. ö, or

(i) b, 1: ië x i • .. ' r =Ai .

11.3. Elementary and one-step reductions

3,1, The relations of definitionaZ equaZity of expressions will be

defined inductively, we start with eZementary reduations, then define

one-step reduations, proceed to more-step reduationsand finally to

definitional equality. Since we only discuss purely syntactical as

pects here, all these relations are defined on the full universe of

expressions.

3.2. Elementary reductions

3.2.1. s- and n-reductions

These are the usual À-calculus reductions, associated with the

basic constants abstr and appl.

S: {A}[x:BJC

n: [x:BJ{x}C

elementary reduces to C[A]

elementary reduces to C , if x(. FV(C)

In free À-calculus, with the alternative notations, these elementary

reductions read

elementary reduces to C[A]

elementary reduces to C if x(. FV(Cl

63

3,2.2. rr- and a-reductions

These reductions are associated with pair and projl, proj2.
Here 1T is intended to suggest "projection" and a stands for "surject

ivity of pairing", after Barendregt [3].

rr: <A,B>(l) el, red, toA

<A,B>(2) el, red. toB

a: <4(l)'A(2)> (or, with type-label, <B 1A(l)'A(2)>)

el. red, toA {However, see VIII.2.5.1.)

3.2.3. +- and e-reductions

These reductions are associated with plus and inj.

+: {i
1

(A) }(Be Cl el~ red. to {A}B

{i
2

<Al}(B e C) el. red. to {A}C

e: ([x:AJ{i
1

(x,D)}B) e ([x:C]{i
2

(x,E)}B) el. red. toB,

if X i FV(B).

As an alternative version of +, suitable for the case where all

plus-expressions are of the form [x:A]B e [y:C]D, we have (this is +

combined with Sl

+': {i
1

(E,F)} ([x:A]B e [x:C]D) el. red. to B[E], etc ..

In the chapter on AUT-Pi, some further reductions connected with e

~ill be introduced, the permutative reduations.

3.2.4. 5-reduction

Here o is intended to suggest "definition.aL". This reduction is

of course associated 'with defined constants, for which a defining

~~om is given.

o: d(~) el, red. to Á[X/~] ,

if dis a defined constant with defining axiom d(x)~Á- where FV(Á)c x
This kind of o- or definitional reductions must not be confused

with Curry's ö-reduction [25], Church's ö (in Barendregt et al.[SJ), or

the ê-reduction proposed in Staples [65].

64

3.3. In all the definitions of elementary reductions above, the left

hand side is called redex and the right hand side is called the oon

:racv~ of the reduction, Elementary reductions are also called

eon tl•ac tior..s.

We use some terminology like in Prawitz' theory of natura! de

duction systems [59]: abstr and pair are the negative, and injl, inj2
are the positive introduetion operations. Further appl, projl and proj2
are the e~imination operations:'correspondingly, a-, ~- and +-reduct

ions are called the introduation-elimination (I.E.) reductions. The

reductions n, o and E are called the extensional (ext} reductions.

3.4. One-step reductions

We consicter three kinds of one-step reductions > 1 generated in

ductively from the elementary reductions by certain monotonieity rules.

A subscript or a combination of subscripts indicates which of the

elementary reductions are included. E.g. >Bnó is a one-step reduction

generated from elementary 8-, n- and ó-reduction. The three kinds of

ene-step reductions differ by the monotonicity rules used in their

definitions.

For > 1 and t.'îe other relations between expressions, defined here,

the notatien extends in a straightforward way to strings. E,g, ! > f
if jËj = IFI and, for i l, ... ,lrl,

we define E > E' by induction on the structure of E. First, or

dinary ene-step reduction has the following clauses

(i) if E elementary reduces to E' then E > E'

{ii) if E > E' then ÀX•E > ÀX•E'

{iii) if

{i

> r then f(E 1 , ••• ,E1 , ••• ,Ek) > j(... ,Ei-l'r,Ei+l, ...)

1, ••• ,k).

Secondly, the disjoint one-step reduction has an additional cl~us

(0) E > E,

and instead of (iii)

(iii')if Ë > Ë• then f(Ë) > f(E')

Finally, the nested one-step reduction has the clause (0) - re

flexivity -, the monotonicity rules (ii) and (iii') - just like the

disjoint one-step reduction -, but insteadof (i) it has (1'), with

inductively given elementary reductions:

*) The operatien plus falls somewhat out of this classification.

(1'} : 6: A> A', C > C' ". {A}[x:B]C > C'[A']

n: C > C', x i FV(C) ,. [x:B]{x}C > C'

- and similarly in free À-calculus -

~=A> A', B > B' • <A,B>(1) > A', <A 1 B>(2) > B'

(J: A > A I .. <A (1) I A (2)> > A I

+: A >A', B > B' I c > c• ..

{i
1

CA)}(BeC) > {A'}B', {i
2

(A)}(BeC)>{A'}C'

e:: B > B',x t FV{B) • ([x:A]{i
1

(x)}BID[X:C]{i
2

(x)}B) > B'

ó: if dis a defined constant with defining axiom d(x):=~

(FV(~J c x> then Ë > Ë' .. d(Ël > n[x/Ë']

65

3.5. If E > r and actually some contractions take place in the reduc

t~on step (e.g. when it is an ordinary one-step reduction) then r is

a !.·:reet reduct of E. By induction on L: it appears that: (1) the set

of direct reducts of l: is finite (provided there are only finitely

many defining axioms for each defined constant) and effectively con

structible, so certainly (2) E > r is decidable,

3.6. The disjoint and the nested one-step reductions are so-called

a:;mpound (after Curry) or speaial (Nederpelt [51]) one-step reductions.

Trcelstra [69] speaks about "clever counting of contractions".

The terminology can be explained as fellows: whereas ordinary one

s~e? reduction contracts precisely one redex, both special reductions

allQw to contract several (possibly: none) redices at a time. In the

":l~sjoint case" these simultaneously contracted radices have to be

disjoint 1 but in the "ne·sted case" they may also occur inside each

other, i.e. nested.

3.7. Let, if p is a reduction relation, p denote the "disjoint version"

~= p, i.e. the closure of p under (0), (ii) and (iii') and let p denote

the nested version of p, generated by (0) , (i I) I (ii) and (iii'l.

Let US write >1 for ordinary one-step reduction. Then disjoint one-
-

step reduction is >1 and nested one-step reduction is >1. Clearly,

(0), (i') ... (i)

66

i.e. if an inductive definition contains the rules (0) and (i'), then

(i) is a dePived ruZe. And, under the same interpretation

{0}, (iii.} .. (iii)

So, we have:

And, since closing once more under a rule has no effect

3.8, Substitution and one-step reduction

The point of the special reductions lies in their behaviour under

substitution. For each of the one-step reductions, we have property I:

I: B > B' • B[AD > B'[AD

Proof: By induction on B > B1
, using the substitution properties I and

II in the case of ö- and 8-contractions respectively. c

And, property II:

II: Ä > Ä 1
• B[Ä] > B[Ä']

Proof: By induction on B. Notice that possibly several substituted

occurrences of A. (which are disjoint) have to be contracted. :-
l. '--

Sa, by 3.7, we have

III: Ä >1 Äl • B[Ä] > B[Ä' D
1

Combining the reductions in B and Ä, there is property

IV: Ä > Ä I I B > BI .. B[Ä D > BI [Ä I]

Proef: By induction on B > B'. In the case of clause (0), use property

II and 3.7.

So, by 3.7 again, we have

V:

67

I I. 4. Reductions and defi ni tiona 1 equa 1 i ty

4.1. Reduction sequences

Let > be a one-step reduction. Then a (possibly infinite) sequence

of expresslons r
1

> r
2

> ••• > Ek > ••• is called a reduation sequenae

of ~ 1 with respect to >, Reduction sequences with respect to >
1

are

ordinary reduction sequences. If each Ek+l in the sequence is a direct

reduct of ~k then the reduction sequence is a striat or proper re

duction sequence. So, e.g., ordinary reduction sequences are strict.

4.2. Reduction trees

The strict reduction sequences of an expression E can be arranged

in a (possibly infinite) finitary labelled tree, the reduation tree of

E . We think of reduction trees as growing downward: label the root

with l:, at the first level below come all the direct reducts etc.

4.3. :tore-etep reduation (or just: reduction), denoted ~,is defined as

the transitive and reflexive closure of >
1

, i.e.:

(i)

(ii)

(iii) E:?. E', E':?. E" • E ~ E" •

Again, subscripts going with ~ indicate which elementary reductions

are included,

If E ~ r, r is a reduat of E. Clearly r is a reduct of E iff either

E = f orthereis anordinaryreduction sequence from E tof. In the

latter case r is a proper reduct of E.

4.4. Let, if p is a relation, p* beits reflexive and transitive closure.

* so, by definition:?. is just >
1

• Of course,~ satisfies all the mono-

tonicity clauses:

r ~ r r ... ~ ... r.,.

and

68

As in 3.8, Ä 2: Ä', B <! B' _. B[ÄD <! B'[Ä]'

Further,

whence

4,5. We write r < E for E > r, E} r for not (E > f), Similarly for 2:.

We define: E ~ r : ~ E <! ~ ~ r for some ~.

So, r ~ r iff E and r have a common reduct.

4.6. As usual, the relation (possibly with subscripts etc.)

of definitio~aZ equality (or just: equality) is the equivalence relaticn

inductively generated from <:: (resp. 2:
8

, ;::Sn. etc.).

and

Again, satisfies all the monotonicity rules:

E r E ••• = ••• r ...

* .,..

So, for equality too,

Ä = Ä I , B = B' "* B[Ä D B' [Ä•]

Clearly, is just f* I.e. E = rifforsome k 2: 0 and some _,

4.7. Insome cases we rather consider a restricted form of=. Let A be

a set of expressions. Then, we define, for E E A, r E A

So,if >A and fA are the restrictions of> and f toA, respectively,

then

4.8. The relations =, + and ~ (and, if A is recursively enumerable,

and +A) are, in view of the recurs~vity of >, by their definitions

recursively enumerable, and, ir. contrast with >, not a priori de

cidable.

Indeed, in free À-calculus equality and reduction are not re

cursive (Scott, in Barendregt [4]). Below we shall introduce some

properties which imply the decidability of the various notions.

An ordinary reduction sequence E = 6
0

> ~ 1 >,,,> ~k r is a

~a:_,, reduat-ion sequenae if at least ene of the steps ~i > '\+
1

is an

elementary reduction. we say that E main reduaes to r, for short

69

A

;: ?.
14

Rr. If for j < k, the reduction sequence from l: to ~j is not main,

then r is called a first main reduat of E.

It is just the main reductions that affect the ''outside ferm" of

expressions: if f
1

and [
2

are distinct constants and [
1

(Ï:) ?. f
2

(r)

then fl ~MR f2 (f).

Expressions (and their "leading" constants, such as [
1

in [
1

(Ï:))

are said to be immune if they do net main reduce. E.g., the primitive

constants, injl and inj2 are immune for all, and the defined constants

and introduetion constants (sec. 3.3.) are immune for I.E. reductions.

11.5. Some important properties

5.1. Below we introduce some important properties, such as closure (Cl),

streng normalization (SN) and the Church-Rosser property (CR). All

these properties (and some connected concepts, such as normal forrn,

lengthof reduction tree (8}) are defined relative toa reduction re

lation?. (and possibly a ene-step reduction >}. Now, prefixes or sub

scripts going with the introduced notions indicate what elernentary

.:::-a:J.uctions we included in the intended reduction relation. So we speak

about B-closure, Sö-SN, Sn-CL, eBnó etc.

5.2. The ciosure property

s.,:.l.Aset Aofexpressions is aloeed w.r.t. "= (or just: olosed), if

it satisfies CL, the aZosUPe property (after Nederpelt):

CL: ~: E A, ~: ~ r • r E A

70

(do not confuse CL with "combinatory logic")

We alsodefine CL 1, one-step alosure, fora one-step reduction >:

-For each of our ene-step reductions >
1

, >
1

and >
1

, we have CL 1 ~CL.
The crucial point in a proef of CL

1
is often to prove etosure

under substitution:

(in most of the cases additional restrictions on the t
1

, ••• , ï:k have to

be imposed) •

5.2.2. Clear.ly, if A is closed, then ~A isprecisely theequivalence re

lation generated by >A (see 4. 7). Proofs by induction on (the definition of)

<: (or on reduction trees, if these are well-founded) require that the

system under consideration is closed.

If <: and ;::• are two reduction relations,;:: ~ 2', and A is closeà

w.r.t. <:' then A is closed w.r.t. <:.

5.2.3. Let l be a string of constants. Call ï: an Ï-expression if the

constants of ï: are among Î· The Ï-expressions are closed under sub

stitution, so they satisfy CL
1

(provided that the defining axioms do

not contain constants outside J), so they satisfy CL. Similarly, the

full universe of expressions is closed under substitution (as we al

ready tacitly assumed) so it is CL. Free À-calculus, and the various

systems of Automath expressions are CL too (sec •. 1.4).

Clearly, the set of reducts of an expression is closed. In chapter

IV , we prove that the so-called normable expressions form a closea

set. In chapter VandVIII we prove that various systems of so called

oorPeet Automath expressions are closed.

5.3. Normalization and streng normalization

5.3.1. Wedefine (relative to a reduction relation)

(i) ï: is in normal farm (or just: normal) if not ï: > 1 r
(ii) E has a normal form if E = r for some normal r
(iii) L normalizes (or just: N(ï:)) if L 2 r for some normal r
(iv) L strongly normalizes (or: SN(~)) if all proper reduction se-

71

quences of r terminate.

(v) A set A of expressions is said to beN (resp. SN) if

(resp. SN(l:))

5.3.2. Clearly, r is normal iff l: does not reduce properly iff E does

not contain redices. So the property of being normal is decidable.

Of course, l: normal ~ SN(l:) • N(l:) ~ l: has normal form.

If SN(l:) then the reduction tree of l: is well-founded, so (by the

Brouwer-König lemma) it is finite. Hence, if SN(l:) then we can define

e (l:) as the length of the reduction tree of l:, i.e. the maximum length

of proper reduction sequences startingin l:. And, if SN(l:), then the

relation l: ~ r is decidable.

5.3.3. Call a reduction sequence r
0

> l:l > ... seaured if for some k,

zk is SN. Th en SN (El iff all the reduction sequences of l: are se-

cured iff all the direct reducts of l: are SN.

By monotonicity, we have: SN(l:}, r cl:~ SN(r).

Ccr.versely, if (1) r sub l: ~ SN (f) and (2) all first main reducts of

~ are SN, then SN(l:} - because all its reduction sequences are secured -

5.3.4. Let A and A' besets of expressions, Ac A'. Let~ and ~· be

!" eduction relations, with ~ ~ ~'. Let A' be SN with respect to ~'. Then

A is SN with respect to ~ (compare 5.2.2). So, in order to conclude SN

:er a variety of sets A and reduction relations ~ it is sufficient to

prove SN for the "union" of these systems.

As for property N, the implications rather work in the other di-

J::"ection: let~· and ~" be reduction relations, ~ is the "union" of ~·

ar.d ~". If A is closed w.r.t. ~·, N both w.r.t. ~· and ~", and we have:

,: normal w.r.t. <!', l: ~" f) ~ (f normal w.r.t. ~') then A is N w.r.t. ~.

5.3.5. It is well-known that free À-calculus does not B-normalize (e.g.

consider B := AA with A ÀX•x-x) and that not necessarily N(l:) • SN(l::)

(e.g. consider (Ày•A)B).

However, the correct expressionsof all the Automath languages do

strcngly normalize under all the associated reductions: chapter III

proves è-SN, chapter IV deals mainly with 6-SN and chapter VIII proves

~ne strong normalization of AUT-Pi w.r.t. all the reductions considered

72

(and the permutative reductions) except e.

5,4. Church-Rosser proparty and Church-Rosser theorem

5.4.1. Wedefine (relative toa reduction relation):

(i) (Chu~ah-Rosse~ p~ope~ty):CR(L) if ~ s L ~ r ~A~ r
(ii) (Weak Chu~ah-Rosse~ p~ope~ty):CR1 (L) if ~ <

1
L >1 r ~ ~ ~ r

(iii) Ch~ah-Rosse~ theo~em (C-R-thml for A: if L E A,r E A then

L = r .., L ~ r

(iv) Weak Ch~ah-Rosse~ theo~em for A: if E E A, r E A then

E ~Ar -. E ~ r

(v) A is CR(resp. CR
1

> if E E A .. CR(E) (resp. CR1 (E)).

5.4.2. Clearly, CR.., CR
1

(for the converse implication see 6.1.5.), and

(C-R-thm for Al-. {weak C-R-thm forA). And,if A is closed then

(A satisfies the weak C-R-thm) ~(A is CR).

* * Since =is~ and -A is (~Al (sec. 4.7), the C-R-thm (resp. the

weak C-R-thm) asserts the transitivity of ~ (resp. ~A) •

If A satisfies the C-R-thm, E E A, L has normal form r E A then

L ~ r, so N(El • Hence, if E <:A, E has normal forms rE A and /::, € A

then r = A. Conversely, if A is N and, for normal E,r E A we have

r I then A satisfies the C-R-thm.

5.4.3. Anyhow, if CR(E), E ~ r, E ~A, both rand~ are normalthen

r = ~ (uniqueness of nor.maZ forma). Hence, if CR(E) and N(E} then we

can define the normaZ form, nf(E), of E. Conversely, if A is closed

and N and all L <: A have just one normal form then A is CR.

5.4.4. lf A is N and CR then, for all E E A, nf (E) can be effectively

computed, so the relation ~A is decidable. So, if A is N and A satis

fies the C-R-thm (resp. the weak C-R-thm) then the definitional equa

lity (resp. ~A) is decidable on A.

5.4.5. Finally, let A and A' be sets, Ac A'. If A' is CR (resp. CR1,

etc.) then A is so too (compare 5.2.2 and 5.3.4).

73

:r 6. CR continued

6.1. How to prove CR

6.1.1. Here fellowsome elementary considerations on two possible

methods of proving CR, viz. withand without making use of SN. The

first method, i.e. with use of SN, reduces the CR-problem to CR
1

. The

point of this is that CR 1 is usually easily verified. A case analysis

of CR 1 w.r.t. our list of elementary reductions fellows in sec. II.B.

The secend method, without use of SN, employs our "nested" ene-step

reductions.

For more complete comment on CR-proofs, we refer to, e.g. [2].

6.1.2. For good comparison of the methods we introduce a slightly more

general situation. Let + be some binary relation (think of a reduct-
* 0

ion relation). Let-+ (resp. -+) be the transitive and refle:x:ive (resp.

the reflexive) closure of Let B + A stand for A+ B etc. Let l: be

an expression. We define, for ..,. and l:: (with quantification conventions

as in sec. II.0.4.3)

diamond property
0 0

:i) r + l: !; .. r l:' + /:,.

p Zank property * * 0

{ii) r + l: t:, .. r l:' + t:,

* ! •.• ' weak plank property r + E \~.l.~) * *
1::. .. r E' + 1::.

weak diamond property: * * (iv) r + E t:, .. r l:' + 1::.

where the terminology refers to the geometry of the illustrating dia

grams intended.

we say that the property holds in A, if all E E A satisfy that

property- but it is not required that the r, f1 and l:' mentioned are

themselves in A too

* * 6.1.3. Let us abbreviate the diamond property for + by (i) • Then it

is clear from the definition that (i)". (iv), that (ii) ". (iii) ". (iv)

and that (i)*". (iii). Further, if A is closedunder +, then by in

duction on (the definition of) ! : ((i) holds in A". (ii) holds in A),

and: ((iii) holds in A". (i)* holds in A). So in a closed (under -+) set A:

* (diamond property for +) ~ (diamond property for +)

74

6.1.4. But if A is closedunder ~, and additionally! is well-founded,

then we can say more: (iv) holds in A • (i)* holds in A. Proof: assume

that (iv) holds in A. By induction on the well-founded relation * -+we

prove that the diamond property for!, i.e. (i)*, holds in A. So, let

* * * * 1: € Af r + 1: ll. We want a 1: I w i th r + L I + ll. I f L = r (or E !:.) then

simply take!' = ll (resp. l: 1 = f). Otherwise (it is advised to draw a

diagram), forsome r
1

$ * * E , 11
1

$ E , r + r
1

+ E 11
1
~ ll. By (i v) f or

* * some Ei, r 1 Ei+ll1 •

we find ri, lli with r
hypothesis applied to

By the induction hypothesis applied to r
1

and 11
1

* * * * ~ fi + Ei ...,. lli + ll. Finally, by the induction

Ei we find the desired l: 1 with

* * * * f fl...,. L 1 +lil+ ll, q.e.d. So, in.this case:

(weak diamond property for ~) ~ (diamond property for !) .

6.1.5. Now we comeback to the original situation: if...,. is one-step

* reduction then the diamond property for -+ :f.s ju st property CR. And if

we take ordinary one-step reduction for ...,. then the weak diamond proper

ty is precisely CR1 •

So 6.1.4. provides the first method of proving CR: If A is closeà,

SN and CR
1

then A is CR.

And 6.1.3. provides the secend method, as fellows: call a com

pound one-step reduction > suitab~e if (1) ~ • ~ (i.e. >1 ""'>•> 1*J

and (2) > satisfies the diamond property. Once such a one-step reduc

tion has been indicated, one can apply 6.3 and prove CR. Indeed, the

common CR-proofs (for free À-calculus, where SN does not hold) work

in this. way - i.e. they can be rephrased along these lines - •

6.2. A survey of results

6.2.1. The analysis in sec. II.8 of CR1 yields at least -i.e. as long as 1

do not use SN - some negative results concerning CR. These negative

results are of two kinds: first there are the problems with the type

labels which were first mentioned by Neuerpelt[Sl.p.71] in conneetion w.

Bll -reductions. As a re sult Bn-CR simply does not hold in the full uni ver se

of expressions but only for the correct Automath expressions (chapter v,

chapter VI). Analogous problems arise from nó-reductions and +e:-re

ductions (chapter VIII) •

The secend kind of negative result is more serieus: it appears

that for any reduction relation including Be:-reductions, CR is false,

even if the type labels are ignored. More about this in chapter VIII

too (VIII.6).

75

6.2.2. Now we mention some facts which show the relevanee of our com

pound reductions >
1

and >
1

• First, >l,ó (i.e. disjoint ene-step 6-re

duction) is suitable (in the sense of 6.1.5) for 6-reduction (chapter

III, sec. 3,3). Secondly, by the way, the disjoint ene-step reductior.

generated by weak reductions is suitable for weak combinatory logic

(Rosser, in Traelstra [69]). Further, >1 ,
8

is suitable for 8-reduct-

ion in free À-calculus (Tait, Martin-Löf, in Barendregt [2]) and in the
....,

generalized typed À-calculus (Nederpelt [51]). In fact, >
1

is suitable

for the combination of all the elementary reductions, except c and ~,

provided we leave out the type-labels. This was proved for Sn~-reduc

tion by Mann [43] ; he also indicated the problem with cr as explained

in sec II 8.4. Below we prove the suitability of > for free À-cal-
l,Bn

culus, simplifying the proef of Mann.

6.3. A proef of Bn-CR in free À-calculus

6.3.1. This proefvia the suitability of > for free À-calculus
1, Bn

(which fact was claimed by Barendregt (2J) is just slightly more in-

vclved than in the B-case, in contrast with Mann's proef which is un

necessarily complicated. As explained in sec. 6.1.5, the suitability

is sufficient to prove CR.

6.3.2. The expressions are: variables x, À-expressions ÀX•A, application

expressions BA. By writing A', B' we implicitly intend that A >A',

B > B', etc. The elementary reductions are, as in sec. II.3.4: (13) (ÀX•E)A> B• V

(~)x i FV(A) ~ ÀX•Ax >A'. From sec. 3.8 we reeall the substitution

property V: B[AD > B'[A'].

6.3.3. If ÀX·A > B then either (1) B = ÀX•A', or (2)A ex , x i FV(Cl 1

~ > B. So, if ÀX•Cx > B then either (la) B

B ÀX•D' [y!d 1 or (2) x t FV (C) 1 C > B.

ÀX•C'x 1 or (lb) C

6.3.4. If BA > C then either (1) C B'A' 1 or (2) B = ÀX•D1 C = D'[A'll.

so, if (ÀX•D)A > C then either (la) C = (ÀX•D')A', or (1b) D =Ex,

76

C = E'A', or {2) C D'[A I].

6.3.5. Now we just have to prove the diamond property:

A1 < A > A2 ~ A1 > A3 < A2• We use induction on A. If A = x then there

is nothing to prove. If A is a À-expression or an application expressior.

then we must confront the various possibilities {{1), resp. (la) and

(lb), and (2) of 6.3.3, resp. 6.3.4) of reducing A to A
1

and A
2

with

each other. In both cases (A is À-expression or not) the combination

(l)v. (1) (i.e. A > A1 , A > A
2

both by "internal" reduction), (2)v. (2)

(i.e. A > A1, A > A2 both by an "outside" reduction). and (la) v. (2)

are just standard.

6,3.6. so, let ((lb)v.(2)) A :o ÀX'(Ày•D)x, x t. J!V{D), A
1

: ÀX•D'[y/x],

A2 = E, Ày•D > E • Applying the ind. hyp. to Ày·D we find A3 with

Ày•D' >A3 < E. Since x t FV(D'), Ày•D' ÀX•D'[y/x], so A
3

does the

work.

6.3.7. And, let ((lb)v.(2)l A (Àx·Ex)D, x t f!V{E), A
1

: E'D',

A2 = F[D"], Ex> F, D > D". Applying the ind, hyp. to Ex and toD we

find Hand D"' with F > H < E'x, D' > D"' < D". By the substitution

property F[D"] > H[D"'] < (E'x) [D'] = E' D' (because x t FIT (E')). So

this H[D"'] can serve as A
3

, q.e.d.

11.7. Combined reductions

7.1.1. Insome cases desirable properties, such as N, SN and CR, fora

combination of reduction relations ~ and ~· can appropriately be

proved by first considering ~ and ~· separately and then use certain

connections between ~. ~· and their "union". An example of this can

be found in sec. 5,3.4 (second half).

Interesting questions on the connections of ~. ~· and their "union'

are whether ~ and ~· aommute (cf. sec. 7.2 below) and whether ~·-post

ponement holds (cf. sec. 7. 3 below).

7 .1.2. Let i and j stand for (combinations of) elementary reductions,

and let ij refer to their "union". E.g. if i denotes Sn and j denotes

6 then ij stand for Sno . We write >1 , >l,i' ~i etc. for the corres

ponding (one-step) reductions. We use si etc. in the usual sense.

We say that E \ > j r, resp. E

resp. E ~ r. Similarly ~.>. and
J. J

The notation E ~ < f is used for r
i j

7.2.1. Church-Rosser for cornbined reductions

77

ï etc.

In Staples [65] *) 'We find some ingenieus constructions for proving

that a combined system is CR. Here we restriet ourselves to some simple

properties.

We assume that A, a set of expressions, is ij-closed (i.e. closeà

under ~ ..), and that all expressions consiàered areelementsof A.
l.) *

Clearly, .) is just ~ .. , so if satisfies the diamond
J l.J

property then we have ij-CR - because is a· suitable one-step re-

ëuction for ~ij' in the sense of sec. 6.1.5.

We say that and ~. commute if, for all ï (quantification as
)

in 0.4.2) 1

Thus, if i-CR, j-CR and > and -i

7.2.2. When do and <:. commute?
J

commute then ij-CR.

We give an analysis analogous to sec. II.6.1.Define, for one-step

reductions >i and >j'

(i) diamond property r <. ï > 8 =:>f ï I < ~
J i j

(ii) trapezium property r < ï t::. =:>f EI <
"" j j

(iii) plank property r <. E ~. ~ •r <:i J:l < 8
J l. j

(iv) weak plank property r < l: <:.
""

.. r <:i El ~j 8
j l.

(v) :,;eak diamond property: r <. l: > t::. ""' r ;;: . ïl $, t::.
J i J. J

As in sec. 6.1. 3 , (i) .. (ii) Ç> (iii) "* (iv) ç, and ~.
J

commute) ... (v) •

And if ij-SN, > and > satisfy (V) then also ~. anà 2:. commute
i j J. J

(as in sec. 6.1.4).

7.2.3. So, justas in the case of ordinary CR, there are two possible

ways of proving that and ~. commute (viz. withand without SN).
J

With SN, it is sufficient to prove the weak diamond property for >
1

.
,l.

and >l,j' But without SN, we rather look for a compound reduction >i

*)
See also de Bruijn [19]

78

such that >i and, say, >l,j satisfy at least the trapezium property.

7.2.4, The analysis of sec. 8 providesus with the weak diamond pro

party for all combination of n- t 11-, a-, o- and +-reduction (but for the

type-labels, of course). Let >
1
° . stand for the reflexive closure of
,~

>l,i {i.e. contract one or zero i-redices at a time). Then sec. 8.8
0 0 0

also shows that all combination of >
1

,>
1

and >
1

satisfy the ,n ,11 o ,+ o

diamond property, and that all combinations of >
1

,
6

{resp. >
110

) with

>
1

, >
1

and >
1

satisfy the trapezium property (modulo the type ,n ,11 ,+
labels). In the Sn-case this gives an easy alternative proof of 6n-CR

(compare sec. 6.3) for the free À-calculus, viz. from 6-CR (e.g. by

the Tait-Martin-Löf method) and n-CR (which is trivial from e.g. n-SN).

A simple variant of the CR-proof in sec, 6.3 {or·ratherof the

CR-proof in chapter III, sec. 3,3) shows that >
1

,
6

and >
1

,
0

satisfy

the trapezium property: f <1 ,
6

E >1 , 0 ö • r ~ó E' <l,S ö. Alternatively,

one can prove that ~ 1 , 6 and >1,ê together satisfy the diamond property.

Resuming, n-, 11-, 6-, ö- and +-reductions commute with each other

(but for the type-labels).

7.2.5. Further, sec. 8.8 yields some negative results about the oom

muting of reductions, even if we ignore the type-labels. First there

is the 6E-problem.

Secondly, there are the problems with o and E: neither cr nor E

commutes with any other reduction,

7.3.1. Postponement

For some cases of i,j no "new" i-redices are created by j-reduc

tions, and the i-contractions in an ij-reduction can be carried out

first. This property is called ij-postponement, for short ij-PP. we

say that E satisfies ij-PP if

and we say that ij-PP holds in a set A if all E € A satisfy ij-PP.

Clearly we have ii-PP. Use the index i+ for the "converse" i-re

duction:

+ r ,~ E r. Similarly >i etc.

79

Then ij-PP is strongly connected with -CR. In fact, in a closed

(under) set A, ij-PP is equivalent with the property

r

i.e. >+ and z. commute in the sense of 7. 2.1. -j).

7.3.2. When does pestponement hold?

Let us confine the discussion to a closed (under set A. Since

t~e question of ij-PP just amounts to the question whether ~ and
i

corr~ute, we can simply fellow the development in sec. 7.2. ~efine, for

one-step reductions >, and >. 1). J

(i) trapezium property I : "' > > r => L: > r "' j i j

(ii) trapezium property II: l: > > r => l: .~. r
J i :L J

Si nee both trapezium properties imply ij-PP, it is sufficient

for ii-PP to indicate a suitable one-step reduction >, (resp.>.)
- J :L

satisfying trapezium property I (resp. II).

But, if we have i-SN, we can do with a weaker form of (ii),

(iii)

For, using induction on~., we find
J

(iv) >, . r • E > r
1,1 1, ij

So, assuming i-SN, we can use induction on the well-founded re-

lation and prove ij-PP, as follows: let E r. If E r there

is no~hing to prove. Otherwise, E > rl 1, i
f, forsome r

1
• By

E
1

~ij r
1

• By the induction hypothesis applied to L: 1

~.3.3. Some results

we

The fact that Sn-PP holds belongs to the tradition of the free

~-calculus. Nederpelt's proof (in [51]) shows the trapezium property I

for the combination of >l,S and ;l,n' As Nederpelt points out, Curry's

proof in [25] which instead aims at the trapezium property II fcr a

ccmpound one-step 8-reduction (lvith >
1

) is defective (though > ,n 1,

80

would have worked) •

From sec. 9.2.4 it is clear that the following combinations of

reductions satisfy property (iii) of sec. 7.3.2: of >
1 0 with > , of

,.., 1 , 11
> 1 with >

1
, and of >

1
a with >

1
• Assuming some weak type re-

,11 ,a ,..,+ ,11
strictions (clearly satisfied by correct Automath expressions) we also

get property (iii) for > 1 ,a with >
1
,o, and for >

1111
with >

1
,

11
• This,

together with the appropriate SN-assumptions, yields that the com-

bination of the I.E. reductions (sec. 3.3) 611+ with the ext-reduc-

tions o and n allows postponement of these ext-reductions.

Alternatively, we can extend Nederpelt's construction to these

cases, wi th the nested version >
1

. (and get PP without resorting to
,no

SN l .

Anyhow, e-reduction is an exception: its postponement is not pos

sible, viz. in combination with 8+-reduction.

7.3.4. As an application of PP in genera!, we give the following theore~

if i-SN, j-SN and ij-PP then ij-SN

Proef: Let E be an expression. By induction on the i-reduction tree

of E we show that all ij-reduction sequences of E are secured. Let

E >1 rl >1 r 2 > 1 By PP, for all k, E ;:: ;a rk. The j-reduction
i j

tree of E is finite, so, if for all k, E rk, the reduction sequence

is finite (whence secured), Otherwise, forsome properi-reduct E' and

somerin the reduction sequence, E' ~ .. r. By induction hypothesis,
~J

E' is SN, so r is SN so the reduction sequence is secured q.e.d.

7.3.5. In fact it is more straightforward to prove the theerem from

property (iii), sectien 7.3.2. (which holds in all our PP-cases),

directl:t:

If i-SN, j-SN and property (iii} holds (i.e. > "* > -l,i l,i
) then

ij-SN.

Proef: Let E be an expression, let E >
1

r1 >1 r 2 >1
• Again, we

use induction on the i-reduction tree. If the reduction sequence just

contains j-reductions, then it isfinite,by j-SN.Otherwise, forsome k,

E ~j fk >l,i fk+l' By (iii), forsome E', E >1,i E' ~ij fk+l'

By the ind. hyp. E' (so rk+l) is ij-SN, and the reduction sequence is

secured q.e.d.

As a corollary of this, we have e-SN- Bn-SN.

7.4.1. weak postponement

For some cases of i,j, indeed no essentially new i-redices are

created by the j-reductions, but if one starts with carrying out the

i-contractions, possibly too many i-redices are contracted. We say

that weai~ ij-postponement (weak ij-PPl holds, if for all l:,

l: ~ij r • z ~i~j r• ~i r

In particular, as sec. 9.3.1 shows, we have only weak ó8-PP.

81

There are two relevant ways of proving weak ij-PP, viz. w::.tt and

without use of i-SN. First, without i-SN. We introducesome properties:

'i) l: > .>. r ". l: >
,.,, < r (a kind of weak trapezium

J l i -i
property I)

(i i) l: > ... l: > .~. r' r (a kind of plank property)
i l J

(iii) l: r ... l: > > r' $, T'

-i-j i
l

Ass~ue that i- and j-reduction cornmute. Clearly, (iii) implies weak

~j-PP, and {by induction on (i) implies (ii). Further, if i sa-

tisfies the plank property for CR (<.~. =<>
l l

<i), then (ii) implies (iii).

So: if

:1) > satisfies the plank property for CR,
l

(2) i and j commute,

:3) property (i) holds, then we have weak ij-PP

(hence without using SN).

Then, with SN. We introduce a weak farm of property (iii) sec. 7.3.2.

liv) l: > >
j 1,

r

Assume that i-reduction and ij-reduction commute. Then (iv) gives, by

induction on 2 . ,
J

> r .., l: >
l,i 1,

r, r

By induction on i-reduction trees, we get:

if (1) i-SN, (2) i-CR, (3) i and j commute (so, with i-CR, i and ij

commute) 1 (4) property (iv) holds then weak ij-PP.

7.4.2. As a corollary of (1) i-CR, (2) i and j commute, (3) weak

(4) i-N (i.e. i-normalizationl we get: l: 2. r '* i-nf(l:)
J

i-nf(:').

An alternative way of getting the latter property (which, in turn, im

plies weak ij-PP) avoiding the question whether i and j commute, is

\

82

from: (1) i-CR, (2) i-N , (3) weak ij-PP and (4): for all E,

r

7.4.3. Section 9.3.4learns us that ój-PP holds for all reductions j

except S-reduction. This can be proved eitl1er from ó-SN (Chapter III)

and property (iii) sectien 7.3.2 or without ó-SN, by showing trapezium

property II (sec. 7.3.2) for >l,ó and >l,j'

Further ó commutes with all reductions but cr and e. For the latter

two reductions, however, we can prove (with cr and e in the role of j):

E' !> 0j 6

sa, assuming ó-CR and ó-N, for all reductions j but B we have already:

E:<:.r~.s-nftEl
)

ó-nf (fl

Finally, we have weak óS-PP, with use of ó-SN and property (iv)

above, or alternatively from property (i) above {quite simple, with

>1, 6 and >1,
8

>. so, in this case too, if ó-N and ó-CR then

E r • é-nf(El ~B ó-nf(r)

7.4.4. For the rest, weak postponement is just what we get in the

following situation: let D1 and D
2

be disjoint sets of definitional

constants, let :<:~ , resp. :<: 6 denote the reduction relation genera-
uDl D2

ted by contracting constants from o
1

(resp. o
2

J exclusively. If the

defining axioms of the constants in D
1

do nat contain constants in

then we have weak ó ó -PP.
D2 Dl

II.8. An informal analysis of CR1

B.l. In presence of SN, the weak CR-property CR1 is sufficient for CR

(see sec. 6.1.5). Anyhow, for the beuristics of a CR-proef an analysis

of CR
1

is indispensable.Let i and j indicate kinds of elementary re

duction, such as S, n etc. Let E be an expression, with an i-reèex

R c E and a j-redex Sc E. By contracting R toR' (resp. S toS') we

get E >
1

. r (resp. E > !:.). We want to find out whether rand 0
1 l. 1, j

have a common reduct E' and if so, by what kind of and by how many

contractions, E' can be reached from r and 6. In the informal discussic

below all possible cases are systematically treated,according to the

relative positions of the redices R and S.

8.2. The first point is of course, that either (a) Rand S are dis-

joint, (b) R = S, (c) R sub S or (d) S sub R In case (a), the con-

tractions just commute:

::: = tI .l1. I,::;, I I >
1

, r = I I •• ct' I I lel I I >
1

,
, ~ , J

l:' = ... R' ... S' ... <
1

. !::. = ... R ... S' ... < l:
• ~ 1, j

As for case (b), if we assume that

83

(*) for each definitional constant only one defining axiom is given,

t:hen all elementary reductions are mutuaZ Zy excZusive. I.e. if Ri-con

tracts to R' and R j-contracts to S' then i and j refer to the same

kind of reduction and R' = S'. So, under assumption (*), which is in

deed fulfilled in the Automath system of abbreviations, in case (b)

fora common reduct we can takel:' = r(= !::.).

Case (c) is discussed in sec. 8.4 and further. Case (d) can of

course be reduced to case (c) by interchanging i and j, Rand S.

8.3. About expression variables in schemes for reduction

The elementary reductions are formulated in schematic form, i.e.

~ith meta-variables for expressions in them. For instance, in the

scherne of S-reduction "{A}[x:B]C elementary reduces to C[A]]" (in

sec.3.2J), the meta-variables A,B,C are the expression variables of

':he scheme.

For each of the schemes, all of its expression variables occur

(of course!) at least once intheleft-hand side (redex). Let X be an

expression variable of a scheme for reductions. We distinguish three

cases:

(i) X disappears in the contracturn (such as B above)

(ii) X occurs just once in the contractum, possibly there is sub

stituted in X (such as C above).

(iii) X is possibly multipZied by substitution (such as A above).

For all kinds of reductions, except a and s, the expression var

iables occur precisely once in the redex. To these two exceptional

cases we refer as the twin reductions (because of the twin occurrences

84

of the meta-variable, e.g. of X in< X
11

) ,X (Z)>).

8.4. Case (c). Let R sub S, S j-contracts to 8 1
• Distinguish the fol

lowing cases:

(cl) R c X for some instanee X of a meta-variable of the j-redex

(c2) not {cl), so R forms an essentiat part of S (such as [x:B]C

in {A}[x:B]C).

Now, unless j refers to a twin reduction and R c X for some in

stance X of a twin occurrence, in case (cl) the j-redex is not spoilt

by the i-contraction. For common reduct E1 we take the result of simPlY

contracting the modified (by the internal i-contraction) j-redex in r.
From 6 we can reach E' by i-contracting nothing (if X disappears, i.e.

case (i), sec. 8.3), i-contracting one possibly modified (by sub

stitution) occurrence of R (if X occurs once, i.e. case (ii), sec. 8.3)

or i-contracting possibly more disjoint occurrences of R (if X multi-

plies, ~ase (iii), sec. 8.3). So E >1,i f>l,j

(where >l,i is disjoint one-step i-reduction).

Examples:

<'I < • A < <' "' 1 Ll 1 . ,.. , ~ , J

(1) j is B, X "occurs once", use substitution property I, sec. 3.8:

E s=. {A}[x:B]R >l,i r '= {A!x:B]R' >l,B

E t - R. [A] < 1 , i & = sI R[A J < 1 , 6 E

(2) j is S, X "multiplies",

E =. S =. {R}[x:B] ••• x •• • x ••• >l,i r :: {R' }[x:B] •• • x ... x ..• >1, 13

EI = ... R~ ••• R~ ••• <t . & = s~
.~

•• • R ••• R ••• <l,S E

In contrast with this, if j refers to a twin case and R c X for

some "twin variable" X, then the j-redex is spoilt by the i-contractior.

indeed - but can be restored by i-contracting the other twin as well.

So, since twin variables occur just once in the contracturn {case (ii),

sec. 8.3), forsome r~, E1
, E >

1
. r >

1
. r~ >1 . El <1 1 t;, <1 . E.

,~ .~ ,J , ,J
Hence, in this case i and j do not aommute. An example (where j refers

to cr-reductionl: E :: S <R(l l'R (2) > > 1 , i r <R (1) ,R' (2)>

> r~ - <~~ R 1 > > E' :: R 1 < R :: 6 <
1

E.
l,i = · (1)' (2) l,cr l,i ,a

8.5. Case (c2): R is an essential part of S. Notice that there are

;:;•io possibili ties:

(1) j is an I.E.-reduction, i is the corresponding ext-reduction.

(2) i is an I.E.-reduction, is an ext-reduction.

Case (c21). Here are three cases, n v. S, a v. rr and s v. +. In

the first two casesthereis no problem, even if type-labelsare pre-

sent: r ~ 6, so we can take Z' ~ r too.

{AjC <
1
• I

Hx:B]{x}C >
1

, }C , (X i FV (C))

85

<Q,A,E>(p) <l,cr <P,<Q,A,B>(l)'<Q,A,B>(2)>(p) >l,'lr <Q,A
(p)

(p 1 or p = 2) .

7~e case of s v. + is more complicated. First, there is an additional

3-red~ction needed. Secondly 1 there are problems with the type-labels.

R

s {i (A D) p I 3 S' {A}[x:B]{i (x,D l
p p p

R• -

(p = 1 or p = 2, x i FV (C),

< s
1, Ë

> S' > 1 "{i (A,D [A])}C 1,+ ,;::, p p

So, in this case, r < Z > 6 > 6' with r = ~· but for the l,E 1,+ 1,6
~dpe :abels. Hence, without type-labels, E' = r = ~~ can serve as a

~omrr.on reduct. But with type-labels type-restrictions have to be im-

posed in order to guarantee that D [A] and
p

equal (and may have a common reduct).

are definitionally

:: .. Case (c22) covers 8 v. n, 1T v.cr, + v. s and 8 v. s. In the first

t·h'o cases CR
1

holds but for the type-labels. In the third case addi

tio:lal '1-contractionsareneeded (compare with 8.5, cv.+), but in the

fourth case CR
1

(so CR) simply does not hold at all.

[x:A < [x:A]~x}[x:B]C >
1

[x:B]C
L 8 ,n

x /. FV (B) •

Sc bere, f 6 but for the type-labels. Regarding TI v. a, the situation

cc~pares with the twincase in 8.4:an additional n-reduction is needed.

('7::;) <P,A 1 B> <l,n <P,A,<Q,A,B>(2)>

< 1 I TI s = <PI <Q ,A I B> (1) I <Q ,A I B> (2) > > s•
1, J

- <Q,A,B> •

86

So, f' < 1 r < 1 E >1 à with r• : à but for the type-labels. In
,'!! ,'!! ,cr

order to keep CR in this case, we must at least require that P and Q

are definitionally equal. Then we come to+v.e:. Sincè e: is a twin

reduction, an additional +-contraction is needed, and two additional

n-steps. But to our relief there are no problems with type-labels.,

(+e:) R - [x:A){i (x,D)}(B1 e B2} >1 R' : [x:A J{x}B > B
P P P P ,+ P P P n P

(p = 1,2 and x t FV(B
1

e B2>>

Finally, we give a counterexample for (Se:), even without type-labels.

(Se:) R
p

[x]{ i (X) }[y]y,
p

s = R
1

e R
2

> s• = [yJy , l,e:

(p=1,2).

The best we can get from Ri e R2 is·Ri e R2 = [xJi1 (X)$ [xJi 2 (x}. Then

S' < S <!Ri e R2_, both are normal but S' $ Ri e R2_ contradicting CR.

8.7. we resume our results in a table, writing i for >l,i' r for >l,i'

For the notes *) and **) we refer to the next page.

start with complete with

cases a. redices disjoint i. .. j j ... i

b. redices equal i ••• i
*)

c. i-redex sub j-redex

cl. i-redex non-essential part

cll. j not twin case i. .. j j ••• i

cl2. j twin case i ... j i,j .•• i

c2. i-redex essential part

c21. i-redex in intro form n ••• s
(J,,,lf

**)
e: ••• + ... s

c22. i-redex in eli-form s ... 11
**}

1T ••• cr lf.,,

+ ••• e: +,n,n •••

(i.e. +,n ••• l

s ... e: XXX

d. just like c, with i and j ipterchanged.

87

8.8. Alternatively, we can arrange our results in a table, according
0 0

~o ~he kinds of reduction i,j. We write i for >l,i' the reflexive

closure of>, .. In the first column below one finds values of (i,j) . . , ~
In the secend column is indicated by what kind of reductions can be

coffipleted (i.e. can be reached a camman reduct) if one starts with

i. .. j.

start with complete with

0

ij iif"\, r;rr, 7!'11, 11+, ++, +n j ... i

13'11, on, on, B+, 6+ j ... i
0 **)

SB, 136, 66 j .. . i

na, '110, +a, nt:, TIE
0 **)

i ,j .. . i

0 - 0
Scr, óa, ot: i ,j ... i

0 0 0

G'J, as, E:E j ,j ... j ,i

+s
0 0 0 ~*)

+, Ë ••• + or ... 8 or +,n,n ...

s~ XXX

9. An informal analysis of postponement

9.1. A discussion, similar to the analysis of CR
1

in the preceding

section, can be devoted to the question of postponement. Let ; contain

a j-redex R; by contracting R toR' one gets E. Let E contain an i-redex

S; by contracting S one arrives at t::..

Essential for ij-postponement is that the j-contraction does nat

create the i-redex S. Of course, for most of the cases for i,j, essen

tially new i-redices are indeed created by the j-contractions. E.g.,

:-.cw a B-redex is created by a TI-contraction:

Notes to 8.7 and 8.8:

~; Provided there is one defining axiom for each defined constant.

but for the type-labels

88

or by à +-contraction:

{i
1

(A)}([x:B]CGI D) > {A}[x:B]C.
1 ,+

Below we just consider the possibility of ij-PP where i is an I.E.-

and j is an ext-reduction, and the possibility of weak cj-PP in general

9. 2. EXt -postponement

9.2.1. Let i refer to an I.E.-reduetion and let j refer to an ext

reduction. The schemes for ext-reduction have a single expression

variable as contractum. So R' is an instanee of such an expression

variable. If (a) R' and S are disjoint (in Z), or (b) S ~ R' and (bl)

the expression variable of which R' is an instanee occurs once in the

j-redex (so, in fact, j must be n-reduction), then the i- and the j

contraction can be interchanged, Example of (bl):

[x:A]{x}B >
1

8 > B' <
1

[x:AJ{x} B • <
1

. [x:A]{.:r}B ,n l,i ,n ,1

(X i FV(B'), beeause x t FV(8)).

If (b2) j refers to a twin reduetion (i.e. a or €) then two dis

joint 1-eontraetions are needed. E.g.

9.2.2. If (e) R' ~ S and (cl) R' is part of an instanee of an expressie:

variable of the i-redex, then one can start with >
1

. and finish with
,l.

some disjoint j-eontraetions, compare case (cl) of the CR1-analysis.

Example:

{R}[.x:B] ••• .x ••• x ••• >1,j{R'}[x:B] ••• x ••• x ••• >1,
8

••• R' ••• R' ••• <l,j ••• R ••• R ••• <1,
8
{R}[x:B] ••• x ••• .:r ••••

9.2.3. Otherwise, (e2) R' is an essential part of S. Since i is an

I.E.-reduction, R' is in introduetion form, i.e. inj, abstr, or pair,

or it is a plus-expression. Now we assume that (*) such type restriet

ions are fulfilled, that (1) the result of a a-eontraction is never an

inj-, an abstr- or a plus-expression, (2) the result of an E- or an

n-contraction is never an inj-expression or a pair. Then (c2) can only

89

be realized as fellows (for brevity we omit type-labels):

>l,o <41,Al(p) > A
1,11 p

(p = 1 or p 2)

n creates S: {A}[x]{x}[x]C >
1

,
11

{A}[x]C >
1

,
6

c[A]

(p = 1,2}

e; creates +: {ip(A)} (([x]{i
1

(X)}(F
1

<P F
2

))4l([x]{i
2

(x)}(F
1

m F
2

)J)

>
1

{i (A)} (F e F
2

) > {A}F
,e; p 1 1,+ p

e; creates S: {A}(([x]{i
1

(x)}[y]C)!t([x]{i
2

(x)}[y]C))

>1 ,e {A}[y]C >
1

,S C[A]

Indeed, in all but the last case, the i-redex is not essentially new:

a, 11 (i.e. >
1

>
1

) can be simulated by 11, 11 (two disjoint 11-contrac-,cr ,'if

tions), !j,f3 by S, f3, <:, + by +,8,+ and n, + by S, +. But St::-PP (so (13+)-t::-,PP)

is false.

9.2.4. We resume the results of this sections in a table

> > simulate by case (a) {b1) (b2) (cl) {c2) in general
1 t j l,i

s,Ti 0 -n,S s,n S,n s,s 13,13 ,n
0 0 0

n,+ +1n +1n +,n 6,+ (+Sl , + ,n

0 *) 0

nrrr 11,11 11,11 11,11 - 11,11

*) 0 -
cr,S S,a S,S,a 6,0' - 6,6 ,cr

0 *) 0 0

ç;,+ +,cr +,+,o +,cr - +,+ ,a

0 0 0

o,Tr 11,0 1T,11,0' 11,0' 'IT,rr 11,11 ,o

0 0 0

E,+ +,E +,+,e: +,E +, s,+ +, (+13) ,+

*) 0 0

<:,11' rr,e: 11 1 11 1 E TI,E 11,11 ,E

e:,i3 s,e: s,s,e: B,e x x

*) assuming certain type restrictions.

0

,E

90

9.3. weak ê-advancement

9.3.1. Since the presence of 6-redices is only dependent on the pre

senee of defined constants, apparently no essentially new 6-redices

are created by the other reductions. However, we can only hope for

weak ê-advancement (i.e. weak êj-PP for all kinds of reductions j,

distinct from ê) in view of the Sö-example;

where d(y) := D is the defining axiom of d. If we start with
10

here,

then possibly too many ö-redices are contracted. Actually, the situa

tion compares very well with the situation with the twin reductions

w.r.t. CR 1•

9.3.2. Let r, E, 6, R, R', S be as in 9.1. Ris an arbitrary non-o

redex, Sis a ó-redex d(Ë) (defining axiom as above, say). If (a) R'

and S are disjoint in E then the contractions can be interchanged:

r :: ... R ... S ... >l,j ••• R' ... S ... >l,ê

... R' • •• s· ... <1 ,j ... R ••• s• ... <
1

,
6

r.
If (b) R' sub S, then R' c E., for some i, so we can simulate

~

> > by > > •
l,j l,ó l,ö l,j

Example; d(R) >l,jd(R'l >l,ê ... R' ... R' ... <l,j ••• R ••• R ••• \, 0d(R).

If (c) S c R' then (cl) S is part of an instanee of an expressior:

variable of the j-reduction scheme, or (c2) j is S, S c C[A]

(::: R' where R {A}[x:B]C).

Case (cl) is just like case (a). In case (c2) there are two pos

sibilities:

(for some Ë), or
0

(2) d(Ë) is part of one of the substituted occurrences of A.

9.3.3. The contractionscan again be interchanged in case (cll).

Example:

{A}[x:B]d(F) > d(F[A]J > •• • F[AL • • F[AJ •••
l,S l,ê

<1,
6
{A}[x:B] ••• F ••• F ••• <l,ê {A}[x:B]d(F) •

Case (c12): As in the example above, forsome 6', E'

91

-r > E > 6 > 6' < E' < r
1,8 l,o 1,o 1,8 l,ê

9.3.4. Resuming:

(1)

(2) r > > 6 ~ r > > h' < 6 1,s 1,o 1,o 1,8 1,o

II.lO. Multiple substitution

10.1. Let D be a set of expressions; Eis an expression, x is a

variable. Then r is a multiple substitution result of E with D for x

if r can be produced from E by substituting some 6 E D for each free

occurrence of x in E {possibly different h's for different occurrences

of;;;).

The set of such multiple substitution results is denoted E(x/Di

(here,locally, abbreviated to r*) or just E fDj and can be defined

inductively, along the lines of ordinary substitution, as follows:

(1)a.

(i) b.

(11) * * X; y, (\ióED y t, FV(ó)), r E E -:-)..y•f e (Ày•E)

(if necessary rename y)

(iii)a. I ti = o - r € r*
(iii)b. r. E E~ for i= 1, ... , ifi,.f(f) E <f<l:))*,

l. l.

* By induct1on on the length of E it can be shown that E is decidabie

* if Dis decidable; e.g., if Dis finite then E is finite.

10.2. Multiple substitution satisfies much the same properties as

ordinary substitution. E.g. corresponding to substitution property II,

sec. 2.5: if x+ y, VÄED y I FV(ó) then

* * * r ly/l: j = (f[y jE]) , or, in full

Here is ordinary set equality. The proof is by induction on r.

92

So, as· in 4.4,

* * ~ ~ r, fi € ï: • 6 ~ 6', forsome 6' € r.

10.3. If Disasetand fi € D• ï: 2: fi then, for all r• in fi.:riDj,

r[.:r/E] 2: r• •

Sc, if p(E) denotes thesetof reducts of ï: then

r• E rf.:r/p{E)f ~ r[.:r/EJ 2: r• •

The concept of multiple substitution will not be used before

Chapter IV, and more essentially Chapter VII.

II.ll. Reduction under substitution in Àe-calculus; Barendregt's lemma

11.1, Introduetion

The variable .:r and the expression r will be fixed throughout

sectien 11. For all reduction relations we have

~ .2: E ' , r 2: r • • E [.:r 1 r] 2: E ' [.:r 1 r •]

Now we consider the converse question: if ~[.:r/f] 2: fi , what can be said

about fi in terms of reducts of E and f?

we concentrata on free À-calculus bere: reduction is just B-re

duction. Expressions are variables, application expressions AB and

À-expressions Ày·A. we write AË for (••• (AB1>B2 .••)Bk.

We write ï: + fi (relative to .:rand f), if A can be produced from

E by replacing certain occurrences A1 = .:rM1 , A2 = .:rM2 , ••• ,Ak .:rMk

(k 2: 0) of subexpressions of E by reducts Ai,Az'''''Ak of

A
1
[.:r/r], A2[x/r], ••• ,Ak[.:rlr] respectively, not leaving any free

occurrences of .:r unreplaced. Here we prove the reduction-under-sub

stitution-lemma:

(*) if ï:[.:r/r] .2: 6 then, for some ~·, E 2: E' + 8 ,

Barendregt proved a restricted form of a similar fact for weak

combinatory logic, using some underlining technique *). Elis proef

was extended to À-calculus by de Boer, a student of de Vrijer [7].

Our proef here will be different: we show that the set of 6, such

that for some l:', E 2: E' + D., is closedunder reduction. Since I: ..,.z: [.:r/

*) H.P. Barendregt, The undefinability of Church's o, unpubl. 1972

93

this proves {*).A corollary of {*) is the square braakets lemma, in

sec. 11.5, which is applied in our proof of ~-SN in sec. IV. 2.4.4. How

ever, direct proofs of the square brackets lemma are also possible;

first there is Levy's proof [42, p.134)using the standardization theorem

and secondly, there is a proof using SN (IV, sec. 2.4.3).

Further interesting applications of property (*) are the non-def

inability results in [5, 48].

11.2. The definition of~

11.2.1. Abbreviate [x/r] by * here. Informally speaking, E ~ 6 means

and

for 1 l, ... ,k.

11.2.2. Formally, we can define ~ inductively, as follows:

(la) (M possibly empty)

(lb) x!joy•y~y

(2) y +x, y t FV(r), E ~ ö • Ày•Z ~ Ày•ö (if necessary rename y)

11.3. The following properties of~ are easily proved from 11.2.2.

* E ~ E

r _,. 6 ... z* ;;: e,.

(3a E ~y ... (1) l: y, y "'x, or (2) l: - xM

(2) l: -+ Ày •61 ... (1) l: - Ày•Z1,l:1 _,. 61, y ' x, or

(2) l: - xM

(3c) l:-+ ;).1 62 .. (1) l: - !:11:2, El_,. 61, 1.:
2

-+ 62, or

(2) l: - xM

94

11.4.L Substitution lemma for ..,.: if y t FV(r), y ;!;x then

Proof: by induction on the definition of ~l..,. ~1 • E.g. let ~l - (xM),

* 1.:
1

~ ~ 1 • Then

and

because of 11 • 3. (2) above. So

Or, let

Th en

and

so

11.4,2. Reduction lemma for ..,.: ~ + ~ >1 ~· • E ~ E' + ~· forsome E'.

Proof: By induction on the lengthof ö. Or, informally, as follows:

~must contain a redex1 ö ,,,(Ày·~ 1 lö2 ••• , A'= ••• A
1

[y/A
2

] ••••

Now there are three cases:

(1) ~ ••• (Ày•El)E2 ••• I El+ öll E2 A2 I

or

, • • (xM)E2,. • I - * (2) ~ (;cM) ~ Ày·A
1

, E2 + A2,

or

(3) E = • • ' (:t'Ï:f} • • • I <x~i> * ~ { • • • p,y • Al) A2 .. •) .
We must indicate an appropriate ~·: in case {1) take~· = ... ï 1[y/E2] •• ,

and use 11.4.1 1 in case (2) and (3) simply take E E'. So, in fact,
0

even î >
1

E'..,. A'.

11.4.3. Theorem: E ~ 6 ~ 6' • E ~ E' ~A', forsome E'.

Proof: by induction on 6 ~ 6', usinq 11.4.2.

11.5. Corollaries

95

11.5.1. Reduction-under-substitution lemma (i.e. Property (*), sec. 11.1):

11. 5. 2. Barendregt's lemma (De Boer [7]) :

(if X I. FV{l:))

Proof: (Ex}* :o: Er ~ /:; so Ex ~ l:' I:J..

11.5.3. Square brackets lemma: If * E <! Ày•I:J. then either

(1) E <! 'Ay·I:J.o, * /:;0 ~ IJ.

or

xM, (xM) * (2) l: <: ~ Ày·t:. .
Note about terminoloqy: the name square brackets lemma comes from the

square brackets which represent abstr in Automath notation. Here the

name À-lemma would be more appropriate. Slightly more general than

11.5.3 is:

11.5.4. "Outer shape lemma": if r* ~ 6 then l: ~ 60 , !:.~ ~ 6 witheither

* (1) the latter reduction (I:J.
0

~ 6) is non-main, or

t2l t:.
0

= xM.

11.5.5. Note: the corollaries 11.5.1, 11.5.2 and 11.5.4 do not extend

co Sn-reduction, but the square brackets lemma does (by Sn-postpone

ment) •

96

CHAPTER lil. THE THEORY OF ABBREVIATIONS; LSP

III.l. Introduetion

1.1. In mathematical practice one often introduces new names for pos

sibly long and complicated expressions, possibly with parameters. In

formally these defined aonstants are mere tools in the presentation

and are considered to beleng to the meta-language. In a formal develop·

ment however, every such abbreviation gives rise to an extension of

the language and an additional defining axiom to give the new constant

its meaning.

1.2. In the Automath languages where theories are built up in the form

of books, one can make abbreviations at every stage of the development

by adding a definition line to the bock, thus introducing a new de~nec

aonstant. In practice, most of the lines in an Automath-book are

definition lines. We think that this abbreviation device is essential

for the feasability of "mechanizing"mathematics, i.e. writing and

mechanically verifying completely formalized mathematics.

1. 3. Suppose we are given a system of "old" expressions and a string of

defining axioms for "new" constants. We extend to a new system, whose expres5

may also contain new constants. We treat the eliminatien of abbrevia

tions, i.e. the "evaluation" of new notions in terms of old ones, here

as a reduction, viz. o-reduction.

Then the problem of o-normal form, o-normalization and o-Church

Rosser respectively correspond with the questions:

(i) is every new expression equal to an old one?

(ii) is there some effective procedure, e.g. some specific order of

eliminating new constants, leading from a new expression to an

equal old one?

(iii) is every new expression equal to at most one old one?

-here the words at most one can be understood in the sen se of identi ty

of expressions- •

1,4. In, e.g., Kleene [39], curry [25] and Troelstra (69] such questicn:

are discussed in the general context of definitional extensions, also

97

1ncluding descriptions and recursive definitions. Here we just study

abbreviations, in the ferm of the abbreviation calculus LSP (de Bruijn,

[11]}. This language isolates the abbreviation device of Automath

from the ether "constituents" of Automath such as À-calculus and the

typing of expressions.

III.2. The definition of LSP

2.1. Ourdefinitionof LSP will be slightly different from the one given

in [11] • Here we consider LSP over some expression forming operations

(:\-abstraction, some basic constants) and a string of primitive constants.

Hence we do nat need primitive notion lines in our LSP-books.

Sa, assume some expression formation operations given, and strings

p, d of primitive and defined constants. We call E a d; x-expression if

all its constants are basic, or in p or in d, and all its free variables

are in :x.

2.2. An LSP-book {also: a correct LSP-book) over p and the operations

is a finitestring ofdefinition lines ar defining a:xioms d(x.) :=11,,
l. ~

where the following requirements have to be observed:

(i) all di in the bock and all variables :xij in :xi have to be mutually

distinct; !dil = lxil and

(ii) each of the /1i has to be a d
1

, ••• ,di-ll :x1-expression.

2.3. So, as is usual in practice, definitions are made on top of other

definitions. The kind of definitional extension introduced by an LSP

book is explicit in the sense that all definitions of new constants

are given in terms of basic, primitive ar previously defined constants,

and proper, in the sense that each new constant has just one defining

axiom (property (*) of II. 8). Hence, we can define thedefiniens

of a constant for short def (di) , to be the de fini tien part 11 i of

the defining axiom of di, di {X) :=Ai.

2.4. Let 8 be an LSP-book, with defining axioms for the constants in

the string d. Now E is called oorreet w.r.t. B if, for some x, it is

a d; :x-expression.

So, each of the definition parts Ai is correct w.r.t. the preceding

98

book, and a fortiori, w.r.t B.

2.5. Clearly, an alternativedefinitionof LSP-books can be given in

ductively: start with the empty bock, and say what kind of one-line

extensions may be added.

2.6. As in II. 3, wedefine o-reduction (w.r.t. 8). If d has a defini1

axiom d(i) := ~ in B ~hen d(Ë) contracts to ~[Ë]. Since, in this chapt•

we only consider ó-reduction, ê-equality etc., we omit o's, just W%itir

>1 for ordinary one-step ê-reduction >l,ó' >1 for >l,ó etc.

The relation of reduction andequality,relative toB, are defined

on all the expressions, not just on the correct ones.

111.3. Some properties

3.1. Substitution and reduction

From the previous chapter we reeall such properties as:

(1) if d(i) := ~ is a defining axiom then (substituticn property I,

sec. II. 2.5)

~rx /1:Dlii /i'D = t.. [x/Ë[y ;ru

(2) (i) ~ >1 ~· .. ~[Ë] >1 ~·[Ë]

Ê' .. ~[Ê] - ~[Ë'] (ii} E >1 >1

(iii) t.. ~ ~., Ë ~ Ë' .. à[Ë] ~ ~I [Ê I]

(iv) t.. = /:;,I f E = i:• .. ~[Ë] = ~·[Ë']

3.2. The clcsure property

Since reduct.icn is defined on all the expressicns, it makes sense

te discuss closure: de correct expresstens remain correct under re

duction? As in sec. II. 5.2.3, correctness is preserved under substi

tution. And since the definition parts are correct, we have CL
1

so CL.

3.3. The Church-Rosser property

Even without using ê-SN we can prove CR by taking >1 (or >
1

) as

99

a suitable compound reduction. In fact this works for all, not just

for correct expressions, so we do not need CL in our proof. That >
1

is

indeed suitable, is proved by induction on the structure of expressions.

Crucial cases are:

where E.; E~ for i= l, ..• ,ldl. In this case take as a common one-step
~ ~

reduct def(dJ [f•] (use 3.1. (2).(ii)).

(2)

By ind. hyp. Ei ; 1 E~ <1 Ei for some

common one-step reduct f(Ë "').

III.4. Normalization

L'."
~

for i=l, ••• , if 1.
for i=l, ••• , lfl. So take as

4.1. Clearly, E is ó-normal if it does not contain defined constants,

For each of the constants d . . (see 2.2) in the hook we define the number
~

i to be the date of the constant. The date of an expression l: is defined to

be the maximum of the dates of the constants in E.

So,

(1) date(def(d)) < date(d),

and

(2) r c E _. date{f) s date(E).

4.2. Let E be given. We define two reduction procedures for l:, which

provably terminate (the proof of this uses induction on date (E)), and

hence are normalization procedures. So we have ö-N.

4,3, The first procedure runs as fellows. Let m be the date of E.

Define ~m to be the number of occurrences of d in E, Then the
m

first reduction step in the procedure is to contract an innermost (e,g.

the leftroost innermost, to make it deterministiel occurrence of some

(Zl c E (so d does net occur in ZJ, And so on. The terminatien
m

proef is by double induction, viz. on (I)m, (II) ~m. For by the in-

dicated contraction, ene occurrence of d disappears, and the contrac
m

tum def<dl[Z] only contains constantsof date strictly smaller than m.

100

4.4. The secend procedure is provided by the followinq proof of nor

malziation, using double induction again, viz. on (I) date (E),

(II) length (E).

Distinguish two cases:

(i) E:: d(f). By the second induction hypothesis the r i in f normalize,

te rl say. By the first induction hypothesis def(d) normalizes,

to à' say. So,by 3.1.(2).(iii), E ~ à'[f'] which is normal.

(ii) Otherwise, simply normalize the direct subexpressions of E (use

ind. hyp. II).

Parallel te the proef we can, in view of CR, define the normal ferm of

expressions, with the crucial case:

111.5. Strong normalization

5.1. As in II. 5, E is said te be ö-SN (for short: SN) if all its prop

er reduction sequences terminate, no matter in what order the reductior

steps are chosen. Here fellow several proofs of ö-SN (net given in

historica! order).

5.2. Heuristics: SN-conditions, substitution theorem.

(i)

(ii)

By II.5.3.3, E is ö-SN if:

r sub E ~ r o-SN
E = d<r> • def(d)[f] ö-SN

(because the latter expression reduces to all the first main reducts

of E).

So if we can prove the substitution theorem for ö-SN:

E ö-SN, à ö-SN ~ à[i] ö-SN

Then we can preeeed by induction on (I) date(E), (II) length(E) and

prove E te be ö-SN. For, the proper subexpressions of E are SN by

ind. hyp. II (condition (i) above), and (if E = d(r)) def(d) is SN

by ind. hyp. I, so def(d)[f] is SN by the substitution theerem (condi

tion (ii) above).

101

5.3. First SN-proef

5.3.1. However, our first SN-proof of SN in fact proves the combination

of the substitution theerem for SN and the SN-theorem itself, atrong

normalization under aubatitution: If all r. in r are SN then E[x/f] SN
~

(for arbitrary I:).

Proef: By induction on (I) date (I:), (II) lenqth of E. Distinguish

the cases:

(i)a, E -x. for some x. in x. Then E[r] - r, is SN by hypothesis.
~ ~ .

(i)b. E - y, y not among x. Then E[r] = y which is normal.

(ii) E d(6), E[f] = d<6[r]). By 5.2. we must prove that (i) all

ó.[f] are SN (j = 1, ••• ,\d!J, which is the case by ind. hyp. II,
J - -

and (ii) that def(d)[~(r]] is SN which holds by ind. hyp. I

applied to def(d}.

(iii) In the remaining case, apply ind. hyp. II to the direct subex

pressions of E.

5.3.2. Corollary: ö-SN (take the empty substitution, \xl 0).

5.4. second SN-proof

5.4.1. The secend SN-proof actually uses the methad indicated in 5.2

and first proves the substitution theerem for SN. The point of this

proof is to combine it with a proof of 8-SN to a proof of ó8-SN. This

combination works, because both proofs depend on compatible inductions.

5.4.2. Substitution theorem for ó-SN: If I:, r 1 , ••• ,rk are ó-SN then

] o-SN.

Proof: By a double induction again, (I) on the ö-reduction tree of E

(indeed, Eis SN), (II) on the lengthof E. The cases (i)a, (i)b are

jt:.st as in 5.3.1. So, we start with

(ii) E = dtZl, E[r] dt6[f]). The ~.[r] are SN by ind. hyp. II (notice
~

that the condition of ind. hyp. I is not violated), Further we

have to prove that deftdl[~[r]] <= deftdl[~][r]J is SN. This is

the case by ind. hyp. I, since E properly reduces to def(d)[~].

(iii) In the remaining case, apply ind. hyp. II to the direct subex-

presslons of E.

102

5.4.3~ Corollary: 5-SN (as in 5.2).

5.5. Third SN-proof.

5.5.1. This proof of o-SN (actually the first proof given) is due to

de Bruijn. For each E a non-negative integer L(E) is defined by in

duction on (I) date (I), (II) length (I), such that L(E) strictly

decreases under proper reduction. So all proper reduction sequences

terminate. In fact, L'(E) is ;>recisP.ly the maximum length of proper
*)

reduction sequences of E.

5.5.2. Heuristics

Let d<x1 , ••• ,xk) := ó be a defining axiom. We say that xi is

aative (in d), if x. actually occurs as a free variablein ó.
~

Now, let us try to construct a proper reduction sequence of maxi-

mal length, for an expression d<E 1, ••• ,Ek). If xi are active, such

a reduction sequence can start with the main reduction d(Ë) > ófiÏ].

Sa possible contractionsof the Ei are postponed until perhaps the r
1

will be multiplied by the main reduction and further reductions. In

fact, until we arrive at an expression with a maximum number of multi

plied Eis in it.

But, if certain xi is not active, a longest reduction sequence of

dlr
1

, ••• ,Ek) has tostart with such contractions in Ei as correspond

with a longest reduction sequence of r
1

•

Suppose we have a function K such that, for all r with d(X) ~ r,
K(x,n = max{# (X,f')lr ~ r•} (here #(x,f') is the number of free

occur~ences of x in f'), and that L(E) is the maximumlengthof proper

reduction sequences of I.

Then the maximum contribution of Ei to the length of proper re

duction sequences of d<Ë> is precisely K(x.,d(x))•L(E.).
~ ~

Clearly, if x
1

is active, then K(xi,d(X)) K(xi,def(d)) and othe

wise, K(x,,d(x)) 1. so, in general, K ,d(x)) max(l,K(x.,def(á))),
~ ~

5. 5. 3. A restrietion of LSP has been suggested [11 J in which only

defining axioms with all variables active are permitted. Let us call

this language variant ÀI-LSP (by analogy with Church's ÀI-calculus [2~

For this language the definition of K and L below can be simplified.

*) __

R.C. de Vrijer has used the same idea to prove the terminatien of
socalled aomplete reductions (compare [71]).

103

5.5.4. Definition of K and L

5.5.4.1. Now we come to the formal inductive definitions of the func

tions K(.x,I:) and LO:).

That bath functions are total, i.e. indeed defined for all r,

fellows by induction on (I) date{!), (II) length(!}.

K(x,I:) is a non-negative integer, defined inductively, by cases:

1 1

(i)b. K<x,y) Oifx$y,
k

(iil K(.x,d{E
1

, ••• ,Ek)} = L K(x,E.)•max{l,K(x.,def(d}}}, if d has
i=l 1 1

defining axiom d<x
1

, ••• ,xk) := def(d} ,

(iii) in the remaining case, K(x,E) is the sum of the K{x,r) over the

direct subexpressions r of r.

5.5.4.2. Some properties of K

(1)

~ be the defining axiom of d. Then

If 1 sis k and all the y. are mutually distinct then
]

K<y
1

,dCy
1

, ••• ,yk)J = max(l,K(xi,6)J

k
L K<z,E.J•K(y.,d(y1 , ••• ,yk))

i=l 1 1

for every choice of mutually distinct y 1 , ••• ,yk.

5.5.4.3. In analogy to K, wedefine L(!) by

(i) L(x} = 0 ,

(ii)

(iii) in the remaining case, L (l':) is the sum of the L (f) over the

direct subexpressions r of r.

Notice that, as above, the choice of the x 1 , ••• ,xk -as long as they

are mutually distinct- is immaterial.

104

5.5.4.4. some further properties

Of course,

(1) L(E) = 0 iff Eis normaL

Further L (d(x} > Lcdef<d>> + 1, so

(2) L <d<~ll
!dl

L<d<xll + I Lcr.>·Kcx.,d<ill
i=l l. l.

This is an instanee of the subatitution propePty foP L which holds

generally:

k
(3) L (f) + l

i=l
Ln:.J·K<x. ,n

l. l.

Proof: By induction on the lengthof r. E.g., if f: d(r
1

, ••• ,fm)'

then by definition

m
L cr[~]l Lcdef(d)) +1 + l=

1
L<rj[Ë]J .. K<yj,d<y 1 , ... ,ym))

By inductive hypothesis the latter sum is

m k m
I L < r . > • K <y .,d <iï » +

j=l J J
l Lcr.>· l K(x.,r.>·K<y.,d(y))

i"'l l. j=l l. J J

where the first sum together with L(def(d)) + 1 gives L(f), and the

second sum equals

k
I L o:.) ·K (X. I f)

i=l l. l.

5.5.5. Theorem: if r >1 r then L(E) > L(r).

Proof: By induction on the length of r.

(i) If E : X then E is normal,

k
L(def(d)l + 1 + L L(ll.) ·K (X. ,d(X))

i=l l. l.

and

q.e.d.

105

Lcdef(d)) + L {l1.) ·K<x. ,def (d))
~ ~

(by 5. 5. 4. 4. (3)

above). so L(Z) > L(rJ since K(x.,d(x)) 2 K(x.,def(d)).
~ ~

(ii)b. l: = , ••• ,l'.'J., ••• ,D.k) and l'.. >. r,;. By the
J L J

d

induction hypothesis L(/',,) > L(/',~). So L(l:) > L(f) since
J J

(iii) In the remaining case, some proper subexpression of l: must

have been contracted. So, for certain direct subexpressions

:z
1

, r
1

of Land r respectively, L=: ••• L
1

•• ~, r:: :- 1 ~ •• ,

zl >1 rl. So L(Zl) > L(fl) by the induction hypothesis and

L(Z) > L(f) by definition.

5.5.6. Corollary: o-SN.

5.5.7. Actually, if Z is not normal, a Z' can be found such that >
1

and L(î) = L(L') +1. This can be proved by induction on the lengthof

~,as in 5.5.5. (notice that either K(x,,d(x)) = K(x.,def(d)) for all
~ ~

i, and main reduction has to be applied orK(x.,d(x)) = 1 forsome i,
~

in which case a proper subexpression has to be contracted). So, as we

claimed in 5.5.1., L(E) is not just an upperbound for the lengthof

proper reduction sequences of I, but (by 5.5.4.4. property (1)) pre

cisely the maximum value 80 (1:).

5.6. Fourth SN-proof

5.6.1. The fourth SN-proof gives ó-SN as a corollary of S-SN for typed

71.-calculus. The latter re sult is proved in Chapter IV.

Let B be an LSP-book. Wedefine a translation 4, from correct

LSP-expressions w.r. t. BI into the typed x.-calculus expressions, This

~ eliminates defined constants, such that ó-contraction of E corres

ponds with proper S-reduction of ~(l:). So, if we assume S-SN, we have

8 -SN.

This proof is funny rather than useful: the problem of S-SN is act

ually more complicated than the problem of ó-SN.

One might think of reducing the problem of Sö-SN to the problem

of s-SN by the translation 4. However, ~ induces some typing of the

106

transiated expressions, which may interfere with typinqs already presen1

It seems hardly worthwile to try and adapt <!> in order to make the in

duced typing compatible with given typings.

we just sketch the idea of this proof.

5.6.2. Definition of <!>

The translation of<!>{~) is defined by induction on (I) date (E),

(II) length (E). Crucial clauseis the eliminatien of defined constant!

•cdcr 1, •••• rkll :5

{<t>(EkJ} ••• {<t>CElJ}{t} [yoJ[ylJ ••• [ykJ <t>Cë[rel, ••• ,rek/yl, ••• ,yk]l

where dcx 1 ,.~.,rek) := é is the defining axiom of d, t is some new pri

mitive constant, and the yi are new variables net occurrinq in r
1

, ••• ,:

If we just want o-SN, we can choose a trivial typing of the vari

ables and constants, such that the <!>(E) are correct expresslons of the

typed À-calculus (in view of Chapter IV. 2, it is sufficient that the

<!>(E) are normable, so we can simply give all variables and primitive

constants the norm T, say).

5.6.3. Substitution lemma for 1

If ~.r are correct then

Proof: By induction on the lengthof r.

5.6.4. Homomorphism lemma: If l: >
1

,
6

r then \ll(E) properly S-reduces

to <I> (f).

Proef: By induction on the length of z:. Notice that the applicator {t}

and the abstractor [y
0

J are just dummies inserted for the case of 0-ar:

defined constants.

5.6.5. Corollary: ó-SN (by a-SN)

III.6. Oecidability

6.1. Here we make some remarks on the verifieation of LSP-correctness

(of expression and books) and the deeision probZem for ó-equality. The

107

provisiona in·2.2. and 2.4. are easily verified mechanically, so bath

the notion of correct hook and correct expression(w.r.t. a book) are

decidable. Hence the verification of LSP-correctness does not require

the deciding of equalities (as in, e.g., AUT-QE).

6.2. Now about the decision problem for equalities. Since o-N, ö-SN,

and é-CR hold for all the expressions, E

(in contrast with, e.g., 8-equality),

r is decidable for any E,r

Pormal decidability is already provided by ó-N and é-CR. For,

1: =
0

r iff ó-nf(E): ö-nf(r)- and identity of expresslons is decid

able -. In practice however, ó-normal farms tend to be very long and

their computation can require many reduction steps. So we rather avoid

computing normal farms of E and r and look for a common reduct if

there exists one - which can be reached by a small number of suitable

reduction steps.

6.3. We just discuss how some cases of the decision problem E ö r

have to be handled by a sensible (for our specific situation) decision

procedure. Induction on (I) 60 (E) + 60(r), (II) length (E) + length (f)

shows that the procedure, whether sensible or not, anyhow terminates.

The cases we discuss are:

(i) ptËJ = q(r), both pand q primitive: this is true iff

p q and E = r, i.e. r 1 ri for i= l, ... ,Jpj. So in this case

we must decompose.

(ii) d(~) r, r immune: this is true iff def(d)[f] r. So in this

case we must main reduce.

(iiil d(E) = e(f), bath d and e are defined constants: hereis a choice

between main reduction on d and main reduction on e. Let us

assume that selectors, i.e. defined constants d with axiom

d(x) :=x. are exceptional (they are not very useful as abbrevi
~

ations).

Then it seems sensible to contract the younger constant, i.e.

the constant with the higher date of the two.

(ivl d(~l dtfl: this is true iff def(d)[Ë] d(f) iff d(f) =def(d)[f].

So it is sufficient to apply main reduction, either on the left

or.on the right hand side. But, in order to avoid computing

108

normal forms, decomposition must be preferred. However, whereas

Ë = r ~ d<Ë> = d(f) holds for all constants d, the converse holds for

').I-constants" d only. So decomposition is not sufficient: at first we

try decomposition and verify the equalities Li ri. Only if one of

these is not true, main reduction is applied.

Presumably most of the actually instantiated variables, i.e. the vari

ables not suppressed by the shorthand facility of Automath [27], are

active. So in most of the cases where decomposition fails to produce

a common reduct the subsequent main reduction will not yield a common

reduct either.

109

CHAPTER IV. STRONG NORMALIZATION FOR FIRST ORDER PURE TYPED À-CALCULUS

WITH APPLICATION TO AUT-QE

IV. 1. Introduetion

~.1. Pure and extended systems

A system of expressions is said to belang to pure ;\-calculus, if

its reduction relation only includes 8-, n- and possibly ê-reduction.

Systems, which besides abstraction and application (and, possibly,

defined constants) have ether operations with their associated reduc

tions are said to be extended systems. In this thesis we do not study

arithmeticaZ systems, which have a constant R for primitive recursion,

with the associated recursion reduction. Nederpelt's A [51], de Vrijer's

ÀÀ [70], AUT-'68 and AUT-QE are examples of pure systems. AUT-Pi and,

e.g., Martin-Löf's systerns [45, 46] are extended systerns. Martin-Löf's

systems, and e.g. the systems of Tait [68] and Sanchis [61] are arith

metical systems (the latter two are formulated in combinatory logic,

though).

1.2. Typed and pre-typed systerns

A system is said to be pre-typed if there is a typing, a function

from the expressions to the type-symboZs or types; the typing is in

ductively defined along the structure ofexpressions, starting from an

assignment of types to variables (and primitive constants). Possi~ly

some expressions can only occur as types, but do not have a type them

selves.

we say that a pre-typed system is typed if either the formation

of expressions or the reduction is restricted in some way, according

to the typing of the expressions involved.

E.g., Nederpelt's systern t, of "distinctly bound" expressionsis

pre-typed. De Vrijer's ÀÀ [70] and Wadsworth's typed À-calculus (in

Lévy [42]) are typed systems with a restricted reduction relation.

Usually, it is rather the formation of expressions that is restricted

subject to the typing rules. In this thesis, the systerns of correct

expressions of the various Automath languages are defined along these

lines; in particular, the formation of application expressions {A}B

110

will be subject to some app~iaabiZity aonditions: B has to be a functi

with domain a (to be computed from the type of Bl where a is the type

of A.

1.3. Simple and generalized type structure

In most cases, the type-struature(i.e. the set of type symbols)

of typed systems is relatively simple and can be inductively given

(from certain constants for "ground-types" by closure under certain

type-forming operations) prior to the definition of tePms, i.e. the

expressions which are nat types. Examples are: (1) the finite types

of higher type arithmetic functionals: groundtype a (for the natural

numbers), closed under , (2) the simple types of simple type-theory

(Church [24]): groundtypes o and i (for truth-vaZues and individuals

respectively), closedunder

Alternatively, we have a generalized type-structure, where the

types are more complicated and are rather defined simultaneously with

the typed expressions. In particular this is the case with the Auto

math-languages, where the types are just certain correct expressions

themselves, In fact, in Nederpelt's A any expression can act as the

type of other expressions.

1.4. Formulae-as-types

By the formulae-as-types-, derivations-as-terms-interpretation

[34, 60], the derivations in natural deduction formulations of log

ical systems, with their proof theoretic reduction relations farm

typed A-calculus systems. The type-structure is just the set of for

mulas of the logical system under considerations. It appears that,

under this interpretation, implication ,... and universal quantification

(and possibly a constant for falsum .i) just give rise to pure systems.

By the introduetion of further connectives and the corresponding re

ductions of derivations, one can get extended systems.

Finally, ir.duetion reduation of derivations corresponds to l>e

eursion 1•eduation of terms, in ar i thmetical systems.

The À-calculus systems, produced by the interpretation above fron

natural deduction systems, are not necessarily gene1t'a~ü:.ed in the

sense of 1.3. They are so, however, if the formulae contain reducing

111

expressions and hence reduce themselves. This is, e.g., the case if

the reduction of expressions induced by the interpretation (by reduction

of derivations) is combined with a reduction relation on the terms

("objects") of the logical sys·tem.

Further, reduction of terms and formulae can arise from generalized

logic (1.5.10) , where "partial" objects and formulae are construc

tively conceived of as depending on (and hence containing) expressions

for derivations.

1.5. First order and higher-order systems

1.5.1. As suggested by the applicability condition in 1.3 a certain

stratification of expressions, according to their level of functional

complexity (as explained below), is imposed by the type-restrictions

on the formation of expressions.

In e.g., simple type-theory, the functional complexity of a term

is determined by the length of its type-symbol. For derivations-as

terms, their functional complexity roughly depends on the number of

quantifiers and connectives in their end-formula.

After Nederpelt [51], we shall alsodefine a norm (a measure of

functional complexity) for the correct expressions of Automath lan-

guages.

In fact, the presence of a well-founded order of functional com

plexity (such as provided by the stratification} is essential for

the property of (strong) normalization.

E.g., by this stratification, non-normalizing expressions such

as (ÀX•XXX) (ÀX•XXX) are ruled out.

1.5.2. However, if a system allows À-abstraction over type-variables

then the stratification of expressions cannot be defined as straight

forward as in the previous cases, viz. simply by induction on the

structure of expressions, As an example consider the expression

{a}[x:type][y:x]y, which under the formulae-as-types-interpretation

represents a derivation of a~ a. Hence, its functional complexity de

pends on the complexity of the argument a, whereas in the previously

mentioned systems, the functional complexity of {A}B just depends on

the complexity of B.
Analogous to the terminology about logical systems, type-variables

112

are called higher-order variables, and quantification {or À-abstrac

tion) over such variables is called higher-order quantification. So,

e.g., secend order predicate calculus (as in Prawitz [60]), and intu-

itionistic type theory (in [52, SS]) under the formulae-as-types

interpretation give rise to higher order À-calculus systems. Also, the

strenger systems of Martin-Löf fall under this heading.

1.5.3. In the system A of Nederpelt, quantification over all variables

is permitted. We call this system nevertheless a first-order system

since all variables have a fixed complexity (norm) and only expressier

with the same norm are substituted for them. So the difficulty, pointe

out in our example above, is avoided here.

The ether Automath languages have a ~eak seaond order aspect:

they have type-variables, but these are not quantified; there is only

substituted for them.

Higher order Automath languages have indeed been proposed (Aut-4)

but they are not discussed in this thesis.

1.6. Survey of normalization results

1.6.1. There is a large number of normalization and strong normaliza

tien proofs for various systems in the proef theoretic literature. ThE

first result in this direction is Gentzen's Hauptsatz on the cut

eliminatien in sequent systems for logic and arithmetic [28, 29].

Ndrmalization of natural deduction systems (and also cut-eliminatien

in sequent systems) has important consequences, such as consistency

and conservativity results.

By streng normalization, induction on reduction trees can be

introduced, which is helpful for proving ether properties (such as CR,
II.6.1.1). And, in the language theory of Automath, strong normaliza

tien gives the terminatien of strategies for deciding definitional

equality.

1.6.2. We just give an (incomplete) survey of the recent proofs of

(streng) normalization:

(i) There is Prawitz' s*>proof of normalization for natural deductior

systems for first order predicate logic [59] • Variants of this

*)According toBarendregt (private communication) this proof actually
must be attributed to Turing.

113

are the proof in Andrews [1) 1 for simple type theory

(without recursor) and Seldin's proef [64] for certain systems

of illative combinatory logic;

(ii) There are sanchis's [61] proef of streng normalization 1 and Tait's

proef of normalization [68] 1 for the primitive recursive tune

tionals of finite type. Variants of this are in Jervell [35],

Prawitz (60], Martin-Löf [45] 1 Stenluna [67], Leivant [40] and

de Vrijer [70] (for ÀÀ);

(iii) There is the proef of Nederpelt and Jutting for the normaliza

tien of certain Automath languages [36] and a variant of this

in Lévy [41];

(iv) There is Nederpelt's proof of streng normalization for his Auto

math system A [51]

(v) Finally, there is Girard's proof of the strong normalization of

higher order systems [30, 31] • Variants are in Pravtitz,

Martin-Löf, Pohlers, Osswald [60, 44, 55 1 52].

1.6.3. Since the normalization results in (ii) and (v), tagether with

CR for the corresponding systems, entail the consistency of primitive

recursive arithmetic and intuistionistic analysis respectively and

there are elementary Church-Rosser proofs (i.e. formalizable in prim

itive recursive arithmetic, see Traelstra [69]), we can say sernething

about the proef theoretic strength needed in these (strong) normaliza

tien proofs. Thus the proofs in (ii) are "non-finitary" in the sense

that they use an inductively defined notion (regularity (Sanchis),

computability (Tait, de Vrijer), validity (Prawitz), stability (Leivant))

which a priori is not formally definable in arithmetic (Leivant [40])

Besides 1 Girard uses "impredicatively" defined sets of expressions,

so called "candidats de reductibilité".

In contrast with this, the proofs in (i), (iii) and (iv) are

evidently finitary. Only double (or perhaps threefold) w-induction

over decidable well-orders is used.

1.6.4. The new proef

Here we present (sec. 2.4.4) a new proef of streng normalization

114

(and two variants of it) for pure typed À-calculus (hence a streng

normalization result for first-order predicate logic over (~,V,i),by

the preceding discussion),

Like Nederpelt's proof, but in contrast with the proofs using

computability, it is evidently finitary. Further the new proef is

simpler than Nederpelt's proef.

In Chapter VIII, our proof is extended to AUT-Pi (and hence to

a streng normalization result for full first order predicate logic).

IV 2. Normalization anà strong normalization for normable expressions

2.1.1. Here we consider a system Mof normabLe expressions, in which

the first order pure typed À-calculus systems, such as the systems of

correct Automath expressions, can be embedded. Each nor~able expressic

r has a norm~(!).

Norms are defined inductively:

(i) T is a norm

(ii) if vl, v2 are norms then [v1]v2 is a norm.

The length t(v) of a norm v can be defined to be the number of T's in

v. Equality of norms is denoted by ~.

2.1.2. The expressions in Mare formed from variables, À, abstr and

appl (and possibly ether constants). Abstraction expressions are de

noted [x:A]B and applièation expressions {A}B.

By writing ~(A) we implicitly intend that A ~ M. Here fellow the

relevant properties of M and the .norm ~:

(1) Mis closedunder taking subexpressions, i.e. L E M,r c E • r E M

(2) E- [x:A]B E M • ~(El ~ [!J(Al]JJ(B), JJ(X) ~ JJ(A)

{3) E {A}B E M • !J(B) ~ [I!(A)] ~(!)

(4) M is closed {and IJ is preserved) under sub.stitution:

!J(X} !J(A), BE M • lJ(B[x/A]) ~ !J(B)

(5) M is closed (and 1J is preserved) under reduction:

r E M, E ~ r • IJ (r) ~ ll (El •

115

2.1.3. The norm~ induces a well-founded order~ on the normable ex
~

pressions, as follows:

l:~ r: .._. Q,(;.l(l:Jl < Q,(J.dfll
)J

Then by the properties'above, « induces an actual stratification,
)J

according to functional complexity: both argument and value of a func-

tion preeede the function w.r.t. « i.e. if {A}B E M then A ~ B and
)J)J

{A}B ~)J B. So, if {A}[x:B]C E M then C[A] ~ [x:B]C • And, if {Ä}x E M
\.!

then A. ~ x (i
l.)J

1 I ... , jÄ I) .
Induction on « is

)J
just called induation on)J,

Below we only deal with (strong) normalization for S-reduction.

As in sec. II. 7.3.4, 7.3.5wecanextendtothe Sn-case. In sec. IV. 4.6.

we extend with o-reductions.

2.2. Normalization for S-reduction: first proof

2.2.1. Reuristics

Assume that E E M, E is not normal, E , S E'. So

l: {A}[x:B]C ••• ,2:' ë: ••• C[A] ...•

The redices in l:' are of several kinds (compare with II. 9):

(1) "old" redices, already present in 2: (and there disjoint with

{A}[x:B]C)

(2) "modified" redices, i.e. redices R[:l!./A] c C[x/A] in l:' where

R c C in 2:.

(3) "multiplied" redices, i.e. redices inside substituted occurrences

of A in C[A].

(4) "newly created" redices {D
1
[A]}[y:D

2
JD

3
, where A

and {D1}x cC or x C.

(5) "newly created" redices {D1}[y:D2[A]JD
3

[A] where C = [y:D2JD3 .

If A is normal, no redices are multiplied. If)J{Á)

of type (4) are created.

1", no redices

2.2.2. First proof of S-normalization {Prawitz 1965): This proof is

quite similar to the first proof of o-N in III.4.3. Define the order

116

of a redex {A}[x:B]C to be ~(~([x:B]C)}.Let t € M, let m(E) be the

maximal order of redices in E, and let ~ (m,E) be the number of occur

rences of redices of order m in E.

Our normalization procedure runs as fellows: if E is not normal

then contract an innermost redex {A}[x:B]C of maximal order. And so

on. That this procedure terminates, fellows by induction on {I) m(E),

(II) ~ (m,E). For, one redex of order m(E) disappears and, since we

chose an innermost redex of order m(E) all the redices of type (2)-(5)

above are of order less than m(E},

FUrther, the "old" redices were already present in E, with the

same order. so, either m(E} - if ~(m,E) = 1- or ~{m,E) - otherwise

properly decreasas under the indicated contraction.

2.3. Secend proof of 6-normalization {Lévy, Juttingl

2.3.1. Substitution lemma for S-N (Jutting):

BE M, ~(A) =~(x), A normal, B normal • B[x/A] S-normalizes.

Proof: By induction on (I) p(A), {II) lengthof B. If B[A) is not nor

mal, then B contains subexpresslons of the form {B1}x and A = [y:A1JA
our normalization procedure for B[A]] runs as fellows: for each of thes

{B1}x take the maximal {Bk} •.• {B1}x ending in it. By ind. hyp. {II)

({Bk-l} ••. {B1}x)[AB normalizes, to C, say. If C [y:C1Jc2 then by

ind. hyp. (I) applied to Bk[AB, c2[y/Bk[A]B normalizes. By normaliza

tien of all these maximal subexpressions of the form ({B}x)[A], B[A]

can be normalized.

2.3.2. Corollary: E e M • E S-N

Proef: By induction on the length of E.

2.3.3. The reduction procedure intended above corresponds to the fol

lowing definition of normal form:

Lévy speaks about "interieur d'abord"-reductions. In fact, Lévy's

117

proof of normalization by this procedure does not use a substitution

lemma, but instead employs an induction up to ww (for an explanation,

see sec. 2.6.1).

2.4. Streng 6-normalizatión (6-SNI first proof

2.4.1. Heuristics for SN

We formulate 6-SN-conditions, in agreement with sec. 11.5.3.3:

E is SN if

(i) the direct subexpresslons of ~ are SN, and

Cii) E = {A}B, B ~ [y:C]D ~ D[A] SN

(because all first main reducts of Bare reducts of some D[A]).

So, if we have the substitution theorem for 6-SN: if B E M,

~(x) -~(A) then

A SN, B SN ~ B[A] SN I

then we can prove 6-SN by mere induction on the length of expressions.

2.4.2. Heuristics for the substitution theerem

Now let B E M, ~(x) ~(Al, B SN and A SN. Abbreviate E[x/A]

* by • The question is how to prove the SN-conditionsforB. The cru-

cial case is when B- {B
1

}B2 • The SN-conditions.require:

(il s; SN, B; SN ,

and

In the case that the outside square brackets of [y:C]D do not ori~

ginate from the substitution *but show up as well in reduction se

quences of B
2

, i.e. if

then

which suggests to use induction on the reduction tree of B is SN)

118

* in order to establish that D[B1] is SN.

Otherwise, the square-brackets lemma {sec. Il. 11, and sec. 4,3

below) must provide the necessary information.

2.4.3. Alternative proof of the square brackets lemma

The proof in II. 11 works for free À-8-calculus. Here we give an

* alternative proof for SN expressions. Abbreviate E[x/A] by E •

Square brackets lemma: Let B* ~ 8 [y:C]D and let B be SN. Then either

(i) B ~ [y:C0JD0, C~ ~ C, D~ ~ D,

or

{ii} B ~ {F}x, {F*}A ~ [y:C]D •

Proof: By induction on (I} 6(B} (the lengthof the.reduction tree of

B), (II) lengthof B. Distinguish the cases:

(l) B x. Then (ii) holds.

(2) B - [y:B
1

JB
2

• Since we have no ~-reduction, (i) holds.

(3} B * * - {B
1

}B
2

• Then B2 ~ [z:E]F, F[B
1

] ~ [y:C]D. By ind.hyp. (IIJ

applied to e
2

, either

* ~ [z:E0JF0, F0 ~ F or

~ {G}x, {G*}A ~ [z:E]F.

Hence, ind. hyp. (I) applies to F0 [B
1

] which gives the desired result

for B.

In case (b),

so B satisfies (ii).

(4) In the remaining case, s* does not reduce to [y:C]D.

119

2.4.4. First proof of s-SN

2.4.4.1. In agreement with 2.4.1, we start with the substitution thee

rem for s-SN:

BE M, ~(X) = u(A), A SN, B SN~ B[x/A] SN

Proof: By a triple induction on (I) ~(A), (II) 8(8), (III) lengthof B.

Abbreviate E(x/A] byE*. We prove the SN-condition fors*. The crucial

* * case is when B = {B
1

}B
2

• The direct subexpressionsB
1

,B
2

of are SN

by ind. hyp. III (or * possibly II}. So, let B
2

~ [y:C]D. We must prove

* that D[B1] is SN. By the square-brackets lemma applied to B
2

(whichis

SN, hence we can use the alternative proof without any circularities)

we have two cases:

or

(ii) B
2

~ {Ë'}x, ({F}xl * ~ [y:C]D

In case (i), B ~ {B1}Cy:C0JD0 >1 D
0

[B1] and (D0[B1]J*

* so the ind. hyp. (II) applies to D
0

[B
1
], whence D[B

1
]

* Do
is SN.

* In case (ii), we know that Dis SN (since B
2

is SN and

]

2: [y:C]Dl.

* Further, by the properties of~' ~(81) = ~<8 1) = u(yJ, B1 « x so
* u * « A.

j.;

is SN.

Hence, we can apply ind. hyp. {I) to B
1

and get that D[B
1

]

2.4.4.2. Corollary: E E M ~EB-SN (as indicated in 2.4.1).

*)
2.5. Second proof of s-SN

2.5.1. Heuristics for the substitution theerem for SN

Let A and B be SN. As in rr.5.3.3., B* (where *stands for [x/A])

is SN if all its reduction sequences contain an SN expression. Let

>
1

C > ••• be a reduction sequence of B*. First, if the redex is

an old or a modified redex (terminology as in 2.2.1} then the con-

* traction and the substitution commute: for some c0 , B >1 C0, C0 C.

So, if we use induction on 8(8), we can conclude that Cis SN. In

fact, the proofs in 2.4.3 and 2.4.4.1 use the similar fact that, in

some cases, substitution and main reduction commute. Secondly, re-

Actually, both the secend and the third proof of s-SN are incorrect:
The substitution theorem is not sufficient here, we rather need a
reptacement theorem. Since the idea of the proof can /turn over

120

duetion sequences of B* can start with contractions inside substituted

A's (or insidereductsof such A's). There are only a finite number of

such contractions, since A is SN. Finally, if the first redex con

tracted is a new redex then we have to use properties of the norm.

Our alternative proof of the substitution theorem, below, is

based on the above ideas and avoids the square brackets lemma.

2.5.2. An additional assumption on ~1 and)J is needed, viz. that I~ is

closed and)J is preservedunder "correctly normed" replacement: If l: E

and L:' is formed from E by replacing an occurrence of r c E with some

r• E M, such that)J(f') =)J(f) then)J(E') =)J(Î).

2.5.3. Second proof of the substitution theorem for 8-SN

Let BE M,)J(X) _)J(A), A and Bare SN. We must prove that s* is

SN . Again, we use a triple induction on (I))J (Al, (II) 6 (8), (Ill)

length of B.

Lets*: B
0

>1 B
1

> 1 ••• >1 Bk >1 Bk+l > ••• (k ~ Ol be a re

duction sequence of s* and let the step from Bk to Bk+l be the first

reduction step nat taking place inside (a reduct) of some substituted

A. So s*: ... A ... A ... , Bk ... A' ... A" ... : ••• {C}[y:D]E ••• ,

Bk+l ••• E[y/C] ••• , where A<?: A', A 2 A".

If p(A) is thesetof reducts of A (which is finitel then

B
1

, ••• ,Bk belang to the multiple substitution result Bix/p(A)j (sec.

II. 10) and Bk+l is the first reduct not in that set. Clearly,

k :;;; e (Al. # (x,B), i.e. the length of reduction tree of A times the

number of free occurrences of x in B.

we show that Bk+l is SN. Put R

following cases:

{C}[y:D]E , and distinguish the

(i) {C
0

Hy:D
0

JE
0

:R
0

c B and R ,;; R0 lx/p CAHI •

Then the contraction of R commutes with the multiple substitution

viz.

and

Bk+l .s B'(xjp(A)j •

The ind. hyp. (II) applies to 8', and {B')* 2 Bk+l so Bk+l is SN.

be maintained, and since the error will be repaired in VII.4.5 we
have nat altered the present text.

121

We apply ind. hyp. (I) twice (in contrast with 2.4.4.1). First C r..: '"
* 0 \1 ·-

so C«lJ A. By ind. hyp. (III) C
0

(so Cl is SN, and A is SN, so Eis SN.
Hence, by ind. hyp. (I) E[y/C] is SN. Secondly, E « A so E[C] o:: A

jJ \l
Now take a fresh variabie z, with \l(Z) = \l(E). Form the expression E'

from B by replacing the specific occurrence of R
0

by z, and form B"

from Bk by replacing R with z. By our assumption 2.5.2. the norm of

B and its subexpressions are not affected by this replacement.

Clearly, since B B'[z!R0], B' is SN and 6(8') s 8(B). Further

3' is shorter than B. So ind. hyp. (lil) or ind. hyp. (Il) can be

* applied, giving that (8') is SN. And by ind. hyp. (I) - this is the

* second application- (B') [z/E[y/C]] is SN. Resuming, in case (ii) we

have:

B ••• x ••. {C
0

}x ..• , B' ... x ... z ... , (B'>*- ... A ... z,

s* _ ..• A ... {C~}A ••. , Bk .•• A' ••• {C}[y:D]E ••• ,

B'' ~ ••• A• •.• z •••
So

(B'l*?: B", and (B'>*[z/E[y/CUD ... A ... E[y/C] ... ?:

B" [z/E[y/CU :: •• • A' ••• E[y!C] ••• = Bk+l •

whence Bk+l is SN, q.e.d.

2.5.4. corollary: E ~ M • E S-SN (as indicated in 2.4.1).

2.6. Third proof of s-SN

2. 6 .1. This new proof is a mere variant of the previous one. Ho1vever,

instead of an iterated substitution a simultaneous substitution is

employed. consequently, we start with a simuZtaneous substitution

cheorem for B-SN. The induction used is essentially induction up to

ww, insteadof the previously used inductions on w, w2 and w3 .

Explanation: The threefold w-induction (as used in the above proofs)

can be considered as a single transfinite (up to w3
) ir4uation on tri

<m,n,k> of natural numbers, ordered lexicographically, i.e.

according to their corresponding ordinal w
2

.m + w .n + k.

122

Similarly, the present proof uses a single transfinite induction

on finite sequenaes <mk, mk_ 1 , ••• m0>, where mk ~ o, for arbitrary k,

ordered (I) according to their length k, (II) lexicographically, i.e.

according to their corresponding ordinal

2.6.2. Simultaneous substitution theorem for SN:
Let B E M, uCxi) = u(Ai)

B[x/Ä) SN.
vi for i: l, ••• ,k. Let Ä and B be SN. Then

Proof: Abbreviate E[x/Ä] by r*. Let n. denote the number of occurrences
l.

of Xi (for i l, ••• ,k) in the whole reduction tree of B. Define aj to

be

l ni •SJAi)

i,JI.(v
1

l =j ,l::>isk

Let m be the maximum of those !(vil with ni ~ 0. We use induction on (I)

<am, ••• ,a.
0
> (ordered as above), (II) e (B}, (III) length of B.

Let B* >1 C. We shall prove that C is SN. The cases are:

(1) If the redex contracted is old ar modified praeeed as in the proof

2 • 5. 3 , case (i) •

(2) If the redex contracted is a multiplied redex, i.e.

B* A B ••• xi ... a:i ••• .xj ••• , :: •.• i''*Ai ..• Aj .•• ,

C _ ••• A1.,.Ai···Aj'''' Ai >1 Ai

then take a fresh variable z with U(Z) = U(Xi), farm an expression

B' from B by replacing the specific occurrence of x
1

by z, and

consider the new substitution [x,z/Ä,A:). Clearly,
l.

C = B'[X,z/Ä,A~l, and Cis SN by ind. hyp. (I). Notice that, in
l.

fact, only a.JI,'V) is affected, viz. decreased by at least 1.
. I i

(3} If the redex contracted is new (compare proof 2.5.3, case (ii))
. * . * then B = ... x1 ... {D0}rei'''rej"'' B ::: ••• A1 ••• {D0}A1 ... Aj'"'

* Ai: [y:E]F and C = ... Ai ••• F[D0] ••• Aj''' • Now form B' by re-

placing {D
0

}re
1

with a new variable z, u(z) :·u({D0 }re
1

), and con-
- - * sider the new substitution [re,z/A,F[D0]]. Since B = B' h/{D0}re1],

the replacement~removes at least one occurrence of re1 from the

reduction tree, whereas possibly only occurrences of z Cwhich has

123

shorter norm) are added. So the component aj with t(vi) = j properly

decreases when going from B toB'. Further, as in 5.3.2 case (ii),

F[D~] is SN so C B'[x,z/Ä,F[D;]] is SN, by ind. hyp. (I).

2.6.3. Corollary: Substitution theerem for SN (take k 1 above).

2.6.4. Corollary; E E M • E B-SN

IV. 3. The strictly normable expressions

3.1. we show how a pretyped system can be generated by a book and a

context and how various systems of admissible expressions can be for

mulated as restricted pretyped systems of this kind. In particular the

system of s~riatly r~rmable expressions is introduced, which includes

Nederpelt's A.

3.2. A pretyped system

3.2.1. A pretyped system consistsof a set of expressions with a partial

typing funation typ. Our system contains T and is closed under ab

straction and application. The typing function will be defined on

expressions, except the expressions of degree 1, also called the

1-expressions (later, also higher degrees will be assigned to expres

sions) .

The 1-expressions are given inductively:

(1) ' is a 1-expression,

(2) if B is a 1-expression then [x:A]B and {A}B are 1-expressions,

(3) if d has defining axiom d(x) : ö and b is a ~-expression then

d(L) is al-expression (in this case d will be called a 1-aonstant).

rn other words, the 1-expressions are precisely the expressions which

{possibly after some main o-reductions) end in t. Variables and primitiv€

book-constantexpressionsp(E) are non-1-expressions, i.e. they are not

of degree 1. The 1-expressions are closedunder any substitution and

under reduction.

3.2.2. Book and context

The expressions of our pretyped system will be generated by a

124

book and a context. The book assigns types to constants and the con

text assigns types to variables. We use B and ç; as syntactical varia

bles for books andcontexts respectively. We define:

(i) An expression is a ä;~-expression if its book-constants are in

a and its free variables are in~.

(ii) A ä-context is a string of E-fo:mruZas :t"1 E a
1

, ••• ,:t'k E ak

{abbreviated.Ï:E à), where a is a (Ö;:t"
1

, ••• ,:t")-expression
i i-1

(1 s i $ k) and the :t'i are mutually distinct.

(iii) A primitive ä-saheme <for the constant pJ consists of a Ö-con

text ~ E ä toqether wi. th an end-fo:mruZa p (X) E 13, where p is

not in ä and 13 is a c;x-expression.

(iv) A definitionaZ ë-saheme (for d> consists of a a-context~ E a,

a defining a:t"iom d(~) := 8 and, if 8 is not of degree 1, an enè

formula d(;.) E a. Againd is not in a, 8 (and, if present, 13)

is a a•x-expression.

(v) A book is a string À1, ••• ,Àm of schemes for a
1

, ••• ,am respec- ·

tively, where each Ài is a a 1, ••• ,ai_1-scheme.

3.2.3. The typing function

Let B be a book, consisting of schemes for the constants in a.

The constants in a are mutually distinct, so with each of them we can

uniquely associate its scheme, its context (viz. the context of the

schemel, its defining axiom (if it is a defined constant) and its end

formula (if it is nota 1-constant).

If d has defining axiom d(x) := 8 then 8 is called def(d) and, if

a has end-formula ä (~) E a then a is called typ (a) •

Let ç; ::: ~ E ä be a ë'-context (also called a B-aontext). The type of

a non-1-{Ö;~}-expression r, with respect tor,;, forshort r,;-typ(E), is

defined inductively as fellows:

(i) ~-typ(:t"1) ::: ai.

(ii) ç;-typ([y:a]B) = [y:a]((f,;,yEa)-typ (8)), if y is not in f,; (other

wise rename y)

(iii) ç;-typ{{A}B) - {A}(ç;-typ(B))

(iv) ~-typ(c(Ê)) - typ(c)[y/ËD, if y E ä is the context of a.

If y not in ç; and [y:a]B is a Ö;~-expression then (ç;,yEa) is a

125

a-context and B is a (Ö;z,y)-expression. So ~-typ is defined for all

non-1-(c;x)-expressions, as follows by induction on the lengthof ex

pressions. Further, if r is a Ö;z-expression, ~-typ(i:) is a Ö;X-ex-

pression too.

So, for B and ~ as above, the c;x-expressions (we also say 8;'

expressions), with the typing function as given above forma pretyped

system. E.g. if bath B and ' are empty we just get Nederpelt's 6 (but

for renaming of variables).

3.2.4. If ~ is not relevant, or clear from the context, we simply

write typ instead of ~-typ. For constauts c which are expressions (i.e.

if 1cl = 0) the two definitions of typ coincide, so there is no danger

of confusion.

Let us define tail (l;) to be the smallest part of i: which can be

produced from r by successively cutting off applicators {A}and ab

stractors [y:A] (to the left). So tail(l:) is <, or a variable, or a

constant-expression c(f).

If l: is a c;x-expression and tail(l:) ::: y then either y is in x

or y is bound by an abstractor [y:a] in r. Writing E ••• ~, if tail(l:)

= ~, we can rephrase the definition of typ as follows:

(i) a. l: _ •• • xi =oo typ(l:) •.• ai ,

b. r - ... [y:a] •• . y '* typ(l:) ::: ... [y:a] ... a

(ii) r _ ... c(Ë) '* typ(l:) ... (typ(c)[Ë]), if cis a non-1-constant

(provided no confusion of variables arises from the replacement of

tail (E)) •

3.2.5. If B, B• are books, ~. ~· are contexts, all the schames of B
arealso in B' and all the formulas of ~are also in~· then the 8;~

expressions arealso 8';~'-expressions, and the type of expressions

w.r.t. Band~ is the same as the type w.r.t. B' and ''·

The 8;~-expressions are closedunder substitution in the following

sense: If E is a B; ~ -expression, !;. x E ä, a is a B -context, A1, ••• ,Ak

are B;a-expressions then l:[x/Ä] is a B;a-expression.

so our pretyped systems are closed under reduction. Further the

systems hardly have nice properties: types are not preserved under re

duction, normalization and Sn-CR (sec. II.9) do not hold. To make it

into a sensible system certain restrictions must be imposed.

126

3.3. How systems of admissible expressions are defined.

3,3.1. Alternatively, we could have given an inductive definition of

books B, B-contexts ' and B;,-expressions ~ simuttaneously. The sensib

restrictions of pretyped system below will indeed be given this way,

with certain conditions on the formation of schemes, contexts and ex

pressions incorporated in the definition.

The symbol ~ stands for admissibility in general, e.g. for norma

bility, or for correctness in Automath languages.

Thus B ~ means that B is an admissible book, B;;~ expresses that

~ and that ~ is admissible w.r.t, B, B;~ ~~ expresses that 8;(~ and

that E is admissible w.r.t, Band ~. If B (or Band () are not relevan

we just write ~ ~~ (or 1-~l for B; ~1-L

3.3.2. For the more interesting systemsthat part of the definition

which deals with the admissibility of expressions is the crucial part

of the definition. The remainder, i.e. the book-and-context part of

the definition can be split up in a "structural part" which all the

restricted systems have in common, and some specific additional con

ditions for each of the systems.

First we give the "structural" part of the definition of admissi

bility of books and contexts.

(I) Admissibility of B-contexts

If B !- then B; ; !- according to:

(i) the empty context is admissible

(iil if B;t;. ~. B;; f-A,~ =xEä, y not among x, then

B,~,y E A I-

(II) Admissibility of books

(1) Admissibility of B-schemes

If B ~, B; E;. ~, B; E;. f-A, E;. X E ä then B-schemes are admissible

according to:

(i) If p is not in B then E;. * p(x) E A is an admissible

primitive B-scheme

(ii) If dis not in B, B;E;. ~A, A is not of degree 1, B;t;. ~S

then I; * d (X) :: A * d (X) E 13 is an admissible def inition

127

B-scheme.

(iii) If d is not in B, A is a 1-expression then t;; * d(x) :""!

is an admissible definitional B -scheme

(2) B is admissible according to:

(i) the empty book is admissible

(iil if B r, À is an admissible B-scheme then B,À r.

3.3.3. The specific additional conditions for the restricted systems

are of two kinds:

(1) The inhabitable-degree-condition: it is required that the ai in a

context ::c E a and the type a in an end-formula c (X) E a are of so

called inhabitab~e degree (degrees will be defined in sec. 4.2.

This affects the clauses I (ii), II (1) (i) and II (1) (ii).

(2) The compatibility condition (of def and typ) in a scheme

t; * d (x) : = A * d (x) E B the expressions A and a have to be compa

tibleinsome way (clause II(l) (ii)).

If we do not impose any additional condition at all and we donot

restriet the expression formation we simply get our pretyped expres

sions again.

3.4. The definition of strict normability

3.4.1. Now we come to the definition of the strictly nor-mabZe books,

contexts and expressions. So here r expresses strict normability. It

is implicitly intended that E; ri: iff the !;-norm of E,).11; (i:) is defined

for I. The book-and-context part of the definition is as in 3.3.2 and

3.3.3. There is no inhabitable degree condition; the compatibility

condition requires that, fora non-1-constant d,).ll;(def(d)) =).IE;(typ(d))),

where t; is the context of (the scheme of) d.

3.4.2. Let Bi-, and let 8;1; r. Now wedefine j.tf;(E) inductively, thus

implicitly defining B; l;r E, as fellows:

(i)).1~ (1:) : 1: ,

(ii) \.ll;(x
1

) :::).ll;(ai) , if E; x E a,

(iii) \.lE;(:a:]B) ::: [uç:(a)]\l(t;;,yEa) (B), if y not among I;,

(ivl \.lE;({A}Bl ·- v if llç:(B) [).IE;(Al]v

128

(v) if the scheme of a has context n y EB and llç; (Bi) = 11
11

(yi)

for i= l,, •• ,m, then:

(a) if cis not of degree 1, llç;(a(B)) :=
(b) otherwise, llç;(c(Ë)) : 1.! 11 (def(a)).

1.1 (typ(a)) 11

3. 4. 3. In ether words, (1) a context x E à is strictly normable if all

its types ai have. a norm, (2) a bock B is strictly normable if (i)

all the contexts of its schenes are strictly normable, (ii) all its

def's and typ's have a norm, and (iii) if both present in a scheme,

def and typ have equal norms, (3) an expression has a norm if (i) all

its subexpressiena have a norm, (ii) in instantiations a(È) of a(y),

for all i, I.!{Bi) is l.!{y
1
), (iii) inapplications{A}C the norm of A is

precisely the "first part" of the norm of B.

3,4.4. The definition of llç; is similar to that of E;,-typ • Again, if

llç; (a) is defined and y net among I;; then {!;,y E a) is a strictly normabl

context, Sc, strict normability is decidable. Since just 8;1;;-expres

sions get a E;.-norm the strictly normable non-1-expressions have a typ

Further we have strict noP~nability under strictly noP~nable sub

stitution: If B;ni-E, 11::yEii, 8;1',; 1- B1, ... ,8;E;. I-Bk and llç;<B1l = lln(Y

then B;ç; f-E[Ë] and llE;.(E[ËJ> lln(E) •

Proef: By induction on f-E.

Corollaries:

(1) B;E;. 1-E, E not of degree 1 ~ llç;(E)

(2) 8;E;. f-E, E <! r • llç; (E) :: 1.!1:; (r) •

I.e. a system of strictly normable expressions, generated by a

book B and a context ç;, as above, is closed under typing and reductie

and both typing and reduction are norm-preserving. So the strictly

normable expressions ferm a normable system in the sense of IV. 2,

By taking empty B and empty E;. we just get the normable fragment of

Nederpelt's b..

3.5. Discussion

The rather lengthy exposition given above combines features of

the book-and-line Automath languages, such as AUT-68 and AUT-QE, and

129

of "single-line" versions, such as Nederpelt's /\. Clearly our concepts

of book and context are, by easy transformations, identical with the

corresponding concepts in, e.g., [27]. Thus primitive schemes corres

pond to PN-lines, definitional schemes correspond to definition lines,

E-formulas x E c. in a context correspond with EB-lines. The definitional

1-constants are a straightforward extension. The assignment of types

corresponds with 1\ rather than with AUT-68, though it is compatible

with AUT-QE+, a variant of AUT-QE (see V.2.7-8).

Due to the weak secend-order aspect of AUT-QE (cf. sec, 1.5.3),

AUT-QE cannot be embedded in the strictly normatle expressions. In the

following section, however, we define the weakly normable expressions,

which indeed include AUT-QE (and, hence, AUT-68).

IV. 4. The normability of AUT-QE

4.1. Call variables x with typ(x) of degree 1 type-variables. The weak

second order aspect of AUT-QE (and AUT-68) just means that there are

more liberal substitution rights for these type-variables then for the

others (and than formulated in 3.4.2.(v) and 3.4.3. (3) (ii)). The

restrietion for application however(3.4.2. (iv) and 3.4.3. (3) (iii))

is maintained.

Below we first define the degree of pretyped expressions. Type

variables get degree 2 and are called 2-variables. Then we define

c:o1m-inclusion and weak norm-correctness. Then we define weak norma-

of expressions (and books and contexts).

We shall show (1) that the weakly normable expressions (as gen

erated by a book and a context) farm a normable system in the sense

of 2. 1. 2, (2) that AUT-QE correctness implies weak norma-

bility.

4.2. Degrees, weak degree correctness

4.2.1. Let B be a book, let~ be a context. The ~-degree (ar just:

ëegl'ee) of B;~-expressions is defined (cf, the secend definition of

typ, 3.2.4) as fellows:

(i)

(ii)

(iii) a.

degree (..• Tl : =

degree(••• x) := degree(typ(x)) + 1

degree(••• e(B)) := degree(typ(c)) + 1 if c has a typ

130

(iii) b. degree(•.• d(Ë)) := 1 otherwise (i.e. if def(d) is of degree

so all pretyped expressions get a degree, and the 1-expressions

get degree 1. The degree of a(Ë) does notdepend on Ë so we can asso

ciate this degree with a, defining: degree(a) = degree(typ(a)) + 1,

if c: has a typ, and degree (a) = 1, otherwise.

Expressions, variables and constants of degree i are called i

expressions, i-variables and i-constants respectively.

4.2.2. Let~: x E ä and n be contexts, lxl k, and let A1 , ••• ,Ak be

n-expressions, The substitution [xjA] is said to be weakZy deg1'ee

aorreat (w.d.a.) if {1) degree(A
1
.) rf 1, (2) degree(A.) =2 ~ degree(x.:

1 1

for i= l, ••• ,k. Clearly, if [xjÄ] is w.d.c. and Eis a ~-expression

then l:[xjÄ] is an n-expression and (1) degree (E) = l•)degree(E[x;Ä]) 1.

(2) degree{l:) 2 ~ degree(E[x;Ä]) = 2.

So w.d.c. substitutions remain w.d.c. under substitution: if

(x!Ä] and [y/B] are w.d.c. then [x/Ä[B]] is w.d.c.

4.2.3. An expressionEis said to be weakZy degree-aorreat (w.d.a.)

if (1) all its subexpressions are w.d.c, (2) l: : {A}B ~ degree(A) ~ 3

(3) E = a(B) • [y/Ë] is w.d.c. (where y E B is the context of the

scheme of a), (4) E = [y:a]B • degree(a) ~ 2.

W.d.c. expressions remain w.d.c. under w,d.c substitution with

w.d.c. expressions: if Eis w.d.c, A1, •.. ,Ak are w.d.c, fix!Ä] is w.è.:

then E(x/ÄD is w.d.c.

!''urther w.d.c.-ness is preserved under reduction (provided the

def's of defined constants are w.d.c.): if E w.d.c, E ~ r then r w.d.:

are (1) degree(E) 1 ~ degree(f) = 1, and (2) degree(E) = 2~>èegree(

4.3. Norm-inclusion and weak norm correctness

4.3.1. Norms (syntactical variables v, v1, v2) are as in IV. 2.1.1.

wedefine incl.-usion of norms, denoted v
1

c v2 , inductively, as fol:i.o1;:

(1)

(2)

131

Clearly, c is transitive and reflexive and we have

v c [v 1 Jv 2 ' v c [v 3 :v 4 => v 1 = v 3

4.3.2. The expressionEis called weakZy norm-correct (w.n.c.) for ~.

if (1) degree (~) = 2 => ~(E) c ~(f), and (2) degree (Z) # 2 => ~(~) ~(~)

So, if Z w.n.c. for r then ~(~) c ~(f).

Let t; =: xEä. The suhstitution [x/A] is called weakly norm-correct

(w.n.o.) for I; if, for i= l, ... ,lx!, A, w.n.c. for
~

4.4. Weak normability of expressions

4.4.1. Now we come to the weak normabiZity of expressions. The defini

tion below might serve as the expressionpart of the defini ti on of weakly

normable systems in gener al. However, in contrast wi th the discussion of

strict norrnabil i ty, we do not define weak norrnabil i ty of books and contexts,

but just apply the definition below to the specific system (an extension

of AUT-QE) in 4.5. Let B be a book, let I; be a context. A 8; 1;-expres

sion is weakZy t;-normable (er just t;-normable) if ithas a norr.J ~I; t-for

snort~ just ~), defined inductively, as follows:

(i) ilr('r) 1
<;

(iil (x) llr;(typ(x))

(iii) "~;; ([y:a]B) [lll;(a)]l! (t;,,yEo.)(B), if y not in I; and degree (a) :0: 2

(iv) ~E;({A}B) " if ll(B) [lJ(A)]v and degree(A) "2: 3

\V) if the context of the scheme of a is y S and [y/ËJI is w.d.c. and

w.n.c. for y E S then

(a) ll, (a (Ë}) -

" (b) llr (a (B))
<;

(typ(c)[y/Ë]) if pis primitive and

llr;(def(a)[y/Ë]) if dis defined.

4.4.2. The weakly normable expressions are w.d.c. By induction on

the above definition of ~ we show that the weakly normable expressions

form a normable system in the sense of IV.2. At first we verify the

substitution theorem for normability: if I; and n are contexts,

k, ~=x Eä., [x/A] is 1r1.d.c. and, for i

t.hen

132

Proef: By induction on the definition of~~(~). Abbreviate [x/Ä] by *

E.g. if ~ = [y:B]C, then ~ <B*) : ~~(B) by ind, hyp. and
* n ~

~(n,yEE*) <C_) _~(~,yEBl (C) by ind. hyp. applied to the extended sub-

stitution [x,y/A,y].

And, if l: = o (Ë), c has y E Ë as context of its scheme, [y/Ë] is
- - * w,d,c. and w.n.c. for y E a" then [y/Ë] is w.d.c. as well. And, for

j = l, ... ,!yl, u<B~) = ~(8.) (by ind. hyp.), ~(f:lj[.ä]*> ~(B.[Ë]l
J J J

(by ind. hyp.), so ~(B.[B*D> = u(f:l.[Ë]*] ~(f:lj[B]), whence [y;.B*] is
-- J J -* -w.n.c. fory Es. If a is primitive then ~(typ(a)[B]) : u(typ(a)[B]),

se ~(a(B*>> ~(typ(c)[B*]) ~(typ(a)[ËB*> =~(typ(a)[Ë]) =~(a(Ë)).
Similar with def(a) if a is a defined constant.

4.4.3. Then the reduation theorem for normability: let > be disjoint

one-step 13n6-reduction. If A is ~-normable 1 and A > B 1 then

u~<Bl ::~~(A).

[

Proef: By induction on the definition of ~~(A). E.g. let A = [y:a]{y}E
+ y I FV(B). Let~ be ~,yEa. Inspeetion of the definition of u learns

that, if y I FV(C) and Cis ~+-normable, ~~+(C) f!~(C). Sc

U~(Bl :: u~+(B) :: [~~+(y)]~~+({y}B) :: [u~(a)]u~+({y}B) :: U~(A)

4.4.4. So, if A normable and A~ B, then u(A) :: u(B). If A is normable

then the subexpressions of A are also normable (possibly with respect

to extended context). The single substitution property

(\.I(X) =~(Al ~ u(B) = u<B[x/A])) isa corollary of 4.4.2. Hence the

weakly normable expressionforma normable system in the sense of IV.

4.5. Application to AUT-QE

4.5.1. For definiteness we give an outline of an extension of AUT-QE,

along the lines of Chapter V, sec 2. In fact, we define AUT-QE*, whicl::

a form of AUT-QE extended with application expressions of degree 1,

but extended further in such a way 1 that expressions of all degrees

are permitted (as in Nederpelt's A).

we simultaneously define aorreatneas of books, contexts, expres

sions and E-formulas ~Er. The bock and context part of the definition

is precisely as in sec. 3 .3, wi th 1- standing for correctness. There is

no inhabitable degree restriction. The compatibility of def and typ

requires that, if ~ is the context of d, ~ 1- def{d)E typ(d). So the

133

E-formulas play an active role here, in contrast with the previous ad

missible systems.

Though the definition below differs at some points from the de

finition in V.2, V.3.3 it should be clear that AUT-QE* (and hence

AUT-QE+, AUT-QE and AUT-68) is included in the system given below. For

camment see the sections V.2.12, V.3.3.10-12, V.4.4.2.

4.5.2. Correctness of expressions and E-formulas

Let B 1-, B ~~ 1-. We define B; ~1-E (Er) (notation as in V .2 .1)

inductively as follows:

(i) ~f-T

(ii) ~1-x <E typ(x)) if x in~

(iii) ~~a, degree (a) ~ 2, (~,xEa)f-B(EC) • ~~[x:a]B(E[x:a]C)

(iv) ~1-h.Ea, ~1-B, degree (A)~ 3, B ~ [x:a]C •t;HA}B

(vl ~i-BE C, f; HA}C • ~ HA}B !E{A}C)

(vi) ~1-ËES[ËD (i.e. E 1\[Ë], for i= l, ... ,!iil, where y E 8 is the

context of the scheme of e) • f; 1-e (Ë) (E typ (e) [Ë], if e has a

typ)

(vii) ~1-B E C, Ct D, ~1-D ·~,_BED

<viiil~I-B E cx:~JCy:i3JT •O-B E cx:ä:h

(ix) ~~B, EJC E D, B ~ C • t;~B E D

~.5.3. Normability of expressions

In proving that the correct expressions (w.r.t. correct book and

correct context) are normable, we need that w.n.c. substitutions re-

main w.n.c. under substitution. The following theerem proves these

two facts simultaneously.

First verify that all correct expressions are weakly degree

correct.

Theorem (normabiZity under substitution): Let f; o: x E a~ let

B;ni-A. for i= l, ... ,!xl and let [x/Ä] be w.n.c. (for f;) and w.d.c. Then
~

B ;t; 1-E • E[x/Ä] is n-normable, and

Proof: By induction on the definition of correctness, of 1-E (E f).
- - * Abbreviate [xjA] by This is probably the nastiest proof of the

thesis. We just give some cases, corresponding to applications of the

134

rules {i) to (ix) above. Case (iv) : E {B}C, ~BES, degree (B) ~ 3,

~C, C ~ [y:B]D. By inà. hyp. B* w.n.c. for e*. Since *is w.d.c.,

degree <B*) ~ 3 so ~{8*) ~ ~(8*), Further, by ind. hyp. c* is normable

so by 4.4.3. [y:e*Jo* is normable and u<C*> [u<s*>Jv. Hence {B*}c*

is normable. Case (vil: E = a(B), r typ(a)[ËJ, z:* c<B*),

r* = typ(a)(BD*<= typ(a)[B*D>. By ind. hyp. B~ w.n.c. for B.[B]* (: K
- -* J J '"j

so [y/B] is w.n.c. (and also w.d.c, by 4.2.3, since Eis w.d.c.).

Assume that a has def and typ. By applying the ind. hyp. with the sub

stitution [y/Ë*] to def(a)E typ(c) (which is correct relativa toa

* shorter book, by the compatibility conditions), we get that E w.n.c.

* for f , Similarly if dagree (a) 1 or a is primitive. Case (viii):

This is the rule of type inalusion which eausas the second-erder aspec

Here E - E, r : [z:ylr and E E r fellows from application of (viii) te

E E ro- [Z:y][y:B]T. By ind. hyp. r* w.n.c. for r;. From the norm

definition it is clear that r* has a norm too and that ~(r0 *> c u<:*).
* * So E w.n.c. for r .

4.5.4. Normability of books and contexts

Corollaries of the theorem above are:

(1) <;; f-E * E f;-normable

(2) <;;!-E E r * E w.n.c. for r
(3) <;; x E a,<;; correct * all a. are <;;-normable

l.

(4) a has schema with context ;~def(a) 1.;;-normable, typ(a) f;-normable

and def(a) (ifpresent} w.n.c. for typ(a) (if present), with respe

Proef: By induction on the definition of correctness, viz. by using

the previous theerem with the identical substitution [i;i].

4.6. Extension to Snö-SN

By the previous sectien we know that the correct expressions of

AUT-QE-+ (and hence of AUT-QE and AUT-68) are 8-SN. The definitional

axioms are just like in chapter III, so we also have ö-SN. Now we ex

tend to Bnó-SN.

4.6.1. Lemma: If u(Al : u(x), B normable, then

E Bó-SN • B[x/A] Bö-SN .

135

Proof: By induction on (I) ~(A), {II) e
60

(8), (III) length (B). Combine

a single-substitution version of the second proof of é-SN (III. 5.4.)

with the first proof of S-SN (IV. 2.4.4).

4.6.2. Lemma: Let~ be correctness, as in 4.5.2. If ~ -iE~, [X/ÄD is

w.n.c. and w.d.c., Ai is So-SN (i= 1, ••• ,1il> then

E; ~B • E[x/Ä] so-SN

Proof: By induction on f-B (as in 4.5.3.). Abbreviate [X/Ä]I by * Some

cases are:

(1) B :: {C}D. By ind. hyp. c*, D* are Sö-SN. Now let D* ~ [y:E]F. By

(2)

4.5.3, , * * C and D have a norm. By 4.4.3, F has a norm and
* ~ (C) ~ (y). so, by 4.6.1, F[c*J is Só-SN, q.e.d.

B :: d (ê). the c~ Sli-SN. -* By ind. hyp. are As in 4.5.3, the C form
J

a w.n.c. and w.d.c, substitution. So by applying the ind. hyp. to
-* def(d), with the new substitution, def(dl[C] is Só-SN, q.e.d.

4.6.3. Theerem (Só-SN): ~h •A Sö-SN

Proof: Take the identical substitution [x/xD above.

4.6.4. corollary: ~A •A Snó-SN (by (8ól-n-postponement, as in rr.7.3.4,

or 7. 3. 5) .

136

CHAPTER V. THE E-OEFINITION AND THE CLOSURE PROPERTY
FOR PURE REGULAR AUTOMATH LANGUAGES

Sectien 2 of this chapter introduces the E-definition, closely

related to the definition (of AUT-QE) in [27) , as a framewerk for

defining Automath languages.

Sectien 3 proves the ciosure property (correct expressions remain

correct under reduction) for several versions of the pure (i.e. only

B-, D- and ö-reduction), regular (i.e. only expressionsof degree 1,

2 and 3) languages AUT-68 and AUT-QE.

Sectien 4 proves, using closure and CR (thus anticipating the

61-CR-result of Chapter VI), the equivalence of the E-definition with

an algorithmic definition, such as Nederpelt's definition of A.

This gives the decidability of the various systems, and further allows

certain simplifications in the E-definition,

V.l. Introduetion

1.1. E-definition versus algorithmic definition

we distinguish some principally different methods of defining t~e

correct expressions, with typing and equality relation (w.r.t. book an

context}, of an Automath language, or of any other system with general

ized type-structure, as discussed in IV.1.3. and IV.1.4.

First, the E-definition, below, introduces E-formuZas A E B (ex

pressing the typing relation: A has type B) and Q-formulas A Q B (fcr

expressing equality: A definitionally equal toB). Correctnessof ex

pressions (notation: ~ A) and both kinds of formulas is given by a

simultaneous inductive definition, without giving a clue how the corre

ness might be effectively verified. Essentially the same definition

methad is used in [27], and by Martin-Lof in [45].

secondly, there is the algorithmic definition which characterizes

the correct expressions by giving a verification algorithm for co,rect

ness. In this case Q can be defined in terros of reduction (A QB: *A+

and E can be defined in terms of Q and the typing function typ
(A E B : ~ typ(A) Q B, forgetting type-ioclusion for the moment). The

main example of an algorithmic definition is Nederpelt's definition of

A in [51].

137

In the third place, we mention de Vrijer's definition method of

ÀÀ in [70] . He starts with the simultaneous introduetion of the correct

E- and Q-formulas, and after that defines correctness of expressions in

terms of E, Q and typ.

1. 2. Some general points on the language theory

A priori it is not clear that the various definition methods gener

ate the same structure (of correct expressions, with typing and equality).

So one might think that the language theory has two aims, viz. (1)

proving the equivalence of the various formulations, and (2) proving

that the generated structures satisfy some specific desirable properties

(sec. 1.3).

However these aims can hardly be separated: properties are first

proved for one formulation, then the equivalence is established and

finally the properties are transferred to the other formulation, via

the equivalence.

A simple example of this situation: for the system given by the

algorithmic definition, decidability is just a matter of terminatien

of the algorithm, i.e. normalization (as Nederpelt points out [Sl]).

So, by the results in Chapter IV, if a system can be proved to be

equivalent to the "algorithmic one", it is decidable.

As a secend illustration, we sketch roughly how the development

below is organized. For the terminology see II.4.7 and for the kind of

reasoning see II.S.4, where for A we take ~ now.

We work with three systems: I and II are given by an E-definition

and III is the algorithmic definition. The three systems essentially

just differ as regards their Q-rules. In system I, Q is defined to be

the equivalence relation generated by >~ (but realize that Q and ~

are introduced simultaneously). This is the restricted "technica!"

version of the E-definition, which we present in sectien 2, and take

as the starting point for the development in sectien 3. In system II,

Q is~~ i.e. the transitive closure of +~· This is the liberal form

of the E-definition, which we think is most suitable for practical

purposes, as a reference manual, say.

In system III, the algorithmic definition, which we give in sectien

4, Q is defined to be just +~.

138

We say that a system satisfies CL if its correct expresslons remain

correct under reduction, and that it satisfies CR if its correct ex

pressions are CR. Clearly, both I and III are contained in II, since

II has more liberal rules for Q. Further, if I satisfies CL then I and

II are equivalent, as is proved by induction on the definition of

correctnessin sys~em II (see sec. 2.11.2). Also by induction on

II-correctness it is proved that II and III are equivalent, if III

satisfies CR. Now, in section 3 we prove that I satisfies CL, and in

Chapter VI we prove (rouqhly) CL • 6no-CR (for the 66-case we know CR

already). This .;ives CR for II, so CR for III.,. so it shows that all the

three systems are equivalent, and sa~isfy CL and CR.

An approach, alternative to the one sketched above, is qiven in

Chapter VII. There the algorithmic definition serves as a startinq

point and CL and CR are proved simultaneously, using induction on

socalled big trees.

1.3. What are the desirable properties?

As desirable properties for the structures of correct expresslons

generated, we mention:

(i) substitutivity: correctness of expresslons and formulas is pre

served under substitution with correct expresslons of the riqht

types.

(ii) cZosure (Cl) and preservation of types (PT): correctnessof

expresslons and formulas is preserved under reduction.

(iii) the Church-Rosser property CR, and the ~ak Church-Rosser theorem
{see Chapter II.sec.5.4): A Q B • A i- B

{iv) (strong)normaZisation {S)N and decidabiZity
(v} properties for Q, which show that Q behaves as an equality,

such as:

- the Zefthand-equaZity ruZe LQ: A E B, A Q C • C E B

(the riqhthand-equality rule is included in the definition)

- monotonicity rul-es: A Q B, C Q D • {A}C Q {B}D, etc.

(vi) uniqueness properties

- uniqueness of types: A E B, A. E C • BQ C
- uniqueness of domains UD: [~:A]B Q [~:C]D • A Q C (and B Q Dl

- e:x:tended uniqueness of damains EUD: [~:A]B E [~:C]D • A Q C

(and B E Dl.

139

Of course in the presence of type-inclusion (in AUT-QE) , only restricted

forms of uniqueness of types and property LQ (see sec. 1.7) are valid.

It depends on the choice of a definition metbod and on the

language defined, which of the above properties are basic and which

can be derived from these basic ones. Anyhow, SN, Sn-CR and 6S-CR we

know already. The discussion below starts with substitutivity (sec. 2.9)

and ends with Sn-CR (Chapter VI) and decidability {section 4, as sketched

in 1.2). In betwee~ (ii) and (v) and (vi), which turn out to be connected,

are considered more or less simultaneously. In fact, first PT, LQ and

UD and the property of

(vii) sound appliaability SA: {A}[x:B]C correct •A EB
are proved simultaneously, by a careful induction on degree. Then fellows

one-step closure CL 1 by induction on correctness, and finally CL, by

~nduction on <::.

1.4. Some points on closure

Apart from the specific role which closure plays in our discussion,

it is of course important as a technica! property, in view of II.S-6.

Compare, e.g. IV.2: the point of the generalization from the correct

expressions to the normable expressions, lies precisely in the fact

':hat the normable system is "large enough" to prove closure for it in

a relatively easy fashion (in contrast with closure for the correct

expressions), and small enough to prove (streng) normalization for it,

·,.;i th the help of closure.

The normalization properties and CR are nicely preserved under

certain forms of taking subsystems(II.5.2.2 and II.5.3.4). Soit is

s'..::'ficient te prove these properties for some "large" systems: norma

lization for the normable expressions, So- and no-CR for all the ex

pressions, and Sno-CR under fairly general conditions in Chapter VI.

The closure property however, in spite of II.S.2.2, poses a

separate problem for each particular language, because correctness

is defined in terms of reduction.

Further we must stick to a particular definition, since in the

proof of closure we aften apply induction on the definition of correct

ness. Only after closure has been proved, some important derived rules

follov; and equivalence with the alternative definitions can be estab-

140

lishe-.L

Nevertheless, we try and give a uniform treatment of the various

languages here, by splitting up the ciosure proef in the parts, common

to all the languages (e.g. substitutivity, CL
1

• CL, etc.), and the

part specific for each particular language, i.e. the proef of SA, UD,
PT anà LQ. 'rhe specific part is given quite elaborately for the "worst

case", Sn-AUT-QE (and its extensions), in sec. 3.2 and 3.3, and just

sketched for the simpler languages, such as So-AUT-QE, Sn-AUT-68 etc.

(sec. 3.4). In fact, for the simpler languages the specific part

simply vanishes, in which case the whole closure proef boils down to

the simple ciosure proofs in Girard [31] and Martin-Löf [45].

1.5. Summary

Sectien 2 starts with a list of inductive clauses for establishinç

correctness of expressions, E- and Q-formulas, relative to correct

book and context, as in the previous chapter. E-defini tions for particu:

languages are speelfled by indicating (1) a reduction relation (5-re

duction withor without óand nl 1 (2) possible degree restrictions,

(3) a particular set of rules from the list. In order to avoid con

fusion we restriet ourselves here to the regular languages (i.e. de

grees only 11 2 and 3) 1 from 8-AUT-68 to Bnó-AUT-QE+. Then we prove

some simple properties (renaming of contexts, substitutivity 1 correct

ness of categories) and give a short discussion of some of the rules.

Sectien 3 deals with the actual proef of closure and the connecteç

properties (i.e. (ii) 1 (v), (vil and (vii) above) for the whc>= range

of regular languages, as far as these properties are valid (in view of

type-inclusion). First1 beuristic considerations (sec. 3.1) point

out how the conneetlans can be 1 and how the proef might be organized

in the more complicated cases (such as Sn-AUT-QE). Secondly, the proef

is actually carried out for Bn-AUT-QE (sec. 3.2). After that, via

an unessential e:x:tenaion result, all the properties are transferred

to Bn6-AUT-QE+ (sec. 3.3), Finally 1 it is shown 1 that for all the

simpler languages (Bn-AUT-68, 86-AUT-QE(+), etc.) easier proofs can

be given, which use the more liberal E-definition II (see 1.2) in

stead of I as a starting point (sec. 3.4).

We claim that the restrietion to degrees 1, 2 and 3 in the closur;

proof of Bn-AUT-QE is not essential 1 and that this proef can be easily

141

adapted forA(+), using the results on norm-degree-correctness in

VII. 2. 2.

Sectien 4 contains the details of the equivalence proof sketched

in 1.2 above. First it is shown how, in principle, the verification of

correctness can be reduced to the verification of equality. Typ-functions

for the various languages are discussed. Then we present the algorith

mic system (like system III above) and an "intermediate" system (like

system II). However, the situation is more complicated than sketched

above, because the equivalence proofs in 4.3.2 and 4.3.3 are also used

for proving the socalled strengthening ruZe superfluous (see below).

Finally some remarks on the actual verification are made (sec. 4.4}.

1.6. Complication 1: the strengthening rule

Of course, if an expression or a formula is correct relative to

a book and a context, its constants are in the book and its free

variables are in the context. The strengthening rule is connected with

the converse question: In systems such as I, II above, which have rules

for the transitivity of Q, it is a priori not clear that a correct

equality A Q B can be established via expressions containing only

variables and constants occurring in A or in B. So it might be possible

that a proef of correctness of A, or of A E B needs correctness of

expressions containing variables and constants outside A (and B) .

Now for the sake of proving n- one-step-closure we have included

a postulate, the strengthening rule, in our definition, which allows

to skip "redundant" variables from the context. This appears to be a

nasty rule because it might spoil the nice order on the correct ex

pressions induced by the definition of correctness. See, e.g., sec.

2.10.3 and 2.14.1.

The proof that the rule is superfluous, runs roughly as fellows:

let ~I' ~II and ~III stand for the correctness predicate in system I

(as in 1.2, with strengthening rule), system II (as in 1.2, without

strengthening rule), and the algorithmic system III (without strengthe

ning rule), respectively. As in 1.2, ~III • ~II {sec. 4.3.2). By CL
for system I (sec. 3), we have ~II • ~I'

Since in the algorithmic definition strengthening is provabZe as

in Nederpelt [51]), by CR (for I, so for II, so for III, in Chapter

VI) we can conclude ~I • ~III' which closes the circle (sec. 4.3.3).

142

1.7. Complication 2: definitional 2-constants in the presence of type

inclusion.

The rule of type-inclusion in AUT-QE allows us to infer A E r
from A E [x:a]r. This shows how uniqueness of types gets lost in AUT~Ç

(but only for 2-expressions A) • For the restricted form which we can

prove instead we refer to sec. 3.2.6.1.

A peculiarity, due to the combination of definitional 2-constants

and type-inclusion, is that rule LQ is violated too in AUT-QE.

Example: if a Er, A E [x:a]r (relativ~ to empty context, say), then

the scheme

d : A * d E T (also with empty context)

is correct in AUT-QE. Now d Q A, h E [x:a]r but not dE [x:a]r.

So,in AUT-QE, definitional 2-constants are not only used as abbrevia

tions but also for cutting down the type of the expression abbreviateë

As a consequence of this,definitional 2-constants in AUT-QE can lead

to unessentiaZ extensions, which are not definitionaZ extensions (sec.

3.3.2).

One might wonder why we do not take more liberal variants of

AUT-QE, which allows dE [x:a]r as well. In fact, we mention such a

variant AUT-QE* somewhere for technical reasens (sec.3.3.11), but we

do not think that this way of ignoring the typ of a definitional con

stant is suitable for practical purposes.

Part of our motivation runs as fellows:

First, we do not want it for definitional 3-constants, where the defir

tion part can stand for a long proof, and the typ represents a short

theerem (I.5.2~ So, we do not like it for 2-constants, for the sake of

uniformity.

Notice, however, that the definition of ~ for the weakly normablE

expressions (IV.4.4.1) actually ignores the typ of the defined con

stants and only takes the def into account (otherwise ~ could change

by reduction).

V. 2. On the E-definition

2.1. The book-and-context part of the E-definition

2.1.1. The correct expressions with respecttoa book and a context

143

forma system of admissible expressions, i.e. a restricted pretypeà

system, in the sense of IV.3. The correctness of books, contexts and

expressions is defined simultaneously with the correctness of

E-formulas A E B and Q-formulas A Q B.

The symbol ~ stands for correctness; the notatien for the correct

~ess of contexts (w.r.t. 8), expressions, E- and Q-formulas (w.r.t. 8

ar.d i;) is respectively 8;E, ~. 8;E, f-A, 8;E, ~A EB anà 8;E, '-A Q B.

The symbols E and Q are assumed to bind tighter than ~-

2.1.2. For brevity we sametimes write "8;E, ~A E/Q B" insteadof

"B; i; f-A E B respectively 8; E, H Q B", and "8; E,~A (E/Q B)" insteaà of

"B; ;r .4. respectively B; E, ~A EB resp. B; E, f-A Q B". So statements containing

this kind of shorthand have to be read two or three times, each time

with a different interpretation.

2.1.3. As in IV.3, if 8;E,rA then A is a 8;E,-expression and hence has

a degree. If 8; E, ~A E B or 8; E, f-A Q B then B is a 8; E, -expression and has

a degree, too. The rules for the formation of books and contexts are

precisely as in IV.3.3.2. The two additional restrictions (see IV.3.3.3)

are as fellows:

~1) (inhabitabZe degree condition) an expression a can only act as the

typ of a constant in a scheme or as the typ of a variable in a

context, if its degree is 1 or 2.

(2) (compatibiZity of def and typ) in a scheme E, * d(x) := b. * d(x) E r

it is required that 8;E, ~b. E r, where 8 is the preceding book.

2.2. Some notational conventions

2.2.1. We often assume implicitly a fixed correct book 8 and a fixed

context E,, correct w.r.t. 8. I.e., if 8;E,,n~ then we write

n ~A(E/Q B) for 8; E,, n f-A (E/Q B)

and just

A E/Q B for 8; E, ~ A E/Q B

(so for formulas we omit the ~ -symbol in this case).

2.2.2. At some places in the definition the degree of expressions is

explicitly displayed as a superscript;

144

i
~ A(E/Q m ~ ~ A(E/Q B) and degree (A) i

2.2.3. Formulas like A
1

E A
2

Q A
3

E A4 are used as abbreviation for

A1 E A
2

and A
2

Q A
3

and A
3

E A
4

etc.

2.3. The expression-and-formula part of the definition: expressions

The rules for the correctness of expressions and formulas fall

apart in six groups labeled I to VI. We start with group I (correct

ness of 1-expressions) and group II (correctness of non 1-expressions

I. correctness of 1-expressions

1
r.l. T-rule: ~ T

1.2. abstraction rule:
2 1 1

~ a, x E a ~ A ~ ~ [x:a]A

I.3. application rule: A E a, ~ 1 B Q [x:a]C • ~ 1 {A}B

I.4. instantiation rule: if the scheme of d is in B, with context l:i E

and d is a 1-constant then Ë E S[y/ËJ ~ ~ 1 d(Ë)

Notice, that the degree of A is indeed 1, if r 1A is derived by the

above rules.

rr. correctness of non-1-expressions

I I. A E B ~ f-A

2.4. The expression-and-formula part: E-formulas

The rules of group III, below, in combination with rule II, also

serve as the formation rules for the non-1-expressions. Group IV con

tains the type modification rules.

III. Formation of non-1-expressions

III.1. copy rule: ~ ... ,x E a, ••. ~x E a

III.2. abstraction rules: if ~ 2 a then

III.2.A. x E a, rB E T ~ ~[x:a]B E T

III.2.Bi. x E a ~i+lB E C • f-i+ 1[x:a]B E [x:a]C

So of the latter are two versions, III.2.B
1

and III.2.B
2

.

III.3. application rules: if A E a then

III.3.A. B E [x:a]C ~ {A}B E C[x/A]

III.3.B. B E C E [x:a]D ~ {A}B E {A}C

145

III.4. instantiation rule: if the scheme of eis in B, with context

y E S, then

Note: Below we shall prove A EB~~ B (correetness of eategories),

which is not explicitly required here.

IV. Type modification rules

IV.l. type conversion: B E C, C Q D • B E D

IV.2. type-inclusion: BE [x:äJ[y:8]1 • B E [x:äJ,

{where [x:ä] stands for [x1 :a1J ••• [xk:ak])

2.5. The expression-and-formula part: Q-formulas

The rules for the correctness of Q-formulas ferm group V.

v. Correctness of Q-formulas

V.l. reflexivity: ~A •A Q A

v.2. Q-propagation: A Q B, ~C, !B > C or C > B) •A Q C

Note: this is indeed the most restricted version of Q, see sec. 1.2.

2.6. The strengthening rule

This is a technica! rule, which we use in the proef of n-CL, but

afterwards, i.e. after having proved CL and (with help of CL)CR, as in

sec. 1.6, prove superfluous. It is called strengthening rule because

it permits to remove assumptions from the context. We say that n is

a subcontext of ~. for short n sub ~. if the sequence of E-formulas

of n is a subsequence of the sequence of E-formulas of ~. So,

n sub s • n sub (~,x E al and !n,x E a) sub (~,x E al

VI. The strengthening rule

146

vr.1. B; 0-A =- B;r;
0

1-A

If, furthermore, V (y E FV(B) =<> y E x), then
y

VI.2. B; E;f-A E/Q B =~> 8;t;
0

1-A E/Q B

2.7. Degree considerations

2.7.1. Degree restrictions play a minor role in the E-definition. It

is rather intended that the degree specifications of the various langu<

(see below) are satisfied automatically by a suitable choice of the

rules of the E-definitions.

Wedefine (the notion of being a domain degree, etc.):

;..[.x:a]B =~> a has domain degree and B has value degree.

1-{A}B =-A has argument degree and B has funation degree.

2.7.2. The degree specifications for the regular languages AUT-68,

AUT-QE and AUT-QE+ are:

(1) degrees admitted 1, 2 and 3, inhabitable degrees 1 and 2,

domain degree 2 and argument degree 3

(2) value and function degree are as in the following scheme

function degree

value degree

AUT-68

3

2,3

AUT-QE

2,3

1,2,3

AUT-QE+

1,2,3

1,2,3

Languages where all value degrees are also function degrees, are said

to be +-languages: AUT-QE+ (and AUT-68+, AUT-QE*, to be defined later)

Consequently AUT-68 and AUT-QE are non-+-languages.

2.7.3. No matter what rules are chosen, by induction on 1- (i.e. on

the definition of correctness) it fellows that

A EB =<>A not of degree

So no application expressions {C}D with degree (C) = 1 and no in

stantiation expressions a(C) where some C. has degree 1, are formed,
J

and the rules III.4 and III.3,A. do not give rise to substitution

with 1-expressions (in the categories}. Hence, also by induction on

(1) A Q B =<> (degree (A} •~ degree (B) 1)

(2} A E B =~> (degree (A) 2 .,. degree (8) 1)

147

2.7.4. This shows, together with the explicit degree restrietion in

the rules 1.2 and 111.2, that the expressions formed and the substitut

ions involved are weakly degree correct (cf. Ch. 1V.4.4.2). The inhabit

able degree restrietion guarantees that only expressions of degrees 1,

2 and 3 are formed. So, the specifications of 2.7.2.(1) are fulfilled and

A E B • degree (A) degree (B) + 1

A Q B • degree (A) degree (B)

and all the substitutions generated by the rules are degree correct:

If Ä is substituted for x then, for all i, degree (Ai)

2.8. Specificatien of the languages

2.8.1. The rules

The difference between the definitions of the various regular

languages only concerns the rules of abstraction, application and type-
' 2

inclusion. All the other rules, and also III.2.B (for abstraction

expressions of degree 3) and 111.3.A (application) are present in each

of the definitions.

Por the rest the situation is as fellows

AUT-68 AUT-QE AUT-QE+

abstraction 111.2.A 1 III.2.B I I.2 1 III.2.B , !,2

application III.3.B II1.3.B, !.3

type incl. rule no yes yes

Note: Below it will turn out that

(1) I1I.2.A is a derived rule of AUT-QE and AUT-QE+.

(2) II1.3.B and IV.2 (type-inclusion) are derived rules of AUT-68,

1 So, after all, in AUT-68 all the rules except III.2.B , 1.2 and 1.3

are valid; AUT-QE and AUT-QE+ have additionally III.2

and, besides, AUT-QE+ has 1,3.

2.8.2. The reduction relation

and 1.2

For definiteness we agree that > in the Q-rule V.2 stands for

disjoint one-step reduction >
1

• So it satisfies the monotonicity con

ditions, e.g.

A> A', B > B' • {A}B > {A'}B'

148

with the important consequence that

Ä > Ä' ~ B[Ä] > B[Ä']

In any case the reduction relation includes a-reduction, but we leave

open the presence of n- and ö-reduction. Of course, if no definitional

constants are in the hook then there is no ö-reduction.

We assume that AUT-68 has no definitional 1-constants (because,

module the eliminatien of abbreviations, the only 1-expression in AUT-

68 is<).

The rules of strengthening will only be present in languages with

!)-reduction.

2.9. The substitution theorem

2.9.1. For the E-definition {in contrast with the algorithmic definiti:

it is easy to show the substitutivity: correctness of expressions and

formulas is preserved under correct substitutions, i.e. substitution

with correct expressions of the right types.

For technical reasons we start with a weak form of substitution,

compare a-reduction.

2.9.2. Theorem (renaming of aontexts): If ~

all x! are mutually distinct, then (with ~·
~

~ f-A {E/Q B) ~ ~' f-A' (E/Q B')

x E a and r· - E[X/X'],

;. E ä·>

and the correctness proofs of both sides of the implication sign are

equally long.

Proof: induction on f-.

2.9.3. An easy corollary of this is the weakening theorem, the converE

of strengthening: if ~0 sub ~ then

~ f-, ~o f-A<E!Q B)• ~ f-A(E/Q Bl

Proof: induction on ~Of-A {E/Q B).

As a corollary of this we can prove that in a derivation of

correctness the application of strengthening can be postponed to the

end of the derivation.

2.9.4. Now we come to the simultaneous substitution theorem: if

n y E B, then

8 E s~y!Ë~, +c<E!Q Dl ... c[y!Ë~ <E!Q Dffy!Ëll l

Proof~ By induction on n f-C(E/Q D). We treat just some of the cases,

distinguished according to the last rule applied in the derivation.
- - * Abbreviate E[y/B] to E

Last rule is III.2.Bi: Assume nf- 2
C

1
2 *

i+l and n , z E C
1

f- C 2 E D
2

• By the

ind. hyp.and by 2.7,4, ~ C
1

• By the * E "* copy rule z E c
1

f- z ".,
1

(if

necessary, i.e. if zin C, rename the implicit context C to C'l. No~,
by weakening, we can apply the ind. hyp. with the extended substitutior.

[- ;~ 1 E c 1 i+lc E D h' · E "* 1 i+1c* E n* y,z v,z~to n,z *l : 2 2: T 1.s g1.ves z ""l r 2 · 2 and,

by III.2 , f-[z:C
1

JC
2

E [z:C~JD2 , q.e.d. Possibly one must first re

n~~e ~' back to ~ again.

Lastrulein v.2: AssumenrC
1

Q c
2

, nf-

Q * *. *o l and • Since C2 > C3 , ;-Cl

By the ind. hyp.

1 q.e.d.

2.9.5. Corollary (single substitution theorem):

A E a, x E a~B(E/Q C) ,.. B(x/A] (E/Q Cffx/AD l

2.10. Some easy properties

2.10.1. On abstraction

In actdition to the remark in 2.3, after rule I.4, we aan say that
1

the last inference in a proof of rA must be rule VI.l or one of the

rules I. In particular, if c
0

f-
1[x:a]A, this can only fellow from

;,x E a forsome ~ with sub~ (since sub is transitive). So

application of VI.l gives ~O' x E af-
1

A. Similarly, if ri+lA, the last

rule in proving this is VI.l or II. So in the proof of correctnessof
i+1 E ;" :- A we can retrace some ~ f-A B, where ~O sub t;. Hence if

~ . 1 "+1
f-l.+ [x:a]A, in its derivation we can find ~. x E af-l. A E B for

so~e B and ~. with sub ~. By application of II and VI.l we get

;
0

, ::: E a !-A. Resuming we have

~ f-[x:a]A,. C, x E al-A

2.10.2. Correctness of categories

In the rules of the definition, having A E B as their consequence,

150

it is nat explicitly required that f-B. For the copy rule this aorreat·

ness a;' aatego1•ies fellows from weakening, for III. 2 .A from the T-rule,

for III.3.A from the single substitution theerem (use induction on f-),

for III.4 from the simultaneous substitution theerem etc. So, we have

aorreatness of categories

A E B.., f-B

2.10.3. Abstraction again

Assume that ~O' x E a riA, A of value degree, degree(a) a 2. If

i 1 then from 1.2 we infer ~0~[x:a]A. If i > 1 then, as above, we

can ratracesome ~ 1 , x E a, ~ 2r
1A EB with ~0 sub ~ 1 and the transitlor

from ~ 1 , x E a, ~ 2f-A to ~0 , x E af-A fellows from applications af strengt

ening. By the weakening theorem, we can extend the context to

~ 1 , x E a, ~2,x• E a, with some new x•. By the substitution theerem we

can infer ~ 1 , x E a, ~ 2 , x• E a f-A[x/x'] E B[x/x']. In case we can

apply III.2.B (this depends on the language under consideration) we

get ~ 1 , x E a, ~ 2f-[x:a]A E [x:a]B. Otherwise the language is AUT-68,

i = 2, B T and application of III.2.A gives ~ 1 , x E a, ~ 2f-[x:a]A Et
Anyhow, rule II and iterated use of strengthening give ~0t-[x:a]A.
Resuming,

(degree(a) = 2, A of value degree, x E a f-A) •f-[x:a]A.

Note: the results in 2.9 and 2.10 are also valid, and simplar to prove,

if n-reduction (and strengthening) is not present.

2.11. On the Q-rules

2.11.1. Clearly Q is the equivalence relation generated by >f-' i.e.

the restrietion of > to the correct expressions. Sa A Q B means pre

cisely that

rA and rB and there are correct c1, ••• ,Ck such that

A > c1
> . . . < ci-1 < ei > ci+l > . .. < c. 1 < c. > c. 1> ... < ck < 1

)- J J+

(where possibly, in view of strengthening, the c. in between are eerree
~

w.r.t. extended contexts) •

2.11.2. An alternative rule of Q-propagation is

V. 2 ' A Q B, f-C, B + C ,.. A Q C

If the language definition has this rule, Q becomes -f-, i.e. (\) *
(sec.1.2,II.4.7), i.e. the transitive closure of the restrietion of+

to the correct expressions.

So, no matter what ether rules there are in the definition of

correctness,

v.2' ""'v.2

and

CL, V.2 ""'V.2'

2.11.3. An even strenger rule for Q, also including reflexivity is

V.2" rA, rB, A =- B .. A Q B

Assuming the (full) CR-theorem, i.e. CR for all, not just the

151

correct expressions, which is the case if n-reduction is not present,

we get:

(V,1, V.2') => V.2"

2.12. On type-conversion

2.12.1. The Q-formulas (and the Q-rules, see below) can be avoided~

completely by reformulating IV.l, the type-conversion rule to

IV.l': A EB, f-C, (B > C or C > B)""' A E C

&~d, corresponding to V.2' rather than to V.2,

IV.1": A EB, :..c, B + C • A E C

As in 2.11.2, IV.1" ""'IV.l' and CL, IV.1' .. IV.1".

Corresponding to v.2" is the alternative rule

rv. 1"' , A E B, 's .. c, ~c ""' A E c

2.12.2. The system with Q-formulas, Q-rules V.l and V.2, and rule IV.l

is indeed a conservative extension of the system without Q but with

the corresponding type-conversion rule instead. First we have

152

IV,l, V,l, V,2 • IV.l',

respectively

IV,l, V,l, V.2' • IV,l",

respectively

IV .1, V. 2" • IV .1"' ,

so the Q-system is an extension of the Q-less one.

Secondly, the expressions and E-formulas, correct in a Q-system

are also correct in the corresponding Q-less system.

2,12,3, Notice, that in the presence of n, rule IV.l"' (so rule v.2"

too!) is inconsistent in the sense that it gives rise to anomalies

such as self-application. This fact is connected with the Sn-CR-probl~

solved in Chapter VI.

Example: if a E ' then f-[:~::a]a and f-[y:[:~::a]a]a. Further

[x:a]a = (by Sl [:~::a]{x}[y:[:~::a]a]a = (by nl [y:[:~::a]a]a.

so, if f E [x:a]a then {f}f E a •

2.13. On type-inclusion

2.13.1. Iterated use of the rule of type-inclusion gives

so

This shows that AUT-68 is a sublanguage of AUT-QE: all the correct

books, contexts,expressions and formulas of AUT-68 arealso correct

in AUT-QE.

Proof: Rule III.2.A, not in the defi~ition of AUT-QE, can be derived

from III.2.B1 and IV.2. For, let x E a f-B E •· Then f-[:~::a]B E [x:a]!

so f-[x:a]B E T, q.e.d.

2,13.2. Conversely, rule IV.2 is (vacuously) a derived rule of AUT-66,

because all the correct AUT-68 1-expressions 6-reduce to T.

153

2.14. The form of derivations

2.14.1. We called the rules III the formation rules of non-1-expressions.
i+l

of ~O~ A, we can retrace some ~~A E B This is because, in a proef

and ~ 1rA E C, such that (i) the last rule applied in proving ; 1 ~A E C

is the formation rule of A, i.e. one of the rules III, (ii) the tran

sition from ~ 1 f-A E C to ~f-A EB is by iterated use of VI.2 and type

conversion, (iii} the transition from ~f-A E B to ~0f-A is by using

VI.2, II, and VI.l. So, in case there is no type-inclusion applied,

e.g. if i > 1, we have (use weakening) ;
1

f-B Q C. Below we introduce

a symbol covering the relation between B and C in case type-inclusion

is involved.

2.14.2. The new relation C can be defined as fellows

(i..) r-Cx:a]A, x E at-AL B • [.x:a]A C [re:a]B

(ii) A Q B ,.. A C B

(iii) C is transitive

(iv) 0

Clearly, C is a reflexive and transitive relation on the correct

·expressions, including Q and type-inclusion, which on the non-l-ex

presslons coincides with Q (use 2.10.3). The type modification rule

can now be contracted to one rule

IV.AEB,BCC=+AEC

And, for ~ 1 , BandCasin 2.14.1 we have ~ 1 f-C C B now.

2.14.3. So, in a proof of [x:a]B E D we can retrace

x E ~B E C with [x:a]CC D.

Similarly, in a proof of {A}B E D we can retrace either

(il B E [x:a]C with C[A] C D, A E a , or

Ziil B E C E [x:a]E with {A}C C D, A E a •

And, in a proof of a(ë) CD we can retrace some

154

2.14.4. Above, we used already

rCx:~]A, x E a ~ A Q B ~ [x:a]A Q [x:a]B

The other monotonicity rule

a Q S, r[x:~JA ~ [x:a]A Q [x: B]A

follows by induction on Q, using the substitution theorem.

However, we do not know yet

A Q B , C Q D =+ {A}C Q {B}D

and consequently, it is a priori not clear that (uniqueness of types

for 3-expressions)

3 1- A E a, A E B .,. a Q 8 •

This (and its weaker counterpart for 2-expressions) will not be proved

before the next sectien (3.2.4, 3.2.6).

2.15. On the application rules

2.15.1. In AUT-6~where no 1-abstraction expressions are formed, the

rule III.3.B is vacuously a derived rule, viz. there are no B with

B E C E [x:a]D,

Since, in AUT-QE and AUT-QE+,

~2 [x:a]C .,. [x:a]C E [x:a]D

we can restriet the rule III.3.A

A E a, B E [x:a]C .. {A}B E C[A]

to the case where degree (C) = 1.

2.15.2. As an alternative to III.3.B (and to III.3.A if !,3 is present)

we mention

III.3.B': ~ {A}C, BE C • {A}B E {A}C

The following equivalences hold

(!,3, III.3.A, III.3.B) # (~.3, III.3.B')

(III.3.A, III.3.B) * (III,3,A, III.3.B') •

155

Proof: e.g. that III.3.A is a derived rule in presence of I,3 and

III.3.B'. Let A E a, BE [x:a]C. By !.3 (and III.3.B', if degree(C) 2),

HA}[x:a]C. By the single substitution theorem 1-C[A]. So by III.3.B'

and type-conversion {A}B E C[A].

2.15.3. Notice that in the presence of n-reduction rule III,3.A by it

self is sufficient, because

n,III.3.A ~ III.3.B

Proef: assume A E a, B E C E [x:a]D. Then x E o. 1- x E a, so by I:II.3.A,

x E a i- {x}C E D a.nd by abstraction '-[X:CJ.]{x}C E [.:c:a]D. By II and

type-conversion BE [.:c:a]{.:c}C (x i FV(C)), so by III.3.A. {A}B E {A}C,

q.e.d.

2.16. An E-definition forA and A+

2.16.1. In order to adapt the E-definition toA and A+ we must first

drop the inhabitable degree condition, and the restrietion to a of

degree 2 in the abstraction rules I.2 and III.2. The rule of type

inclusion and rule III.2.A must be skipped but III.2.B1 is permitted

for all i. A suitable combination of application rules is I.3 and

III.3.B' forA+, and III.3.A and III.3.B' forA. An alternative for

rrr.3.B' is an extended form of III.3.B

A E a, BE c1 E ... E Ck E [x:a]D ~ {A}B E {A}C
1

2.16.2. Degree considerations for A and A+ are indeed more involved

than those in 2.7. Of course we can show weak degree correctness, as

in 2.7, but we must know more in order to establish degree correct-

ness. See Ch. VII, sec. 2.2.

The various properties proved above,such as substitutivity, correctness

of categories, etc. etc. simply go through for the E-versions of A and

156

V.3. The actual closure proof

3.1. Heuristics

3.1.1. The first idea which comes to mindabout proving cZosure, CL

CL: \-A , A <' B => \-B

is simply to prove one-step closure, CL1

CL1: \-A, A > B =:> \-B

by induction on \-A and then use induction on :::::.

Among the possible ways of one-step 'reduction we distinguish the main

or "outside" reductions

(SJ

lnl

(0)

{A}[x:B]C > C[A]

x i FV(Al • [x:a]{x}A > A

d(Al > def(d}(A]

and the "inside" reductions which follow by the monotonicity rules

(appl) A > A I t B > B, • {A }B > {A, }BI

(abstr) a >a', A > A' =:> [x:a]A > [x:a']A'

(constl Ä > Ä ' .::> a (Ä) > C'(Ä 'l .

So we assume that > stands for disjoint one-step reduction. Now

consider, e.g., the appl-case where the correctness of {A}C fellows

from A E a, B E [x:u]C. Here the induction hypothesis, CL1 applied to

A and toB, just tells us that \-A' and \-B' (where A> A', B > B'),

which is of course not enough to conclude \-{A'}B'. This suggests that

we need preservation of types, PT

PT: A E a, I- B, A ::::: B * B E a

or at least one-step preservation of types, PT1

PT1: A E a, \-B, A > B =:> B E a

additionally. Similarly with the const-case of one-step reduction.

3.1.2. So the next idea is to combine CL and PT to

CLPT:

157

(as the conjunction of the version with and the version without paren

theses) and to use the same induction. I.e. first prove

CLPT1: (E a), A> B *1-B<E a)

by induction on correctness and then use induction on ;;:.

This works finewithall the .inside reductions. E.g., consider once

more the appl-case: E a, BE [x: A> A', > B'. Now the induc-

tion hypothesis gives us 1 E a, B' E [x:a]C and {A'}B' E C[A']. Since

>is disjoint ene-step reduction, C[A] > C[A'D so C[A] Q C[A'] so

'}B' E C[A], q.e.d. The other cases of inside reductions are treated

similarly, using some faots from the previous sections.

Then the outside reductions: 8 and ~ do not cause major difficulties

either. For è use the simultaneous substitution theorem and the

compatibility of dej' and , for Tl use the strengthening rule. But

there is a problem with 6-outside reduction. For, in order to conclude

] frorn f-{A we seem to need soundness , SA

SA HA}[x:BJC *A E B

which would allow us to use the single substitution theorem .

. 1.3. Let us try to find out about SA. So consider the assumptions

which can lead to the correctness o~ {A}[x:B]C.

E.g. A E a, [x:B]C Q [x:a]D (resp. [x:B]C E [x:a]D). Then

SA amounts to uniqueness domains, UD

UD [x:BJC Q [x:a]D * B Q o.

of domains 1 EUD

EUD [x:B]C E [x:a]D * B Q a

or: A E 1 [x:B]C E D E [x:a.]E (these are the assumptions of rule

III.3.B). As in 2.14.3, forsome F, [x:BJC E [x:B]FCD ~nd in fact

:B]F Q D). So, in this case SA seems to require the

l"u Ze LQ

LQ .4 E a, A Q B * B E a

which would give [x:B]F E [x:a]E' and 1 by EUD 1 A E B.

However 1 LQ "'> PT. So 1 i t appears that we cannot do SA separately

beferehand (i.e. not if III.3.B is present) and then preeeed with

CLPT as sketched above.

158

3.1.4. In order to simplify matters, we first forget about type-inélu

sion. Then we may hope to be able to prove uniqueness of types, UT

UT: A E a, A E S => a Q S

If we assume UT then UD =>EUD and, besides, LQ and PTturn out to be

equivalent. This may suggest us to incorporate the proof of SA in the

proof of CLPT

But we do not have UT yet. If we try to prove UT by induction on the

length of A, we come again in trouble with rule III.3.B. For, let

A
1

E a, A
2

E B E [x:a]D, A
2

E C E [x:a]E. The ind. hyp. just gives us

B Q C here, but we need more, viz. something like

1-{A}B, B Q C => {A}B Q {A}C.

(this is one half of the third monotonicity formula of sec. 2.14.4).

Since a proof of (*)requires LQ in turn, UT cannot be isolated either.

We might try to combine SA, UT and CLPT, i.e. to prove the necessary

in stances of SA and UT in the course of the proof of CLPT
1

• A proof

along these lines is indeed possible even if type-!nclusion is presen4

but it has a complicated structure and it cannot easily be extended

to languages with higher function degrees, such as A and A+.

3.1.5. Thus we prefer the alternative approach sketched belów, which

essentially runs as fellows: first prove PT
1

, UT and LQ by induction

on degree, then prove SA and UD, and afterwards prove CL as indicated

in 3.1.1. To this end we distinguish degree-i-versions of the various

properties

ulf

st

1-i A E a, A > B, 1-1B ,. B E a

1-1
A E a, A Q B • B E a

i-1 A E a, A E 13 => a Q 13

I-i B Q C, 1-{A}B => {A}B Q {A}C

1-1
[x:a]A Q [x:13]B • a Q 13

i-1
{A}[x:BJC •A EB

First notice that: P~, ui => LQ 1

and that: Lef => <*i>

hence:

159

We assume that the language under consiàeration is a non-+-language

(see sec.2.7l. Then it is relatively easy to show UDk and UTk+l

(ignoring type-inclusion), where k is the lewest value degree. Now let
i+l

us try to prove PT
1

by induction on correctness, where we assume
. '+1

, LQJ and UTJ for j i. An instructive example is the appl-case

inside reduction: A> A', B>B', 1-i+l }B, 1-i+l{A'}B'. It is no

restrietion to assume that both {A and '~B' originate from the

extended application rule of 2.16. 1: A E ct, A 1 E a', B E S E •••

E ... E Cf, E ~x:a~D 1 with degree (D) degree ID')= E , E [x:aJD, B' E c' ,_ 1
k and '(= Q • Th en by the ind. hyp. we have

, E c
1

1 so by
.,

Q
,

and by
1

Finally we have

I E {A '}C
. 1

Tl+l From P
1

LQi

[x:

E • Then fellows C
2

Q ,
and

, E etc.

Q k
Q a' I E [x:a~D' and by UD so He:1ce

<{A t' so {A'}B' E {i1 , q.e.d.

and UTl+l we get LQ1+ 1 , and UTi+ 2 . So by induction,

we get PT
1

, LQ, (*) and UT .
. 1.6. It is clear that SAi+l can be distilled from the proef of PT~+l,.

b~t it can alternatively be given as fellows. First, we have

•,;re have UD. Now let i:A:C[x:B]C. Then (see sec. 2.15.2) either

E , =x:B]C E [x:a]D, or [x:B]C E E, ~{A}E. Further [x: E [x:B]F.

by UT we have either [x:BJF Q [x:a]D, or [x:B]F Q E. Hence, either

by UD we have a Q , or by I*) we have -{A}[x:B]F. So from , UD and

UT we get

SA1
~ SAi+l

a:1d by indu::tion SA.

3 .. Closure for Bn-AUT-QE

.. 1. For definiteness we present a rather detailed version of our

ciosure proef here for Bn-AUT-QE, i.e. AUT-QE without definitional

constants and without 8-reduction. So the admitted degrees are 1,

and , the value degrees are 1, 2 and 3, the domain degree is and

the argument degree is 3.

The function degrees are just 2 and 3, so Sn-AUT-QE is a non-+

language. So the reasoning of sec. 3.1.5 is vali.d, but for additional

problems due to the presence of type-inclusion (viz. that UT is not

160

true and that not immediately cPT1 ~ LQ> and <UD ~ EUD>>. These

prob.Lems are overcome by the introduetion of a "canonical type" in

sec. 3.2.4. below.

This canonical type also plays a role inthen-case of PT1 •

Later we include definitional constants and ó-reduction, and applica

tion expresslons of degree 1, thus extending our result to anó-A~QE+

(in section 3.3}.

A closure proof of Bn-AUT-68 can easily be imitated from the p10of

below and is in fact somewhat easier because there is no type-inclu-

sion.

3.2.2. We specify a set of rules (in shorthand, omitting contexts) for

Sn-A~QE, which according to the properties in 2.10-2.15 are equiva

lent to the rules indicated previously.

(i)

(ii)

(111)

(iv)

(v)

(vi)

(vii)

(viii}

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

1--r

••• t x E a , • • • !-x < E a>

x E a !-A <E B) ~Hx:a]A <E [x:a]B)

A E a, !-
2 BE [x:aJC ~HA}B <E CIA])

A E a, B E C E [x:a]D ~ !-{A}B CE {A}C)

A E äo:u, x E ä * p (x) E P is a scheme ~
1-p<Ä> <E P lÄD>

AEBCC~ AEC

!-A, A > B or B > A, 1-B ~ A Q B {where > is disjoint
one step Sn-reductiorl

AQBQC~ AQC

x E a !-A C B • [x:a]A C [x:a]B

ACBCC ~AC~

strengthening

3.2.3. On 1- expresslons and type-inclusion

3.2.3.1. Since there are no 1-application expresslons and no defifli

tionalconstants all 1-expressions are of the form [re:&J-r, with x

161

possibly empty. And, if !- 1
[x:Cl]A, !-1

[x:B]B, [x:a]A >]B, then

a > S, A > B so a Q S and x E a [-A Q • So, by induction on Q, we can

show uo1

[x:a]A Q [x: ~ a Q 8 (and x E [-A Q B).

Then, by inductior. on C, we get

[x:aJAC[x:s=B * a Q 8 (and x E al-A C B).

3.2.3.2. We introduced UTi, uniqueness of types for expressionsof

degree i (i > 1) ,

A E B, A E

For i=3 this will be proved below, but for i=2 it is simply false

in vie;v of type-inclusion. Now we define

B 0 , - B C C or C B

Below we shall prove that the new symbol covers the relationship

and whenever A E and E C.

Clearly on the non-1-expressions 0 is just Q. We have

AD BJ

Further D satisfies a strengtherring rule, and is substitutive:

A E a, x E a ~B D [A] D c WAD

3.2.3.3. We also want to show

1 r 0 C - for some , A C B and A C

Proof:,..,is trivial. So let :JAC C. Then A

.o - h, C = [z:y
2

h (or simHar with B andC interchanged),

with "y Q y
1

Q y 2", "zE y 1-S Q i\"· So BCC (or C B).

3.2.4. The canonical type

3.2.4.1. It is possible, for each A with 1-i+lA to indicate an

that

such

(1) is a minimal representative- ·,.r.r.t. C- of the categories

of A, i.e.

E and: (A E û ~ C a)

162

(2)

We call this a the cantyp of A (with respecttoa context). The
0

definition of cantypis like the definition of typ given previously

(sec. IV .3 .2), but slightly modified in order to stay in the correct

fragment, as fellows:

(i)

(i i)

(iii)

(iv)

(v)

cantyp!x) typ(xl

cantyp (p (Ä l) typ (p) UÄ ~

cantyp([x:a)B):: [:n:a]cantyp(Bl- w.r.t. to extended context-

cantyp({A}B) _ {A}cantyp(Bl if degree (8)=3

cantyp({A}B) - C{All if degree (8)=2 and cantyp(B) -

[x:a]C

3.2.4.2. Clearly, typ(Al ~ cantyp(A) so property (2) above is

immediate.

Now we prove a lemma corresponding to property (1).

Lemma:
i i+l

if LQ and ~ A E a then A E cantyp(Al C a

Proof: By induction on the length of A. The more interesting

cases are

(i) A= [x:a
1

JA
1
,x E a

1
~A 1 E a

2
, [x:a

1
Ja

2
Cu, By the ind. hyp.,

x E a
1

~A 1 E cantypcA
1

J C a
2

, so [x:a
1

JA E [x:a
1

JcantypcA
1

) =
cantyp(A) C [x:a

1
Ja

2
Ca, q.e.d.

(ii} A:: {A
1

JA
2

, A
1

E a 1 , ~2A 2 E [x:a
1

JC, C[A
1

) Ca. By the ind.

hyp., A2 E cantyp(A
2

> c [x:a
1
Jc so cantypcA

2
J: [x:a1JC'. Hence cant;yp().

is lndeed defined, a
1

Q ai, x E a
1

~C' CC, so {A
1

}A
2

E C1 UA
1
J Ca, q.e.,

(ili) A :: {A
1

}A 2 , A
1

E a
1

, t-3
A2 ~ B E [x:a

1
]C, [A

1
}B Q ~· By the

ind. hyp. A2 E cantypcA
2

) Q B. By LQ~ we can use property (*~) of sec.

3.1.5 and get cantyp(Al Q {A
1

}B Q a, q.e.d.

3.2.4.3. Corollary: (i) 1-2 A EB, A E C ~ BOC (this is, forA of

degree 2, the desired property of 0).

2 includes EUO)

(ii) t-2
[x:a]A E [x:S]B ~ a Q 8, x E a ~A E E (this

. Ciiil SA2

Proof: (i) LQ1 is·vacuously fulfilled, so B J cantyp(A) cC, so

by 3.2.3.3. BOC. (ii) and (iii) are immediate.

163

3.2.5.1. Now that we have introduced cantyp we can use it in the proof

of PT. Wedefine the property of cantyp.

A' , ' * cantyp (;:;) Q cantyp (A 1
)

Similarly PCT~; PCT is the conjunction of all the PCTi.

We first prove some lemmas for PCT2
.

. 2.5.2. Lemma (substitution lemma for cantyp): let stand for

n. Th en x E Ct, ij E B l- E ::x * cantyp (Cl* = cantyp

where the cantyp's are taken w.r.t. (x E a, y E SJ and (y E resp.

Proof: Induction on C. Note that C$x, because degree(x)=3. Some

cases are: (i) C [z:C
1

, cantyp(C) * [z:C;Jcantyp (w.r.t.

x E a, y E G, z E
1

J = (by ind. hyp.) [z:C7Jcantyp(C;) {w.r.t.

E s*> z E _ cantyp cc*), q.e.d.

cantyp

cantyp

{ii) * }C
2

, cantyp<Cl

_ [z:y and, by ind. hyp.,

* - D [1D as well, q.e.d.

where

, so

3.2.5.3. Corollary: x E a , f- 3
A E a '* cantyp (Cl [A u ~ cantyp <CV] l.

3.2.5.4. Corollary (S-PCT~):
}[x:B]C-. cantyp({A}[x:B]CJ Q cantyp) .

2 Proof: By SA we have A EB, so even cantyp({A}[x:B]C) - cantyp(C)

cantyp(CfiA) l •

2
3. 2. 5. 5. Lemma (n-PCT

1
) :

1- :a]{x}A, x t. FV(Al '* cantyp([x:a]{x}AJ Q cantyp(Al

Proef: Let cantyp(A) [ydl]D and let i-2
[x:a]{x}A be based upon

.. rE::~', A E[y:a'JD'. By 3.2.4.2 [y:S]DC :a']D' and

x i :S]D), soa Q a' Q S and cantyp

- cantyp([x:a]{x}A).

2
3.2.5.6. Theorem: PCT1

= [x: Q

Proof: let 1- , f-A', A >A 1 • For a main reduction use 3. 2. 5. 4 or

3.2.5.5. For inside reductions use induction on the lengthof A.

Some cases are:

164

(i) A [x:A
1

JA2 , A' [x:Al]A2, A
1

> A{, A2 > A;2. By ind. hyp.

cantyp([x:A
1

JA 2> Q cantyp([x:A
1

JAi> : [x:A
1

]cantypCA2> Q [x:A{JcantypcA~

by the substitution property 3.2.5.3.

(ii) A {A
1

}A2 , A': {A{lA2, A
1

>Ai, A
2

>A;. Since {A
1

}A
2

is

correct, A1 E a 1, A2 E cantypcA2) = [x:B]C C [x:a
1

JD. So a
1

Q B.

Similarly A{ E a;, A:2 E cantyp<A2> : [x:B']C' C [x:a{JD'. Soa; Q B'.

By the ind. hyp. [x:!$]C Q [x:S•JC', so C[A
1

] Q C'(A
1
B Q C'(A;], q.e.d.

3.2.6.1. By LQ2 we can apply 3.2.4.2 to expressionsof degree 3 now.

We get: (i) I-3A E a =1> A E cantyp(A) Q a

CU.l UT
3

: !- 3A E a, A EB=~> aD B (i.e. a Q 13)

(this is the announced property of 0 forA of degree 3).

(Di) SA3 (e.g. as in 3.1.6)

Notice that by UT3 the properties PCT3 and PT3 are equivalent.

3.2.6.2. We introduce CLPTi:

~A' =I> I-iA' cE a)

and similarly

1- iA CE a), A

i CLPT
1

•
3 Here fellowsome lemmas for CLPT
1

•

3 3
3.2.6.3. Lemma CS-CLPT

1
J: I- {A}[x:BJC E D =~> C(A] E D

Proof: Let A E a, (x:B]C E FE [x:a]G, {A}F Q D, and let x EB 1-C EH.

[x:B] H Q F. By SA3 we have A E B and by (*
2

) {A}[x:B]B Q {A}F. By 'tiE

substitution theerem for correctness CiA] E H(AD Q D.

3 3 3.2.6.4. Lemma <n-CLPT1): 1- f.x:a]{x}A EB, x t FV(A) • A EB

Proef: cantyp([x:a]{x}A) = [x:a]{x}cantyp(A) Q cantyp(A) (by n-reduc

tion), by strengthening I-A 1 so by 3.2.6.1 A EB.

3.2.6.5. Now we are ready for CLPT.

Theorem: (CLPT 1): 1-A (E a), A > A' .:> 1-A' (E a)

Proef: If A> A' is a main reduction use SA, strengtheningl PT
2

and

the preceding two lemmas. Otherwise use induction on the length of A.

(i) A = [x:a1 JA 1 , A'= [x:a;JAi 1 a 1 > a; 1 A1 > Ai, x E a 1 1-~<E a2),

([x:a1]a
2

Ca). By ind. hyp. l-a1• and x E af l-A{ (E a
2
).

165

Ca) - read this twice, one time

with and one time without the symbols in parentheses-.

(ii) A
1

}A
2

, A' "' {A ' A > 'l ' A > - 1 1 j-1' 2 ', lE ,;:2E

[x:e<
1

JC, CITADCa.By ind.

~ffA 1 D.
hyp. A { E a 1, A2 E [x:]C. So A ' E C[!l {] Q

(iii) As in (ii), but E E [x: JC, {A 1 c a. By ind. hyp.

', E a
, E B, so A' E fJl''>B Q {A

1
}B. .-1 1 , l 1 '

(iv) A (81, ... Bk),
k ,, E 131 , E , ••• ,......-k,,

[31J, ... , E f\[B1 , ... , n, P[s] - E p (yl E c a, where y * is

a scheme. By ind. hyp. P r E 131,
r E 13 2[B 1] Q B2 I D' ••• I B' E Q ~1 k

.~ [Ë 'TI so p I , ••• ,B~) E r B''] Q P[B]. ''k f f ••• f k'

.2.6.6. corollary: (iJ CLPT, (iil LQ, (iiil LID.

3. 2. 6. 7. Corollary (Rule V. 2' , sec. 2 .11) : 1-A, f-B, A ·e E ~ .4 Q

3.3. Extension to Snö-AUT-QE+

3.3.1. Now we consider i.e. Sn-AUT-QE extended with 1

application expressions, with definitional constants and with defini

tional reduction. The additional rules are

I. 3:

(vi'): Ä E a[Ä], x E a * d(x) := D (*d(x) E El is a scheme ~

1-d (E

(cf. sec. 3.2..2andsec. 2.3 respectively).

If we try to repeat the previously given proof, we first come in

trouble because not all the compound 1-expressions are abstraction

expressions anymore. This makes the proof of U01 from sec. 3.2.3 fail

though the property itself remains valid. Furthermore there is the

problem with definitional 2-constants and type-inclusion (mentioned

in sec. 1.7) 1 which makes LQ 2
fail.

Below we give an indirect proof instead which runs as follovls:

first we show (secs. 3.3.3 3.3.8) that the indicated extension is a

so-called unessential extension. Then we use this fact to transfer the

desired properties from Bn-AUT-QE to the new system (sec. 3.3.9).

F~nally (in sec. 3.3.11) we briefly discuss an even larger system than

166

AUT-QE+, which we call AUT-QE*.

3.3.2. Some terminology

Consider two systems of correct expressions with typing and equa

lity relation, (f-, E, Ql and (f- +'. E+, Q+l respectively.

(\-+, Q+) is an exten.aion of d-, E, Ql if f- >:> f-+' E >:> E+ and

Q ,.. Q+, i.e.: B }-resp. B; r, ~resp. B; F, 1-A (E/Q B) ,..

B f- + resp. B; ~ 1- + resp. B; r, 1- + (E+/Q+ B).

We further just write 1-+A E/Q B insteadof 1-+A E+/Q+ B. The "new"

system 1-+ is said to be conaeY'Vative over the "old" system f- if all

new facts about old objects are old facts, i.e. if

UEO l-A I 1-B, 1-/· E/Q B >:> l-A E/Q B.

An extension is uneaaentiaZ if no "essentially new" objects are

formed, i.e. if all new objects are equal to old ones. This means

that the new system can be transZated into the old one by a mapping-,

werking on expressions, books and contexts, such that

UE1

UE2

UE3

1- A ~ 1- A Q [and 1-A • A :: [
+ +

13f-+resp. B; r,l-+resp. B; t;f-+A =1>

B-1- resp. B-; t;-1- resp. B-; (,- l-A-

B; F,l-+A E/Q B >:> B-; r, f-A E/Q B-

Clearly unessential extensions are conservative. Property UE3

means that new formulas imply their old counterparts. Unessential

extensions also satisfying UE3', the converse of UE3,

UE3'

are called definitiona~ extensions.

In a definitional extension new formulas are equivalent to old

ones. All unessential extensions satisfy the Q-part of UE3~ but for

the E-part we need property LQ for the larger system {at least if the

smaller system satisfies lQl. For that matter, if the +-system

satisfies LQ, we have

UE1, UE2 >:> UE3'

and: UEo, U El, UE2 => UE3

167

3,3.3. The translation

Of course, we take Sn-AUT-QE for our smaller system ~ and we take

Sno-AUT-QE+ as the extension ~+. We are going to prove that ~+is an

unessential (but nat a definitional) extension.

For an expression A we intend its translation A to be the normal

farm w.r.t. a certain reduction relation ~-• In order to make well-

defined and in view of UE1, UE2 we reguire

(0) ~- normalizes and satisfies CR

(1) ~ just affects the new elements of expressions (1-application

parts and .definitional constants) and removes them

(2) sis part af the reductian relation of the new system and

satisfies CLPT

For contexts t x E a the context ~ is simply x E a (where the

meaning af a is clear). Similarly schemes for primitive constants

;*p(x) E s are translated into (*~x) E s-. But schemes for defini

tional constants have to be omitted in the translatian.

Befare fixing ~we define ij-reduation ~I, i-reduction of degree

j (where i is S, n, a or a combination of these). This is the reduc

tion relation generated from elementary ij-reduction, defined as

fellows:

A elementary 1j-reduces toA' if A elementary 1-reduces toA'

and degree(A)=j •. The corresponding one-step reduction is denoted >~.
l.

Notice that for degree-correct A the degree of A' above is j as well

(cf.sec. 2.7).

Now, in view of requirement (1) above, we define ~ to be the re

>1 d > duetion relation generated from _
6

an -a·

3.3.4. Notice that S1
-reductions cannot be inside reductions. Strong

normalization for s1 is easy to prove even without using normability.

From Ch.III we reeall ö-SN and ö-CR. As in Ch.II, secs. 6, 7, 8, we can

show that s1-CR holds, and that s1 camroutes with all other reductions
2 2 1

(such as S , a, n) except n .
1

So ~_commutes with all kinds of reduction but n , and we have

~..:-SN and ~-CR (whenoo requirement (0) above).

Clearly ~-normal forms do not contain defined constants anymore;

a simple normability argument shows that ~_removes the 1-application

168

parts as well.

3.3.5. A further property we want ~_to satisfy is CLPT. Since c-CLPT1

follows from the simultaneous substitution theerem (cf. 2.9.4} we just

want to know SA1

or,

1-!(A}[x:B]C * 1-+ A EB

equivalently, uo1

f-
1
[.x:B]C Q [x:a]D * 1- a Q B.

+ +

Here turn up the problems with 1-expressions, announced in 3.3.1.

To evereome these we seemingly modify our system:

(1) we exclude n1-reduction

(2) we change our 1-application rule into

I.3' A E a, i- 1
B red [x:a]C •I-1

{A}B
- +

where red_ is ~ restricted to the correct expressions, i.e. generated

by

Clearly I. 3. * I. 3 •., so the modification is a restriction.

However, af ter ha ving proved ?,-CLPT (whence U El , see sec. 3. 3. 6) , UE2 ar

UE3 (sec. 3.3.7) for the modified version, we shall be able to show

that both I.3 and n
1
-equality: 1- A, A >

1
A', 1- A' • 1- A Q A' are

+ n + +
derived rules. Hence·the two versions off-+ are equivalent, and we

have the desired properties for the original +-system.

3.3.6.1. For the modified system the property SA1 is clear, so we have

the theorem (~-CLPT): 1- A (E a), A ~ A 1 * 1- A 1 !E a)
- + - +

Proof: Since we know o-CLPT, and ~~ is just = on the non-1-expressions

we only need to consider A of degree 1. Use, e.g., a double inductie~

viz. (1) on 6_(A) - i.e. the length qf the ~_-reduction tree of A, (2)

on length(A). The only interesting case is when A = {A
1

}A2 , A
1

E o.,

A2 red_ [x:a]C. If A1 ~A{ then A1 ~cA{ so by o-CLPT A{ E a.

If A2 ~ A2 then by the ind. hyp. and by ?,.-CR: A2 re<!_[x:a']C',

[x:a]C' red_ [x:A 1]C'. soA; E a' and 1-+{Ai lA;. If A
2

E [x:A3 JA 4 then

A
1

E A
3

(this is SA
1

) and 1- +A4 [A 1].

Since a reduction A ~A' starts with an inside or with an out

side reduction, we are finished by the first ind. hypothesis.

169

3.3.6.2. Corollary (UEll: ~/ '"" f- /~ Q

1
3.3.7. Theorem (UE2 and UE3): Consider the systemwithout n and with

r~le I.3'. Then Bt , resp. B; , resp. B;~ (E/Q B) '""
+

Proof: By induction on f- +' using 2;:-CLPT. The interesting rules are

(i) appl. rule I.3': let f-+A E a, f-+B red [x:a]C. By ind. hyp.

1-:~ E a-. Clearly B- = [x:a -]C- and by ind. hyp. , so x E a-f-

so f- ((A} B) = C-G A-], q.e.d.

(ii) instantiation rule (vi'): let 13 contain a scheme E *
(possibly followed by *a(y) E ~). Let f.

1
be the book preceding this

scheme. By ind. hyp. B~; y E S- f-D- (E C-}. Now if B;i; ~Ë E , then

by inct. hyp B- ;i;- !-B- E (B[ËDJ - 6-[i=;;-], so f- (d

(E (C[B]J- :::: Cffr~), q.e.d.

() (iii) Q-rule: let f-- +A Q B, f.- +C, B > C. By ind. hyp.
1

commutes with all other reductions, except possibly n which Since ~

we have forbidden, we find B- ~ c- so by CL for Bn-AUT-QE 0
and!-.4 Q C-, q.e.d. The case that C ~ B insteadis cornpletely si~ilar .

. 3.8.1. Now we prove that I.3. is a derived rule in the modified
1 1 -

systern. So assume f- +A E a, f- +BQ [x:a.]C. By 3.3.71- B Q [x:a

whence B- must be [x:BJB
1

with f-a Q S and j- +a Q B. Further, by

3.3 •. 1., 1- B red B-and by I.3' !-+{A}B, q.e.d.
+ -

. 3.8.2. Similarly, n1
-equality is a derived rule. Let 1- +A' 1-

~ 1
• We 2an assume that degree(A) = 1. By induction on length(A)

we prove that f- Q A'. The interesting case is when A = [x: a
1

]{x }A 1
,

.:::i FV ').As in 3.3.8.1., x E ~l f-+.4' red_ [x:a
2

JA
1

with x i FV
1

By SA x E a
1

1- +al Q a. 2 and by strengthening t +al Q a
2

• So 1- +A Q

[x:a
1

JA
1

Q [x:a
2

JA
1

Q A', q.e.d.

3.3.8.3. Hence the system with I.3 and n
1
-equality is equivalent to

the system with I.3' and without n
1
-equality. So we have SA1

, ~_-CLPT,
and for the original system of Bn6-AUT-QE+ now.

170

3.3.9. The proof of CLPT

3.3.9.1. As in 3.2.6.5, we can prove CLPT1 from outside-CLPT
1

, by

induction on correctness. Clearly o-CLPT (and a fortiorio-outside

CLPT 1) is included in '2 -CLPT, so we just need 13- and n-outside-CLPT
1

•

In the next sectien we infer PT3 and SA from our UE-result, which

leaves us to prove the 2 2 . 13 - and n -case of outs:~.de-PT 1 only. These two

cases are dealt with in 3.3.9.3.

3.3.9.2. Consider the properties mentioned in 3.1.5. In this sectien

we distinguish the two verslons of a property (viz. for the smaller

and the larger system) by providing the latter with a + below. It

is clear that

UTi • UTi and

whencè UT3
+'

uri
+'

3
!'T+ and

The property UD is also preserved in passing to the larger system, anê

in fact, as in 3.2.3.1,

f- +[x:a]A Q [x:B]B,.. 1- +a Q 8, (X E a 1- +A Q B)

3 3 1 i .
Byi LQ+ we have t*+). SA+ we knew alr:ady. _:'OW w: s~ow SA+ for :~.#1:

f- +{A }[x:B]C. Since i#1, ({A }[x:B]C) :::: {A }[x:B]C , so by UE
2

,
·- -- -- 3 1-J.{A }[x:B]C and by SA, f-A E B • Hence by LQ again, we have

+

let

SA! for i#l as well.

3.3.9.3. In sec. 3.2.5 we used cantyp in proving s- and n-outside-PT~·
The sameprocedure applies in the +-system, but with typ (defined as

in IV.3.~ insteadof Cantyp now. In particular we have

!ii'l typ<d<Ä>> = typ<d>UÄU

for defined constants of degree 2 and 3 now

and (iv) typ({A}B) {A }typ (8)

for both B of degree 2 and 3,

As in 3.2.4,2 we get

f- : A E a * f- +A E typ (A 1 ç:: a

and,

as in 3.2.5.2.,

E a, (x E at- 2
CJ ~typ(CGA]} typ(7) ITA]

Sc, as in 3.2.5.4 and 3.2.5.5, we get

!- }[x:BJC ~ typ({A}[x:B]C) Q typ(CUAOl

whence B-outside-PT
2

1
, and

+,

1- ~[x:a]{x}h., x i FV (A) ~ typ ([x:a](x}A) Q typ (Al

whence n-outside-PT
2

1
•

+,

3.3.10,1. In 3"3,9.2 we have carefully avoided the properties which

do not hold in the larger system,in particular LQ2
and (*

2). Fora

counterexample let d(x) be defined by x E T * d(x) [y :X]x, with

171

typ(d) ~ T. If a E T, then d(a) Q [y:a]a E :a]T, but certainly not

d) E [y:ah, so not LQ2. If, furthermore, A E a, then 1-{A}[y:a

but: not HA (a) , whence not
2

(*) • Consequently, the

a definitional extension of the old system.

3.3.10.2. Besides, if we stick to our counterexample,

.. E i(u.) 1-z E [y:a]a, so z E d(a) .f-·{A }z E a, but not

+-system is

_, E (a) HA}d(a) (:= typ({A}z)). This shows that typ applied to 3-

not

expressions can lead us out of the correct expressions (in contrast

with the situation in the smaller system), and that not:

2
3.3.10.3 In the next section we restare {*) and LQ by a further ex-

t:ension of the language. But first we give a theorem stating some very

weak versionsof LQ2
to hold in Bno-AUT-QE+ insteadof LQ2

• Reeall

the symbol 0 from sec. 3.2.3 and the result (sec. 3.2.4.3, 3.2.6.1)

for Sn-AUT-QE:

Theorem: Let

1-AEB, 1-AEC'*' I-BOC.

E B, 1- + C E D, 1- A Q C. Th en

E D or I- c E B
+

172

Proof: By UE we get 1-A- E

;3!1-AUT-QE we get 1- c- E B-

, 1-C- E D-, j-[Q C- By LQ for

so 1- B- 0 D- , so 1- B Q B- 0 D- Q DI
+

i.e. !- +'0 0 D, i.e. B CD or D C B, q.e.d.

3.3.11.1. The aforementioned ancmaliescan partially be removed by

properly extending Snö-AUT-QE+ to a language S!lÖ-AUT-QE*. In this

new system we first replace the application rules by

(1 l B Q [x: u]C, A E u * 1- {A }B

(2lBEC, 1-{A}C*HA}BE{A}C

Rule (1) is simply !.3 without the restrietion to degree 1. Rule

(2) is III.3.B' (sec. 2,15). So, indeed, AU'I-:QE* extends AUT-QE+.

3.3.11.2. By this modification we gain the property

1- 3A * 1- typ(Al 1 so it is a proper extension.

Furthermore, by n-reduction we get

BE [x:u]C ~ BQ [x:u]{x}B, which yields property (*)

for the new system.

Our counterexample, however, shows that there are still problems:

LQ2 does not hold, so we do not yet have a definitional extension of

AUT-QE. Besides, now the new 2-expressions (e.g. {A ~(u) in the

example, which is correct now) do not have a correct typ, and not

even an E-formula.

3.3.11.3. The following theorem shows that the difference between AUT-'

and AUT-QE* just lies in the particular role of the definitional 2-

constants, and that AUT-QE* is an unessential extension of AUT-QE+'

(though it is no definitional extension).

Theerem: Let 1- * stand for correctness in AUT-QE*, and let A ' be the

6
2
-normal form of A. Then 1-*A<E!q B),.. 1-+A'(E/Q B1)(so 1-[(E/Q).

Proof: Induction on 1- *.

3.3.11.4. A drastic way of combining 2-constants with type-inclusion

and still preserve LQ, is to add LQ explicitly to the language defini

tion1 or at least something like

]-
2
A,CEB 1 A~~C* AEB

173

Adding this rule to Sno-AUT-QE+ produces the smallest defini

tional extension of AUT-QE which includes Sno-AUT-QE+, and it gives

us AUT-QE* plus all the missing E-formulas.

An alternative way of defining this new system (We still calZ it

AUT-QE*) is by ignoring the type-assignment part of definitonal 2-

schemes, and by defining the typ of a definitional 2-constant to be

the typofits definiens (compare the definition of u in IV.4.4).

From the latter definition of this new system it will be clear
2

that our desirable properties (except UT , of course) can be proved

for it by the same methods as used in the closure proef of AUT-QE+.

3.3.12.1. Up till now we have, for definiteness, just compared

Sr:-AUT-QE with Sno-AUT-QE+ (and Sno-AUT-QE*), i.e. we made the exten

sion in one step and added the definitional constants and the 1-appl

expressions simultaneously. One can as well, of course, consider

intermediate languages like Sn-AUT-QE+ and Snè-AUT-QE.
2

Then one notices that the problems with (*), LQ and typ are ex-

clusively due to the ó(in particular and nat to the + in

3~6-AUT-QE+. Thus Sn-AUT-QE+ satisfies LQ and (*), and is a neat de

finitional extension of Bn-AUT-QE, .whereas Snó-AUT-QE has all the un

pleasant features of Bnö-AUT-QE+. In fact, Bno-AUT-QE+ is a definitionru

extension ofSnó-AUT-QE, and Bno-AUT-QE can only be made into a

definitional extension of Sn-AUT-QE (call this new system from now

on AUT-QE') by adding a rule like in sec. 3.3.11.4.

3.3.12.2. If one takes AUT-68 instead and adds an application rule:

A E a, [x:a]C Q B E T ~ {A }B E T

(compare 3.3.11.1, rule (1)) one gets the corresponding +-language.

(i.e. smallest value degree smallest function degree), AUT-68+.

These systems are easier to handle than AUT-QE: bath AUT-68 and

AUT-68+ satisfy UT, LQ and (*),even in the presence of definitional

constants, and AUT-68+ is a definitional extension of AUT-68.

Without definitional constants, AUT-68+ is already contained in

AUT-QE, but Bno-AUT-68+ is not contained in Bnó-AUT-QE. rt is

contained, though, in the system AUT-QE' of 3.3.12.1.

Closure for AUT-68+ can, e.g., be proved by the methods of the

next sectien (see 3.4.5).

174

3.4. Same easier closure proofs

(for simpler languages)

3.4.1. There are various ways of proving closure for simpler languages,

such as Sn-AUT-68 or So-AUT-QE. First, .one can take the closure proef

of the previous sections and adapt it to the language under considera

tion. Since n-reduction, type-inclusion and liberal degree specifica

tien (in particular for function degree) are responsible for many

technical details in the proof, the simpler languages allow some

obvious simplifications. E.g. if a language lacks n-reduction we can

clearly skip the n-closure part and, besides, we can freely use CR.
Or, if a language has more restricted function degrees (AUT-68 vs.

AUT-QE, non-+-languages vs. +-languages), we have to push SA, LQ, UD
etc. through less degree levels. And, if a language lacks type-inclu

sion (AUT-68 and Nederpelt's A), we simply have PT * LQ, and do not

need to introduce sarnething like cantyp for this purpose.

A second approach is suggested by the fact that our language de

finition contains some technicalities which are only introduced to

make the closure proef (i.e. this kind of closure proof, for a

complicated language like Sn-AUT-QE) possible. In particular, I intend

the use of the restricted Q-rule V.2 insteadof the more liberal V.2',

i.e. the use of the restricted system type I, instead of the liberal

system type II (see sec. 1.2.). Reeall that after having proved

closure for I, I and II can be proved to be equivalent, and that,

after all, we are more interested in system II than in system I.

Now it turns out that, for the simpler languages, the modifica

tions in the language definition .{and the detour via system I) are

superfluous, and that we can give a direct closure proof for a type II

language definition.

Such direct closure proofs are presented below for all theregulal

languages which either lack n-reduction, or have just function degree

3: S(o)-AUT-68{+), S(o)-AUT-QE{+) and Sn(o)-AUT-68. A mere sketch is

given for Sn(o)-AUT-68+ {for the definition of AUT-68+ see sec. 3.3.12

3.4.2. So we give these languages by an E-definition with Q-rule

V.2': A Q B, B + C, ~C * A Q C

17

which a priori is stronger than V.2 but later turns out to be

equivalent. The properties in secs. 2.9, .10 such as the

coPrectness categories, and the property: of domain

degree, t. of value degree, x E a f-A • f- [x: a A simply go through.

As in sec. 3.1., we essentially just need SA for proving closure.

So below we confine ourselves to SA and, in conneetion with this,

UD for the various languages. We start with the n-less languages.

3.4.3.1. Theorem: UD for n-less languages

Proof: Let [x:a]B Q [x:a]C. Then by CR, [x:a]B + [x:a]C so a + and

~ ~ whence a Q S and x E a 1- B Q C.

3.4.3.2. Corollary: SA1
for S{o)-AUT-QE+, SA

2
for S(è)-AUT-68+.

Proof: Let A E a, [x:B]C Q [x:a]D. Then B Q 50 E B.

3.4.3.3. Let C bedefinedas in sec. 2.14. We need a lemma:

c:r,

1
~ .:;

1
, a

2
rS

2
, etc.)

Proof: Induction on C.

with lal = 181 and a + B (i.e.

3.4.3.4. Corollary: SA2
for S(o)-AUT-QE(+), SA3

for 13(8)-AUT-68(+)

Proof: Let A E a., [x:BjC E [x:a]D. Then [x:B]C E [x:B]F C ~x:alD. So

by the previous lemma B Q a and A E B.

3.4.3.5. Now in order to get SA 3 for S-AUT-QE(+) weneed a lemma

again. Notice that the proof of this lemma fails when there are

definitional constants.

Lemrr;a: f- 2
A E B, B c;;, , A lal = 181 ~ a + S

Proof: Induction on the length of A. The interesting cases are:

{) ;!_ -

with s2 i32·
+(S1,i32>-

By

s,

E

the ind.

q.e.d.

(2) A , A1 E y, E [z:

By 3.4.3.3 again, B
1 1

] 2:

degree 1 and bas degree 3,

hyp.

E]B1

C(l + s 1
and B

1

[12 "' ' so ~

S 1 • Because

with i3
0

WA
1

] 2: S'.

c

anà

has

176

Similarly, since A
2

has degree 2, if {A
1

} A
2

2: [x:ëi]C then A
2

~

[z:y'][x,;:;
0

Jc
0

with ;:;:
0

(A
1
D ~ ä:, c

0
[A

1
) 2: c. By the ind. hyp. ä

0
-t s

0
so ; s ä

0
UA

1
0 -1- ~ 0 UA 1 1 ;:: ä and by CR ä + ë, q.e.d.

3.4.3.6. Corollary: SA3 for 8-AUT-QE(+}

Proof: Let A E a, [x:B]C E D E [x:a]F. Then [x:B]C E [x:B]G Q D whence

D 2: [x:B'JG' with B 2: B'. By the lemma B i- a, so BQ a and A EB.

3 .4. 3. 7. So we have SA for 8 (o) -AUT-68 (+} and 8-AUT-QE (+). In order

to tackle the Bó-case of AUT-QE we first prove ó-CLPT, which give us

an unessential extension result. Then we can either extend SA directl)

or first extend the lemma 3.4.3.5 to Bo-AUT-QE+ and praeeed as before.

3.4.4.1 Now consider Bn-AUT-68. we cannot useCRanymore.

Theorem: UD2
for 8n-AUT-68.

Proof: All 2-expressions are of the form [x:ëi:Jy or [x:äJp(ëJ. Sa if

1- 2: [x:S]B, then A = [x:aJA
1

with a 2: B. By ind. on Q we can prove:

if f- 2
A Q [x: SJB then A := [x:aJA

1
with a Q B • This gives UD2

.

3.4.4.2. Corollary:SA for Sn-AUT-68

Proof: Immediate.

3.4.4.3. The same proof works as well for Bnö-AUT-68, as fellows.

Lemma: j- 2
A 2:

0
[x:aJA

1
, 1- 2

B, A + B "~> B [x:BJB
1

, a + B.

Proof: Since 2:
0

commutes wi th ?. , [x: a JA1 :?: [x: a' JA{ E s B. By

ó-advancement (sec. II.9.3), B ?.
0

C 2: [x:o."JAi' sofx:a'JAi. Here the re

duction C 2: [x:a"JA~ does not contain ö-reductions so C::: Jx: wit:t

B 2: a" s ei .Sa, q.e.d.

3.4.4.4. By the simultaneous substitution theerem we have ö-CLPT

again. Then by induction on Q we can prove:

2 1- F Q [x:B]B "~> F [x:a]A, o. Q S.

2 This gives us UD whence SA, as before.

3.4.5. It is possible to extend these results (for Bn(ö)-AUT-68) to

the corresponding +-language Sn(ö)-AUT-68+, but it is rather

complicated. We can use a mixture of the methods in 3.4.4.3 and
2

3.4.4.4 and the methods in sec. 3.3. Thus we start with leaving n -

177

reduction out of consideration, and restricting the appl-rule of

degree 2 to: A E a, \-
2
B ~ [x:S]C, a ~ S ~]-{A }B.

Later on these two restrictions prove to be immaterial. For the

restricted system SA2
is immediate and s2

-closure is guaranteed. Then

we neEdê-S
2
-advancement and the fact that oS

2
-reduction commutes

with ~, and get:

)-
2
F Q [x:S]B ~F ~862 [x:a]A, a Q S.

This yields UD
2

I and SA
3

and we are finished.

178

V.4. The equivalence of the E-definition with the algorithmic

definition

4.1. Introduetion

4.1.1. Since in the E-definition the correctnessof expresslons and

formulas (relative to a correct hook and a correct context) was

given by an ordinary inductive definition, the correctness relation

is a priori just recursively enumerable and not necessarily recursive

i.e. effectively decidable.

In this section V.4, though, we prove the decidability and

discuss some related topics. First we give some introductory considerë

ti ons leading to a sketch of a decision procedure (secs. 4. 1 • 3-4. 1 • 6) •

The whole verification process is, in principle, reduced to the

verification of Q-formulas, for which the decidahility follows from

the normalization property N and the Church-Rosser property

(cernpare sec. I I. 5. 4). 'Yle can u se normalization freely because we

proved N for a very large system in IV.4.5, but Sn-CR we do not know

yet. Therefore we assume throughout V. 4 propePty CR foP the eorl'e::Jt

expPessions, foP the proof of which we refer to Ch. VI.

4.1.2. Then (sec. 4.2.2) we present the actual algorithmic definition,

to he adapted for the various languages hy a suitable choice of a re-
•

duetion relation, of a typing function cantyp and of a domain tunetion

dom for the computation of domains (sec. 4.2.3., 4.2.4).

The equivalence proof in sec. 4.3 is organized as sketched in

sec. 1.2 and 1.6, with the following effects:

(1) the strengthening rule can he skipped from the E-definition

(2) the E-systems are decidabie

(3) the algorithmic system satisfies the nice properties of the E

system: closure etc.

The final sections concern the verification of Automath languag~

in praetice, This is a matter completely different from the

theoretieal decision procedure discussed hefore. Particularly some

remarks are maàeon suitable reduction strategies for deciding Q

formulas.

179

4.1.3. Deciding Q and C

No matter whether a systern has Q-rule V.2 or Q-rule V.2', there holds

A Q B ~ f-A, ~B, A + B

Proof: ~. By induçtion on Q, using CR.
<'. This is precisely rule V. 2' so ei ther i t holds by def in i tion

or it follows frorn CL. 0
So, by N (as in II.5A), for correct A and B, Q B is decidable.

In i3 (",) -AUT-QE all 1-expressions are of the forrn [x:(:;h.

We have

and (sec. 3 • 2. 3 . 1) •

~ 1
A C [x:BJB

1
'-'*A

So, for correct 1-expressions A and B, AC B is decidable (use induc

tion on the length of B). Since on non-1-expressions C is just 0,

this is true for A and B of other degrees as well.

Let f- stand for correctness in i3 (n) -AUT-QE,

system, like Snö-AUT-QE+ or Sno-AUT-QE* and let

normal forrn. By UE (secs. 3,,3.2, 3.3.3) we have.

1- for sorne larger
+ 1

denote the 13 o-

So, in the larger systerns, too, AC B is decidable, for correct A and

B.

4.1.4. Deciding E~formulas

In principle, E-formulas A E B, for correct A and B are going to be

decided by the equivalence

A E B ~ typ (Al C B

which reduces the E-formula to a C-forrnula.

However, there is some trouble with typ. First, typ can lead us

out of the correct expressions of the language we consider. There

are two ways to solve this problern: first one can introduce for each

language a specific modified type-function cantyp (for: canonicaZ

type) which does not suffer from this defect. Then we get what we

want (as in 3.2.4 for AUT-QE)

180

A E B <:=:> i-A, f-.B, cantyp(A) C B

Alternatively, one can use the fact that the new, possibly in

correct expressions created by typ in general are correct in some

larger system (e.g. the corresponding +-system) • Then one can dec i de

the E-formula in the larger system:

A EB ..,.. i-A, l-8, 1- +typ(A) C S

where f-. + stands for correctness in the larger system.

If we make sure that 1- +cantyp(A) Q typ(A) then 1 by conservativi

ty, the two approaches are clearly equivalent.

A second difficulty with typ occurs exclusively in AUT-QE' anà

AUT-QE*. These languages have the rule: f-. 2
B, f- C E D 1 B C *

f-.B E D1 and for the new category Dof 8 the property typ(B) CD (even

if typ(8) is correct) is not necessarily true anymore.

This problem can be solved by taking a type-function which first

eliminatas all the o2-constants. For a o2-constant d we have then

cantyp(d(Ä)) cantyp<o2-nf(d(A))).

4.1.5. Deciding correctnessof expressions

All correct expressions relative to a correct B and a correct ~ have

to be B; ~-expressions 1 i.e. the constants have to be in B and the

free variables have to be in ~· The verification of compound

expressions can roughly be described as: verify the subexpressions,

plus their possible type- and degree-restrictions. E.g. for abstr

expressions use the equivalence

1- [x: et]A ~ 1- et 1 a of domain degree, x E ex 1-A , A of value degree.

For the subexpressions Ë in a;Ël there are type-restrictions

prescribed in the scheme of a, viz. if the context of the scheme is

y E 8 then

f-.e(Bl <:=:> Ë E S[ËJ (i.e. B1 E s1, 8
2

E s2[b1] etc.)

To verify the right hand-side first verify f-. B 1 • Since 1- S 1
(it occurs in B), we can decide a1 E 81 as indicated above. Then

check l-82. Since 81 E 81 and y 1 E st l-132 we know f- 132[8 1 n so we can

tackle the next E-formula etc.

4.1.6. Verification of application expressions

Now we discuss the type-restriction implied in the correctness

of {A W. We restriet ourselves to AUT-68 and AUT-QE here.

Define a to be a domain of B if

(i) B E [x:a]C for some C, or (ii) B E E [x:a]D for some C, D.

Then, in view of the formation rules for appl-expressions, we

have the equivalence:

]-{A}B- 1-B, B has a domain a, A E a.

The arbitrariness w.r.t. the domain can be somewhat reduced by

another property of uniqueness of domains, viz.

if a
1

and a
2

are domains of B then Q a 2

(which will be proved below, 4.2.4.2). This allows us to modify the

equivalence:

181

f- {A }B - 1- B, B has a domain, and 11 (B has a domain a ~~ A E C'Q
Ct

i.e. we need just one domain to check the type-restriction.

If one fixes a particular procedure for the computation of some

domain of an expression, one can define a domain funct1:on dom

(specific for each language). E.g. for AUT-68 one might inductively

de fine

ó 2-nf(cantyp(B)) =: [x:a]C ~ dom(B) =:a.

Now define an extended reduotion relation 4, as fellows:

(i)

(ii) A+typ(AJ

(iii) + is transitive.

Then, an alternative way to compute a domain of an expression

is to perfarm a more or less specified search through the +-reduction

tree of B until one possibly encounters an abstraction expression,

say [x ::>:]C; if so, this a is some domain of B. Certain restrictions

(specific for each language) have to be imposed upon the search in

order to guarantee that not too many expressions get a domain in this

way.

Just like property N (at least o2-N) is crucial in the definition

of dom above, the well-foundedness (i.e. property SN) of+ is needed

182

for the terminatien of the second procedure. This will indeed be

proved below (4.4.11).

As a whole, the situation with the two possible ways of finding

a domain can be very well compared with the two ways of deciding a

Q-formula: either one can compare normal forms (use Nl or one can

search for a common reduct in the respective reduction trees (use SN).

4.2. The algorithmic definition

4.2.1. Now we give, guided by the considerations in the preceding

sections, the algorithmic definition of correctness. Apart from the

compatibility condition of def and typ (see below), the book-and

context part of the definition is as usual (see IV.3) and will be

omitted. So we just define the correctness of expresslons and

formulas (new notations ~ , E , Q and C , with the subscript for
a a a a

"algorithmic") in termsof reduction, dom and cantyp (sec. 4.2). Later

we discuss the choice of cantyp and dom for the various regular

languages (4.2.3, 4.2.4).

4.2.2.1. Let B;~ ~ • The conventions for omitting B and ~ in
a

B; ~ ~ A are as in V. 2.1 • • Degrees are indicated as superscripts and
a

defined as usual. The compatibility condition reads: def(d) E typ(d).
a

4.2.2.2. Formula part of the definition

Let A and B be B; ~-expressions (so not necessarily correct). We

define: (i) AQ B:.-A+B
a

with the straight forward extension to strings: Ä Q B.
a

{i i) A C B, if degree (8) =· 1 :-

13 161-nf(Al
a

1316
1

-nf<Bl = [x,äJA 1, [x:13h, ä Qa 1L
(iii) AC B, if degree{B) # 1 - A Q B a a
(iv) A E B : - cantyp (Al ca B a

with a straightforward extension to strings A E B. a

4.2.2,3. Expression part of the definition

{i)

(ii) f- X : - x occurs in é; a

183

(iii) 1- a;B1 • ••• 1 B l : - 1- B1 , ... , l-a m a B , c occurs in B and,
m

if the scheme of a has context y E then B E S [ËD.
a

(iv) A E B : = cantyp(AJ C B
a a

with a straightforward extension to strings Ä E B
a

4.2.2.3. Expression part of the definition

(i)

(ii)

(iii)

}- 1 T
a

f- x: - x occurs in t; a
1- c (BI I ••• ,B) ;ÇO 1- El I .. • I l-a m a
the scheme of c has context y E
t; 1-- [x:a]A

a
• 2 E :*+ t; r a and é;, x a

, c occurs in
m

then B E s~ËD.
a

and A has value

B and, if

degree. (iv)

(v) f- {A }B :*+
a

3 a
f- A , 1-- B, B has function degree 1 A [a dom (B)

a a

4.2.3. The chóice of cantyp

4.2.3.1. For our purposes (see 4.1.4) we require that, for correct A,

cantyp(A) is as well correct, is a category of A, i.e. A E cantyp(A),
and is minimal with respect to C: A E B ~ cantyp(A) C B.

This leaves us still a lot of freedom for our choice of cantyp:
e.g., as long as different definitions of cantyp yield definitionally

equal results, they are equally good to us. In some languages typ
itself roeets the requirements mentioned above, viz. Bn-AUT-QE+ and

Nederpelt's A. In most languages, however, typ causes some problems,

e.g. there are correct expresslons with incorrect typ; then we choose

cantyp to be some suitable modification of typ.
Below we give a survey of the difficulties with typ, and how

these can be solved by cantyp.

4.2.3.2. We start with the languages where the trouble with typ is

due to mere degree restrictions.

(1) Bn-AUT-68: if 1- 2[x:cdB then its typ is not correct in AUT-68, but

is a typièal AUT-QE-expression. Then cantyp of this ex?ression has to

be T. ?urther, typ({A}BJ where degree(B) = 3, is incorrect in AUT-68
~

but correct in AUT-68+ (so, tiee 3.3.11.2, in AUT-QE). In cantyp ({A }B)

we have to remave the a;;>9licator {A}, so we can define cantyp ({A} B)

COAL where cantyp(B) ~ [x:a]C. This is the same idea as in 3.2.4, but

184

now for 3 of degree 3.

(2) .~n-AUT-QE and Sn-AUT-68+: Application of typ to {A }B of degree 2

yields AUT-QE+ expressions. For AUT-68+ cantyp of these expressions

has to be 1. For AUT-QE .we. remove {A} from cantyp, by 6-reduction as

in 3.2.4 (and in (1)).

4.2.3.3 Now we add definitional constants. This gives rise to the
2 interference of o -constants and type-inclusion, discussed befare in

3.3.10-3.3.12.

(3) Bnó-AUT-68: Consider the example of 3.3.10 which is also correct

in AUT-68. There occurs an {A }B of· degree 3 such that typ ({A }B) does

not belong to AUT-68 (of course not, as in {1)), doesnoteven belong

to AUT-QE and AUT-QE+, but does belong to AUT-68+, AUT-QE' (3.3.12.1)

and AUT-QE* (3.3.11). Again, we must remove the applicator in cantyp,

but we cannot be certain anymore that cantypCBl is an abstr-expressio~

Therefore we define cantyp ({A }B) C[A J, where ö2 -nf (cantyp (8))

[x:a]C.

(4) Snö-AUT-QE(+}: The same expression typ({A}B) of (3) is again in

correct here. Now the applicator is allowed in cantyp, but we need the

ö2-reduction in order to remove the effect of the type-inclusion:

cantyp ({A)BJ : {A }(ö2 -nf ccantyp (8) J J.

(5) Bnö-AUT-68+: This language has 2-expressions {A }B (see 3.3.11.2),

the typ of which is incorrect in all the languages, and even not

normable, e.g. {A}r. The cantyp of such {A}B must beT.

(6) Bnö-QUT-QE' and Bnö-AUT-QE*: Here we have the same {A }B of degree

2 of AUT-68+. Besides, the typ of a degree 2 definitional const-ex

pression (even if typ is correct) need not be a minimal category

anymore, Therefore wedefine cantyp(d(Ä)) ::cantypcö2-nf(d(Ä))). Then

for the cantyp of {A}B of degree 2 we can simply take {Akantyp(B) in

AUT-QE*, whereas in AUT-QE' we must take CijA) where ö
1

-nfccantypCBJJ =
[x:a]C.

4.2.3,4. Resuming: we have three types of difficulties, viz.

(i) In AUT-68(+) the only 2-expression is T, so the typ of 2-ex

pressions can be incorrect. Remedy: define cantyp to beT.

(ii) In non-+-languages (AUT-68, AUT-QE and AUT-QE') the typ of {A}P,

of minimal function degree (say: i) is incorrect. Remedy: create
i-1

an abstr. expression by taking the (Sol -normal form of
i-1 cantyp (B} and remove {A} by another 6 -reduction.

185

(iii) In languages with -constants and type-inclusion typ produces

incorrect appl-2-expressions (AUT-QE(+)) or appl-1-expressions

(AUT-QE' and AUT-QE*). Besides, in AUT-QE' and AUT-QE* the

typ of a -const-expression is not necessarily a minimal

category. Remedy: remave the o2
-constants after (AUT-QE(+)) or

befare (AUT-QE' and AUT-QE*) taking cantyp.

4.2.3.5. In view of the arbitrariness of cantyp (4.2.3.1) weneed

only three different definitions of cantyp, one for the AUT-68-

family, one for the restricted AUT-QE languages AUT-QE and AUT-QE+,

and one for the liberal AUT-QE branch {AUT-QE' and AUT-QE*). Since

the above list of difficulties is exhaustive, for the rest (e.g. for

variables and const-expressions) the definition of cantyp differs

only as regards the following clauses:

(1) for AUT-68 and AUT-68+

(i)

(ii)

(2)

(i)

~ . . \
. ~l;

degree(B) 2 ~ cantyp(B) T

2 2
degree(B) = 3, S ó -nf(cantyp(Bll [x:a]Co=>cantyp({tl}B)

C[A

for AUT-QE and AUT-QE+

degree(Bl 2, s1o1-nf(cantyp(B)) - [x:aJC ~ cantyp({A}BJ :~
C(.-".D

degree (8) 3, ~ cantyp({A}BJ .- {A}(ó
2-nf{cantyp(Blll

(3) for AUT-QE' and AUT-QE*

(i)

(ii}

- 2 -
degree(dl 2 ~ cantyp(d(A)) cantyp(6 -nf(d(Alll

degree(B) ·= 2, S
1

ó
1-nf(cantyp(BJl = [x:c.]C ~ cantyp(}B)

CGA]

4.2.3.6. That the proposed definitions of cantyp actually satisfy the

requirements of 4.2.3.1 can be proved directly for the E-systems using

the results (CLPT, LQ, UE etc.) from sect~on 3, but will become clear

as well in the course of the equivalence proof, below.

4. 2. 4. ·The choice of dom

4.2.4.1. We start with a recapitulation of the appl-rules for the

186

various languages. First, the appl-rules of AUT-68 ({1) A E a,

BE [x:a]C • 1-{A}B) and of AUT-QE ((2) A E a, BE CE [x:a]D •

1-{A}B) are simply valid in all the languages (though rule (2} is

vacuouslyso in AUT-68(+}}. Then, additionally, rule (31)

(A E a, 1- 1
B Q [x:a]C • 1-{A }B}; this rule is with i ., minimal value

degree necessary for defining the +-languages AUT-68+ {1:=2}, AUT-QE+

and AUT-QE* (i=l}, For languages satisfying LQi, where i is not the

minimal value degree, rule (3i) is a derived rule. Indeed, for such i

is 1- 1Cx:a]C E [x:.a]D so by LQ1
B E [x:a]D. Hence, rule (33) is

anyhow valid, rule (3
2

} is valid in the AUT-QE languages without ö2
-

1
constants, further in AUT-68+, AUT-QE' and AUT-QE*, and rule (3) is

valid in AUT-68(+)(vacuously), AUT-QE+ and AUT-QE*. Alternatively

formulated, rule (3i} is always valid but for: rule (32} in AUT-68

and AUT-QE(+) with ö2-constants, and: rule (3 1) in AUT-QE and AUT-QE'.

4.2.4.2. So, for certain languages we must extend the definition of

domain from 4.1.6 with the clause: (iii) BQ [x:a]C • a is a domain

of B. The set of domains of an expression is clearly closed under Q:

a
1

a domain of B, a
1

Q a 2 • a 2 a domain of B.

The converse of this is the announced uniqueness property, which we

prove bere for the enlarged notion of domain:

a
1

and a
2

both domains of B • a
1

Q a
2

.

Proof: From 3.2.3.2, 3.2.4.3, 3.2.5. 7 we reeall the properties of e.r;-
AUT-QE

i- 1[x:a
1

]C 0 [x:a
2
JD,. a

1
Q a

2
(this includes UD

1
J

1- 2
[x:a

1
]C E [x:a

2
JD • a.

1
Q a

2
(EUD

2
J

!- 2
[x:a

1
JC Q [x:a

2
JD • a 1 Q a 2 <UD2

J

3 3 Now let 1- [x:a
1

]C E (x:a
2

JD. Then also 1- [x:a.
1

]C E [x:a.1]P. By
2 ? < UT we get [x:a)D Q [x:a

1
JF and by UO .. : a

1
Q a.

2
• So we have EUD- as

3 3
well. Further 1- [x:a.

1
]C Q [x:a

2
]D. Then also 1- [x:a

1
]C E [x:a 1]F

and by LQ3 [x:a
2

JD E [x:a
1

JF. So by EUD3
: a

1
Q a

2
• This amounts to

UD3• These results can all be extended to the extensions of Bn

AUT-QE by translation (e.g. 816-reduction) into Bn-AUT-QE, as follows:

let 1- +[x:ci
1

1C E/0 [x:]Li, where 1- + stands for correctness in the

larger system. By UE, ~[x:a~]C- E/0 [x:a.;]D-, correct in Bn-AUT-QE,

187

so by one of our (EJUD results: ~l Q a
1

Q a
2

Q ~2 • Of course, in AUT-

68(+) these (EJUD results are also valid.

Now we treat the various possibilities for a
1

and ~2 to be a

domain of B.

(1) =x:]C Q BQ [x:a
2

Use UO.

(2) [x:o. 1JC QBE [X:C1.2]D. If necessary, translate (e.g. by 02-

reduction) into a language satisfying LQ: [X:Cl
1

Q E

[x:o:;JD- Then by LQ we get [x:o:1 E [x:a;JD-, and can use EUD.

(3) [x:a1JC Q BEDE [x:a2JF. Use LQ: [x:a1JC EDE [x:a
2

JF.

But also [x:~ 1 Jc E [x:a
1

JG and by UT3 : [x:a
1

JG Q D we arrive in

case (2) again.

(4) B E [x:a
1

]C, B E [x:~2 JD. Then [x:o:
1

]C 0 [x so a
1

Q o: 2 .

(SJ BE [x:a
1

JC, BEDE [x:~ 2 JF. By UT3 : [x: JC Q D we are again

in case (2).

(6) BE E [x:a
1

JD, BEF E [x:a
2

JG. By UT3
we get C Q F. Translate

into a language satisfying LQ. This gives C- Q E [x:]G

and by LQ C- E [x:a;Jc-. It also gives

(4) applies.

E [x:]D-, and case

4.2.4.3. It would be nice if the notatien of domain of an exrression

was preserved under Q: B Q C, a a domain of B ~a a domain of C. This

is indeed true for languages satisfying LQ, but not for the others,

viz. Sno-AUT-QE and Sno-AUT-QE+. By CLPT, there holds

B C, a a domain of B ~a a domain of C

i.e. the notion of domain is preserved under So the converse direc-

ti on (C :::: B, in particular with o2-reduction), fails in 8;Jê-AUT-QE(+).

For all the languages we have

B Q C, a a domain of B ~a a domain of C

where C is the o2-normal form of B.

Proof: By the translation wearrive in a language satisfying LQ, so

we get the desired result. from Q , a a domain of

As a corollary of this, we get

B Q C, a a domain of B, has a domain ~ a domain of C.

188

4.2.4.4. In view of the above remarks we still have a lot of freedom

in defining a domain function dom which picks some expression from

the set of domains. Dom is going to be defined in terms of cantyp and,

just like cantyp, in termsof ö2-reduction and (8ö) 1-reduction, where

i is the minimal value degree. I.e. by application of cantyp and these

reductions we arrive at an expression which we call the domain normal

JOl~, dnf. If the dnf is an abstr-expression then we read off the

domain dom from it:

dnf(B) ~ [x:aJC • domeBI .- a.

Otherwise, dom is simply not defined.

The rules for computing dnf are for the non-+-languages:

(1) AUT-68: dnf(Bl :~ a2a2-cantyp(Bl

(2) AUT-QE('): (i) degree(B) = 3 dnf(B) ·-

81ö1-nf(cantyp(ó2-nf(cantyp(B)))).

(ii) degree(B) = 2 dnf(B) == s1ö1-nf(cantyp(B)l

2 1 The 8 of AUT-68 and the 8 of AUT-QE(') were only added in order

to cover the corresponding +-languages too. Now, we can deal with the

+-languages by simply adding a rule for B of minimal value degree:

degree(B) i, i is minimal value dagree dnf(B) :: (8ó)i-nf(B).

This rule gives us AUT-68+ from AUT-68, AUT-QE+ from AUT-QE and

AUT-QE* from AUT-QE'.

4.2.4.5. That dorn(B), as defined above, gives us a domain if B has

one, and gives us nothing otherwise, can be proved directly, but will

also become clear in the course of the equiva~nce proef.

4.3. The equivalence proef

4.3.1. As announced before, the equivalence of the algorithmic defini

tion with the E-definition will also prove the superfluity of the

strengthening rule. To this end we use, along with the algorithmic

definition system III, two distinct versions of the E-definition,

system I and system II. Here, system I is the system of sec. 2: it

bas the strengthening rule and it has Q-rule V.2. System II, however,

lacks the strengthening rule and has Q-rule v.2' instead.

By CL for system I, we have: str., v.2 -<str.,V.2') =~> V.2', so

189

system II is clearly included in system I.

Below we denote correctness in I, II and III respectively by l- ,

!-
0

and ~; hence the inclusion of II in I becomes: 1-
0

=<> 1-.
Now the equivalence of. the three systems is shown by additionally

proving 1-a • 1-
0

(sec. 4.3.2) and 1- =<> 1-a (sec. 4.3.3).

4. 3. 2. The 1- a =<> 1-
0

-part.

4.3.2.1. We first formulate the theorem, which we want to prove.
i+1

resp. B; ~ 1- a A then B 1-
0

Theorem: If B 1- resp. 8;1; }- resp. 8;~ l-
a '+la

resp. B; E;)- resp. BiE;}-~ A E cantyp (A). So the theerem implies

that cantyp is well-defined on the non-1-expressions of the al gor i thmic

definition. The proof of the theerem is by induction on !- and
a

depends of course on dom and cantyp, i.e. qn the language '-'16 consider.

However, large parts of the proof can be done for all or some of the

languagestogether.

4.3.2.2. Some properties

(1) f-
0
A, 1-

0
B, A Qa B =<> }-

0
A Q B

Proof: this is simply rule V.2'.

< 2 l 1- .. 1-
0
s 1

ó
1
-nf <Al Q A

Proof: By the simultaneous subst. theerem o-CLPT holds. Further SA 1

1
can be provedas in 3.3.6.1-3.3.8.2, or holdsvacuously so S -CL. By

So-CR and Só-N the S1
ó

1
-nf is well-defined.

(3) Let f- f-
0
B, A Ca B. Th en)-

0
A C B

!?roof: For Bof degree 1, by (2) l- Q s1o1
-nf(A) -[x:

1
c

} [x: s1o1
-nf(B) Q Bso l-

0
A C B. If degree(BJ;ó 1 this is dl

again.

(4)]-
0
A E cantyp (A),)-

0
B ""')-

0
A E

Proef: apply (3).

(5) The 1-
0
-system satisfies CR

!?roof: 1-
0

=1> 1- and we assumed CR for 1- •
(6) Strengthening for 0:

E; r Q B, t; 1sub E;, t; 1 f- er' s1 1- =<> s1 1- Q B

Proof: By ind. on Q we get A + B so 1;
1

)- Q B.

190

4.3.2.3. Proof of the theorem, part 1

We only need to give the inductionstep for those clauses 1 in the

definition of 1- which differ from the corresponding clauses in the
a

definition of 1-
0

• We start with the easy cases.

(1) the compatibility condition

let 1;*d(x) :=A * d(x) E B be a correct scheme according to the

algorithmic definition, i.e. 1; 1- A, t;; 1- B and A t: B. By the ind.
a a a

hyp. t;; 1-
0
A E cantyp(A), 1-

0
B, so by (4) above t;; 1-

0
A E B, q.e.d.

(2) expresslons (easy cases)

(i)

(i i)

(iii)

(iv)

t; trivial

variables: let 1; 1- a then by the ind. hyp. 1; 1-
0

I so for x

in i;, 1; 1-
0
x E typ (x) = cantyp (x) •

const~expressions, except o2-const-expressions in AUT-QE'

and AUT-QE*: let the scheme of c be in B with context

y E 8. Let 1- Bil ... I 1- B and B E snsn. By the ind. hyp.
a a m a

I-
0
B1 E cantyp<B1 J~ I-

0
B

2
E cantyp<B2> etc. Further y EBI-a

so y E 81-
0

so f-
0

8
1

, y
1

E f\ !-
0

82 etc. so)-
0

B
1

E 8
1

and

by the subst. theorem 1-
0

B
2

[B
1
JI so I-

0
B2 E 8

2
UB

1
D etc. up

to 1- 0E~ E Sm {BD. The conclusion is 1-
0
a (B) tE typ.(e) [B] ::

cantyp(e(B))).

abstr-expressions: let 1; 1- 2 a and 1;, x E a 1- A, A of value
a

2
a

degree. By the ind. hyp. s 1-
0
a and 1;, x E a 1-

0
A (E cantyp(A))

For A of degree 2 in AUT-68 (+) this is 1; I x E a 1-
0
A E t

which yields 1; 1-
0
[x:a]A E t :: cantyp([x:a]A). Otherwise,

we get 1; J-
0
[x:aJA (E [x:a]cantyp(A} = cantyp([.r:a]A)l.

4.3.2.4. Some more properties

Before discussing the remaining clauses we prove some

properties of 1-
0

• First something about C. Of course, the

of 1-expressions are of the form [x:ä]t. As in 3.3.6-3.3.8

more

s1o1-nf•s
1 (leave n

out of consideration, restriet the appl-1-rule) we can prove, even

without using CR

and, by induction on C,

191

1 11 ---- 11 !--
0
A C B .. s :5 -nf(AJ [x:aJ[y:y]T, s :5 -nf(BJ [x: , J-

0
a Q iL

so we get: 1-~A C [x:S]B~ .. s 1 c 1 -nf(~) = [x:aJA 1 , J- 0a Q , x E a h4 E1
Now we prove a lemma:]-

0
A (E E) .. 1-

0
A E cantyp (A) (C B).

Proof: E.g. in AUT-68(T) there is nothing to prove. Anyhow, the cases

A T, A a variable or A an easy const-expression (i.e. nota :5
2
-const

expression in AUT-QE' or AUT-QE*) are immediate. For the rest we

praeeed by induction on (1) the length of c1
2 -reduction tree of A , (2)

the length of A.

Abstraction expressions are easy. If A is a o2-const-expression

in AUT-QE' or AUT-QE*, by o-CLPT and the first ind. hyp. J-~o 2-nf(A}[
cantyp(o 2-nf(A)) cantyp(A) (C B). Then by the extra type modification

2
rule of these languages we get l-

0
A E cantyp(A) (C B), q.e.d. Now let

A ::: {A
1

M
2

. We have i-
0
A

1
E a,

0
A

2
E cantyp C [x:et]C. So s1o1-nf

(Cantyp(A 2)) [x:a1 JC1
with a

1
Q a, x E a

1
J-c

1
CC. We want

]- E cantyp(A) = c1(A 10<C B). If the formula A EB in the assumption

comes directly from COA
1

] C B we get c
1

[A
1

] C] C B q.e.d •• Other-

wise A ~~ D,]- 0D EB {i.e. the extra rule of AUT-OE' and AUT-OE* has
u 2 2 - -

been used). This D {D
1

}D
2

with A
1

~ö Di, A
2

, so J-
0

D
1

E a,

and)-
0
D

2
E cantyp(D2)Q B1ol-nf(cantyp(D2)) =o [x:a2Jc

2
C [x: JC

1
(apply one of the ind. hypotheses to D

2
), and by the first ind. hyp.

i- E cantyp(D):::: C2UD1D Q c2QA 1] C [A
1
0. so, by the type mod. rule,

f- 0A E c
1

UA
1
), q.e.d.

4.3.2.5. Proof of the theorem, part 2

Now we prove the induction step for the two remaining cases.

(1) 5
2
-const-expressions in AUT-QE' or AUT-QE*

2 -As in 4.3.2.3. (iii) we can get)-
0
d(B) from)- (B). Then by the

lemma]- (B) E cantyp (d äh) .

(2) appl-expressions

Let 1- , Bof function degree, A E dom(E). By the ind.
a

hyp. 1- E cantyp (A) + dom (B), l- B
0

(E cantyp (Bl). For the

computation of cantyp and dom in the various languages see

4.2.3.5 and 4.2.4.4 respectively.
2 2

(i) AUT-68(+),]- f3 o -nf(cantyp(B)) = [x:aJC, dom(B) a.

By o-CLPT 1-
0
B E [x:a]C and J-

0
a, so)-

0
A E a and

192

f- 0 {A }B E CDA D : cantyp ({A }B)

(ii) AUT-68+, f-2B:t3
2o2

-nf(B) = [re:a.]C. we have SA2 (see e.g.

3.4.5) so t3 -CL so f.-
0

B Q [re:a.JC and f-
0

{A}B ET:

cantyp ({A }B)

(iiil AUT-QE (+) , 1- ~B: a1 o1-nf (cantyp (ö2 -nf (cantyp (B))) l _

[re:a]C, dom(B) a. By o-Cl and the lemma in 4.3.2.4
2 f-

0
B E ö -nf(cantyp(B}) E [re:a]C so f-

0
{A}B E

{A}(o2
-nf(cantyp<Blll cantyp({A}Bl.

(iv) AUT-QE' and AUT-QE*, f-;B: As (iii), but from
2 l- 06 -nf(cantyp(Bll E [re:a]C we infer now f-o'antyp(B) E

[re: a JC so 1- 0 {A }B E {A Jeantyp (B) = cantyp ({A }B)

{v) AUT-QE, 1- ~B: Like (i) but decrease the degrees by

(vi) AUT-QE+ and AUT-QE*, f- ~: like (ii), but decrease the

degrees by 1.

This f~nishes the proof of the theerem in 4.3.2.1.

4 • 3 • 3 • The l- =~> f- -part
a

4.3.3.1. We formulate our theorem.

Theorem: If 8 f- resp. 8;E; f- resp. 8;1;; f-A then B f- resp. 8;<;; 1- resp.
a a

8;1;; f- A. Further, if B;E; f-A E B then A E B.
a a
The proef will be by induction on f-. We just discuss AUT-QE,

because with AUT-68 everything is completely similar or somewhat

easier.

4.3.3.2. First, we need some properties

(1) Strengthening holds in the 1- -system
a

Proof: notice that the definition of cantyp only refers to the

relevant parts of the context, i.e. to assumptions concerning a~

occurring free variables, and that the ether notions in the

definition of correctness do not refer to the context at all.

Hence, strengthening can be proved by a simple induction on f-
a

(2) on PCT2 (preservation of cantyp): In 3.2.5, we proved 13n-outside-
2 2

PCT1 for an-AUT-QE. However o-outside-PCTl is wrong, so for AUT-

193

QE(+) with o2
-constants we can only get PeetPicted PCT

2
:

if i-2 A, A :::: B not using -reduction then cantyp (Ä l Q cantyp (B)

In order to prove this, start with 1- E a'* '-;IE cantyp(A)Ca

(e.g. as in 4.3.2.4). Then, as in 3.2.5, one can prove:

1- 1 A:::: B nat by -reduction '* cantyp(A) Q cantyp(B).

Restricted PCT
2

gives us restricted LQ 2 for AUT-QE(+):

if 1- 1 B E C, A Q B without using 6
2
-reduction then A E C

(3) However, in AUT-QE' and AUT-QE*, full PCT2 is still valid and
2

hence LQ holds (this was already implicitly claimed in

(4)

3.3.11.4).

Proof: In AUT-QE' and AUT-QE* we have

o2
-nf(cantyp(Al l s ~ cantyp(o

2
-nf<All

So, let A ::o: B. Then -nf(A)2 6
2
-nf,B) without using o2

-reduction 1

so by restricted PCT
2

we have cantyp{o
2
-nf(B)).

By CRue have)-A Q B *A Q B. As in 4.3.2.4 we have
1 11 -~- 11 1- A B * s o -nf(Al = [x:a.J[y 1 s ó -nf(B) T1 i-ä Q S

So)-A C B '*A C B
a

4.3.3.3. Proof of the theorem

Note that the E B * A E B part of the theorem, for of
a

degree 2 follows from)- EB'*)-A E cantyp(ll) C B (in 4.3.3.2(2)

and 4. 3. 3. 2. (4)) • The proof is by induction on 1- • We first discuss

some of the clauses for the formation of expressions:

(i) abstr-expressions: let 1- 2
a.,

2 1- a a , x E a 1- 1 , (A 1 E a B 1 1

x E a)-A
1

(E B
1

J. By

i.e. cantyp(A
1

J Ca

the ind. hyp.

) , so

1- a[x:alA
1

, (cantyp([x:aJA
1

l = [x:a.Jcantyp<A
1

l c [x: , so

[x:a [x:aJB
1
), q.e.d.

(ii) const-expressions: let y E B be the context of the scheme of C 1

1-B E S[Ë]. By the ind. hyp. 1- Ë E S[ËL so l-
a

not a o2-constant in AUT-QE' or AUT-QE* then cantyp(c

(B) • If c is

typ:clûB] so certainly cantypic(B)) typ(c![ËD~ q.e.d. Other-

wise use the remark above.

(iii) 2-appl-expressions: let 1- 3
A E a., 1- B E • By ind. hyp.

194

1-\, 1- B, cantyp(AJ .J. ex, cantyp(BJ [re:aJC.
1 1 a a

So :3 ö -nfccantyp!B)) :: (re:cx'JC', dom(BJ ::a' .J. a. By CR,

cantyp(A) f dom{Bl so 1- {A lB. Further, by the remark above,
a

{A)B E CUAD, q.e.d.
a

(iv) 3-appl-expressions: let !- 3
A E a, 1-C E [x:cx]D. By the ind. hyp.

1- , cantypcAJ + a, 1- B, cantyp<BJ -1- c. By ö
2
-CLPT, l-o2

-nf(Cl
a

E [x:a]D. By the 1-a,. 1- o-part, 2 1- OB E cantyp{B) so 1-B E

cantyp (B) , so 1- cantyp (Bl so 1- ó -nf (cantyp (Bl l • Further

ó
2 -nf (Cantyp (B)) + o2 -nf(C) without using o2 -reduction, so by

restricted LQ, l-o2-nfccantyp(B)l E [x:aJD and cantyp

(ö 2-nfccantypcBJ)~ c [x:uJD. I.e. e1o1-nf(cantyo(o7 -nf(cantyp(B)))J:
a

[x:a']D', a +a' = dom{B). Hence 1- {A }B. Further {A }cantyp{B) +
2 a .

{A]C and {A } (ó -nf (cantyp (Bl l -1- {A }C so anyhow cantyp ({A }B) +
{A]C, q.e.d. Finally we discuss the type modification rules and

the strengthening rule.

(v) Type modification: let 1-A EB, BC C. By the ind. hyp. 1- A,
a

A E B, i.e. cantyp!Al C Band by 4.3.3.2. (4) BC C. Use CR
a a a

to get A E C q.e.d.
a

(vi) Strengthening: Use 4.3.3.2.(1).

This finishes the proef of the theerem 1- ,. 1- and the proof
a

of the equivalence of the three systems 1-, 1- o• 1- a. So we do

net distinguish between !- , 1-
0

and 1- a any more and have

1-A<E a) ,. 1-A<E cantyp(AJ Cal

· and l- {A)B ... cantyp (Al "' dom !Bl •

4.4. The actual verification

4.4.1. Befare discussing the aetuál verification we make some con

cluding remarks on the fo~mal decidability of the Automath languages.

First, on the well-definedness of the decision algorithm suggested

by the definition of !- in sec. 4. 2, in particular the well-definednes
a

of cantyp and dom. Cantyp and dom are partial functions, so by well-

definedness we understand: (1) it is decidable whether an expression

has a cantyp (or a dom) (2) if it has one, this is effectively

computable. All this is already implicitly included in the equivalence

proof. E.g. the 1- a • 1- 0 -part states that cantyp on the correct non-

195

1-expressions delivers a correct expression again. In the course of

the decision process cantyp and dom are required of correct expressiors

only. E.g. before settling cantyp (A) Q B (in the verification of E we

first check ~A, and before settling A E dom(B) (in the verification

of {A }B) we first check j-B. The definitions of cantyp and dom just

computation of degrees, and computation of Bic-normal forms where i

is the minimal value degree. Notice that -·N in this case, and in

fa ct for all i < 3, can even be proved without using normabili ty.

4.4.2. Our second remark concerns the normability. Below we make sure

the normability result of sec. IV.4.4., as we claimed already several

times, actually covers the regular languages, viz. by proving that

the system of sec. IV.4.5 contains our most liberal language AUT-QE*.

Let us abbreviate the system of sec. IV.4.5 by system IV. Theorem:

System IV contains AUT-QE*.

Proof: This system avoids Q-formulas as indicated in 2.12. For the

rest it is like our system J-
0

, with type-modification rule V.2'

{sec. 2.11) and without strengthening, but of course with much weaker

degree restrictions. The expression formation rules are the familiar

rules of AUT-68 and AUT-QE, except perhaps for the appl-rules which

are most similar to the rules in 3.3.11 for the first version of AUT-

QE*. We only consider the 1-appl-expressions. Let (in AUT-QE*)

E a,)- 1
B Q [x:a]C. By s1

o-reduction we get B ~ [x:a']C' which

Q a'. The substitution theerem and SA 1
(and hence s1o-CL) are as

usual valid in system IV, so using induction on AUT-Q~-correctness

we get (in system IV) A E a' , l-B 2 l:x:a']C' so HA} B, q.e.d.

4.4 .• From our axiomatic introduetion in sec. II.1.3 the actual

nature of expressions does not become very clear, viz. that they are

just some well-structured symbol-strir~s. In view of this fact, a

verification process for the correctness of expressions must be able

to perferm the following task: given a correct book and a correct

context (mere symbolstrings as well), each symbol-string must, in a

finite amount of time, either be recognized as a correct expression

(relative to book and context) or be rejected.

The verification of such a string can be analy?.ed in several

stages, e.g.: (1) bracket structure has to be correct, (2) the free

196

variables have to occur in the context and the constants have to occur

in the book (after this stage the constants in the string can be

assigned an arity,variables and constants get a degree and possibly

a typ and a def), (3) the arity of each constant has to fit the arity

of the argument string going with it (only after this stage we can

speak of expresslons in the sense of sec. II.l), (4) degree restric

tions (and possibly norm restrictions) must be satisfied, (5) the

type restrictions have to be fulfilled (i.e. of the argument A in {AW

and of the argument string ë in c(ë).
Here it is just stage (1) which represents the context-free part

of the verification. The stages (2)- (4) are literally context-dependert;,

but still trivially recursive. After passing stage (3) an expression

is pretyped. ,From our point of view stage (5) is the interesting part

of the verification.

The actually running verification program for Automath languages

at Eindhoven Univarsity has indeed been organized along this lines

(see Zandleven [75], Jutting [37]) • There is a first pass with a

"synta:I:-che:Jker" covering stages (1) and (2). This pass is optional

since there is a next pass with a "translator" covering stages (1)- (4)

(but without checking norm-restrictions). And finally there is the

"processor'', eperating on the re sult of the translater, which covers

stage (5).

4.4.4. First we discuss the verification of definitional equalities

A + B. As in the case of o-equality (sec. III.6.2) we do nat want to

compute normal farms but rather design a atrategy which after a few

reduction steps in A or B either results in common reduct of A and B

(if this exists), or enables one to conclude that it does not exist.

As explained in sec. III.6.3, when confronted with certain A and

B during the decision process, we have to answer the following ques

tions: (1) shall we do an outside reduction, (2) if so, on which of

the expressions? The form (or: ahape) of A and B (i.e. whether they

are abstr-, or appl-expressions etc.) plays a crucial role here. E.g.

if A and B are bath in immwte form (see II.4.9) then there is no choice

there is simply no outside reduction possible. So either we can

immediately decide our definitional equality (if A and B are of

different shape, or if A and Bare atomie), or we have to spZit up

197

(or: deaompose) the equality into the equalities of the corresponding

subexpressions of A and B. But if A and B have different farm, not

both immune, then an outside reduction is required.

The basic construction aim for a decision strategy is of course

to minimize in most of the cases the total number of reduction steps

required for a conclusion: A is equal to or nat. There is of course

uncertainty about what happens in most of the cases, but the intuitive

{and possibly questionable) ideas on this subject, underlying the

algorithm in the next sections, can be summarized as fellows:

generally, the definitional equalities arising in the course of the

verification and affered to the decision process, are ~~e, and a

common reduct can be reached in relatively few steps.

4.4.5. We define new, restricted relations >h, ~h (h for head redue

tion) and >h, ~h which precisely cover: (1) outside reduction steps,

(2) the reduction steps needed in order to make new outside steps

possible. The relations are given by a simultaneous inductive defini-

tion:

(i) B [x:a]C '* (A }B C[AD

(ii) d(ël > def <dJ oën
h

(iii) A ~ {B }D, B > x, D
h -h ~ c I Xjl Fv(C) .". [x:a]A > c

h

(ivl l~ > B=;oA >h B h

(v) (resp. ~h) is the reflexive and transitive closure of >h

(resp. >h)

I.e. >h and ~h are just n-less versions of >h and ~h. Clearly

A B • A ~ B, and if A >h B (or A >h B) then B is a first main

reduct (see sec. n;.4.9) of A.

Remark: This reduction does correspond to the head reduction common

in the literature [4] , i.e. to thé "first half of" the so-called

r~1~al reduction [25]. A reduction A ~~ B consists of mere simple

head aontraations, i.e. }: .. {Ak }B > {A 1_} ... {..\} C where B > C is

an elementary So-reduction, and even only such of these that their

reduct eventually becomes a new simple head redex.

The unrestricted reduction D ~ C in clause (iii) is put there

on purpose: it is of course possible that internaZ eontrac:tions are

198

neededin order to remove free variables from an expression.

The main property of ~h (or ~~, depending on whether n-reduction

is present) is: if A ~ B then A ~h C ~ B wnere the reduction from C

to B consists solely of internal reductions. so if A ~ B and A, B

have different shapes, then A >hA' ~ B.

4.4.6. The intuition formulated in 4.4.4. leads us to the idea that a

sensible decision process for definitional equalities must search for

a common reduct (i.e. an affirmative answer) rather than normalize, by

means of ~h (in order to get a negative answer), and that during the

reduction process the definitional constants must be saved, i.e. left

intact, as much as possible.

The strategy presented below (corresponding to what is actually

implemented in Eindhoven [75]) can indeed be characterized by the

following principles:

(1) decomposition is preferred above. main reduction

(2) 8-reduction is preferred above o-reduction (is preferred above n

reduction)

(3) reduction of a "younger" definitional constant is preferred above

reduction of the "older" one (see sec. III.6.3).

For example, if there is to be decided whether {A }B + { C} D, the

process first tries decomposition: B + D and A + C. If thi.s succeeds,

i.e. B ~ F $ D, A ~ G ~ C then we have a common reduct {G }F. Only

after this has failed, an outside reduction is attempted on one of the

expressions: e.g. {A}B >hE, i.e. B ~ [x:a]F, E = F[A], and the new

question to be decided is E + {C }D. Was no outside reduction possible,

then the other expression is tackled: {C}D >hE is tried, possibly

resulting in a new question {A}B + E. And, when confronted with the

question {A }B .J. d (ë) , tbe process tries to main reduce the appl-ex

pression rather than the other one.

4.4.7. The inductive definition of >hand ~h can be readas a

recursive algorithm for deciding questions of the form A ~h B, 38 (A >h j

3
8

38 (A ~h [x:B1JB
2

) etc. We give our algorithm for deciding + also

in1the2form of an inductive definition. Here are the rules:

(0) Exchange: B +A •:A i- B

(i) Variable, r: A ~h x* : A +x, and A ~h t +t:A + t
(ii) Prim: (A ;:-:h p(ë) , ë + ih +t:A + p(Ë)

(iii) Appl-appl, decompose: B + D, A { C =>: {A }B + }D

(iv)

(v)

(vi)

Appl, S-red: {A}B > C => (C + D **:{A }B + D)
h

Def-def r decompose: B + ë =>:d + d (ë)

Def, 5-red: d + D)

(vii) Abstr-abstr, decompose: a + S, A + B 4*:[x:aJA + [x:S]B

(viii) Abstr, n-red: [x:a]A >h B => (B + C *": [x:a]A + C)

The nota ti on B + ë is used in the ordinary sen se, i.e.

+ etc. The clauses (i)-(viii) are given intheir order of

199

priority, they have to be tried successively until a clause applies.

Clause (0) must only be applied, and of course only once: (1) if

none of the rules (i) (viii) applies, (2) if by the exchange a rule of

higher priority among (i)-(viii) can be made to apply, (3) in case

the question d(Ä) + e(B) is presented, where e is a "younger"

definitional constant than d. The clauses containing a bi-implication

((i), {ii), (vii)) are terminal: if application of one of these ruies

does not lead to an affirmative answer 1 a negative conclusion about

the presented definitional equality can be drawn. In contrast with

the other clauses 1 e.g. clause (iii) : if not (A + C) 1 so not (A + C

and B + D) then it is of course very well possible that rule (iv)

produces a common result of {A}B and {C}D. Further, a negative con

clusion can be drawn if after exchanging still no clause applies at

all. If n-reduction is not allowed then one has to read >h and

instead of >h and ?h 1 and rule (viii) has to be skipped.

4.4.8. lt should be clear that the algorithm above on the correct

expressions indeed corresponds with +. The only interesting point is

the bi-implication in clause (vii) , which makes that clause (viii)

never has to be applied to a pair of abstr-expressions. This is

justified by our property UD (for correct expressions only) from the

previous sections.

We also have to show the terminatien of the algorithm (this

shows the decidibility of + once more). First, the questions con-

cerning >h and (e.g. whether A [x:B
1

for certain are

decidable on behalf of SN. Secondly, the procedure sketched above

(for deciding A + B) is easily shown to ter:ninate by induction on

(1) (A) ._ (B), (2) ~(A) + ~ (BJ - where 8 stands for length of

reduction tree and ~ stand for length of expression -

200

Clearly the n-rule (viii) is equivalent to:

A -1- {:dB, B <! C, x~ FV(C) .. [x:a]A -1- B

By a careful implementation of the handling of bound variables - this

falls outside the scope of my thesis - there can be guaranteed that

whenever during actual verification an equality [x:a]A .j. B is affered

to the decision procedure, B does not contain free occurrences of the

same free variable X: This enables us to modify (viii) into the

simpler rule (viii') : A i- {x }B .. [x: a]A -1- B, which avoids the nasty

internal reductions in the course of an outside n-reduction completely.

The terminatien of the algorithm is still guaranteed with this new

rule; we can even use the same induction as before, because it can be

shown that r~le (viii') never will be applied with a B such that

B "'h [y:S]C.

4.4.9. In accordance with our views on the actual verification process

it may be sensible to provide the decision procedure with a device

which gives a warning in the following cases: (1) if the decision

process requires toa much time, or rather: too many reduction steps

(2) if a question d -1 d (ë) or {A }D -1- {F }G is posed and not

(B + ë), resp. (D + G and not (A -1- Fll has been concluded.

The warnings in case (2) can be partly motivated by the idea

that most defined constants in an Automath-book are "ÄI-constants"

(see III.5.5.3, III.6.3) and that most functions in an Automath-book

are ÄI-funetions, where D is a ÀI-function if: D -1- [x:a]F • x € FV(F).

The following example shows however that this motivation is not quite

satisfactory: D G '= [x:a]{V}l::, A'= [y:S]p(y,V), F [y: SJ p<y ,y).

4.4.10. Now we discuss the verification of E-formulas. Since the

definitions of cantyp in 4.2.3, with their computation of normal farms,

are very unpractical, we prefer the alternative approach sketched in

4.1.4. Beside~the latter approach avoids the different definitions of

cantyp and is by uniformity easier to implement for several languages

simultaneously.

As our "universe", the large language which we use to decide our

E-formulas, we take AUT-QE*. Let ~ denote correctness in AUT-68, A~

68+, AUT-QE or AUT-QE+ and let ~*stand for correctnessin AUT-QE*.

One easily proves by induction on A, using LQ, CLPT etc. for]- *' the

important properties: (1)

expression in AUT-68(+) -

=> 1- *typ (A) , and - unless A is a 2-

(2) 1-A => typ(Al :2: cantyp(A).

This justifies the equivalence mentioned in 4.1.4.

f-A EB.,. f-A, 1- *typ (A) C B

except, trivially, the degree 2 case of AUT-68{+)

f- 2A EB.,. I- 2A, B T

201

The i-procedure of sec. 4.4.7 can be adapted in order to decide

f and simultaneously by making some obvious modifications, e.g.:

- clause (0) becomes: B A ,.,. A f(.J/C B

(where "B +/[/:::1 A" reads "B + A resp. B CA resp. B :::JA", etc.)

- to clause (i) there is added: degree (A) = 1 =>A C T

- clause (vii) becomes: Cl. + i3, A +!CI:::J B .,.,[x a]A +/C/:::1 [x:S]B

etc.

We do not bother to give a practical algorithm for deelding E in

AUT-QE' and AUT-QE*, because we think that these languages are of

mere theoretica! purpose.

4.4.11. Rather than computing domains via the domain normal farms

(dnf's) of sec, 4.2.4.4. we use the alternative approach of 4.1.6 of

searching through the+-reduction tree of an expression. Reeall that

~ is generated by (1) ordinary reduction, (2) taking typ. We promised

the following theorem.

Theorem: + is well-founded on the correct expresslons

Proof: As long as we stay inside the correct expresslons we can use a

double induction, viz. (1) on degree, (2) on 8(=length of reduction

tree). For, reduction preserves degree and decreases 8, and taking

typ decreases degree. We must be a bit careful with applying typ to a

degree 2 AUT-QE* expression such as, e.g., can originate by taking

typ of a degree 3 AUT-QE expression - because an incorrect and even

not normable 1-expression might arise. A typical example is {Ah.

However, this does no harm to the well-foundedness, because i3
1-SN can

be proved, without using norms at all, for all degree correct ex

pressions.

Also, we have another uniqueness result (compare 4.2.4.2).

Theorem: A correct, A+ [x:a]C, A+ [x:S]D =>a f i3

202

Proof: For 3-expressions A we even have a kind of CR-result A <: A' ""

typ (A) .J. typ(A'). Now let degree (A) = 2, and let A <: A 1 • In AUT-68 (-I

and AUT-QE (+) this gi ves ~*typ <A) .::J typ (A') , but in AUT-QE* this is

nat generally true, because typ(A} and typ<A'l need not be correct.

Luckily such incorrect 1-expressions (see the proof of the previous

theorem) never reduce to an abstr-expression. So by UD we still get

the desired result.

4.4.12. The internal n-reductions included in~ are of course useless

during domain computation where one only wants to reach an abstr-ex

pression. So in an algorithm for domain computation we rather employ

a restrietion of ~ which we name +h and is generated by head reductie

~h and taking typ.

In general unrestricted search through the +h-reduction tree car

be permitted - provided the degree restrictions are respected. HowevE

the 2-expressiorsof AUT-QE and AUT-QE+ form an exception. Here the

search for an abstr-expression haa to start with taking typ. Otherwis

too many expresslons would get a domain, which would give rise to

typical AUT-QE* appl-expressions.

Besides, unrestricted search can be very unpractical. E.g. in

AUT-68(+) one never needs to inspeet 1-expressions: if the 2-ex

pressions in the ~h-reduction tree fail to produce a domain, going te

the 1-expression by taking typ will nat help. In general it is no goc

strategy to start the domain computation with reduction, unless we ax

obliged to because the expression under consideration is already of

minimal value degree.

So, a simple and probably rather practical strategy for AUT-68(-t

and AUT-QE(+) may run as fellows. Let A be the expression we start

with. Take typ until one arrives at an expression of minimal value

degree. Then reduce (with ~~) until one possibly finds a domain. If

this does not succeed, A can still have a domain if it is a 3-ex

pression of AUT-QE(+), otherwise A has no domain. In the indicated

case unrestricted search of the +h-reduction tree of typ(A} is

required, to be executed as fellows: one-step reduce (typ(A) >~ B),

then take typ, then reduce (with ~~). If this does not yield a domair

one-step reduce B once more etc. The well-foundedness of + guarantees

the terminatien of this procedure.

CHAPTER VI. THE Sn-CHURCH-ROSSER PROSLEM OF

GENERALllED TYPED À-CALCULUS

VI.l. Introduetion

203

1.1. The problem with Sn-CR in Automath-like languages was first pointed

out by Nederpelt ([51], p.71). Let x~ FV(S), then

(x:a]C <S [x:a]{x}[x:S]C >n (x:S]C

and the question is whether (x:a]C and (x:S]C have a common reduct, i.e.

whether 8n-CR1 holds. In untyped À-calculus this case of CR
1

is particu

larly trivial, because without the type-labels there just remains

Nx:.C < ÀX. (ÎIX,C)x > s n
ÎIX.C

and for the common reduct we can simply take ÀX.C itself. If

[x:a]{x}[x:S]C is not necessarily correct, a common reduct does not need

to exist, for a and S can be any expressions.

Nederpelt conjectured already that for correct expressions Sn-CR

(so Bn-CR
1

) does hold. This we shall prove below, making free use of the

results of the previous chapter, in particular sec. 3. So, if

t[x:a]{x}[x:S]C then by SA we know a Q S so [x:a]C Q [x:S]C; but we know

nothing about a common reduct,

It is possible that certain versions of the algorithmic definition

allow a proef of Sn-CR
1

• But then it is not so easy to infer CR, because

we do not yet know CL for the algorithmic system. An alternative to the

approach below is presented in the next chapter. There CR and CL are

proved simultaneously for an algorithmic system, by induction on so

called big trees.

1.2. Below we concentrate on Bn-reduction and leave o-reduction out of

consideration, It is easy to extend our result to Bno-CR, since 6 corn

mutes with Sn-reduction:

B c

and, of course, o-CR holds.

204

We start (in sec. 2) with a partial solution of the Sn-problem,

for n-reduction of degree 2, which works for reqular langages only.

Then (sec. 3) we prove full Sn-CR.

VI.2. A first result concerning sn-CR for regular languages

2.1. We prove the Church-Rosser property for regular languages with a

reduction relation ~.generated by s-reduction and n2-reduction, i.e.

n-reduction of degree 2: degree(A) = 2, xf!FV(A),. [x:a]{x}A >2 A.
n

The motivation for studying this restricted Bn-reduction lies in

the fact that the actual verification of matbematics in AUT-QE (in

particular, of Jutting's Landau-translation, see [37]) just required

this specific type of n-reduction. I.e. the Automath texts effered to

the verification program appeared to be correct Bön2-AUT-QE.

2.2. Beuristics

The idea is to proceed in two stages. First we consider a seemin

weaker form of n2-reduction which is tailor-made to avoid the critica

Sn-case mentioned in the introduction. For this restricted Bn 2-reduct

we prove CR. Afterwards (sec.2.5) it is shown that full Sn2-equality

equivalent to the restricted form. This can be compared with the situ

ation in sec. v.3.3.8 - where n1-equality turned out to be provable.

How to define the restricted form of n-reduction? I.e. under whi

conditions do we permit the reduction of [x:a]{x}A toA? Clearly, we

require:

(1) x f! FV(A)

Further, that A is not of the form [y:S]C - to avoid the critical cas

But this is not enough. Consider, e.q., [x:a]{x}F, where F ~ [y:F1lFz

x f! FV(F). So we require:

(2) A ~ [y:S]C

i.e. A does not reduce to an expression of the form [y:B]C.

Thirdly we want to preserve the substitution lemma

B <: B' ,. Bf[DJ <: B'[Dj

at least for D of degree 3, so we further require

(3) degree (A) 2

This shows why the metbod works for regular languages only.

Condition {2) can now be weakened to

(2') A~~ [y:B]C

ar, in the presence of ê-reduction, to: A ~~ê [y:B]C.

2.3. The definition of the restricted reduction relation

For definiteness we give a formal definition:

205

(1) > is the disjoint one-step reduction generated by the ele

mentary reductions:

(i) {A}[x:B)C > C[AD

(ii) x~ FV(A), A~~ [y:B]C, degree(A) 2 ~ [x:a]{x}A >A

(2) ~ is the transitive closure of >

2.4. The proof of CR for the restricted reduction

2.4.1. Substitution lemma I: (i) A> A'~ BffA] > B[A'D

(ii) A~ A'~ B[A] <: B[A']

Proof: As usual, by induction on B and ~ respectively.

2.4.2. Weak s1-Bj-postponement: if if3 and A is degree correct then

A

Proof: If a Sj-contraction produces an essentially new 8i-redex

then i=3 or i=j. If i=j there is nothing to prove, so unless i=3

we have A >i,s {, 8 ~~A >Î,s <:~ C ~~ B. so, using Bi-SN, Bi-CR
and the fact that 8~ and sj commute we get the desired property,

as in II.7.4.

206

2. 4. 3. Something about 62 (for deqree correct expressions)

(i) Degree(B) = 2, B ~ [y:C]D • B ~~ [y:C']D'

(ii) If degree(Bl = 2, deqree(A) = degree(x) = 3 then

B(x/A] ~~ [y:C]D • B ~~ [y:C']D'

Proof: (i) Let B ~ [y:C]D, degree(B) = 2. By Bn-postponement ~

weak a2-a3-postponement we get B ~~ F ~~ G s~ H ~n [y:C]D. Then

H, G, F are abstractions expressions, q.e.d.

(ii) Use the square brackets lemma (II.11.5,-IV.2.4) and the

previous property.

2.4.4. Substitution lemma II: if degree(A) = degree(X)

degree correct then

(i) B > B' • B[re/A] > B'(re/Aj

(ii) B ~ B' ,. B(re/A] ~ B' [re/A)

3 and A, B a

Proof: (i) By induction on B. The crucial case is when

B: [y:B1]{y}B2, y ~ FV(B2), B2 ~~ [y:C]D, degree(B) =
= degree(B2l = 2. Of course, y ~ FV(B2(A]), degree(B2(A)) = 2 ar

by 2.4.3.(ii) B2[A] ~~ [y:C]D. So B(A] : [y:Bl(A]]{y}B2(A) > B4

=1.e.d.

(ii) By induction on ~.

2.4.5. Theerem <CR
1

for the restricted reduction): if A degree correc

then

A > B, A > C • B 4- C

Proof: Let A > B, A > C. By induction on A we define a common rE

duetDof Band C. The crucial cases are

(i) A = {Al }[x:Az]A3, B = A3[Ad (by a-red.) I c = {A{}[x:A~lA3
(by monotonicity). Take D: A~[A{i and use the substitution lemm

(ii) A : {A 1}[re:A2]{x}A3, B: {A{}A3 (by n-red. and monotonicit~

C: {A1}A3 (by B-red.). Simply take D: B.

(iii) A: [x:A 1]{x}A 2, B: A2 (by n-red.), C: [re:A{]{re}A~ (by

monotonicity). Clearly degree(A~) = degree(A 2) = 2, re t FV(A~).

207

[y:C1]C2 so by 2.4.3.(il ~~ [y:C1]C2 then A2 ~

[y:C{]Cz. Hence Az ~~ [y:Cl]Cz so D ~ A2 can serve as the

common reduct.

2.4.6. Corollary: If A degree correct and normable then CR(A).

Proof: By induction on the reduction tree of A.

2.5. The extension to full Sn2-reduction

2.5.1. From now on we label the notions referring to the restricted

reduction relation with a subscript o. Thus we write >
0

, ~0 and +
0

, and

by ~ we denote correctness in AUT-QE(+) with an equality relation Q
0 . 0

generated, e.g., by

By 2.4.6. we have

On the ether hand the notations without a subscript have to be

interpreted in terms of "full" i3n 2-reduction. Thus, we write ~ for

correctness in AUT-QE(+) with equality Q, generated by

f-A., f-B, A > B or B > A • A Q B.

Below we sketch the equivalence of the two systems. The implications

>0 • > so ~0 • ~ and Q0 • Q are immediate.

2.5.2. First we go through some theory of the o-language (i.e. with ~0
and Q0). The theorems about renaming of eontexts and weakening (see

V.2.9) are still valid. We have a restricted substitution theorem:

Ifn (n 1, y E SJ, all y, in y have degree 3, and Ë E B[Ë) then
~

So we have the sing~e substitution theorem: if degree(y) 3 then

208

Hence, from SAi we can infer 2.4 Bi-CLPT, as usual. Now SA2 works pre

cisely as in the previous chapter (V.3.2.4) so we may assume 62 -CL.

2.5.3. The proof that r- ~0 and Q. Oo goes by induction on ~. The

only interesting case is when ~2[x:a]{x}A, x~ FV(A), A~~ [x:A 1]A 2•

Then n2-reduction is possible, but restricted reduction is not. So from

~A one gets ~[x:a]{x}A Q A and we like to show that ~0[x:a]{x}A Q0 A

holds as well. By the ind. hyp. ~0 [x:a]{x}A and ~oA, and by 62-CL

A Go [x:Ar)Az and [x:a]{x}A Go [x:a]{x}[x:AdA2 Q0 [x:a]A 2• By SA2

a Go A1 so by the substitution theerem [x:a]A 2 Q0 [x:Al]A 2, whence

[x:a]{x}A Q0 A.

2.5.4. So the o-language is equivalent with the 6n2-language, for which

the properties CL, PT, SA etc. can be proved as in the previous chapter

Now let A G B. By the equivalence A G0 B and by CR A +0 B, so a fortior:

we have CR for all full Bn2-reduction.

Extension to the corresponding ó-language is possible as in sec.

V.3.3.

VI.3. A proof of CR for full an-reduction from closure and strong

normali zation

3.1. The assumptions

3.1.1. In contrast with the proof in the previous section, the sequel

does not presuppose regularity of the language. so, after having proved

CL for, e.g., Nederpelt's A, the present proof applies to this language

We assume that correctness of expressions and equality formulas is

defined relative to a correct book B and a context ~. The book is fixed

throughout this section and omitted in the notation.

Below we introduce an extended reduction relation and a corres

pondingly extended equality. Since we want to reserve our usual nota

tions ~. Q for these new relations, we write ~0 and G0 for the ordinary

Bn-reduction and the corresponding equality relation, generated e.g., b:
by

209

We use our ordinary shorthand notation, writing

for ~.n ~A and

A Q0 B for ~ ~A Q0 B etc.

3.1.2. Fordefinitenesswe give a list of the properties which we assume

through this section and use in the proof.

(1) Strengthening, and in particular the following consequence:

if n = <no,nll then

(2) Soundness of equality w.r.t. abstraction,

a Q0 S, x E a ~A Q0 B ~ [x:a]A Q0 [x:S]B

(3) w.r.t. application,

A Q0 B, C 00 D ~ {A}C Q0 {B}D

(a consequence of LQ, see below)

(4) and w.r.t. substitution

(also a consequence of LQ)

(5) closure: ~A, A ~0 B • ~B

(6) SA, so (this concerns directly the critical Sn-case)

~[x:a]{x}[y:S]C • x E a ~a Q0 S

(7) strong normalization (with respect to ~0): ~A • SN(A).

Remark: the properties (3) and (4) depend on LQ. As we know (see V.3.3.10)

LQ fails in AUT-QE(+) with ë-reduction, but CR forthese languages can

be proved in two ways:

210

(1) From CR for AUT-QE(*)

(2) By firstproving CR for a 6-less version, anà then extend the

result by using UE.

3.2.1 Beuristics

We saw that in the critical case of Bn-reduction the two direct

reducts of [x:a]{x}[x:B]C are syntactiaaZZy equaZ (:) but foP the domai1

a and B ~hiah ape just definitionaZZy equaZ <Q0). Below wedefine the

relation ~ which precisely covers this kinà of syntaatia simiZapity

intermediate between : and Q0 •

It would be straightforward to try and prove a modified CR-proper·

by proving ~postponement, i.e.

aowever there is a problem with the latter property if A : [x:a]{x}A 1 ,

B: [x:a]{x}C, x~ FV(C), A1 ~ C. For it is possible that x E FV(A 1).

So we take a different approach, We define an extended reduction rela

tion > which is disjoint Bn-one-step reduction, enriched by the clause

(e Zemental'y ~ - reduction) •

This means that internal contractions in the domains for the bookkeepin1

ofteduetion steps are ignored. For the new reduction relation we can

simply prove CR1 • Further there holds a certain version of ~-SN, which

gives us CR.

3.2.2. Structure of the proof

We point out the difference with the approach in sec. VI.2. There

we first restricted our reduction relation, proved CR for the restriotel

reduction and then extended the result to the original reduction. On th<

other hand, bere we start with proving CR for the extended reduction

relation 2, and afterwards we still must prove CR for 20 • In fact we

first prove modified uniqueness of 2-normal form, i.e. uniqueness with

211

respect to ~:A Q B, A and B ~-normal *A~ B. And then, using the

equivalence of Q0 and Q, uniqueness of ~0-normal form. So we have ~0-CR.
Fora comparison of ~0- and ~-normalisation see sec. 3.7.1 below.

3.3. Definition of the extended reduction relation

3.3.1. By simultaneous inductive definition we introduce the syntaotic

similarity ~1 the extended reduction relation ~ 1 with one-step reduction

>,and the extended definitional equality Q, between correct expressions 1

as follows.

I. Elementary reductions

(1) {A}[x:B]C > C[AE (S-reduction)

(2) [x:B]{x}C > C if x IZ FV(C) (n-reduction)

(3) A R> B *A > B (~- reduction)

II, Monotonicity rul es

(1) A > A I 1 B > B' * {A } B > {A I } BI

(2) x E et ~A >A' * [x:a]A > [x:a]A'

(3) Al > Ai, .•• , Ak >A~* C(Ä) > C(Ä' l

III. (1) ~ is the transitive closure of >

(2) Q is the equivalence generated by >

IV. (1) A~A

{2) a Q a', x E a ~B ~ B' • [x:a]B ~ [x:et']B'

(3) A ~ A I 1 B ~ BI ... {A} B ,::,; {A I } B I

3.2.2. Some remarks concerning the definition

3.3.2.1. It is not necessary to define the above notions simultaneously.

212

For in view of 3.4.3. below, we might as well have taken insteadof IV.(2

IV.(2') a Q0 a•, :s: E a rB""' B',. [:s::a]B""' [:s::a'}B'

3.3.2.2, Except for the rules I.3 and II.2, the rules of I and II are

the ordinary rules for ; 1,BD' disjoint one-step Bn-reduction. Rule I.3

can be considered a stronq form of the reflexivity rule A > A. Rule II.2

is one half of the usual monotonicity rule for abstr. expressions. The

other half can be derived using IV.l, IV.2 and I.3: if a > a' then

a Q a ' , further A ""' A so

[:s::a]A ""' [:s::a•]A so [:s::a)A > [:s::a']A •

3.3.2.3. If we had defined > to be the corresponding "nested" one-step

reduction we might have been able to prove the diamond property for >.

Then we could have avoided the appeal to SN when derivinq CR fram CR1.

3.4. Some easy properties

3.4.1. By simultaneous induction on definition 3.3.1., using the sound

ness of Q
0

w.r.t, expression formation, we qet

if A > A ' or A 2: A' or A Q A' or A ""' A' then A Q0 A '

3.4.2. From 3.3.2.2. it is clear that 2: satisfies all the monotonicity

rules and that

A >0 B .. A 2: B,

so A 2:
0

B ,. A 2: B,

3.4.3. So combininq this we have Q0 ~ Q.
As a corollary we have the monotonicity rules 3.1.2.(2)-(4) now also

for Q. The monotonicity of ""' is immediate. Further ""' is an equivalence

relation.

213

3. 5. On F~:J-reduction and normali zation

3.5.1. In certain À-calculus systems (see, e.g.[25]) renaming of bound

variables is not ignored - like we do here - but formalized in the form

of o.-reduction:

y ~ FV(B) ~ [x:B]B > [y:(3]BI[x/y~
0.

Then (see our definition of substitution, sec.II.2.4) it is possible

that o.-reductions are needed befare some 8-reduction can be carried out.

In such systems, a suitable definition of proper reduction sequence is:

a sequence in which only a finite number of o.-reductions occur. I.e.

a reduction sequence E1 > Ez > ••• is proper if from a certain En on,

only o.-reductions are applied. Similarly E is norma~ if only o.-reduc

tions of r are possible.

3.5.2. Here we treat the Fl:l-reductions analogously, as extended o.-re

duction, and call them impraper reductions. Proper reduetion sequences

are reduction sequences in which only a finite number of such impraper

reductions occur. An expression is now SN if all its proper reduction

sequences terminate and norma~ if only impraper reductions are possible.

So

.4. is normal, A <'! A ' ~ A F~:J A ' •

3.5.3. In 3.5.1. we mentioned the possibility that o.-reductions created

new 8-redices. For F~:J-reductions this is nat the case. Let > S (resp. > n)

denote the disjoint one-step reduction generated by the rules I.(l)

(resp. I.(2)) and II of 3.3.1. So, e.g., A >
8

A' if some 6-redices nat

lying inside a "domain" are contracted. Then we have,- indeed, i3 I';:! -

postponement

A RI B > s c ~A > i3 B' ~ c

However n I';:! -postponement fails because ~ -reductions can create new

n-redices (see 3.2.1.). Fortunately we have~ n-postponement instead

A > B RI c ~ A Fl:l B' > c
n n

3.5.4. Now we can prove SN (in the sense of 3.5.2). Let a proper

214

reduction sequence E1 > E2 > ••• be given. If no 8-step turns up then

the sequence terminates because from some En on only n-steps are applied,

which decrease the length of the expression. Otherwise, for some n, by

$0;1 n-PP

By o-SN, i.e. SN with respect to <=o•. es (E) is defined for correct E and

e6cE1l > e6cr'). So by induction on e
8

we can prove SN.

3.6. CR for 2:

3.6.1. Substitution lemma I: If ~B[A), ~B(A'] then

(i) A >A' ""'B(A) > B[A']

(ii) A 2: A' ""'B(A] ;;: BI[A ']

(iii) A Q A'""' B(A) Q B[A']

(iv) A~~::~ A' ""'B(A) ~~::~ B(A']

Proof: All parts can be proved separately by ind. on B using the

monotoni ei ty rules for >, 2:, Q and ~~::~ •

3.6.2. Substitution lemma II: If f-B(A) and f-B'(A) then

(i) B > B' ""'B(A] > B'[AJ

(ii) B 2: B' ""' BI[AB 2: B'[A]

(iii) B Q B' ""'B[A] Q B'(A]

(ivl B ~~::~ B' ""'B(A) FIS B'[A]

Proof: By simultaneous induction on the definition of >, 2:, Q and

215

3.6.3. Main lemma (CR1): If A correct, B <A> C then B ~ C.

Proof: By ind. on A. If A ~ B then for the common reduct D we can

take D = C. Similarly if A~ C. In case A {A
1

, B = }B
2

,

< A
2

> C
2

then by the ind. hyp. and by

monotonecity of ~we find a common reduct {D1}D2 with B1 ~ D1
~ D

2
s . Similarly if A C(A

1
, ••• ,Ak).

Further distinguish:

(i) A : {A
1

}[x:A
2

]A
3

, B: {B
1

}[x:E
2

JE
3

, C A3[Al], Al > Bi'

A2 Q B2, A3 > B3' By the substitution lemmas above

B > B
3

[D s A3[A1] so take D = B3[B1].

(ii) A- {A
1

Hx:A
2

]{x}A
3

, B: {B
1

}A
3

(by n-red.), C: {A
1

}A
3

(by

8-red.), x~ FV(A
3
), A

1
> B1. Then C Band take D B.

(iii) A [x:A
1

]A
2

, B [x:]B2, c - [x:C
1
]c

2
, A

1 Q Bl, Al

B2 < A2 > c2. By ind. hyp. ~ < r - v2 so take e.g.

D - [x:B
1

]D
2

•

(iv) A- [x:A
1

]{x}A
2

, B: [x:B
1

]{x}B
2

, C: A2 (by n-red.),

x~ FV(A
2
), A

1
Q B

1
, A

2
> B

2
• It is easy to see that

A ~ . D
2
~ Clearly x i FV(D

2
) so

2 Sn
B ~ [x:B

1
]{x}D

2
> D <A - C. so take D _ 2 - 2

Q cl

(v) A [x:A
1
]{x}[x:A

2
]A

3
, B - [x:A

1
]A

3
, C : [x:A)A

3
, x~ FV(A 2J.

This is the critica! case. By assumption (6) from 3.1.2 A1 Q A2
so we can take D = B ~ C.

3.6.4. Theorem (CR): If A correct then CR(A)
Proof: By SN we can define 8(A) the maximal number of proper re

duction steps in reduction sequences of A. Use induction on 6(A).

Let B sA ~ C. The cases A~ Band A~ Care trivia!. Otherwise,

for certain proper reducts and c
1

, A > Bl ~ B, A > cl ~ c. First

apply 3.6.3. to get ~ Dl $ cl. Then apply the ind. hyp. to Bi,

cl and D1 •

3.6.5. Corollaries: I. A Q B ~A~ B

II. similarity of normal forms:

A Q B, A and B normal ~ l'd B

216

3.7. CR for ~0

3.7.1. Call an expression o-normal if it is normal with respect to ~0 ,

i.e. if it does not contain B- or n-redices. so, if A o-normal then

there are no reduction steps A >
6

B or A >n B posaible. But it might

be possible - as long as we do not have CR - that after some l'l:$ -re

ductions new n-redices are created. So a priori we do not know whether

A is normaL

But, if A is o-normal and A does not have abstraction form and

A ~ B then this reduction is an internal, and not a main reduction.

E.g. A E {A 1}A
2

• BE {B
1

}B
2

, and:

3.7.2. Theerem {uniqueness of o-normal form): Let A and B be o-normal,

then

Proof: By induction on the sum of the lengths of A and B. Let

A Q
0

B, so A Q B, so A ~ C s B. Distinguish the following cases:

(1) Both A and Bare abstr-expressions, [~:A 1 1A2 resp. [~:B1]B2 •

By prop. 3.1.2.(2), A
1

Q0 B
1

, ~ E A 1 ~A2 Q0 B
2

• By the ind.

hyp. A
1

: B
1

, A2 : B2 soA : B.

(2) Neither A nor B are abstr-expressions. Then A and B and C

have the same form. E.g. if A : {A1}A2, then C: {C1}C2, so

B: {B1}B2 with A1 ~ C1 ~ B1 and A
2

~ C
2

s B
2

• So A1 Q B1,

A2 Q B2 and A1 Q0 B, A2 Q0 B and by the ind. hyp.

Al : Bl, A2 : B2.

(3) A has abstr. form and B has not. Then A: [~:A 1]A 2 ,

A
2

~ {~}D2 , ~ t FV(D
2
), A

1
Q D

1
, and

A ~ [~:D1 J{~}D2 > D
2

~ C s B. By CL, ~ E D1 f- {~}D2 and by

3.1.2. (3), ~ E D
1
~ {.r}D

2
Q {.r}B. So .r E A1 ~A2 Q {~}B and

both A
2

and {~}B are o-normal. By the ind. hyp. A
2

: {.r}B.

Clearly .r ~ FV(B), soA is not o-normal, contradiction. So

this case does not occur.

217

3.7.3. Corollary (CR4

(i) A correct, A ~0 B, A <:
0

C =~> B ~0 D S
0

C

(ii) A Q0 B • A

3.7.4. Now we can conclude

A o-normal •A normal

For, if A o-normal, A ~ B > C (i.e. A is not normall then
n

A :: ••• [x:A
1
]{x}A

2
... , x € FV(A

2
), B :: ... [x:B

1
]{x}B

2
... ,

x~ FV(B
2
), A

1
Q B

1
, x E A

1
1-A

2
Q B

2
• By CR, <:0 A

2
, so

FV(A
2

J c FV(B
2
), impossible.

218

CHAPTER VI I. THE ALGORITHMIC DEFINITION AND THE THEORY OF

NEDERPELT'S A: THE BIG TREE THEOREM,

GLOSURE AND CHURCH-ROSSER

VII.l. Introduetion and summary

1.1. The history of A

A further unification of the concept;s underlying AUT-68 and AUT-Ql

led Nederpeltand the Bruijn [4~ 50, .9], after the construction of an

intermediate version À-AUT, to the introduetion of the language A or,

as de Bruijn narnes it, AUT-SL, for: single line Automath.

First Nederpelt noticed that via a suitable translation instant

iation, i.e. substitution in constant-expressions c(x
1

, ••• ,xn), could

be replaced by application and that, by this translation, o-reduction

reduced to S-reduction. We used this fact for one of our proofs of ó-SI

in III.S.4. However, in order to cover substitution with 2-èxpressioni

as is allowed in Automath languages, the restrietion to argument degrej

3 and domain degree 2 had to be dropped. This would in combination witl

type-inclusion have given a higher order system, so to avoid normabili·

and normalization problems, one had to skip type-inclusion. Then, a

further streamlining of the definition was attained by dropping the

restrietion as to inhabitable degree as well, thus allowing expression1

of any degree.

By the aforementioned translation and the relaxation of the degret

restrictions it became possible to dispe~se completely with constants

and schemes: constants could be translated into variables, schemes cou:

be turned into assumptions and a hook could be transformed into a con

text. Besides, quantification over all free variables was allowed now,

so all assumptions x E a from a context could be converted into ab

stractors [.x:a].

Thus, a statement B;t,;f-A expressing the correctnessof A w.r.t.

book B and context ~ could be translated into the correctness of a

single expression [p:S)[x:ä]A•, where the abstractor strings (p:S] and

[x:ä] and the expression A' are intended to symbolize the translations

of B, ~ and A respectively. I.e. a whole bock reduces to a single line.

For details of the translation see 6.2.1, 6.3.3 and 6.4.6.

219

Resuming, Nederpelt's A - as defined in his dissertation - is

characterized by the following three features: no degree restrietion at

all, no type-inclusion, and single-line presentation. His definition is

a typical algorithmic definition- for the terminology see v.1.1.

which, due to these simplifications, is remarkably short and elegant.

Nederpelt introduced bis norm as a measure of functional complexity and

proved normability, normalization and streng normalization for his

system. He just conjectured, in the introduetion to this thesis, that

the system satisfied closure and Sn-Church-Rosser.

1.2. The present treatment

The discussion in the previous chapters: starting from the E-defi

nition (V.2), first proving closure (V.3) and Bn-Church-Rosser (VI),

and finally proving the equivalence with the algorithmic definition

(V.4), though concentrating on the socalled regular languages AUT-QE and

AUT-68, applies to Nederpelt's language as well, which shows that this

conjectures were justified.

Here we choose an altogether different approach. Below we start with

the algorithmic definition of correctness (VII.2). We follow Nederpelt

but for his single-line presentation: we fit the system into the book

and-context framewerk of the previous chapters. Whereas the definition

of the constant-lesspart of the language (sec. 2.1) simply can take

place in the pretyped expressions(see IV.3), it turns out that adding

constant-expresslons (sec. 2.2) requires the introduetion of degree

norm aorreat expresslons (2.2.4).

Then both Nederpelt's conjectures are proved directly from the

algorithmic definition, using the socalled big-tree theorem (BT). This

theerem states that, on the correct expressions - and, in fact, on the

much larger domain of normable expressions - the partial order ! gene

rated by sub (i.e. taking proper sub-expressions), by ~ and by taking

typ is well-founded. So BT is an SN-result for an extended reduction

relation and, hence, implies ordinary SN. The big tree theerem was first

formulated and proved by de Vrijer [70] for his regular language ÀÀ.

Sectien 3 below contains the closure proof of A without constants,

serving as a motivation for BT. Sectien 4 contains two different proofs

of BT, and in sec. 5 we prove closure and CR for the constant-lesspart

of An. In sec. 6 we give some equivalence proofs: of the systems with

220

and without (definitional) constants, and of the single-line version

with the book-and-context presentation. As a result we get the various

nice properties for all these systems.

VII.2 The definition of AandAn

2.1 The part without constant expressions

2.1.1 BothAandAn are systems of admieeibZe expressionsin the sense

of IV •• The correctnessof books and contextsis standard (see

so we just present the part of the definition concerning the correct

ness of expressions. A simplification compared with e.g. AUT-QE is that

no degree restrictions are imposed. If in the definition below > (resp.

~. resp. ~) is interpreted in terms of Sn-reduction then we get An

otherwise just A.

The function typ is defined as in IV.3.2, degrees are as in IV.4.4.

Throughout sec. 2.1 we fellow Nederpelt and do not admit constant

expressions. Later on (secs. 2.2, 2.3) we show how the language can be

extended with the formation of constant expressions.

2.1.2 By taking typ of a non-aonstant-expression A the degree is de

creased by one (see IV.3 and IV.4), so by successively taking typ one

arrives at a 1-expression. This 1-expression is called typ*(A). so,

typ*(A) :: A if degree(A) 1

typ*(A) ·- typ*(typ(A)) otherwise.

Now let B be correct and let s be correct w.r.t. B. We use the con

ventional shorthand: nf-A insteadof B;E;;,nf-A I typ insteadof s-typ etc.

Of course, as long as we do not form constant-expressions, the pre

senee of the book B is completely irrelevant. Now correctness of non

constant-expressions is defined as fellows:

(i) f-T
(ii) f-x if x among the variables in s

(iii) f-[x:~]B if 1-~ and x E af-B

221

(iv) ~{A}B if ~A, ~B, typ(A) 2 a, typ*(B) 2 [x:a)C for some

Cl., c.

2.1.3 So correct expressions are pretyped expressions satisfying the

socalled appLioation oondition: in appl. expressions {A}B the expression

B has a domain (to compute from typ*(B)) corresponding with the typ of

A. In the next sectien where we also introduce constant-expressions, an

additional condition concerning instantlation will be imposed.

There are various alternative, equivalent, formulations of the

application condition possible. E.g. one can replace "typ(A) 2 a" by

"typ(A) +a". In A (i.e. without n-reduction) we have CR, soit is even

sufficient to require typ(A) = a and typ*(B) = [x:a]C, in other words:

typ*(B) = [x:typ(A)]C- where =is full definitional equality (see

II.4.6-7, V.2.11) -or, anticipating certain results of sec.6.2.6,we might

restriet the computation of the domain of B by requiring
. 1

typ*(BJ 2S [x:o.]C (compare v.3.3).

2.1.4 Since norms are preserved under taking typ and under reduction

(see IV.3.4) the correct expressions are striotLy normable. This can be

shown by induction on the definition of ~. E.g. that {A}B is strictly

normable if it is correct: By ind. hyp. A and B are normable, so

~(A) ~(typ(A)) ~(a) and ~(B) = ~(typ*(B)) = ~([x:a]C) = [~(a)]~(C),

so {A}B is normable, with ~({A}B) = ~(C).
Hence the correct expressions are SN and the system is decidable.

2.2 Introducing constant-expressions; degree-norm correctness

2.2.1 We allowed the presence of a book containing schames for the

constants. Now we can simply introduce constant-expressions by adding

the instantiation rule:

(v) If yES* o(y) E y is a scheme of B, k lyj,~B1 , •.. ,rBk

and typ(B1J + s1 , ••• ,typ<Bkl + Sk[B] then rc(B).

That is, in a constant-expression o(Ë), the arguments B. have to
l.

satisfy the instantiation condition typ(Bi) + s1[ËD.
However, we have to make sure that typ* is still well-defined,

particularly that taking typ still decreases the degree by one. E.g.

typ{o(Ë)) (:: typ(o)[Ë] y[ËD) and typ(o) <= y) must have the same degree.

222

2.2.2 Call a aubatitution [y/ËD degree aorreat if

degree{yi) = degree(Bi) for i=l, ••• ,lyl. Degree correct substitutions

preserve the degree:

If y is a y-expression and [y/BD is degree correct then y[B] and y

have the same degree. So, if we would add the requirement of degree

correct substitution to the instantiation condition, then we might be

satisfied. But this is not what we want: we rather would like to show

that the instantiation condition impties the degree correctness of the

substitution involved. This amounts to showing tbat degrees are pre

served under reduction as well. To this end we introduce the concept of

degree-norm aorreatneaa.

2.2.3 Degree-norms are defined by:

(i) positive integers are degree-norms

(ii) if vl, v2 are degree-norms then [v1]v2 is a degree-norm.

so, just like ordinary norms {IV.2.1) are built up from Tand square

brackets, degree-norms are constructed from 1,2, ••• and square brackets.

For degree-norms v we define the degree-norm v+l as follows:

(i) if v is an integer then v+l is as usual

(ii} if v- [v1]v2 then v+1 := [vl](v2+1).

So ([(2]3]2) + 1 [[2]3]3.

2.2.4 Now we define degree-norm aorreatneaa of books, contexts (w.r.t.

a book) and expressions (w.r.t. book and context}. It is implicitly in

tended that an expression is degree-norm correct (dnc), if its dagree

norm (dn), w.r.t. book and context, is defined.

The definition of the latter runs as fellows:

(i) dn<•> := 1

(ii) dn(ro) ,_ dn(typ(roJ J + 1

(iii) dnt[x:a)BJ := [dn(a) + t)dn(BJ

(iv) dn({A}BJ ·- if dn(B) - [dn(A)]v then v

(v) dn(a<Îhl ·- dn<typ(a)) + 1, if dn<B
1
J.: dnty1 J for i=l, ... ,!y

where y E ä * a{y} E y is the scheme of a.

223

Here the notational conventions are just like those w.r.t. ordinary

norms: we write dn insteadof Ç-dn and e.g., clause (iii) would in full

re ad like this:

(iii) ç-dn([x:a]B) [(Ç-dn(a))+l](Ç,x E a)-dn(B).

Further a context is dnc if all its type parts are so, and a book is

dnc, if all the contexts and typ•s of it are dnc.

2.2.5 A degree-norm v can be translated into an ordinary norm v* by

replacing all occurrences of numbers by '· Notice that (v+l)* v*, so

dn(A)* =~(A). This shows that dnc-ness implies strict normability.

Further, degree(A) can also be constructed from dn(A), for dn(A)

ends precisely in the degree of A.

We call a substitution ~y/ËD dnc if dn(Bi) = dn(yi), for

i= 1, •.• , I y / • Clear ly dnc substi tutions are degree correct.

Degree-norm correctness is preserved under dnc substitutions:

if y E S~y, k=/y/,~B1 , ... ,~Bk, y dnc and [y/Ë] dnc then

dn(y) _ dn(y[Ë])

Proof: By induction on the definition of dn(y).

This gives us the following corollaries:

(1) ~ dnc, degree(C)+l ~ typ(C)dnc, dn(typ(C))+l _ dn(C)

(2) C dnc, C :2: D =<> D dnc, dn(D) dn (C)

(3) C dnc, degree(C)+l =<> degree(typ(C))+l degree(C)

(4) C dnc, C ~ D =<> degree(D) = degree(C).

So typ* is total on the dnc expressions and, since dnc-ness is clearly

decidable, typ* is weZZ-defined on all the expressions, in the sense of

V .4.4.1.

2.2.6 Now we are able to show that correctness implies degree-norm

correctness.

Proof: By induction on ~· E.g. let ~A, ~B, typ(A) :2: a,

typ*(B) ~ [x:a]C. By ind. hyp. A and Bare dnc (so typ (B) is

indeed defined), so typ(A), a, typ(B), typ(typ(B)l , ••• ,typ*(B) and

224

[x:a]C are dnc as well. Now dnctyp*(B)) : dn([x:a]C) : [dn(a)+l]dn(C)

[dnctyp(A}}+l]dn!C) : [dn(A}]dn(C), while dn(typ*(B)) and dn(B) just

differ as to their "end number" so dn(B) : [dn(A)]v for some v. Hence

{A}B is dnc.

or, letyES * ~(y) E y be a scheme, let ~B1 , ••• ,~Bk (with k=IYI
and let the B. satisfy the instantiation condition: typ(B.) ~ S.[Ë]. ~

l. l. l.

ind. hyp. the Bi and the Si are dnc. Now dn(Bl) : dn(typ(B
1

))+1 -

dncs1J+l dn(y1), so [y1;B1D is a dnc substitution. So

dncB2) : dn(typ(B2))+1: dncs
2
[B

1
]J+1: dncs

2
)+1 = dncy

2
). so

[y1 ,y2/B1,B2] is dnc, etc. Hence ~(Ë) is dnc. D
So typ* is also total on the correct expressions, and correctness

is well-defined. Further, the ahove proof shows that the system with

constants is strictly normahle as well, so (using SN) it is decidable

2.3 Introducing definitional èonstants

2.3.1 After the formulation of instantiation and application conditi~

it will also he clear how the compatibiZity condition of def and typ

for the formation of definitional constant schemes has to read:

typ(def(d}) ~ typ(d), for definitional constants d.

2.3.2 The scheme of a definitional constant d is defined to he dnc, i:

dn(def(d)) = dnctyp(d))+l, and for the corresponding d!ËJ wedefine

dncd!B)) ::=: dn(typ(d))+l

provided [y/ËD is dnc, where y E ii is the context of the scheme.

so, still dn(d!Bll ::: dnctypcdl ::: dn(typ!dl[Ë]l+l = dnctyp!d!Ëlll+

and degree-norms remain preserved under reduction: dn(d(Ë)) =
dn(typ(d))+l = dncdef(d)) = dn(def(d)[Ë]Il. And, by induction on correc·

ness, we can prove that correctness implies degree-norm correctness.

E.g. let the scheme of d be correct, then ~def(d), so def!d) dnc, and

dncdef(d)) dnctypcdef(d)))+l, and 1-typcdl so typ(d) dnc,

dnctypcd>) = dnctypcdef(d))) and dncdefcd) l = dnctyp(d)}+l, q.e.d.

225

VII.3 The c1osure proof forA

3.1 What to prove

The decidability of the Automath languages is one of the major

aims of the language theory. By using an algorithmic definition we got

the decidability of A and An, both with and without constants, directly

from normalization (see 2.1.4 and 2.2.6). So one might wonder what else

there is to prove.

First there are both Nederpelt's conjectures, the Church-Rosse~

property (CR) for An, and the cZosu~e property (CL). Wedefine

CR(A)

CL<Al ~A, A ~ B => ~B

A main lemma for s-CL (and 6-CL) is the substitutivity of co~~ect

ness: substitution with correct expressions of the right types preserves

correctness. Formally:

:x E o:tB, tA, typ(A) + o: '* ~B[::c/AB

Other properties which play an important role in the proof of CL,
are sound appZiaabitity (SA), p~ese~vation of typ(PT), of typ*(P*T) and

af domain (PD). We write

SA(A): A {B}[::c:C]D '* typ(B) + C

PT(A): A ~ B => typ(A) + typ(B) (degree(A)fl, degree(B)fll

P*T {A): A ~ B => typ* (A) + typ* (B)

PD(A): A _ [::c:B]C, A ~ [::c:D]E • B + D

The properties PT
1

, CL
1

, P*T
1

and PD1 are the respective one-step

variantsof PT, CL, P*T and PD.

The above properties are not mere technicalities from the closure

proof, but are also meaningful from the point of view of interpretation.

E.g. SA is characteristic for the fact that the Aut-languages do not

allow "proper inclusion" of type, and PT (resp. P*T) expresses the nice

behaviour of typ (resp. typ*) w.r.t. definitional equivalence.

Further, these properties serve to establish the correspondence

226

between the present, algorithmic systems and the E-systems, and betweel

the verslonswithand without constants {see 6.2, 6.3).

3.2 Some simple facts

3.2.1 Throughout this section VII.3 we just discuss A without constan1

So we may assume CR, and PD{A) (for all A) and SA(A) (for correct A)

are immediate.

By induction on ~A one also proves easily that ~A implies ~typ(A)

(so ~typ(typ(A)), ..• ,rtyp*(A)). This is not easy any morefora system

with constants, This proparty is called aoPPeatness of types.

3.2.2 As with the E-systems (see V.3.1), we prove CL from CL
1

by ind.

on ~. For the a-outside case of CL
1

we need substitutivity and SA. Pre·

viously substitutivity (i.e. the substitution theorem, V.2.9} was eas~

and SA was rather involved, but here SA is easy and substitutivity is

quite complicated.

First some properties of substitution, which are valid already fol

pretyped expressions. Let A be a ~-expression, let B be a (~,x E a,nl
expression. Let C* denote C[x/AD. Then

(1) typ(A) ~ typ(x) ~ typ(B*l l typ(B)* , i.e.,

written out in full,

~-typ(Al i- a~ (~,n*J-typ(B*l + ((~,x E a,nJ-typ(B))*

(2) typ*(A) l typ*{x) ~ typ*(B*l i- typ*{Bl*

Both facts are proved by ind. on the length of B. Notice that (1) and

(2) are valid for each right monotonie, reflexive relation instead of

+, so e.g. for ~.

3.2.3 The problem with substitutivity is that the condition typ(A} ~

is clearly not sufficient. We would also like to know something about

typ*. In fact we have the following theerem (modified subst., for short

Let x E a, n~B, let ~A, typ(A) + typ(x} and typ*{A) + typ*(x). Let C*

denote C[x/AD again. Then n~B*.

227

Proef: By inductienon ~B. E.g. the applicatien case. Let ~B 1 , ~B2 ,

typ(B1) 2 S, typ*(B
2

) :2: [y:i3]C. By ind. hyp. ~Eland j-s;. By (1),

(2) and CR typ(Bl) + 13* and typ*(B~) + [y:S*]C*. Se by CR again

typ(Bl) :2: y, typ*(B~) ;;:: [y:y]D fer some y, D. So ~{B;

3.2.4 Cerollary:

x E arB, rA, typ(A) + typ(x), typ*(A) + typ*(x) ~ rB[A].

Another consequence of (1) is PT
1

(A) for correct A, i.e.

rA, A > B ~ typ(A) + typ(B)

Proof: Assume for definiteness that > is disjoint one step

reduction >
1

•

The proef is by induction on the length of A. For example:

(i) A {A 1}[x:aJA
2

, B: A
2
[A

1
]. By SA typ<A

1
) +aso by (1) above

typ(A) : {A 1}[x:aJtyp(A2l > typ<A
2

l[A 1] + typ{A
2
[A 1]l =: typ(Bl.

so by CR we are done.

3.3 Reuristic considerations

3.3.1 At first sight SA, PT1 and correctnessof types seem to give a

good starting position for proving CL. In a way this is true: we only

have to find the right induction and the right induction hypothesis.

Let us first try to prove CL
1

(A) by induction on the length of A,

or rather by induction on the relation "being a Subexpression of", for

short: by induction on subexpressions. We interpret CL
1

in terms of

disjoint one step reduction. For the appl. case of inside reduction the

ind. hyp. is nat streng enough, we additionally need P*T
1

. So instead

we try to prove CL
1

and P*T
1

together, again by induction on subexpress

ions. Now everything is allright with the inside reductions, but with

outside s
1

we still come in trouble: A: {A
1

}[x:aJA
2

, SA gives

typ(A
1

l + a but in view of the previous sectien we also want

typ*<A 1) + typ*(a).

228

3.3.2 So let_us see under what conditions we might prove this typ*

requirement. First notice: if we knew CL already, then we could use PT

to prove PT {for correct expressions), e.g. by induction on~. The in

duction step runs as fellows: let ~A, A ~ B ~ C. By CL we get ~Band

by ind. hyp. typ(A) + typ(Bl + typ(C) whence by CR: typ(Al + typ(Cl,

q.e.d. An alternative proof of PT(A) fram CL works by induction on the

reduction tree of A (by virtue of SN(A)), for short: by induction on

reducta. Viz. let ~A, A~ C. If A: C then typ(A): typ(C). Otherwise

for same B, A >1 B ~ C. By PT1 typ(A) + typ(B), by CL ~Band by ind.

hyp. typ(B) + typ{C), so by CR typtAl t typ(C).

3.3.3 Further from PT we can prove P*T, or rather:

~A, ~B, A + B • typ*(A) + typ*(B)

by induction on degree(A) + degree(B), as fellows. If degree(A) = l
then degree(B) = 1 too so typ*{A): A+ B: typ*(B). Otherwise,

degree(B) f 1 either, so we can apply PT toA and B. By CR we get

typ(A) + typ(B), by correctnessof types ~typ(A), ~typ(B) so by the

ind. hyp. typ*(A) + typ*(B), q.e.d. An alternative proef of P*T fram

CL and PT is by induction on -+, the order generated by (1) "being a

proper reduct of", (2) "being the typ of" (as in V.) • So the in-

duetion on + includes the induction on reducts mentioned before. That

-+ is indeed well-founded will become clear in the sequel.

The proof looks like this. Let ~A, let A ~ B. By CL ~B and by PT

typ(A) ~ F ~ typ(B). By correctnessof types ~typ(A), rtyp{B) and by

the ind. hyp. typ*(A) + typ*(Fl + typ*(B), and by CR typ*(A) + typ*<B

3.3.4 In sectien 3.2.2 we announced to prove CL from CL 1 by induction

on ~. However, this can be interpreted in two ways:

{1) to prove ~A, A ~ B • ~B, by induction on A ~ B, i.e. on the

number of reduction steps between A and B,

(2) to prove CL(A) by induction on the reduction tree of A, i.e.

by induction on reducts. Both inductions work, but the secend one has

an advantage: we just need CL1 (A), but can freely use CL(B) in the

course of the proof, for each proper reduct A of B!

229

3.3.5 Now it becomes probably plausible to try and prove CL(A) directly

* by an induction on+, the order generated by + (3.3.3) and by sub. In

this way we combine the induction on subexpressions (3.3.1, for the

"inside" cases of CL
1
), on reducts (3.3.2, to prove PT), and on+ (3.3.3,

to prove P*T).

In order to make the induction work we need the well-foundedness

of! on the correct expressions, i.e. the socalled big tree theorem BT.
Section 3.4 contains the proof of CL as sketched above, assuming

BT, section 4 is devoted to the proof of BT.

3.4 The actual closure proof

3.4.1 Definition of+

+ is the reflexive and transitive relation generated by

(1) A + typ(A)

(2) A ~ B • A + B

* 3.4.2 Definition of+

* ~ is the reflexive and transitive relation generated by

(1) B sub A • A ! B

(2) A+B,.A!B

3.4.3 The big tree of an expression A is the reduction tree of A w.r.t.

the extended reduction relation We assume the big tree theorem BT,
* which states that + is well-founded on the correct expressions (and,

hence, that their big trees are finite).

3.4.4 Lemma: Let ~A, Cl(A). Then PT(A) (degree(A) + 1)

Proof: As in 3.3.2, e.g. by ind. on reducts, using PT1 and CR.

3.4.5.1 Define:

CL+ (A) : # A + B • ~B

230

3.4.6 Lemma: Let rA, CL+(A). Then P*T<A).

Proof: By BT we can use induction on ~. Let A ~ B. If degree(A) =

then degree(B) = 1 too and there is nothing to prove. Otherwise,

degree(B} + 1 either, so by the previous lemma PT(A), i.e.

typ(A) ~ F s typ(B). By CL and correctnessof types ~typ(A),

rtyp(B} and by the ind. hyp. typ*(A)' ~ typ*(F) ~ typ*(B). Now use

CR.

3.4.7 Theorem: rA* CL(A)

Proof: By BT we can use induction on!. Let rA, A ~ B. If A = B
then there is nothing to prove. Otherwise A > C ~ B with C a prop

reduct of A. We want rC. The interesting cases are:

(1) A: {A1}A2, C: {C
1

}C
2

, rA
1

, typcA
1
l ~a, rA

2
,

typ*(A2> ~ [x:a]D, A1 > c1, A
2

> C
2

• By ind. hyp. rC
1

, rC
2

•

By PT
1

typcA1) ~ typcC
1
), so by CR typ(C

1
> ~a. Now by the

ind. hyp. we can assume CL+(A
2
), so P*T(A

2
) and

typ*<A2> ~ typ*<C2), and by CR typ*(C2) ~ [x:a]D, q.e.d.

(2) A = {Al }[x:a]A2, rAl, Hx:a]A2, typ(A1) + a. By ind. hyp. we

+ + can assume CL (A 1), CL (a), so typ* cA 1) + typ*(a), and by

substitutivity (3.2.4) rA 2[A1] : C, q.e.d.

VII.4 The Big Tree Theorem

4 .1 Introduetion

* For the definition of the extended reduction relations + and ~ we

* refer to sec. 3.4. Both definitions make use of typ, so + and +are

only defined on pretyped expressions, i.e. expresslons with a context.

Notice: taking subexpresslons often requires extension of the context.

* The big tree of an expression A is its reduction tree w.r.t. ~,

* i.e. the branches of the tree are the proper +-reduction sequences of,

231

We define:

* BT(A): ~A has no infinite proper ~-reduction sequences

The big tree is infinitary so:

BT(A) ~ the big tree of A is finite

In this sectien VII.4 we prove the big tree theorem BT:

(BTJ A normable • BT(A).

So BT states that on the normable expressions ! is well-founded,

i.e. that !-SN holds.

De Vrijer [70] introduced ! and big trees, and proved BT for a

system of normable expressions containing his language ÀÀ.

Below we give two different proofs of BT. The first (sec. 4,5)

is modelled after the secend proof of 8-SN (Iv.2.5), theseeend one

(sec. 4.6 J uses an idea from de Vrijer's proof (the "bookkeeping pairs")

but further fellows the first 8-SN proef (IV.2.4.4). Actually both

* proofs deal with a modification ~ST of ~ which is somewhat easier to

handle and gives rise toeven bigger trees (sec. 4.4.2).

For simplicity we start with a system without constants, and take

* just 8-reduction for the ordinary reduction ~ involved in ~ and +. Later

(5.2, 6.2, 6.3) BT will be extended to cover the remaining cases.

4.2 Beuristics 1

After de Vrijer we also call + and ! rt-reduation and rst-reduation

respectively, with r for ordinary reduotion, s for subexpression, t for

type. Similarly we speak about r-reduction (i.e. ordinary ~), s-reduct

ion (A s-reduces to its subexpression), t-reduction (A t-reduces to

typ(AJ etc.) and their combinations. The meaning of rs-SN, st-SN etc.

and 6 - the length of rs-reduction tree of an rs-SN expression etc.
rs

will be clear.

We want BT, i.e. rst-SN for the normable expressions. Let us

s;.unmarize what SN-results we know already:

(1) r-SN. This is ordinary 8-SN as proved in IV.2.4 for the

normable expressions.

(2) s-SN and t-SN. s-reduction decreases length of expressions,

t-reduction decreases degree of (pre-typed) expressions.

232

(3) rt-SN. This was proved for correct expressions in V.4.4. The

same induction (1) on degree, (2) on 6 , applies to all
r

degree-norm correct expressions: taking typ decreasas the

degree, r-reduction preserves degree.

(4) rs-SN. Provable for the normable expressions by induction on

(1) er, (2) length of expression. In fact the induction used

in the proof of the square brackets lemma SQBR (IV.2.4,3),

and in several a-SN proofs as a subordinate induction (IV.2.

IV.2.5.3) is just induction on the rs-reduction tree.

(5) st-SN. Can be proved by induction on the definition of pre

typed expressions (IV.3.2).

Clearly these inductions fail for full rst-SN: s-reduction can in

crease the degree, r-reduction generally increases length of expressi

and taking typ can increase both length of expression and length of r

reduction tree. Besides, on the normable expressions r-reduction does

not preserve the degree.

4.3.1 Norm properties

From IV.2.1 we reeall some properties of the norm ~ and of the

normable expressions. We write A <
~

B for: ~(A) is shorter than ~(8).

(1) {A}B normable ~ {A}B < B and A < B
~ ~

(2) A normable • ~(typ(A)) :~(A)

(3) ~(x) :~(A), B normable ~ ~(B[x/A)) - ~(B)

(4) A ~ B, A normable ~ ~(B) : ~(Al

(5) B c A, A normable • B normable

Properties (2}, (4), (5) make that the normable expressions are

* closed under ~ and that ~ preserves the norm.

4.3.2 BT-conditions

Similarly to the SN-conditions in IV.2.4.1 we can formulate

necessary and sufficient BT-conditions:

233

(1) BT<xl .. BT<typ(::c))

(2) BT([y:B
1

JE
2

l # BT<B
1
J, BT(B

2
)

(3) BT({B
1

}B
2

) .. BT(B
1
), BT<B2) and (B 2+ [y:S]C =<> C[B

1
JBT)

Proof: We just give the .,.-part of (3). Let BT(B
1
), BT(B

2
) and

B
2

+ [y:S]C =<> BT(C[B
1
)). is rst-SN so rt-SN so we can use

ert(B2). E1 is rst-SN so r-SN so we can use 8r(B1). Using induction

on 8r(B1) + 8rt(B2l we prove that all one-step rst-reducts of

}B
2

are BT. Distinguish:

(i) D sub {B
1

}E
2

, so D c E
1

or D c E
2

, so BT(D).

(iil >l,fl Dor D typ(B2). We have BTcE1), BT(D) and

D + [y:S]C =<> BT(C[E
1
]). Apply the ind. hyp. to {B

1
}D, this

gives BT({B
1

}D).

{iii) B1 >1 ,S D. Apply the ind. hyp. to {D}B
2

.

[y:S]C. Then by assumption BT(C[B
1
J).

4.3.3 Beuristics 2

+ [y:B]C then clearly BT(C). So BT-condition (3)

above suggests as a main step in proving BT the substitution theorem

for BT: BTCA), ~(::c) ~(A), BT(Bl =<> BT(B[::c/A]l.

Indeed, if we knew this theorem, we could simply praeeed by in

duction on pretyped expressions and get BT. The similarity with the

situation around B-SN suggests us to use SQBR (IV.2.4.3), for +

insteadof ~: If B* + [y:S]C then either (1) B + [y:S
0

Jc0 with S~ ~ S,

c* + c, or (2) B + {F}::c, ({F}xl* + [y:BJC, where *stands for [x/A].
0

However the following counter example shows that this lemma is

wrong: Take B {B
1

}[z:y][y:S]{z}x, A ~ [u:~]·•u••u. Then

B* + [y:S*[B~]]··B!··y*, but B + [y:B[B1]J{B1}::c, and (}x)*+·

4.4 ST-reduction

4.4.1 One point which makes SQBR break down for + is that nót:

B + C =<> B[::c/A] + C[x/A]

234

Example: B = ~~ C = typ{~) and the only conneetion between ~ and A

concerns their norms (not their typ's).

Theether substitution property: A~ A' • BlAD ~ E(A') does not

hold either, due to the lack of monotonicity clauses in the definition

of ~. Example: A ~ typ(A) but not • .. A• •• ~ • ••typ(A} •• • •

4.4.2 Now we introduce Bt-reduction by adding these monotonicity rules

to the definition of ~. What we get is a reduction in the usual sense,

that a one step reduction consists of replacing a Subexpression (redex)

by another expression (contractum). The redices are here of two kinds:

(1) 8-redices which contract as usual

(2) t-redices: variables ~ which contract according to ~ >
1

typ(~)

we use the same terminology as before, (II.7.1.2): ;;_, >
1

, 1, >
81

etc.,

t-SN, Bt-SN, e
8

, etc.

Now ~8, satisfies the secend substitution proparty (above) indeed

but the first one is still not valid (same counter example).

* Just like ~ and +, ~8 , is only defined for pretyped expressions.

Formally, we ought to speak about "~Bt w.r.t. context t;;'', and the

monotonicity for abstr. expressions then would read:

If El >8T cl w.r.t. ~ and E2 >8T c2 w.r.t. (~, y E El)

then [y:B1JE2 >
81

[y:C1JC2 w.r.t. ~

4.4.3 we are going to prove 8t-SN and then conclude BT from the

Theorem: 8t-SN(A) • BT(A)

Proef: Let 8t-SN(A). Using induction on (1) e
81

(A), (2) lengthof A we

show that all one-step rst-reducts of A are BT. SoA itseld is BT.

4.4.4 8t-SN conditions

These are quite similar to the BT-conditions. The only non-trivial

modification concerns the appl. case.

(3) Bt-SNt{B
1

}E
2

J • 8t-SN<B
1
J, 8t-SN<E2 > and

B2 ~St y:B C • ~11'-SN<C(E1)J

Proef: As in 4.2.3 but now we use induction on e
8

,<E1J + e8T<B2).

235

4.4.5 Sernething on ~,

Just like st-SN (see 4.2(5)) we can prove r-SN. Further we verify

r-CR: Let E contain subexpressions 6: [x:a]••x••, r [y:B]· ·y· • •

Then 6 > 6' = [x:cr]••a••, r > r• - [y:S]••S•· and we want a common
1 t

t-reduct of •••6'••f••• and •••6••r'··· • As in II.8.2 we consider

all the possible cases. Generally the reductions simply commute:

···ó'··f··· >t ••·6'••f'··· <
1
···6••f'·•· • In case the specific x

occurs in B or the specific y occurs in a then two t-steps are needed,

e.g. [y:"X"]••y•• > [y, .. a .. J .. y•• [y:"a"]"("CL'')" < <
t T T

:••x••]••(••x••)•· • Anyhow the weak diamond property holds for >T,

so by t-SN we get t-CR, and uniqueness of t-normal form.

4.4.6 This gives an easy way of reaching a Bt-normal form: first T

normalize then S-normalize. Notice: the norm properties guarantee that

preserves the norm of normable expressions.

<os and do not commute, but we still can get St-CR for the

normable expressions, as fellows. For norms v we define a St-normal

expression v*: (1) t* [x:v?Jv; . Now we can prove

A norrnabie •A ~St (~{A))*

by ind. on the definition of ~. This gives St-CR and uniqueness of St-

normal form. The procedure above assures the existence, so for normable

A we can speak of ST-nf{A).

In fact v* is Nederpelt's original representation of the norm v.

4.5 First proof of St-SN; a correction to IV.2.5.3

4.5.1 In view of 4.4.4 it seems reasonable to concentrate on the sub-

stitu~ion theorem for St-SN: A St-SN, B Sr-SN, ~(x) = ~{Al • B[A]Bt-SN.

Just like with ~, SQBR fails for , so we rather let us inspire by

the secend proef of 8-SN (IV.2.5.3).

In fact we also take the occasion to indicate (and repair) a flaw

in that proof, concerning the distinction between replacement and sub

stitution.

236

4.5.2 Replacement vs.substitution

When defining substitution (11.2.4) we have assumed the concept

ofliteraryreplaaement to be understood. Substitution amounts to re

placement with precautiona, viz. that no clash of variables takes place

and substitution can also be considered a special case of replacement.

Now let us see what went wrong in IV.2.5.3 (and also in {IV.2.6.2)

Essentially we wanted to replace a specific subexpression 1::. in I: by an

other expression !::.', thus producing I:'. We had the idea that this replal

ment of D. with 1::.' could be performed via substitution for a new "fresh"

variable y, such that 1.:0 = ••y• •, E = I:0[y/D.), I:' = t
0
[y/l::.']l. However

this is wrong: possible bound variables of E, which become free in 1::.,

can never get the appropriate bindinga in E0[y/t:.D.

What we- need here is_literary replacement CLR) of y with D. and 1::.'

resp. We introduce a new notati:on: BU:z/A)LR is the result of literary

replacing all free occurrences of z in B by A.

4.5.3 Below we follow the general idea of IV.2.5.3, but instead of

using a substitution theorem for SN, we use the - stronger~ - replace

ment theorem- as we ought to have done there {and in IV.2.6.2) too.

The easiest way is to use replacement with a set of expressions.

Notation: Bfiz/a}LR' where a is a set of expressions, is the set of ex

pressions which result from B by (literary) replacing all free z in B

by an expression A E a, but possibly different A's for different

occurrences of z {compare multiple substitution, in 1!.10).

4.5.4 The monotonicity of ~ST makes the replaasment property work:

provided A has been put in the appropriate extended context.

We make this slightly more explicit. Let A be an occurrence of a sub

expression in E. The aontezt of A in E can be defined by induction on

the length of E. Intuitively speaking, it consists of all the assumpt

ions x E a, which one encounters (in the form of abstractors [x:a])

when scanning r from "left to right" until one arrives at 1::.. The crucia

clause in the definition is of course: if ~ is the context of D. in E2
then (x E E 1 ,~) is the context of~ in [x:E1JE2 •

237

Now the context of A in the replacement property must provide all free

variables of A with the same typing as they get when A is inserted in

B. E.g. we can take (~,n0) where s is the context of B and is the

intersectien (in the sense of context inclusion sub, cf.V.2.6) of all

the n's which are the context of a free occurrence of x in B.

We define p(A) to be the set of ST-reducts of A. Then, again if A

has been put in the right context,

4.5.5 The other replacement property B C =~> B* c*, where *

stands for [x/A]LR is still not generally valid, but we have a restricted

version. Lemma: If A ~ST typ(x) and B ~ST C then B* C*.

Proof: Ind, on ~ST' E.g. if B >l,T C, B: "'X'"X"',

'~ ···typ(x) .. ·x·•·, thenB*: ... A .. •A· .. ~ST ... typ(x)• .. A•·•- c*.

Corollary: ST-SN, A ~ST typ(x) • B ST-SN.

Proof: Use ind. on (1) 6ST(B*), (2) lengthof

3:-SN conditions.

4.5.6 Now we are ready for the ST-SN proof.

. E.g. inspeet the

Replacement theerem for ST-SN: Let* denote {x/p(A)}LR'

Let B normable, ~(x) =~(A), A, B ST-SN. Then

c E B* - c ST-SN

provided A has the right context.

Proof: Byinductionon (I) IJ(A), (II) 8BT(B), (III) the "aapaaity" of

the transition from B to C, i.e. the sum of the e
6

T•s of the reducts of

A inserted in B. Now consicter a single reduction step C >
1

,ST D. We

distinguish: (1) this reduction step concerns an old redex, i.e. a redex

already present in B, (2) this step concerns a new redex. The latter

are of two kinds: (2a) multiplied redices, i.e. redices inside an in

serted reduct of A, (2b) newly composed redices. All T-redices fall

under case (1) or (2a) and the S-redices are classified as before, so

the only possibility of case (2b) is as fellows: B: ···x···{B
1
}x•••,

c = ••• A 1 ••• { c 1 }[y : y]E • •• I D = ••• A 1 ... E[c 1] ••• , where c 1 E sr'
Al, A ~ST [y:y]E.

238

In case (1) and {2a) the replacement and the reduction commute,

i.e. B > D0, DE D~. To be precise, let {C
1

}[y:y]C
2

be an "old" redex,

i.e. {B1}[y:6JB2 c 8, C
1

€ 87, c2 € s;. Then DE ••·C
2
(c

1
]••• €

(••·B21B1]•••){x/p{A(B
1
J>}LR, and not simply D € D0. Then we get

6;-SN(D) by ind. hyp, II {case (1)) or III (case (2a)).

Now we tackle case (2b): create a new variable zand form B
0

by

replacing the intended {B
1

}x by z. So BE B
0
(z/{B

1
}x)LR' For simplicity

we put typ(z) : St-nf({B
1
}x), so ~(z) E ~({B1 }x) and 6t-SN(B

0
> -by 4.5.

Then we form B0 € B~ by replacing the remaining free x•s of s
0

with the appropriate reducts of A, i.e. the same as used in the formati

of C, and finally replace the z of s0 by E(C
1
). This gives us

D = B0lz/EIC
1
HLR back. Informally: B

0
: •··x• .. z•••, s0: •••A

1
... z .. •

D •••A 1 •••E(C
1
]••• • Either by ind. hyp. II or III we get S;-SN(C

1
).

Further 6t-SN(A) so S;-SN([y:y]E) so 6;-SN(E). By normability B
1
<~x

so C1 <~x. Substitution is a special case of replacement, and replace

ment []LR is a special case of i }LR so by the first ind. hyp.

6t-SN(E(Cl]). Bo is St-SN by ind. hyp. II or III, E(Cl) <~x so by ind.

hyp. I again S;-SN(D) q.e.d.

4.5.7 Corollary 1: B normable, ~(x) :~(A), A, B S;-SN • B(A]B;-SN

(substitution theorem for St-SN)

Corollary 2: B normable • B B;-SN (see 4.4.4)

Corollary 3: B normable • BT(B) (as in 4.4.3)

4.6 Second proof of ST-SN

4.6.1 Bookkeeping pairs, t-expansion and w-reduction

4.6.1.1 Assume that A ~tB , i.e. B results from A by successively

replacing variables x by their type typ{x). Alternatively we can work

backwards from t-nf(A), by successively replacing newly created sub

expresslons by the original variable.

In general it is of course not possible to retrace which subex

pressions are newly created, and from which variable they stem, unless

we store this information somewhere inside the expression!

Following de Vrijer [70] we use a new pairing opePation r,,.,, •• ,

for this kind of bookkeeping.

239

Definitions: (1) If A, Bare expressions then rA,B 1 is an expression.

(2) If A, Bare ~-expressions then rA,B 1 is a ~-expression.

(3) If A, B are normable, ~(A)

For the rest the definitions of pretyped and normable expressions are

unaltered. The notions of subexpression and substitution are extended

in a straightforward way. As a new monotonicity rule, for each kind of

reduction, we can have, e.g. A> A', B > B' => rA,B 1 > rA',B' 1
•

4.6.1.2 Now the alternative way of producing B from A (above) can be

described as fellows: (1) first provide all variables x successively

with a copy of their type, i.e. replace x by rx,typ(x) and sa on,

(2) then for some of these pairs simple restare the lefthand part, and

for the rest piek the righthand part.

In the process (1) the T-expaneion of A, T-exp(A), is constructed,

i.e. each x of A is replaced by rx,r-exp(typ(x))'. The process (2) we

describe in termsof a projection reduotion (~-reduction ~~).

Definitions: (1) The T-exp of pretyped expressions is defined

inductively:

(i) T-exp(x) = rx,r-exp(typ(x)l 1

(ii) T-eXp({A}B) : {T-eXp(A)}T-eXp(B)

(iii) T-exp([x:a]Bl = [x:T-eXp(a)]T-eXp(B)

(2) (i)

(ii)

one-step ~-reduction >
1

is generated from ~-contraction:
.~

r A~,B, > A, rA, B, >
1

B by the monotonicity rules
1,rr ,rr

rr-reduction ~ is the transitive and reflexive closure of
~

4.6.1.3 Remark: Formally we should have defined the T-expansion of

expressions w.r. t. their context, notatien ~-T-exp (B) • The abstr. case

of the definition then becomes:

~-T-eXp([x:a]B) = [x:(~-T-eXp(a))]((~,x E a)-T-eXp(B))

240

4.6.1,4 The point of this alternative approach of ~t' making use of

A ~ B ~ t-exp(A) ~ B tsee 6.2.21 T . 1T

is that ~1T is definitely easier to handle than ~t' roughly because ~T

does not depend on the context, and that ~8,-reductions of an expressier

can be simulated by ~aw-reductions of its t-expansion.

our proef below consiste of two parts: first we show that an~SN

implies St-SN, then we prove the SQBR lemma for ~S1T and Sn-SN.

4.6.2 aw-SN implies St-SN

4.6.2.1 Lemma: A >
1

B.~ t-exp(A) ~ t-exp(B)(in fact >)
,t 1f 1,11

Proef: Ind. on >
1 ,t

(i) t-contraction, A= x, B = typ(x). Then t-exp(A) -

rX,t-eXp(typ(x)), >
1

t-exp(typ(x)) E t-eXp(B) ,n

(ii) Monotonicity, e.g. A E [x:A
1

Jx, BE [x:B
1

Jx, A
1

>
1
,t B1:

By ind.hyp. t-exptA
1

l ~n t-exptB
1
l, so t-exp(A) -

[xa-exp tA
1

l Jr x ,r-exp <A
1

) 1 ~ n [x :T-exp(B
1

)]r x ,r-exp (B
1
), -

t-exptBl

4.6.2.2 Corollary 1: A ~ B • t-exp(A) ~ t-exp(B)
t 1T

corollary 2: A ~ B • t-exp(Al ~ B (because t-exp(B) ~ El
T 1T 1T

4.6.2.3 Lemma: Let A be a ~-expression, let B be a (~,x E a,n)-express

ion. Let I and II stand for [x/A] and [x/r-eXp(A)) resp. Then

I I with t-exp(B) taken w.r.t. ~. n •

Proef: ind. on .the definition of t-exp(B):

(i)
II r ,II r 1 t-exp(x) : x,r-exp(al = r-exp<Al ,r-exp(al > '![

I r-exptAl : r-exptx).

(ii)
II r t II, r I , -r-exp(y) _ y,-r-expt yp(y)) ~11 y,r-expttyp(yl l -

I r-exp ty l •

241

(iii) (t-eXp({B
1

}B
2
))II ({t-eXp(B

1
)}t-eXp(B

2
))II

I I I
{r-exp(B

1
)}r-exp(B

2
) E r-exp(({B

1
}B

2
)) etc.

4.6.2.4 Corollary: Let A be a ~-expression, Bis a (~,xE a)-expression.

Then r-exp(B)[x/r-exp(A)] ~ r-exp(B[x/Alll
11

4.6.2.5 corollary: A >1,
8

B • r-exp(A) >
1

,
8

~ 11 t-exp(B)

Proof: Ind. on >1,
8

:

(i) 8-contraction, A

t-exp(A) >
1

,
8

r-exp(A
3

l[x/1-exptA
1

lll r-exptA
3
[A

1
lll

r-exp(Bl, by 4.6.2.4.

(ii) monotonicity, e.g. A= 'A 1,A2,, B rB
1

,B
2

1
, A

1
>

1
,

8
B

1
,

A
2

>
1

,
8

B
2

• By ind. hyp. •-exp(A) = rr-exp(A
1

),<-exp(A
2

) 1

•-exp(Bl.

4.6.2.6 Theorem: r-exp(A)St-SN •A St-SN

Proof: Let r-exp(A) be S11-SN, use ind. on es11 (t-exp(A)). If A >
1

,
8

B

then t-exp(A) >l,S ~ 11 r-exp(B) (by 4.6.2.5), so by ind. hyp.

Bt-SN(B).

Similarly, if A> B then St-SN(B). SoA is s11-SN. l,t

4.6.3 The proof of 811-SN

4.6.3.1 The normable expressions are closed (and norms are preserved)

under ~S 11 • Further satisfies both substitution properties (see4.4.1).

Notice that does not satisfy CR but that 8 and 11 commute (use nested

one step reduction

~ B"*A~ C
Brr 11

,
,11

B

4.6.3.2 811-SN conditions

see II.3.4) and that weak liS-postponement holds:

These are again quite similar to the 8-SN conditions. The interest

ing clauses are:

{1) A Sn-SN, B 811-SN "* [x:A]B and 'A,B 1 811-SN

242

Cil A aw-SN, B Bw-SN and <B ~Bw [~:a]D ~ DIAIBw-SNl ~ {A}B Bw-SN

So, again, we want the substitution theorem for BT-SN.

* 4.6.3.3 Square brackets lemma for ~Sw: Let B be 8~-SN. Let stand for

[~/AB. Let B* ~Bw [y:S]C. Then either (1) B ~Bn [y:a0Jc0 with

B~ ~Sw B, C~ ~Bw C, or (2) B ~Bw {Bk}•••{B1 }~, ({Ë}~)* ~ [y:B]C.

Proof: As in IV.2.4.3, by induotion on (I) eSn{B), (II) the lengthof
B h · rB B , B* - rB* B*, • Te new case 1s

1
,

2
, =

1
, 2 • Then either

Br ~Sn [y:S]C or B~ ~aw [y:S]C, and we can apply ind. hyp. I to B1
or B

2
•

Remark: An alternative proof is provided by Barendregt's lemma, which

is still valid for ~Sw (see II.11.3.5),

4.6.3.4 SUbstitution for Sw-SN: Let B be normable, ~(~) -~(A), A and

Bare Sn-SN. Let* stand for [~/A]. Then B* Sw-SN.

Proof: As in IV.2.4.4, by ind. on (I) ~(A}, (II) e 8~(B}, (III) length

f B Th . B - rB B , B* - rB* B*, Both B* o • e new case concerns = 1 , 2 ' = 1 , 2 • 1

and B; are Bw-SN by ind. hyp. II so B* is Bw-SN.

4.6.3.5 corollary: B normable • B Sn-SN

4,6.3.6 Notice that the T-expansion of normable A is again normable,

soA normable ~ T-exp(A) normable.

Corollary: A normable ~ABT-SN (by 6.2.6)

corollary: BT

VII.5 Closure and Church-Rosser for An

5.1 Introduetion

5.1.1 Here we consider the constant-leas part of An, defined as in sec

2.12, but with ~ standing for Sn-reduction. It is easy to derive a

strengthening rule (sec. V.1.6) for such an algorithmic system, so n-CL

does not cause major difficulties. The problems with closure for An, as

compared to A, are rather due to the fact that CL and CR appear to be

243

heavily interwoven. Namely, a proof of CL (see, e.g., VII.3) seems to

make quite essential use of CR, while in turn we seem to need CL in the

course of the CR-proof - because Sn-CR holds for correct expressions

only.

The salution is of course to prove CR and CL (and a number of other

properties) simultaneously, by induction on big trees. In sec. 5.2,

below we prove indeed that BT extends to the present situation.

5.1.2 We introducesome notation that enables us to make the structure

* of the proof more explicit. Here +is as in VII.3.4.

Definition: If P is a property of expresslons then p* and Prr are

given by

(1) p*(A):..,. A.! B "* P(B) _

* (2) P5(A): ..,. (A properly +-reduces toB) "* P(B)

Using this notation, we can express our induction step by

~A, CR~(A), CL~<Al "*CR<AJ, CL(A)

for which, of course, it is sufficient to prove

The properties SA, PO, PT and P*T from 3.1 play again a role

in the proof, and further property SC, substitutivity of correctness,

here defined by SC(B): ..,.

(x E o.I-B, ~A, typ (A} + typ (ól::) , typ* (A) + typ* (x) "* ~B[A~ J •

5.1.3 Now the proof below is organized as fellows. First we present

some preliminary facts, among which Sn-BT (sec. 5.2), strengthening and

n-PT (sec. 5 .3).

Sectien 5.4 contains the actual closure proof. First we assume ~A,

CR0CAJ, cL;(A), and prove SA(Al and PD(Al (in sec. 5.4.1), PT 1 cAJ, SC(Al

and CR
1

(A) (in sec. 5.4.2-5.4.4) respectively by a separate induction

on big trees, and by simple induction on length. Then we complete the

proof by proving PT(A), P*T(A) and CL 1 (A) simultaneously, by induction

on the big tree of A again.

244

5.2 Extension of BT to the Sn-case.

5.2.1 A postponement result

Let ~ and ~a be the straightforward extensions of ~ and ~ot'
tl) pTI) T p

as defined in 4.4.2. Mere verification shows that

A pretyped, A > >1 B • A > > B l,n ,t l,t l,n

whence- as in II.7.3.2- tn-postponement:

A pretyped, A ~ B • A ~ ~ B.
nt t. n

Combining this with Bn-PP we get

5.2.2 Snt-SN and Sn-BT

In 4.6.3 we proved St-SN, which- as in II.7.3.5- tagether with

(St)-n-PP and n-SN gives us Snt-SN, for normable expressions. Then

Sn-BT follows, as in 4.4.3.

5.3 Some simple facts

5.3.1 Strengthening

If Bis a{~,~ E a,y E B)-expression, but~~ FV{B) and ~ ~ FV(B),

then B is a (~,y E B)-expression as well, and the typ (if degree(B) + 1

and typ* of B w.r.t. both contexts are syntactically equal (:).

So,by induction on the definition of correctness, we get

strengthening: if ~ E a, y E S~(B), ~ ~ FV(S) (and ~ ~ FV(B}) then

y E St(B) - read this twice, with and without the parts concerninq B -
As a corollary we have: ~ E a~A, ~ ~ FV(A) ,. ~A

whence n-outside-CL1 : ~~:a {~}A,~~ FV(A) • ~A.

5.3.2 n-PT and n-P*T

For pretyped A there holds

A> B typ(A) > typ(B} (if degree(A) f 1), typ*(Al > typ*(B)
n n n

Proof: Induction on the length of A.

So, induction on ~ gives
T)

245

A B*typ(A) ~ typ(B) (ifdegree(A) + 1), typ*<Al
T)

typ* (B)

and, a fortiori, we have n-PT and n-P*T

A<?: B,. typ(A) + typ(B) {if degree(A) f 1), typ*(A) + typ*(B)
n

5.3.3 From 3.2.1 we reeall the proparty of correctnessof types

~A =+ ~typ(A)

and the substitution properties from 3.2.2

(1) typ(A) + typ(x) =+ typ(BI!A]) + typ(B)[A]

(2) typ* (A) + typ* (X) ,. typ* (B[A]) + typ* (B) [A]

5.3.4 Property: Let degree(A)

A z =x1 :a1J···[xk:ak]C.

Proof: Induction on the lengthof A. E.g. let A = {A
1

}A
2

, then

~<A 2) = [~(A1l][v1]···[~]8, so by ind. hyp.

A
2

<?: [x:S][x1 :a1J···[xk:ak]C and A z [x1 :ai]•••[xk:ak]C', q.e.d.

Corollary: Degree(A) = 1, v(A) [v1Jv2 ,.A<?: [x:a]C.

corollary: ~ 1A, A= [x:a]C, A 2 p,. F 2 [x:S]D

Proof: If A correct, then A normable, so F normable, with

Corollary: ~ 1A, A [x:a]C, A + F =+ F 2 [x:S]D.

5.4 The actual closure proof

5.4.1 Lemma: Let ~A, CR0 (A), CL 0 {A). Then PD{A) and SA(A)

Proof: By induction on the big tree of A.

CPDl. Let A= [x]A
2

, A<?: [x:B1 . If A1 2 B1 , A2 <?: B2 then

certainly A
1

+ B
1

. Otherwise A
2

2 {x}[x:B
1

• The latter expression is

correct, satisfies CR* and CL*, so we can use SA and get A1 + , q.e.d.

(SA). Let A {A
1

}[x:A
2

JA
3

• Then ~A 1 , typcA
1

J 2 ~~ ~[x:A 2 JA 3 ,

246

typ*([i:A 2JA 3l ~ [re:A 2Jtyp*(A3) ~ [re:~]C. By correctnessof types

r[x:A2Jtyp*<A 3l, which also satisfies CR* and CL* so we can apply PO
and get A

2
+ ~~ whence typ<A1J + A2, q.e.d.

5.4.2 Lemma: Let rA, CR~(A), CL~(A). Then PT1 (A)

Proof: Induction on length(A). n-PT1 we knowalready (sec. 5.3.2). For

S-outside-PT1 let A~ {A1}[x:A2JA 3• By 5.4.1 typ(A 1) + A
2

and by the

substitution proparty 5.3.3.(1) typ(A) E {A1}[re:A2Jtyp(A3) >

typ<A3J[A 1ll + typ(A3(A 1D), q.e.d. The other cases are immediate.

5.4.3 Lemma: Let x E a, y E S~B, cR;(B), CL~(B), ~A, typ(Al +a,

typ*(A) + typ*(a). We write * for [re/A). Then ($C(B)) y E s*~B*.

Proof: Induction on length(B). The crucial case is: B ~ {B1}B2,

typ(B1J ~ ~~ typ*{B2J ~ [u:~]~. By ind. hyp. ~B1 , ~B2 • We do not know

CR or CL for the substitution results, so we use a trick. Distinguish:

(1) B1 doesnotend in x, then typ(B
1

l E typ(B1>* ~ $*.

(2) Otherwise, let B1 E •••x•••re and form C1 from B1 by just re

placing the final x, c E •••re•••typ(A). Then cl+ typ(Bl)

and by CR, cl + ~- So typ(B~) E c~ + +*·

Anyhow, in both cases typ(B~J ~ +'*, with +' + +•

Further distinguish:

(1) B
2

doesnotend in x, then typ*<B2J E typ*<B2>* ~ [u:cp*Jw*.

(2) Otherwise form C
2

from B
2

by replacing its final x,
B2 E ···x···x, c2 ~ ···x···typ*(A) + typ*<B2). Then, by

CR(typ*<B2JJ, c2 + [u:+Jw and, by 5.3.4 c 2 ~ [u:cp"]w" with,

by PO, • + ljl". Now typ*<B;) E c; ~ [u:+"*]~"*.
so in both cases typ*(B;l ;:: [u:cp"*]w"*, with + + +"·

Now use CR(cp), this gives ~· + ~", whence +'* + +"* and

typ<B~> + +"*. so Hsr}s;, q.e.d.

5.4.4. Lemma: Let ~A, CR~(AJ, CLt<A). Then CR1 <Al

Proof: Again by induction on length. The crucial case is the critica!

Sn-case: A E [x:A
1

]{x}[x:A2JA 3, x 4 FV(A2l. By 5.4.1 SA({x}[x:A2JA3J

so A
1

+ A
2

, [x:A1JA3 + [x:A2JA3, q.e.d.

247

5.4.5 Lemma: Let tA, CR0(AJ, CL~(A). Then CL
1

(Al, PT(A) and P*T(A).

Proof: Induction on the big tree of A.

(1) \CL 1J. Let A> B, we must prove ~B. The n-outside case we know al

ready. Consider, e.g.: A {A
1

}[x:A
2

JA
3

, B A
3
[A

1
]. By 5.4.1

typ(A
1

J ~ A
2

• By P*T- ind. hypothesis -we get typ*(A
1

) ~ typ*(x)

as well, so by 5.4.3 we are done. This is S-outside CL
1

•

or consider: A: {A
1

}A
2

, A
1

> B
1

, A
2

> B
2

, B =: {B
1

}B
2

, typ<A
1

J ~Ijl,

typ*(A 2) <:: [u:~]tjl. By (e.g.) the ind. hyp. we get ~B1 , I-B
2

,

typ<A
1

J i- typ(B
1

J and typ*(A 2) +typ*cB
2
). Now use CR, this gives

typ(B1J + ~ and typ*(B
2

) ~ [u:$]tjl.

So, by 5.3.4, typ*(B2) <:: [u:~']tjl' and by 5.4.1 ~ t ~·. Finally

CR(~) yields typ(B
1

) + ~·, so ~{B1 }B2 , q.e.d. The remaining case

of CL
1

is trivial.

(2) (PT). PT
1

we know already. Now let A >1 B ~ C. By CL 1 ~Band by

ind. hyp. PT(B), so by CR(typ(B)) 1 typCAl + typ(C), q.e.d.

(3) cP*T). Let degree (A) = 1. Then by PT I if A ;::; B,

typ(A) <: F :> typ(Bl. By CL
1

<Al (this implies CL(A)) ~B, so by

correctnessof types, ~typ(A) and ~typ(B). Now apply the ind. hyp.:

typ*(A) + typ*(F) + typ*(B) and use CR: typ*(A) + typ*(B), q.e.d.

5.4.6 Theorem: If ~A then CR(A) 1 CL(A)

Proof: By induction on the big tree of A. The ind. hyp. reads CR~(A),

CL~(A), and the preceding lemmas produce CR1 (A) and CL
1

(A). As we

noticed before, this yields CR(A) and CL(A).

5.4.7 Corollary: If ~A then SA(A), PD(A), PT(A), P*T(A) and SC(A).

5.4.8 Note: The separate inductions on big trees in 5.4.1, 5.4.5 and

5.4.6 can of course be compressed into a single induction on big trees.

248

VII.6 Various equivalence results

6.1 Introduetion

In VII.2 we introduced A(n) with and without (definitional) con

stants. The results in VII.3-5 are derived for the constant-less system

In this section we extend these results in an indirect way to the re

maining systems, by showing that, in a certain sense, they can be em

bedded in the constant-less version.

Sec. 6.2 is devoted to primitive constants only. First we givé a

translation which eliminatas the constant-expression. Then we explain

the relations between (a) the system with constants, (b) its image unde

the translation, and (c) the constant-less system. Afterwards we easily

extend our nice properties (CL, CR, BT) to the system with constants.

Sec. 6.3 covers the additional extension with definitional con

stants. In 6.4 we prove another equivalence: between Nederpelt's single

line presentation with abstraatorstrings Q and our presentation, with

contexts ~. In this case too, the correspondence is close enough to

show that Nederpelesoriginal system satisfies the required properties.

6.2 Eliminating primitive constants

6.2.1 The translation '

For the system with constants (for short: c-system) we use the

notations A(n)C and ~c· Now wedefine a translation of the C-system int

the system without constants. The translation (notation '} is characte

rized by:

(1) it transforma constants pintovariables p•,

(2) it converts constant-expressions p(A 1 ,•••,Ak} into appl. express

ions {Ak}•••{Ai}p',

(3) it eliminatas sahemes yES* p(y) E y one by one from the book by

including an additional assumption p• E [y:B']y' in the context,

(4) it commutes with the other formation rules (for expressions, strin

and contexts).

249

Thus a statement 8; ~CA is translated into 8', ~·~A' where B' is

understood to be a context consisting of the additional assumptions for

the new variables p'.

6.2.2 Why the indirect approach?

Below we use the properties of the constant-less system in our

proef of the desired correspondence. Afterwards we can extend these

properties to the C-system.

The point is that the constant-less system is definitely easier to

handle. In particular: the fact that the typ of a constant-expression

is constructed by substitution is a complicating factor, because cor

rectness of types is not immediate any more.

E.g. by using this indirect approach we would have been able to

introduce constants without using degree-norms.

6.2.3 The nature of the correspondence

For terminology about extensions we refer te V.3.3.2. However,

because we study an algorithmic system now, we replace A E B by

typ (Al i- B and A Q B by A + B.

Clearly the C-system is an extension of the system without con

stants. Because typ and ~ remain the same, it is a conservative extens

ion too. Of course it is not an unessentiat ene: primitive constant

expressions do not main reduce at all, so they can never be definition

ally equivalent to an expression without constants.

Contrarily, the translation 'maps expression (and contexts),

correct w.r.t. B in the c-system, property into the expressions (and

contexts), correct w.r.t. B•: expressions {Ä}p' that do nothave enough

arguments in front, i.e. where IÄI is smaller than the arity of p have

no counterpart in the c-system.

For the image of the C-system (w.r.t. a fixed book 8) under ',we

introduce the notatien • I.e.

n~_, resp. n~_B: ~ n- ~·. B

Then below it will appear that the expressions (and contexts) correct

w.r.t. B' in the constant-less system, farm a conservative extension of

250

the system ~-· In the presence of n..:reduction, it will be definitional

(so unessential) too. See sec. 6.2.9.

6.2.4 Facta about 1

Notice that 1 is a purely "syntactical" matter, which has nothing

te do with correctness: pretyped-ness is sufficient.

As a map from statements 8; t;;f-A to statements 8 1
1 f;, 1 1-A 1 the trans-

lation in not one-one, but as a map from B-expressions and - contexts

into 8 1 -expressions and - contexts it is one-one indeed. For the (part

ia!) inverse we use the notatien 0 :

(A I) 0 := A

Clearly 1 A[BB 1 = A 1[B'D so A ~ B ""A' ;;: B', soA + B • A 1 + B'.

t A t A head-Qi Further YP< ') ;;: yp() 1
- there are only ~ contractions involveà

where degree(A) i+l (for the definition of head- and of i-reduction

see V.3.3.3 and V.4.3.3,5). And typ{A') - <PI for some <Jl.

If there is no n-reduction then we have

(l) A' > B .. A > B0 , BI
0 - B

so (2) A' <! B' .. A ~ B

and (3) A' + B' •A + B

6.2.5 ' and n-reduction

With n-reduction, (1) above does not hold any more:

([x:a]p(Ak, • • •,A
1
,xl) 1

Lemma: A' ~ B' • A <! B n n

[x:a']{x}{Ä'}p' may reduce to {Ä'}p'.

Proef: Ind. on the lengthof A. E.g. let A = [x:a]C, soA' = [x:a']C'.

If B' [x:6']D' with a'~ 8 1
, C' ~ D' use the ind. hyp. Otherwise

n n
C' <! {x}B'. The latter expression is ({x}B)' so by ind. hyp. C ~ n n
and A ~ B, q.e.d.

n

{x}B

0

Now let A' ~ B' then by sn-pp: A' ~B C ~n B 1
• This C = C0, so C0 ~n B

by the lemma, and A ~ B. This is property (2) above. Proparty (3) can

be proved in the same fashion.

251

6.2.6 Something about typ*

Lemma: rB' * <rtyp*(B) •, typ*(B) I + typ*<B'))

Proof: The translation ' preserves the degree, of course. We use induct

ion on degree(B'). The degree 1 case is immediate. Otherwise

typ*(B') = typ*{typ(B')) and typ*(B)' = typ*(typ(Bl)'. By correct

nessof types rtyp{B'), reducing to typ(B)' and by P*T

typ*(B') + typ*(typ(B)'). By CL rtyp(B)' so by ind. hyp. rtyp*(B) ',

q.e.d., and typ*(B)' + typ*(typ(B) '). By correctnessof types

rtyp*(typ(B)') so by CR typ*(B) 1 + typ*(B'), q.e.d. 0

Now that we know CL, CR, PD and SA for A(n) we can extend property

5.3.4 to: ~ 1A, r
1
[x:a]C, A + [x:a]C • A ~S [x:S]D, a + S. So, as alter

native application condition, equivalent to the one used originally:

rA, rB, typ(A) ~a, typ*(B) ~ [x:a]C * r{A}B

we can as well use, e.g.

typ(AJ +a, typ*(B) [x:a]C

or

typ(A) + a., typ*(B) + [x:a]C, Hx:a]C

6.2.7 The proef of the correspondence

Theorem: B; çJ cA ** B', ç; 'rA •

Proef: *· By induction on correctness. The formation of the context B'

is allowed, due to the liberal degree conventionsof A(n). Consider,

e.g. the appl.rule: let rcA, reE, typ(A) ~a, typ*(B) ~ [x:a]C. By

ind. hyp. rA I, rB 1
, further typ (A I l ~ typ (A) I 2 a I and by the

lemma in 6.2.6 rtyp*(B) 1
, typ*(B 1

) +typ (B)' ~ [X:a 1]C 1
• By CR,

typ*(B 1
) + [X:a.']C 1

, By CL, r[X:a']C• so, by the alternative appl.

rule r{A•}B 1
• Or consider the instantiation rule: rcB1,•••,

y E s*p(yl E y is a scheme in B, lul k and typ l + Ë] for

i=l, •• • ,k. The translated scheme reads p 1 E [(y: S 1)]y 1
• By ind. hyp.

1-Bi,•••,f-Bk. Now typ(Bil ~ typ(B1)'.} BJ., typ*(p 1
) [y 1:Si]"•T,

so r{Bi}P'· Further typ<B2l 2 typ(B2) I + S2[B1B' = s;[Bi] and

typ*<{ }p'J = {Bl_}typ*(p'J > Cy2:s;ffs;_n"·T, so Hs;Hspp•.

252 \.

Etc. up to HBkJ•••{Bi}P' ::: p(B) ', q.e.d.

~ Also by induction on correctness. E.g. consider an appl. express

ion. Either it is ({A)B)' or it is p(B)'. First case: if ~{A'}B'

then ~A' (so ~é>• ~B' (sol-eB), typ(A)' s typ(A'l::?: et (so

typ(A)' -l-et), typ*(B)' + typ*(B') ~ [.x:et.]C (so typ*(Bl + [.x:a]C).

Hence typ*(B)' ::?:
8

[.x:B]D [.x:a0JD0 = ([.x:a 0JD0) • withet + B. By

CR typ(A) I + 13o' so typ(A) + 13o' and typ*(B) ::?: [.x:So]Do' so

rc{A}B. Second case: r{Bk}•••{Bl}p' so l-cBk,•••,rcB1• Let

y E ä * p(y) E y be the scheme of p. Typ(Bil ~ ~ 1 ,

typ*<p'l ::: [yl :f3iJ•••• ~ [yl:~l]•••• so typ(Bll' +Bi,

typ(B1) + s1• Further typ<Bil::?: ~2 , and [y
2

:B2ffBiBJ•••• <

{Bptyp*(p') typ*({BiJp') ~ [y2 :~2 J ... ,, so typ<B
2

l -1- s
2

ffB
1
).

Etc. up to typ(Bk) f Bk[ÊD and 1-cv<Bl q.e.d. 0

6.2.8 The required properties

Theorem: The strictly normable constant-expressions (see IV.3,4)

satisfy BT

Proof: Strictly normable C-expressions transferm into strictly normable

expressions without constants under the translation ' , And all .!
sequences of C-expressions A transferm into subsequences of .!-
sequences of A': (1) typ(A')::?: typ(A)', (2) A >

1
B•A• >

1
B',

(3) Ac B •A' c B'. So by BT for the constant-leas version we

are done.

Theorem: A(nlc satisfies CR

0

Proof: Let 1-cA, A ~ B, A ~ C. By the ==- -part of the correspondence ~A •

and by CR for A(nl B' + c•, so B + C, q.e.d. 0

Theorem: A(nlc satisfies CL

Proof: Let I-cA, A> B. Then rA', A', B' so by CL rB'. So rcB.

Theorem: A(nlc satisfies SA, PO, PT, P*T, SC etc •

. Proof: Either from CL and CR, or using the correspondence

6.2.9 An unessential extension result

Now we explain the conneetion between the 1-_-system and the

ordinary r-system of A(n) without constants, Reeall

0

253

The first half of the correspondence result shows ~- ~ ~~ i.e. a

simple extension result. Now we define a translation from the larger

into the smaller system, as follows: if x E ä * p(x) E y is a scheme

in B, lxl = k, i < k then

({A i} .•• {A 1 }pI) -

{A~}p', i.e.wen-expand until p' gets enough argumentsin front. For

the rest acts as identity.

Clearly A <:nA, A :: (A-0)•. Viz. ({Ai}•••{A
1
}p') o"

[x Hl: CJ.i+ 1[Ä-JI] • • • [xk: c\[ÄöDP (Ä-O'x i+l' .. • ,xk) •

The translation is a bit intricate, because ({A}B)- is not necessarily

{A-}B-. In general {[}B- <:S ({A}B)- and B-[A-]1 <:S (B[A] J • Further

typ(A-l typ(A)-, and also typ(A-l +s typ(A)-. Without proof we

state that A<: B •A <: B, and that typ*(A-) + typ*(A) • From these

facts, it can be proved that: ~A ~1-A-, so by the second part of the

correspondence ~A- ~-A-.

In case of Sn-reduction, this is a typical unessential extension

result.

6.3 The case of definitional constants

6.3.1 We have three main possibilities to incorporate definitional

constants in our theory. The first one studies the new system (we call

it A(n)d, with correctness predicate ~d' and also speak about the

·d-system etc.) independently, as a separate subject, the second one

considers it as an extension of A(nlc, and the third one embeds it into

A(n), by extending the translation' from the previous sections in

order to cover definitional constants.

Here we actually use the second method, and just mention some

points on the third one.

But we start by proving the big tree theorem for A(n)d, for

reasans of completeness and as an indispensable prerequisite for the

separate study of the system (method one above).

254

6.3.2 The big tree theerem for A(nld

In 6.2.8 we proved BT for A(nlc by means of the embedding ' into

A(n}. It is indeed possible to extend' to the case of definitional

constants, but (see 6.3.3) the translation does net reflect the type

structure sufficiently, which makes this method fail here.

So instead we revise the BT-proof of 5.2 (for A(n)) and adapt in to

the A(nld-case, which is relatively easy. First we mention the BT-con

dition (see 4.3.2):

(5) BT (p (Ä)) 4* BT (A 1) I

(6) BT(d(Ä)) • BT<A 1>,

BT<Ak), BT<typ(pl[ÄD>

BT!Akl' BT<typ<d>[Ä]), BT<def(dl[Ä]).

The Sot-SN conditions are quite analogous, and, as in 4.4.3, we have:

Theorem: Bot-SN(A) • BT{A)

This suggests that, in this case as well, the substitution proparty

of Bot-SN is crucial. We choose to adapt the first BT-proof (sec. 4.5)

so need the replacement theerem (see 4,5.6) instead: Let * denote

fx/p(A)}LR' let B be normable, ~(x) :~(A), A, B Bot-SN. Then:

C E B* • C Sot-SN

Proef: As in 4.5.6. We consider a single reduction step C >l,Bot D. For

all S-steps and all t-steps concerning variables (net constants),

Bot-SN(D) can be proved as in 4.5.6. The remaining steps, i.e.

o-steps and t-steps of constants, can only fall into the categories

(1) and (2a) so we get Sot-SN(D) by ind. hyp. II or ind. hyp. III.

So we have a list of corollaries:

(1) B normable, ~(X)]J <A> , A, B SoT-SN .. B[A] BoT-SN

{2) B normable, ~<x1 l = JJ!A1l,

A. (1=1, • • • ,k) and B SóT-SN • B[Ä] Bö-r-SN
l.

Proef: The simultaneous substitution can be simulated by iterated single

substitution.

(3) B normable • B Bot-SN

Proef: Induction on pretyped expressions. For the new cases use the pre

vious corollary.

(4) B normable .. B Snot-SN

255

Proef: tn-PP extends to the present case (see 5.2.1), ón-PP we knew

already (see II.7.4). This gives (Bot)-n-PP and, by n-SN,

Snot-SN.

(5) B normable ~ Bno-BT(B)

6.3.3 The translation into A(n)

Here we show how the translation ' can be extended to the d-case.

Viz. an expression d(Ä) transfarms into {Ak}••·{Al}[x:~']D', where

x E ä * d(x) : D * d(x) E y is the scheme of d.

This translation behaves nicely w.r.t. to reduction: A> B ~ A• 2 B'.

But of course it is possible that an expression A' S-reduces to an

expression which is not some B'. This is in contrast with the situation

with primitive constants where this could only occur by n-reduction.

The best we can get is: A' >l,S B ~ B ~S C, A >l,Bo C. So, e.g. by ind,

on 66 (A'), we getA' B'*B c•, A~ C. Fortherest the translation

seems to be not too useful, because properties like A' tB' ~A+ B (at

least where n-reduction is allowed) and typ(A') + typ(A)' are only valid

in the correct fragment. Note that typ(A') ~ typ(A)' is simply wrong

here.

6.3.4 Same properties of A(n)c

Translation of A(n)d into A(nlc just requires the eliminatien of

abbreviations, which can be done by o-normalization. In the next

sections we show that this actually constitutes a tran~lation, i.e.

that it preserves correctness. Here we first give some properties of

i\('îlc which weneed in the rather complicated - proef below.

The single substitution result (of A(n), and of /dnlc too)

f-A, typ(A) +a, (x E a,nf-Bl '* nHA]f-B[A]

can, by induction on lxl, be extendedtoa simultaneous substitution

result

typ(A.l + a.[A] for i l,···,IAI, tx E ~f-B> ""f-B[A] .
~ ~

The properties of sec. 3.2.2 concerning the typ of substitution

results can be generalized to (1) the simultaneous substitution case,

256

(2) suècessive applications of typ, resulting in:

typj(A.l;. typj(x.J[ÄD, for i= l,··•,jÄI ""typj{B)~ÄB + typj(B(Ä)J, for
l. l. .

all relevant j, where typJ stands for j successive applications of typ.

This holds for A(n) but also for A(nlc and A(nld· Notice, that in case,

does not end in one of the xi we even have

6.3.5 The translation into A(nlc

our notation for the translation is For expressions amounts

just to taking ö-normal farm. It is clear how acts on strings and

contexts. It is intended that the hook B- is formed from B by ê-normal

izing and by skipping the abbreviational schemes. The translation is

of course not 1-1.

We reeall that B(Ä]- = B-[Ä-B, that d(Ä)- def(d}-(Ä-], and that

ö-reduction commutes with Bn-reduction. The latter implies

6.3.6 The translation preserves correctness

Theorem: 8; S~dA• B-; s-~ctypi(A)-, typi(A)- + typi(A-) for i=O,•••,

degree(A)-1 (this concludes ~cA- itself).

Proof: By induction on ~d • Crucial cases are: { 1) the application case:

A:: {A 1}A2 , j-dA1, ~dA 2 , typ(A 1l ~a., typ (A 2 J~[x:a]C. By the ind.

hyp. ~cA~, ~ctypcA 1)-, typ(A1)- + typ(A~), j-ctypi(A2)-,

i- i- -- -typ (A
2

} +typ (A 2J. Clearly typ<A 1J ~a so by CR typ(A1J +a.

Similarly, typ*<A
2
)- ~ [x:a.-Jë,and typ*(typi<A2l-) +

typ*ctypi<A;>> = typ*<A;> + typ*cA2J- (by P*TJ, so by CR,

typ*(typi(A
2
J-) + [x:a.-]C-. Hence ~Ctypi({A 1 }A 2 l-(= {A;}typi(A

2
l-l

See 6.2.6 for the alternative appl. condition. The property

i - i -typ ({A
1

}A
2

l + typ (({A 1}A2J) is trivial. (2) the definitional

constant case: A= d(ih, rdBj' typCBjl + sj[Ë] for j=l,•••,jyj,

where y E a * d(y) := D * d<y> E y is the scheme of d. By ind.

257

hyp. ~eB~ and typ(B~) 4- typ(B.) + S.[.Ïn. Also by ind. hyp.
J J J J

y E ÏÏ-~cD-, y E S-~cy-, y E S-~ctyp(D) and typ(DJ + typ{D-).

So, by the simultaneous subst. property, ~CD-[Ë-D<= A-),

tcY-[Ë-B<= typ(A)-]. We know that y i typ(D), so y- + typ(D)- so

by CR typ(D-) + y-, whence typ(D-)[lq + yTEn and, again by CR,

typ(A-} i typ(A) • Now there is left to prove:

(1) ~ctypi(AJ-(= typi-l(y[B])-), and (2) typi(A)- f typi(A-), i.e.

typi-l(y[Ë]l- + typ1 (D-[Ë-]), for i~2,•••,degree(A)-1. The ind.

i-1 -+ typ (y l I

i - i -
typ (D) + typ (D) for these i, and

k~O,•••,degree(B.}-1, for j=l,•·•,\y\. Now (2) is simple:
J

typi-1 (y[Ë] > + typi-1 <y>[Ë] so typi-1 (y[ËD >- + typi-1 <Y> -ff.in -~-

typi-l,y->[Ë-D t typ1 (.Ö-)[Ë-] + typi(D-[ÏnJ). Here weusePT and the

substitution property of types. By CR we get (2). Property (1) we

formulate in the form of a lemma.

Lemma: Let y E S~dy, ~dBj, for j=l,•··,\y\ with y and Ë as above.

Th en I i - -rctyp (y[B]) I for i=O,···,degree(y)-1.

i - -Proof: If y doesnotend insome of the y, then typ (y[B]l
J

i - --typ (y) [B] which is correct by the simultaneous subst. property.

This also covers the case i=O (which we knew already) . For the

rest we use induction on the lengthof y. The case y yj is true

by assumption. Further consider the application case: y {y 1}y2 ,

~dyl' ~dy2 , typ(y1l è! cp, typ*(y2J [z:tj>]E. By ind. hyp. ~Cy 1[Ë]-,
f-ctyp(y

1
[Ë])-, tctypi(y

2
[B])- for all i. We have typ(y;[Ë-]1) +

typ<y~>[Ë-D "' tYP<r
1
>-nn ;;;: ~-[rD, so by cR typ<y 1[ii]-> + ~[ËD-.

i - . i - -- i - --Similarly typ <'!}BliJ + typ (y2J [B] f typ (y2l[B]. So by CR

and P*T typ*<typi<y
2
[Ë]l-l + typ*<typi<y;l[Ë-]J + typ*<y;l[Ë-] +

typ*<y
2

J-[ir];;;: [z:cp[Ë]-JE[B]-. Again by CR, typ*<typi(y
2
[Ë]l-l +

258

The abstr. case is straightforward. This finishes the proof of

the lemma. This finishes the definitional constant case of the

theorem. Now the remaining cases of the theerem are straight

forward. This finishes the proof of the theorem.

Corollary: B; ~~dA • B-;1;-~c[, B-; ;-~c typ(A)-, B-; 1;-~c typ*(A)

and typ(A-) + typ(A)-, typ*([)+ typ*{A)-.

6.3.7 Is A(nld a definitional extension of A(n)C?

0

The above corollary amounts to the unessential extension properties

UE2 and UE3 (see V.3.3.2). Of course we also have ~CA • A ::A- and it

is tempting .to conclude theether half of UEl:

from the corollary. This is however not immediate as yet: we can concluè

and we know

but we hardly know anything about

Instead, we first prove the substitution theerem for A(n)d; this

gives correctness of types, as well as ó-CL. The latter implies UE1,
which completes our definitional extension result.

6.3.8 Some niceproperties of A(n)d

The corollary in 6.3.6 gives us already some nice results.

Theorem: A(n)d satisfies (1) CR, (2) SA and (3) PD

Proof: (1} Let rdA' B s; A :2: C. Then f-cA-, B- s: A :! C-. By CRB- + C-,

so B + c.

(2) Let rd{A}[a::B]C~ Then rc{[}[a::B-]C- so typ([}+ B-.

Further typ(A) + typ(A-) and by CR, typ(A) + B.

259

(3) Let ~d[x:aJA, [x:a]A 2: [x:S]B. Then ~c[x:a-JA-,

[x:a-]A- 2: [x:S-]B-. By PD a-+ 13- soa+ S.

Remark: We also prove some form of PT and P*T.

Let ~dA, ~dB, A 2: B. Then typ(A) + typ(B) and typ* (A) + typ* (B).

Proof: ~CA-, ~c , A <: B-, so typ(A)- + typ(A-) + typ(B-) + typ(B)

0

and by CR typ(A) + typ(B). Similar for typ*. 0

6.3.9 The substitution theorem for A(n)d

Proof: typ(B
1

) 2: typ(B
1
)- + typ(B~) 2: ~, typ*<B

2
) 2: typ*(B

2
) ~

typ*(B;) + [u:~]lji. By CR, typ(B
1

) + ~. typ*(B
2

J t [u:<j>]l/J.

So ~d{B1 }B2 • 0

Lemma: Let ~dB, i=l,•••,k. Let y ES* o(y) E y be the scheme of a,

with lifl = k. Let ~co<Ë-). Then ~dc(B).

Proof: typ(B.J 2: typ(B.) t typ(B~) + S~[Ë-~ ~ S.[B~. By CR,
L L L L L

typ(Bil + Si[Ë]. so ~da<ËJ.

Theorem: Let x E äf-dB. Let * stand for [x/Äll. Let ~dAi and

typ(Ail + o.~ for i=l,•••,lx!. Then ~dB".

0

Proof: We use induction on ~dB. So, by ind. hyp. ~do.~ for i=l,· .. ,!x!.

Now typ(A
1

J + o.
1

• So typ{A~) t typ(A
1

) + o.
1

and by CR

typ(A~) + o.~. Similarly typ(A;) + o.; ~ a;[Ä-]. Etc., and for all

i typ(Ai) + o.~[Ä-]J. Now consider, e.g., the application case:

xEèi~éB1 . By 6.3.6, XE ;:;-~C{B~}B; and by the subst. theorern

in A<n>c' ~c{B~[T]J}B;[TD <~ {Br}B;->. By ind. hyp. f-ctB~, f-ctB~,

so by the first lemma, ~d{B~}B;. Similarly use the second lemma for

the constant-expression case. The other cases are irnmediate. 0

260

6.3.10 The remaining nice propertie~ for A(n)d

Corollaries of the preceding theorem are (1) correctness of types,

(2) ö-outside-CL 1 , (3) S-outside-CL
1

<use SA).

Lemma: A(n)d satisfies CL
1

Proof: The n-outside case is mere strengthening. We use the lemmas in

6.3.9 for the inside cases. Let ~d{B1 }B2 , B
1

> c
1

, B
2

> C
2

• By inc

hyp. ~é1 , ~dc2 • By 6.3.6 ~c{B;}B;, and B; > c~, B; > c;, so

~c{C~}c; so ~d{C1 }C2 • Similarly for const. expressions. 0

Theorem: A(n)d satisfies CL

Proof: As usual, by ind. on ~. 0

Further we get the remaining UE-result:

6.4 Nederpelt's original formulation

6.4.1 Nederpelt's original definition of A [51] used single-line

presentation. I.e. instead of defining correctness of expression rela

tiva to a context, he defined correctness of expressions having an ab

stracter string [x:äJ (notation Q) in front.

For definiteness we give his rules. We write rN for correctness

in his system. But for certain provisions making sure that no confusior

of variables occurs, the rules read:

(1) f-Nt

(2) ~NQa • ~NQ[~:alx

(3) ~NQa, f-NQy • f-NQ[~:a]y

(4) ~NQA, f-NQB, typ(QA) ~ Qa, typ*(QB) ~ Q[~:a]C • f-NQ{A}B

6.4.2 Apart from the use of abstractor strings instead of contexts,

there are two other points that make the two approaches not completely

parallel. The first point concerns abstraction; our abstraction rule

has no counterpart in Nederpelt's system. Nederpelt rather follows a

261

combinatory (in the sense of combinatory logic) way of building ex

pressions. In the language of combinatory logic, rule (2) above is the

rule for Ia' the identity in a, and rule (3) is the rule for Kay' the

constant function on a with outcome y. Alternatively, rule (3) might

be called a rule of weakening (see V.2.9.3).

6.4.3 The secend point that requires attention is that an abstractor

string can get involved in a reduction (notably an n-step), whereas

contexts are of course immume to reduction. First some notation. we

write IQ! for the number of abstractors in Q. We write Q ~ Q' if

Q= [x:&J, Q' = [x:a'] and a~ a' in the obvious sense.

Now we have the following lemma: QA ~ Q'A', IQI A'.

Proof: If there are no n-steps involving the border line between Q and

A, then clearly Q ~ Q', A~ A'. Otherwise Q = Q
1
[x:a], a 2 o.',

Q
1

<: QÎ, A<: {x}B withx 4 FV(B) and QlB ~ Ql[x:B]A'. I.e.

QA = Q
1

[x:aJA <: Ql[x:a']{x}B >n QiB 2 QÏ[x:SJA'. Now we can, e.g.,

use ind. on O(QA) and conclude that B ~ [x:B]A'. But then A A',

q.e.d.

6.4.4 The equivalence proof

Now we are ready for the equivalence proof.

Theorem: Let

Q ex, , ~; x E a.

Th en

Proof: The -<=-part is immediate. We use induction on ~· E.g. consider

our variable rule: from x E ä~ we conclude x E ä~x .• If is the
1

most "recent" variable then we must use rule (2). Viz. x E is

itself aresult from x 1 E a 1,···,xi-l E ai-l~ai. By ind. hyp. we

get ~N[x 1 :a 1 J•••[xi-l:]ai. Otherwise we must insert the

abstractors inbetween~i:ai] and the end of Q by successive

applications of rule (3) • Now consider the '*-part. The crucial

case is the application clause. So let ~NQA, ~NQB,

typ(QA) ~ Qa, typ*(QB) ~ Q[x:a]C. By ind. hyp <;~A, i;~B. Now

typ(QA) _ Q typ(A) <: Qa so by the lemma typ(A) <: a. Similarly

typ*(B) ~ [x:a]C. So we conclude <;~{A}B, q.e.d.

262

6.4.5 The nice properties for Nederpelt's system

One of the consequences of the theerem is:

so the N-system can be considered a part of our system. This gives us

CR and CL immediately. From this one can get the other properties SA,
PO, PT etc. as usual.

6.4.6 Alternative way of embedding Ad into AN

Resuming the results of the preceding sections: we have constructe

an embedding of A<nld (via A(n)c and A} into AN.

Here we introduce an alternative way (due to Nederpelt [49]} of

embedding A(n)d directly into AN. our notatien for the translation is,

again, '.Let a statement 8; ~~dA be given. Primitive schemes

x E ä * p(x) E y are, as is to be expected, turned into abstractors

[p' E [x:ä•]y']. The context~ is of course transformed into an ab

stractorstring ~· Q. Essential is the translation of definitional

constant schemes. A scheme x E ä * d(x) :• D * d(x) E y is translated

into an expression "segment" {[x: ii']D • }[d' : [x: ä']y •] • All constant

expressions a(Ä) are now translated into {Ak}•••{Ai}a'. So B; ~~dA is

translated into a single expression B'~'A', where B' is a string of

abstractors and apptiaators, and ~· consists solely of abstractors.

For expressions the translation is quite similar to the translatie

'in 6.2.1. In particular we have (as in 6.2.4) typ(A') ~a typ(A)'.

However, w.r.t. to ö-reduction the correspondence is not too close: it

is not possible to eliminate occurrences of d' one at a time. So in

order to establish At B •A' tB' weneed a partial ö-normal form

again.

Anyhow, it is indeed possible to prove 8; ~rdA *~NB'~'A'.

263

VIII SOME RESULTS ON AUT-Pi

VIII.l Introduetion and summary

1.1 There are two languages of the Automath family that have been

developed for practical (in contrast with, say, language theoretica!)

purposes and have actually been applied in extensive formalization pro

jects. On the one hand there is AOT-QE, used by L.S. Jutting in his

Landau translation [37). The latter reference also contains an informal

introduetion to the language [27). The theory of AUT-QE is to be found

in Chs. IV to VI of this thesis. On the other hand there is AUT-Pi,

invented by J. Zucker, and employed by Zucker and A. Kornaat for the

formalization of classica! analysis and some related topics. In [77]

one finds a short account of both the language and the formalization

project. This chapter is devoted to the theory of AUT-Pi, which is not

quite as complete as the theory of AUT-QE. Some work remains to be

done, notably on the extensional version of the language (see sec. 6).

1.2 What AUT-QE and AUT-Pi have in common

In IV.l we described AUT-QE as a first-order pure, reguZar, gene

ralized typed À-calculus system. Using the same terminology, AUT-Pi is

a first-order extended, regular, generalized typed À-calculus system.

So boL~ languages have much in common and, in some sense, AUT-QE can

be considered a sublanguage of AUT-Pi.

We resume: both languages are regular, i.e. they have just ex

pressions of degree 1 (supertypes), 2 (types and typevaZued yûnations)

and 3 (terms). They are first-order, i.e.there is only quantification

and ;i, -abstraction over term variables, not over type-variables. Further,

they have generalized type structure, i.e. the types are constructed

along with the terms. Besides, AUT-Pi and AUT-QE have the hook-and

:Jontext structure in common. Books to introduce primitive and defined

~onstants, depending on variables, for which substitution (instanti

ation) is permitted. Contexts for the introduetion of variables.

Here we want to emphasize that, just like AUT-QE, AUT-Pi is a non

arithmetical system, i.e. it has no recursion constant with the eer

responding reduction.

264

1.3 The additional operations of AUT-Pi

But, where AUT-QE belengs to pure typed À-calculus (abstraction,

application and instantiation as the only term-forming operations),

AUT-Pi is a typical extended system, with the additional kinds of terms

paiva <P,A,B>, pvojeations A{l) and A(2), injections i 1 (A,S) and

i 2 (B,a} and $-functions (or: $-terms) A • B. Here the Pof the pair,

and the S and a of the injections are mere type-labels to guarantee

uniqueness of types.

Corresponding with these new terms there are new type-constructs:

first the sum-type rP containing the pairs <P,A,B> as elements, where

P is a type-valued function with domain a, A belengs to a and B is of

. type {A}P. In case P {as a type-valued function) is constant, i.e. {A}l

does not depend on A, the pair and the sum type can he considered to

degenerata to <A,B> and a & B respectively, where 0 is the ordinary

cartesian product and B is the type of B. Secondly, there is the dis

joint union or •-type a eS, containing the injections i 1{A,S) and

i 2 (B,a), where A and Bare of types a and B respectively.

The pairs get their meaning by the presence of the projections anë

the associated reductions: if A is a pair, i.e. element of a sum-type,

say rP, then A(l) is an element of the domain of Pand A(2) is element

of {A(l)}P. Now <P,A,B>(l) n-reduces toA and <P,A,B>(2) n-reduces toE

In the extensional version of AUT-Pi, <P,A(l)'A(2)> a-reduces toA,

provided A belengs to IP (otherwise the type would vary under reductior.

Similarly, the injections get their meaning by the e-terms and the

associated reduction. Let us first explain what a e-term is. Roughly

speaking, when fis a function on a and g is a function on B, then -

under certain conditions - f e g is a function defined on a $ B, acting

on (injections of terms of type) a as f and on (injections of terms of

type) B like g. So the reductions are as follows: {i1{A,S)}(f eg)

+-reduces to {A}f and {i2 (B,a)}(f eg) +-reduces to {B}g. The eerras

ponding extensional reduction is E-reduction: [~:a]{i 1 t~J}f e

[x:B]{i2 (x)}f &-reduaes tof, provided f does not contain x as a free

variable (i.e. does notdepend on x).

Please note the use of parentheses: $ is supposed to bind more

loosely than the ether term forming operations.

A more precise definition of AUT-Pi fellows in sec. 2,

265

1.4 The conneetion with natural deduction systems

By the well-known formulae-as-types, derivations-as-terms inter

pretation, systems of typed À-calculus can be brought into close corres

pondence with certain natural deduction systems for intuitionistic

logic (including the usualproof theoretic reduction relations). Thus,

pure systems correspond to logical systems with + and V only, and ex

tended systems correspond to systems with more connectives. In particu

lar, the r, the pairs and the projectionsof AUT-Pi may provide the

interpretation of "strong" existential quantification with its intro

duetion and eliminatien rules (though this has not been exploited in

Zucker's book, see [77]). And ®, the degenerate form of r, corresponds

precisely to conjunction.

As for the interpretation of v (disjunction) by $-types, the in

troduction rules of v do correspond to injection, but the eliminatien

rule of v differs slightly from its counterpart in AUT-Pi. The usual

eliminatien rule of v (see, e.g., Prawitz [59]) operates on three argu

ments: from (1) a derivation of a v 8, (2) a derivation of y under the

assumption a, (3) a derivation from y under the assumption B, one can

form a derivation with conclusion y. The assumptions a and S of the

derivations (2) and (3) are discharged.

The AUT-Pi eperation representing this rule must be constructed

in several steps: first (2) and (3) are transformed into derivations

of a+ y and B + y respectively. These two derivations are combined into

a derivation of (a v Sl + y (by using $). Then the conclusion y follows

from modus ponens (by (1)).

Here we stick to the AUT-Pi variant of the rule. For a discussion

of the alternatives see Pottinger [56, 57].

Because AUT-Pi is still non-arithmetical, it cannot represent

natural-deduction systems for arithmetic (in the sense intended above).

1.5 Product formation versus type inclusion

Now we discuss a specific difference between AUT-QE and AUT-Pi,

that prevents AUT-QE from being an actual sublanguage of AUT-Pi. In

AUT-QE there is no difference in notation between type-valued functions

and function types. I.e. the expression [x:a]S, with B an expression

of degree 2, stands for the function that to arguments A in a assigns

266

types S[A], but also for the type of the functions which, when applied

toA in a, produce a value in S[A]. And, to make things even more com

plicated, it is possible that S allows such multiple interpretations

as well.

In AUT-Pi there is reserved a special symbol for referring to the

function type, viz. n (for cartesian product formation): by prefixing

with n the type-valued function [x:a]B is turned into the corresponding

function type n(x:a]S. More general, if P is a type-valued function,

then nF is the corresponding product type, containing those functions

as elements which, when applied to arguments A of the right type,

produce values in {A}P.

The language AUT-Pi is named after the n of product formation.

In AUT-QE the expression [x:a]S can get (at least) two possible

types, viz. '[x:a]T and 1, according to which interpretation is intended.

This is implemented by the rule of type inclusion, As a consequence,

uniqueness of types is valid for terms only. Some problems arise from

this in conneetion with defined constante (see V.1.9 and V.3.3.10). In

AUT-Pi uniqueness of types is valid for types as well: e.g. if S is a

type, then [x:a]S has type n[x:a]1 and n[x:~]B has type 1.

Not~ here the use of n again which makes the (constant) "super-type

valued tunetion" [x: aJ1 into a super-type n[.x: a}r.

At first sight it seems that the here-indicated difference is a

trifle, and that AUT-QE can be made into a subsystem of AUT-Pi by simply

inserting n•s at the right places. However, as noted by the Bruijn, the

correspondence is not that close: the rule of type-inclusion (of AUT-QE)

is somewhat strenger than the product formation rule (of AUT-Pi), See

sec. 6.1, [15] and [17).

1.6 Some features of AUT-Pi notdiscuseed here

For completeness we mention two important, more or less syntac

tical, features that enrich the language used by Zucker and Kornaat in

their AUT-Pi book. First, there is the use of AUT-synt, a kind~f Auto

math shorthand, as documented in Jutting [37]. Secondly, there is the usE

of strings-and-telesaopes (see [77]).

However, these features do notbelang specifically to AUT-Pi; they

rather can be attached to any Automath language, but were not yet avail

able when Jutting started his Landau translation. On the contrary, the

267

strings-and telescapes generalize (and, hence, duplicate) in some sense

the pairs-and-sums of AUT-Pi. These two features are not discussed in

this thesis.

In [77] Zucker describes how the whole language is divided into a

t-part (for terros and types) and a p-part (for proofs and propositions}.

This division originates with the distinction between the two degree

basic constants, r (or type) and rr (or prop). Connected with this is

the principle of equality of proofs (two proofs of the same proposition

are considered to be definitionally equal; only consistent with classical

logic). Here we just use ras our basic constant. As a consequence we

do not discuss equality of proofs.

1.7 Sectien 2 below contains a more precise definition of AUT-Pi. In

sectien 3 we prove the closure property; Correctness is preserved under

reduction. In section 4 we first define two systems of normable ex

pressions, AUT-Pi
0

and AUT-Pi
1

, which have the same "connectives" and

reductions as AUT-Pi but a simplified type structure. We study SN for

these two systems. First we show that the methods of proving e-SN
directly apply to the situation with Srr-reduction. In sec. 5 we give

some different proof methods for SN in presence of +-reduction. Then

we extend the AUT-Pi
1

results to AUT-Pi. Section 6 just contains some

remarks on the conneetion between AUT-Pi and AUT-QE (type-inclusion vs.

product formation), and on the particular problems posed by the

addition of e-reduction.

VIII.2 A short definition of AUT-Pi

2.1.1 We give an E-definition of AUT-Pi, along the lines of the AUT-QE

definition in V.2. For the formation of books and contexts we refer to

IV.3, and for their correctness to the requirements in V.2.1.3. However,

the inhahitable degree condition, to the effect that correct expressions

can be of degree 1, 2 and 3 only, has to be restricted further, to an

inhabitability aondition: Expressions acting as the typ of a variable

or a constant have to be inhabitable. Where we define a to be inhabi~able

when degree(a) 1, or: degree(a) = 2 and a ET ~ra E rr).

268

2.1.2 But first we must define the degree (and, implicitly, the notion

of degree correctness) of the typical AUT-Pi expressions:

degree(A)

degree(A)

degree(A)

degree(A)

degree(A)

degree(A)

1 or 2 ~ degree(n(A)) = degree(A)

2 • degree(L(A)) 2

degree(B) = 2 or 3 ~ degree(A eB)

3, degree(B) = 2- degree(i
1

(A,B))

degree(i
2

(A,B))

3

degree(A)

3

2, degree(B) degree(C) = 3 ~ degree(<A,B,C>) 3

2.1.3 Corractness of expressions, E-formulas (for typing) and Q-formulas

(for equality) is defined simultaneously. For the notational conventions

and abbreviations we refer to V.2.1 and V.2.2. E.g., we display degrees

as superscripts to the correctness symbol r· we freely omit books and

contexts (or parts of contexts) not relevant to the rule under con

sideration, and we sometimes omit r as well (viz. in front of a formula

when context and degree are not shown).

2.2 The general rules

2.2.1 We start with the rules, which AUT-Pi has in common with AUT-QE.

We assume a correct book B and a correct context ~. First the general

rules for correctness of expressions and E-formulas.

(i) type and prop: r1
t and ~ 1 u

(iil variables: ···,x E ~,···rx<E~l

{iii) instantiation: if c is introduced in B, with context y E S,
then Ë E B[Ë] • c(Ë) (E typ(c)[ËDJ

For our language theoretica! purposes we need not distinguish between

t and u. So in the sequel we just use t, intending to cover u as well.

2.2.2 Then the remaining general rules: for Q, for type-modification

and strengthening.

269

(iv) Q-reflexivity: f-A • A Q A

(v) Q-propagation: A QB,rC, (B > C or C > B) =~>A Q C

(vi) type-conversion: A EB Q C =~>A E C

(vii) strengthening: if (x E a,nlrB (E/Q C), x does not occur free

in n(,C) and B then nr-B (E/Q C)

The Q-propagation rule still depends on an assumed reduction relation,

e.g. either withor without the extensional reductions n, €, cr. The rule

of strengthening is only included for technical reasens associated with n

and €, so can be omitted in the non-extensional case.

Notice that the rule of type-inclusion of AUT-QE has been left out

here. Its role, viz. of transforming (type-valued) functions into types,

is to be played here by the product rule for 2-expressions of the next

section.

2.3 The specific rules I

Now we come to the rules specifie for AUT-Pi. They are divided

into three groups. Each eonsists of one (or more) introduetion rule(s)

one (or more) eliminatien rule(s) and a type formation rule to provide

the introduetion expression(s) with a type. With eaeh group an IE-re

duction rule (i.e. introduction-elimination reduction rule) and its

extensional counter part ean be associated.

I Abstraction, applieation and produets

2. Product rule 2: B E TI([x:a]t) =~> TI(B) E t

3. Abstr. rule:
2 i+l i+l f-a, x E af- B(E C) =~> ~ [x:a]B(E TI([x:a]Cll

4. Appl. rule 1: A E a, f- 2
B E TI([x:a]Sl"* r2{A}B(E

5. Appl. rule 2: A E a, B E TI(C), C E TI([x:ah) =~> {A}B(E {A}C)

The associated reduction relations areBand n:

{A }[x: a]B > S BI! A], [x:a]{x}A > A if x ~ FV(A)
n

270

It is in the above group of rules that the difference between AUT-QE

and AUT-Pi becomes explicit. Foradiscussion of the rule of n see 1.5,

and 6.1.

Notation: In case ~ * FV(B) we abbreviate O([~:a]B) by a + B.

Using this convention, product rule 2 and appl rule 2 become

B E a + t • O(B) E t
and

A E a, BE O(C), CE a+ r • {A}B E {A}C

2.4 A possible extension concerning 1-expressions

Notice .that all compound correct 1-expressions have a n in front,

or possibly (when 1-abbreviation constants are present) o-reduce to an

expression starting with n. In fact, each correct 1-expression o-reduces

to an expression like 0([~ 1 :a1 Jn<C~2 :a2 Jn(••••••O([~n:an]t)•••))).
As a consequence all 1-expressions are inhabitable (see 2.1), just

like in AUT-QE, but they generally contain parts which are not coPrect,

e.g. the part [~:a]t in O([~:a]t). If we do not like this we can easily

extend the language by

(1) restricting the notion of inhabitable 1-expressions: 1-expressions

are said to be inhabitable according to: (i) t inhabitable, (ii)

(ii) if B inhabitable then O([~:a]B) inhabitable, (iii) if B in

habitable, B Q C then C inhabitable.

(2) restricting product rule 1:

~ E ar1B, B inhabitable • rn([~:a]B)

(3) dropping the restrietion to degree i+1 in the abstr rule. Then,

we can further extend AUT-Pi to a +-language (i.e. all value

degrees are also function degrees, see V.2.7) by

(4) adding a new appl rule:

A E a, B Q [~:a]C • ~{A}B

These changes are relatively unimportant, of course.

271

2.5 The specific rules II

2.5.1 The rules of group I can be considered as just rephrasing the

corresponding rules of AUT-QE. Now, however, we come to rules which

have no counterpart in AUT-QE.

II Pairs, projections, sums

Let ~ E a -+ T. Then

1. Sum rule: ~!:(~) <E T)

2. Pair rule: A E a, BE {A}~~ ~<~,A,B>(E !:(~))

3. Projection rules: CE l:(lf>J =~>~C(l)(E cd, ~c(2)<E {C(l)}~l

The reduction rules associated with group II are~ and o:

<lj>,A,B> (1) > 1f A, <~,A,B> (2) >
11

B

A E !: (Ijl) ~ <~ ,A (1 J ,A (2) > > cr A

2.5.2 Notice that here, for the first time, reduction ceases to be a

purely syntactical matter. The condition A E !:(~) is inserted here

because we want to maintain preservation of types

A E a, A > B • B E a

Otherwise, we come in trouble with ~ E a-+ T, A E a, ~ [x:a]{A}~,

B E {A}~, where C

+ Q 'j!.
As a consequence we must modify one of the monotonicity rules into:

if x E a • A > B then [x:a]A > [x:a]B.

2.5.3 Notation: in case x ~ FV(S) we abbreviate !:([x:a]6) by a ® S.

For pairs <~,A,B> in such a degenerate sum we can omit the type label

~ and just write <A,B> (because it is intended that Ijl can be constructed

from A and B in this case).

The degenerate versions of pair rule and projection rules are:

A E a, B E S • <A,B> E a @ S

c E a® s • C< 1l E a, C(ZJ E s

272

For degenerata pairs the typing condition for o-reduction can be omitted

Notice that, in contrast with products, only degree 2 sums are

formed, and consequently only degree 3 pairs. Besides,the two components

of a pair are 3-expressions too.

2.6 The specific rules III

See the discussion in 1.4. The rules concern

III Binary unions, injections and plus-terms

Let a E T, 6 E 1. Then

1. Binary union: ~a e acE T)

2. Injection 1: A E a* ~i 1 (A,6) (E a e 6)

3. Injection 2: BES~ ~i 2 (B,a)(E a eS)

4. Plus rule: y Er, BE a y, CES+ y.,. ~Be; C(E(aeS) + y)

The associate reductions are + and e:

{i
1

(S,A)}(C e; D) >+ {A}C, {i
2

(B,a)}(C e D) >+ {A}D

[x:a]{i1Cxl}F e [x:S]{i2 (x)}F >e F if x~ FV(F).

Notation: e is supposed to bind more loosely than the other connectives.

This is why the function parts of the +-radices are, and the left- and

right part of the e-redex are notput inside parentheses.

We mention also the alternative form of +, +' (which is in fact +

followed by al:

and an alternative form of e, ealt:

We clearly have>+'~>+ >a (see II.7.1.2 for the notation). Further

etc. i.e.> => < > ,. So, as far as equality Q is concerned, we have
+ n +

(in the sense of rr.0.4.3) <a,+.,.+') and (n,+' => +). Since we always

include a, and n is optional, we prefer the rule + in our definition.

273

Similarly we have >8 ~ >8alt >n and >8alt * >
6

>
6

<8 , so (w.r.t. Ql

(n,8alt ~ 8) and (S,s ~ salt). Thus we prefer rule t.

Binary unions always have degree 2, injections always have degree

3. Only e-functions of degree 3 are formed.

2.7 A possible extension concerning e-functions

We can, however, define an extension of the language by also ad

mitting degree 2 e-functions, i.e. glueing type-valued functions together

into a single type-valued function. To this end we put: Let a E 1,

S E 1. Let ~ E a + 1, ~ E S + 1. Then

4'. Plus rule 1: ~~ e ~(E(a e Bl + 1)

5. Plus rule 2: BEn(~), CE n(wl ~~Be C(E n(~ e ~))

The old plus can be considered as a special case of rule 5, by using s

or Ealt:

[x:a]y e [x:S]y >
1

[x:a e S]y
ta t

We do not diseuss this extension here, because it really complicates

the normability problem (see 4.6).

2.8 Elementary properties

As in V.2.7- V.2.9 we can infer some nice properties. First, con

cerning the degrees:

~A * A degree correct

A Q B • degree(A) degree(E)

A E B * degree(A) degree(B) + 1

Then, concerning contexts, renaming (see V.2.9.2) and weakening

(V.2.9.3). Further, the simultaneous and thesingle substitution theorem

(V.2.9.4-5), and oorreetness of eategories (V.2.10): A EB • ~B.

Analogously to the abstr and appl properties in V.2.10 and V.2.1

(which m.m. hold as well in AUT-Pi) we have properties like

~<~,A,B> • (A E a, ~ E a+ 1, B E {A}~) etc.

274

i.e. the "inversion of the correctness rules".

An important additional property (to be proved in the next section)

is uniqueness of types:

A E B, A E C • B Q C

which in AUT-QE did not hold for A of degree 2, because of type in

clusion.

VII.3 A short proof of closure for AUT~Pi

3.1 Proving closure forAUT-Pi is,not very different from proving it fol

AUT-QE. So we just sketch how to modify the proof in V.3.2.

We start with a version without the extensions mentioned in 2.4

and 2.7, but we include all reductions (also o1-reduction).

3.2 For the terminology see V.3.1. Let > denote disjoint more step

reduction. By the properties in II.7.4.3 we have

By the substitution theerem we have ó-CLPT. The ö-nf•s of 1-expressions

are of the form fl([re:a1A) or t. Reductions of these expressions can only

be internal, so by induction on Q we get (including what might be called

uo1 bere):

~ 1 n([re:a.]A) Q n([x:S]B) ... a Q S and (x E a.~A Q B)

3,3 From this fellows SA2 (whence S-outside-Cl~) and S-outside-PT~.
Viz. let A E a, r2[x:B]C E fl([x:a]D}, with conclusion ~{A}[x:B]C. Then,

forsome E, x E ~CE E and ~n([re:B]E) Q fl([x:a.]D). Soa Q Band

x E ~E Q D whence A E B (i.e. SA2J and x E B~C E D. So

C[A] E D[AD (i.e. S-outside-CLPT~J.

The proofs of ur2 and the inside cases of PT~ are by ind. on r·

275

3.4 The strengthening rule gives n-outside-CL
1

. Here follows a proof

of n-outside-PT~ different from the proof in V.3.2.5. Viz. let

r- 2
Cx:o:]{x}A E y, x~ FV(A). Then, for some c, [x:a]{x}A E

IT([x:a]C[y/x]) Q y, where x E a~A E IT([y:a']C), a' Q a. So, as well,

x E a~A E IT([y:a]C). By weakening x E a, y E aH E IT([y:a]C) and

x E a, y E a~{y}A E C so x E at[y:a]{y}A E IT([y:a]C}. Again by

weakening x E at[x:a]{x}A E y, so by UT
2 x E atY Q IT(:a]C). Hence

x E a~A E y and by strengtheningA E y, q.e.d.

3.5 This completes the proof of PT~. Then PT
2

and LQ
2

follow by ind.

on~ and Q respectively. Now we come to PTCL3 • For properties like SA3

we need

[(~) Q [(~} ~ ~ Q ~

IT(~) Q IT(~) ~ ~ Q 'iJ

(a$ 8) Q (y $ 6) • a Q y, 8 Q 6

3.6 To this end we study 8
2
-reduction and, in particular, -head

reduction, forshort S~ (for the definitions see V.3.3.3 and V.4.4.5).

We knowalready s 2-outside-CLPT1 (this is S-outside-CLPT~). From this

follows s2
-CLPT

1
by ind. on~, and s2

-CLPT by ind. on ~. Now we use the

fact that 3 is the only argument degree and that, hence, 82-reduction

does not create new 82-redices. Campare V.3.3.4, VI.2.4.

As a consequence, 8
2-SN is quite easily provable (for degree

correct expressions) even without using norms: namely, if A 6
2-SN, B

s2-SN then A[B] 82-SN, by ind. on (1) e~(B), (2) length (BJ. So, as

usual, 62-SN by ind. on length (see IV.2.4.1). A fortiori, ~-SN.
Besides s~ satisfies CR, so we can speak about s~-nf•s. E.g.,

degree (B) C[A]I

Clearly B~ and 6 commute, so S~o-CR and 8~6-nf's are defined too.

3.7

Sketch of proof: Ind. on Q. For the induction step we need the following

property: ~2A, S~ê-nf(A) =[(~),A> C or C >A, ~ S~o-nf(C) = [(~),
~ Q W· If C >A it is eacy, (8~)-i-pp holds here for all kinds of

276

2
reduction i (see II.7.3), so Shó-nf(C) : t(~), ~ > $· Otherwise, A> C.

Now S~ó commutes with all other kinds of reduction, except n~ (see

II.7.2). And it even commutes with the latter, except for "outside"

domains. Where wedefine the latter to be the ai' Bj' etc. in

{Ä}[x:äJ{Ë}[y:ÏÏJ• • •, with {Ä} possibly empty. But there are no "outside"

domains leftin t($). So, in any case, B~ö-nf(C) = t(~), $ > w. In fact,

if A >
2

h C then $ = ~.
n 2

By Bhö-CL we know that both t(~) and t(wl are correct so from

($ > lj! or lj! > $) we can conclude $ Q 1/1. This proves the wanted property. 0

Corollary: t($) Q t(ljl) • $ Q lj!

3.8 BOth the theerem and the corollary can be proved in precisely the

same manner.for n and e, yielding the properties in 3.5.

Remark: The theorem above is a kind of minimal result for the desired

properties. E.g., we can, alternatively, prove a kind of weak CR2-

result as in VI.2.4, or prove a similar but strenger theerem in the

spirit of V.3.3, v.3.4.

3 3.9 Now we are able to prove the outside cases of CLPT1• E.g. for +-

reduction. Let {i1 (A,Sl}(F eG) E y. Then i 1 (A,Sl E ó, Fe GE n(1f>),

$ E ó ~ T, {i1 (A,S)}$ Q y. And A E a, a e 6 Q ó, FE a'~ y',

G E S 1
..... y ' , (a ' e B ') y 1 Q n (~) • so (x: a 1 e 6 •]y ' Q <P , and

Lx:a' e S']y' E ö T. So (a' eS') Q ó Q(a e 8), whence a Q a',

S Q 6'. so {A}F E y 1
, Further y' Q {i1(A,Sl}[x:a 1 e 8 1]y' Q {i 1 (A,Sl}$

Q y, whence {A}F E y too, Similarly for the other variant of +.

3.10 Then follows full CLPT1 by ind. on~ and CLPT by ind. on~.

Besides, we have of course UT and LQ. And we can freely make the

language definition somewhat more liberal, as fellows.

First we can change the Q-propagation rule into

A Q B, B ~ C, ~C • A Q C

secondly we can add the appl rule, with i ~

'+1 A E a, ~~ B Q [x:a]C • ~{A}B

and drop the degree restrietion in the appl rule 1 (i.e. rule I.4).

277

3.11 Now we shall say sarnething about proving CL forAUT-Pi with the

extension of sec. 2.4, Just adding abstr expressions of degree 1 does

notmatter at all, we still can get UD1
without any difficulty.

Making the language into a +-language (i.e. adding appl-1-express

ions too) causes some trouble with the domains in case n reduction is

present. Which can however be circumvented as in V.3.3: First leave n
1

1 1
out, then prove S -CL and add n again.

3.12 Finally the extension of sec. 2.7, i.e. where e-2-expressions are

present. If there is also ~2-reduction the situation is essentially more
2 complicated, because S and € interfere nastily. But without € the

proofs of 3.3-3.8 just need some modification: (8+)
2-SN can be proved

as easy as s2-SN, +
2-CLPT is not difficult either. Then theorem 3.7 can

2 .
be proved for (S+) -6-head-nf's ~nstead.

3.13 Requirements for the pp-results in II.9 were:

(1) The result of outside-6-reduction is never a $-, an inj- or on

abstr-expression

(2) The result of outside n or ~ is never an inj-expression or a pair.

Now we can easily verify them for AUT-Pi using the results of this

section. First let <~,A(l) ,A(
2

)> >
0

A. I.e. degree(A) = 3, A EI(~). If

A were an abstr-term then A E n(~) for some w. UT states that

IT(~l Q I(~). Theorem 3.7 states that IT(~) z I(X) forsome X· This is

impossible, Similarly for inj- or E&-expressions. Or let [x:o.]{x}A > A.
n

By PT E n(~) for some ~. If A were an inj-expression then degree(A) =3,

A E (Bey) forsome S, y. By UT IT(~) Q (Bey). Use the suitable variant

of theerem 3.7 again (sec. 3.8), this gives a oontradiction.

VIII.4 A first SN-result for an extended system

4.1 Introduetion

The word "extended" in the title of this section refers to the

presence of other formation rules than just abstr and appl (and possibly

instantiation) and other reduction rules than just B and n (and possibly

278

ó). In the case of AUT-Pi we are concerned with the additional presence

of:

(1) pairs and projections, with reductions n and a

(2) injections and $-terms, with reductions + and e

In IV.2.4 we gave some versions of a "simple" (as compared to a proef

using computability) proef of e-SN. Then we extended it to en using

Sn-pp. Afterwards we included ó as well,

Here we stick to the separation of ó from the ether reduction

rules. Below we first show (4,6) that addition (1) mentioned above does

not cause any trouble: the first version of the "simple" proof of a-SN

immediately covers the Sn-case. And afterwards, we can include ó and n

by a postponement result again.

However the secend addition essentially complicates matters. The

presence of + makes the first a-SN proef fail here, because the impor

tant induction on functional complexity (norm) goes wrong.(see sec.

5,1,2), We add new, socalled permutative Peduations (sec, 4.3.1, III)

in ordertosave the idea of the proef (5.1.3). These permutative re

ductions, in turn, complicate the SN-condition, and a way to keep them

manageable consists of adding {in 5.1.5) still another kind of reduct

ion, viz. impPopeP reductions (sec. 4.3.1, IV).

Our second 8-SN proef of Ch. IV can fairly easy be adapted for the

present situation however. We just have to add impraper reductions to

make the proofwork (see sec. 5.2). For completeness we also include a

proefbasedon the computability methad (sec. 5.3).

However, these three proefs just cover the situation with B• n

reduction and can, by ext-pp be extended to B + nón. Alas, we have not

been able to handle e toe, We cannot use pp anymore, so we have to in

clude e from the start of the proof on. And none of our methods can

cope with this situation.

The problems with $ (or v) are well-known from proef theory. E.g.

Prawitz in [59] first proves normalization for classical propositional

logic, where he avoids the problem with v, by defining v in terros of

"negative" connectives. Then, when studying intuitionistic propositional

logic, he also needs permutative reductions for proving normalization.

By the way, our impraper reductions turn out to be identical with the

semi-proper .reduction used in the SN proef for arithmetic by Leivant in

[40].

279

4.2 The system AUT-Pio

4.2.1 For brevity and clarity we study a system of terros with the same

"connectives" and reductions as AUT-Pi (so the essential problems with

SN become clear) but with a.simplified type-structure. It can be oom

pared with the norroable expressionsof Ch. IV. Later (sec. 5.4) we ex

tend our results to AUT-Pi.

4.2.2 Reduced type structure

The reduced types or norros (syntactical variables a, S, y, v) are

inductively given by:

(1) T is a norm

(2) if a and S are norros then also a ® S, a + S and a $ S

Note: If we write [a]S insteadof a+ B it is clear that the norms of

Ch. IV form a subset of the present norm system. We write a + S with

the purpose to show that our norros form a simple type structure over a

single fixed type, t. This is also true of the norros inCh. IV. Hence

normability results (as in Ch. IV, or as given earlier by Jutting and

NederpeltD6,51] for certain Automath variants) can alternatively be

proved as follows: the generalized systems under consideration are not

essentially rioher than simple, non-generalized type theory, in the

sense that they do provide the same set of terms of free À-calculus

with a type as does a simple, non-generalized system. Compare Ben

Yelles [6].

4.2.3 Terros of AUT-Pio

All terros (syntactical variables A, B, C,•••) have a norm. The

norm of A is denoted ~(A). We also write A E a for ~(A) a. Terros are

constructed according to:

(i) variables x, y, z,••• of any norm

(ii) x E a, A E a, B E S "* [x:A]B E a + t3

(iii) C E a + S, A E a, B E t3 • <C,A,B> E a ® S

(iv) A E a, BE t3 • i 1 <A,B) E a e S, i 2<A,B) E Se a

280

(v} B € a ->- B, A € a • {A}B E B

(vil BE a & B ~ B(l) E a, B(2) € B

(vii') [x:A]C E a ->- y, [y:B]D E B ->- y • ([x:A]C e [y:B]D) € (ae 6) ->-y

These terms can be compared with the 3-expressions of AUT-Pi. However

there are no constante, no instantiation (and no ö}, it has simpler

type structure and it has only e-terms of the form [x:A]C e [y:B]D.

Below we also consider a variant AUT-Pi 1 which has general e-terms. In

stead of rule (vii') it has rule

(vii) BE a->- y, C € B->- y • Be C E (a e Bl ->- y

Below, we often omit type-labels in [x:A]B, i
1

(A,B), i 2cA,B) and

<C,A,B>, just writing [x]B, i 1 (A), i 2 (A) and <A,B>.

4.3 The reduction rules

4.3.1 we consider four groups of reduction rules

I The introduction-elimination rules (IE-reductions) B, n and +'

(see 2.6).

Rule +' is particularly appropriate for AUT-Pio, i.e. in conneetion

with rule (vii'). ForAUT-Pil we rather use rule +.

II The ext-reductions D• a and e

Here we use the simple unrestricted version of a: <C,A(l)'A(2)> >A.

III Permutative reductions (p-reductions)

(->-) {A}{B}([x]C e [y)D) > {B}([x]{A}C e [y]{A}D)

(&} ({A}([x]C e [y]D)) (l) > {A}([x]C(l) e [y]D(l)) - similarly for

(2)-projection

(e) D : E e F .,. {{A} ([x)B e [x]C) }D > {A} ([x]{B}D e [x]{C}D)

The general pattarn of these rules looks like

0({A}([x]B e [y]C)) > {A}([x]O(B) e [y]O(C))

where 0 is an operatien on expressions, given in one of the following

281

ways: O(B) = {A}B, Q(B) = {B} (E e F), Q(B) or Q(B) - B(2).

The normsof these B's are respectively a+ S, a e S and a®$. That is

why the rules are coded (+), (e) and (®).

In case the argument of 0 allows outside (i.e. e-reduction), the

p-step does notproduce a new equality: 0({i
1

{A)}[x]B e [y]C) > 0(B[A])

0(B)[A~ < {i1 (A)}([xJO{B) e [y]O(C)). Below (6.2), it turns out that,

generally, p-equality is generated by Sn+E-reduction.

The above mentioned rules are the standard ones from proof theory.

There it is formulated like this: if the conclusion of an V-elimination

rule forms the major premise of an eliminatien rule, then the latter

rule can be pushed upward through the V-elimination rule. E.g. our +-

rule can be compared with the following proef theoretic reduction:

[cl] [13] [a] [SJ

B c D A ç A D

a v s y 0 y 0 y y 6 y y + 0
A V E > B
y y -+ 0 a v s 0 /)

-+E
0 ó

Both here and in proof theory the p-reductions are primarily intro

duced for technical reasons. However, as Pottinger [56] points out there

is some intuitive justification for them too. Part of it, that in some

cases they do not extend the equality relation is stated above.

It has been suggested to allow ether permutative reductions as

well (Pottinger [56], Leivant [40]). However, Zucker [76] has shown

that this spoils SN.

IV Impraper reductions (im-reductions)

(im) {A}{[x:B]C e [y,D]E) > C,

{A}([x:B]C e [y:D]E) > E

Notice that the set of free variables of the expression can be enlarged

by performing an im-reduction. If an inside im-reduction takes place

inside the scope of some bound variable, the latter variables have to

be renamed in order to avoid any confusion.

These reductions can be compared with Leivant's [40] semi-proper

282

reductions. They degenerate to what Prawitz calls.immediate simplifi

aations, when x~ FV(C), resp. y ~ FV(E).

4.3.2 One step and many-step reduction

One-step reduction >1 is, as well, generated from the main or out

side reductions given above, by the monotonicity rules. Then fellows

many-step reduction ~ from reflexivity and transitivity.

4.3.3 The usual substitution properties are valid, e.g.'

B > B' • B[A] >
1

B'[A] and
1

A >1 A' • B[A] ~ B[A '] etc.

4.4 Closure for AUT-Pio

4.4.1 First notice that AUT-Pio is certainly not closedunder n,

because of the restrictive rule (vii'). So the proef below is intended

for the n-less aase.

4.4.2 Due to the simple type structure it is quite easy to show that

norms are preserved under substitution and reduction and hence that

AUT-Pio is closed under reduction.

4.4.3 Substitution lemma for the norms: XE a, A E a, BE 8 • B[x/A] E

(and B[x/A] a term).

Proef: Ind. on length of B. 0

4.4.4 Reduction lemma for norms: A E a, A> A' •A' E a (this includes

Proef: Ind. on the definition of >. For 8 and +' use the substitution

lemma. E.g.+': let A:: {i
1

<A
1

)}([xJA
2

E9 [yJA
3
), A E a,

A':: A
2

[A
1
]. Then, forsome a 1, a 2 , A1 E a 1 , ([xJA 2 E9 [yJA

3
> E

(a
1

E9 a
2

) + a, so [xJA
2

E a
1

+ a, x E a
1

, A
2

E a. So A
2
[A

1
] E a,

q.e.d. Or a permutative reduction: A = ({A 1} ([xJA 2 E9 [yJA 3>) (l),

283

A E a, A':: {A
1

}([xJA2(1) e [yJA3(l)). Then forsome 13, a
1

,

{A
1

}([xJA
2

E& [yJA
3

) E a ® a, x € a
1

, y E a
2

, A
1

€ a
1

® a
2

,

A
2

E a® 13, A
3

€ a® a. SoA' E a.

4,4.5 Theorem: (closure) A E a, A<: A• (without nl ""'A' E a

Proof: Ind. on z.

4.5 The system AUT-Pil

4.5.1 Insteadof rule (vii') it has the rule

BE a+ y, C € 13 + y""' B e C E (a e 13) + y

and it has + insteadof +'.

Of course (vii')""' (vii), so indeed AUT-Pil contains AUT-Pio. We

0

can define a translation ~ from AUT-Pio toAUT-Pil such that ~(A) A

and which shows that AUT-Pil is not a very essential extension of

AUT-Pi 0 •

The translation is given by ind. on length. The only nontrivial

clauseis ~(C 1 e C
2

) _ [x:Ma]{x}~(C1) e [x:M13 J{x}~(C2 l, where

C
1

e C2 € (a e 13) + y and Ma, M
13

are suitable fixed expressions of

norros a, 13 and x, y are chosen of norm a, a such that x~ FV(C
1
),

y ~ FV(C
2
), respectively, Á, On variables, ~acts like identity. For

the rest, t just oomroutes with the formation rules. Clearly, ~ leaves

the norm invariant and is indeed a translation into AUT-Pio.

4.5.2 We have the following properties

(1) <jl(B[X/A]):: ~(B)([x/<j>(A)]), if)J(x) J.l(A)

(2) For IE-reduction: A >
1

B =:> <j>(A) >
1

~(B)

(3) For (IE-ext)-reduction: A >
1

B ~ <j>(A) properly reduces to <j>(B).

Proofs: By induction on length. The a-case of (2) uses (1):

<jl({A
1

}[y {<t><A
1

l}[y]<j>(A) >
1

<j>(A 2 l[<P(A 1l]:: q,(A 2[A 1]l, q.e.d.

The +-case of (2): <j>({i 1 <A 1l}<A 2 <llA 3ll =

284

{i1 ($(A 1))}([x:Ma]{x}$(A 2) 5 [x:Ma]{x}~(A 3)) >l,+' {~(A 1)}~(A2) -

~({A 1 }A 2 >. Thee-case of (3): $([x:A]{i
1

(x}}B 5 [x:C]{i
2

(x}}B) _

[x:MaJ{x}[x:~(A)]{i 1 (x}}~(B} 5 [x:Ma]{x}[x:~(C)]{i2 (x)}~(B) ~a

[x:Ma]{i
1
(x)}~(B) $ ([x:Ma]{i

2
(x)}$(B) >E ~(B). We particularly

investigate the case of n which is notallowed in AUT-Pio:

~([x:A]{x}B 5 C)

$(B $ C) - if x f FV(B) -

4.5.3 In the sequel we prove SN for some versions (i.e. with and

without p-red. etc.) of AUT-Pio. By the above properties we can easily

extend the p-and im-less case to AUT-Pit:

AUT-Pi 0 SN (with +') ~ AUT-Pi 1 SN (with +).

Proef: Let A be an AUT-Pil term. Use ind. on 6($(A)). D

But, from SN with + follows SN with + and +', because each +'-step can

be simulated by a + a a-step, so e+ decreases under +'-reduction. And,

because AUT-Pi 1 contains AOT-Pio we also get SN for AUT-Pio with +

and +'.

4.5.4 The postponement requirements

For AUT-Pio- and AUT-Pit-expressions it is quite straightforward

to show the requirements (1), (2) of 3.13. E.g. let <A(l)'A(2)>A.

Then A E a 0 a. So A is not an inj-term, a 5-term, or an abstr-term.

Etc.

4.6 The first-order character of the systems

4,6,1 In IV.l.S we emphasized the importance of the property

i.e. the functional complexity of {A}B does not depend on the argument

A, Alternatively stated: it is of course possible that the different

values of Bhave different type~ but apparently there is astrong uni

formity in thesetypes, for the functional complexity of all the values.

is the same. In fact, we defined a system to be first-order if this

property was present.

285

4.6.2 Generally, the introduetion of e-types and e-terms might spoil

this uniformity: we might be able to define functions completely

different on both parts of their domain. Sa, by "general" e-functions

the first-order property above gets lost. However, in AUT-Pio, AUT-Pi 1

and in AUT-Pi the domain of e-functions is explicitly restricted in

such a way, that the first-order property can be maintained, viz. by

requiring

(1) in AUT-Pio that l.l{Bl :: J.l (Cl when forming (X)B e (y)C

(2) in AUT-l?il that B E a+ y, CE 8 +y when forming B $ c

(3) in AUT-l?i that BE a+ y, CE s -+ y when forming B e c

As a consequence we still have J.l ({A
1

}B) = IJ ({A
2

} B) and in particular

ll ({A}([x]B e [y]C)) =].l(B) J.l (Cl •

4.6.3 Now it will be clear that the generalized e-rules of 2.7 would

spoil the first-order character. Example: let A E T, BE t, C E t,
D E t then [x:AJC E A + T, [x:B]D E B + t. so [x:A]C e [x:B]D E
(A e BJ -+ T. So, if E E A + C, F E B + D then (E $ F) E n ([x :A]C e

[x:B]D) • Clearly the functional complexity of { i 1 (G)} (E e F) for G E A

and {i
2

(8)}(E e F) for HEB can be completely different, viz. that of

C and D respectively.

4.6.4 It is possible that a notion of norm (i.e. simplified type) can

be defined which is manageable and measures functional complexity of

these general e-terms, but the present norm (and the corresponding SN

proof) is certainly not suitable for this situation.

4.6.5 Remark: Strictly speaking, the suggested correction between the

typing relation in AUT-Pi and the norms in AUT-Pio has not yet been

accounted for. The preceding statements have to be understood on an

intuitive, beuristic level.

286

4,7 A proof of Snncr-SN

4.7.1 Here we show that the first S-SN proef of Ch.IV straightforwardl

carries over to the case of Bnncr-SN. As our domain of expresslons we

take, e.g., the termsof AUT-Pil•

4.7.2 SN-conditions for Sn

For non-main-reducing expresslons (also called immume fo~s or IF'

it is sufficient for SN if all their proper subexpresslons are SN. lnci

dentally this is also true for projection expresslons (because main n

reduction amounts to picking a certain subexpression). So we have:

A SN •A(l) SN, and the funny property: A(l) SN •A(2) SN.

We reeall the SN condition for appl expresslons in this case:

{A}8 SN •A SN, 8 SN and (8 ~ [xJC • C[A] SN)

4.7.3 Heuristics: the dead end setforS

So, the substitution theerem for SN is again sufficient for provir:

SN (see IV.2.4). The crucial case of the substitution theerem for B-S~

was where A is SN, 8 = {81}82 is SN, 82(AD ~ [y]C, but 82 * [yJC0• I.e.

the reduction to square brackets form depends essentially on the sub

stitutions. Then we used the square brackets lemma: B2 ~ {F}x,

({F}x)[A] ~ [y]C.

We define the set Ex of these expression {F}x symbolically by a

recursion equation E = x + {U}E , x x
where U stands for the set of all expressions and it is of course under

stood that all expresslons in E are in AUT-Pil again. x
The expressions {F}x can be considered as dead endB when one tries

to copy in 8
2

the contractions leading from B2 [A~ to [y]C, i.e. when

one tries to come "as close as possible" to an abstr expression. We do

not bother to make the concept of dead end more precise, or more generë

but just give this informal explanation for naming Ex the dead end set
w.r.t. x, 8-reduction, and abstr expressions.

287

4.7.4 The dead end set for Sn

When one tries to copy a s~-reduction sequence of B[A] in B one

need notend up with an expression in E, but, e.g., can also end in
x

x(l)' The following theerem states that F defined by

F x+ F(l) + F(2) + {U}F

is the dead end set w.r.t. x, S~ and immume farms (IF's). Let stand

for ~Sn' and let * stand for [x/AD.

Theorem: If B SN, B* ~ C, C E IF then B ~ C0 , C~ ~ C with either (i)

C~ non-main reduces to C, or (ii) c0 E F.

Proof: Just like the square brackets lemma (second proof, IV.2.4.3), by

ind. on (1) 8(B), (2) t(B). Let B* main-reduce to C (otherwise take

B :: C
0

) • Th en B := x , (and take C
0

:= B, C
0

E F) , B := D (
1
l , B := D (

2
) or

B {D1}D2• E.g. let B D(l)' Then D* ~ <D1,D2>, D1 ~ C. Apply

ind. hyp. (2) toD. In case (i), D 2 <E1,E2>, E~ 2 D
1

, E; ~ D2, so

B ~ E
1

, E7 2 C. Then apply ind. hyp. (1) to E
1

• In case (ii),

D 2 E0 , E0 E F, E~ 2 <D1 ,D2> and B ~ Eo(l) E F, ot:: Eo(l) 2 C,

so case (ii) holds for B too.

Remark: (1) Similarly we can prove a more general outer-shape lemma

(see II.11.5.4) for Sn, where the condition "CE IF" simply has been

dropped.

D

(2) It is probable that such "standardization-like" theorems can

also be proved without using SN (as in II.ll).

4.7.5 Heuristics: the normsof dead ends

The point of the s-SN proof is:

where ~ is the length of the norm -. So, if B[All ? [y]C then

X.(>J(yl) < ~(J.l(X)), and we can use ind. on normsin the crucial case of

the substitution theorem.

We are lucky that the same methad works for Sn-reduction too.

Namely

288

So, if

B[AD ~Sn [y]C then ~(~(y)) ~~(~(x)),

4.7.6 The substitution theerem for Sn-SN

Theorem: A Bn-SN, B Bn-SN • B[x/A] Sn-SN

Proof: Ind. on (1) ~(A), (2) e
8

n(B), (3) JI.(B). Let~ be ~Sn' If B::: x

then B(A]::: A so SN. If B € IF orB::: C(
1

) orB::: C(
2

) use ind.

hyp. (3}. If B = {B1}B
2

proceed as for 8-SN, using the norm

properties of the dead end set F. 0

4.7.7 8n-SN and Snno-SN

An immediate corollary of the substitution theerem for 8n-SN is

8n-SN itself. Now we can extend this to 8nno-SN (as in II.7.2.5) using

(Bnl-<no)-pp, a case of ext-pp (see II.9.2). The requirement for pp is

indeed fulfilled (see 4.5.4).

VIII.5 Three proofs of sn+-SN, with application toAUT-Pi

5.1 A proof of Bn+-SN using p- and im-reductions

5.1.1 Here we show how the preceding SN-proof (based on the first

version of the simple 8-SN proof in Ch. IV) has to be modified in order

to cope with + (or +'). First we shall see how the norm considerations

of that proef do not go through.

5.1.2 The dead end set for 8n+

Let ~ be ~Bn+' The following theorem states that the set G defined

by

G .. x + G(l) + G(2l + {U}G + {G}<U $ Ul

is the de ad end set w.r.t. x, Bn+ and IF's. Let * stand for [o'X:/A].

Theorem: Let B be SN, B* ~ C, c € IF then B 2: C0 with either (1) c*
0

non-main reduces to C, or (2) c*
0

::: C, c0 € G

289

Proof: As in 4.7.4, by ind. ond {i) S{B), (ii) t(B)

Similarly, we can prove the corresponding outer shape lemma.

The problem is now that the norm of the expresslons in G is not

related to the norm of x. E.g. consider the typical +-dead end

{x}(B e C).

5.1.3 Improving the dead end set by p-reduction

0

We restriet our domain of consideration to AUT-Pi 0 • Insteadof rule

+we choose rule +'. Besides we add permutative reductions. Then a great

deal of the "bad guys" among the dead ends, i.e. whose norm is not re

lated to that of x, can be main reduced by a p-reduction. This will (in

the next section) result in an improved dead end set H defined by

H F + {F}(U e Ul with F as in 4.7.4.

5.1.4 Let 2 be B+'Tip-reduction. The direct reducts of a p-main step are

of the form {A} ([x]O(B) e [y]O(C)) (see 4.3.1 for the definition of 0),

so never are in one of the immume farms (abstr, inj, pair, plus).

Lemma: p-main reduction steps in a reduction to IF can be circumvented

Proef: The last p-main step in a reduction to IF must be followed by a

+'-main step. However this combination can be replaced by a single

internal +'-step. 0

Corollaries:

(2) {B}C 2 D, D E IF ~ Bither (i) C 2 JE, E[D] 2 D or

Proef: Each of these reductions to IF can be replaced by one without

p-main steps. 0

Part of the two corollaries can be summarized (with 0 as in 4.3.1) by:

if 0(B) 2 D, D E IF then B 2 C, C E IF, 0(C) 2 D.

This gives another lemma.

290

Lemma: If 0({B}([xJC
1

e [xJC
2

)) ~ D, D € IF then

{B} ([x]0(C
1

) e [x]0(C2)) ~ D.

Proof: {B}([xJC1 e [xJC
2

) ~ E, E E IF, 0(EJ ~ D. So B ~ ij(A),

Cj[A] ~ E. But then {B}([x]0(C
1

l $ [x]0(C
2

)) <:: 0(Cj[A]) ~ 0(E) ~ D

q.e.d. 0

This proof amounts to: if an expression allows both p-main and IE-main

reduction then we can insert p-main followed by +'-main before perform

ing the IE-main step. Now we prove the theorem about the improved dead

end set H. Let * stand for [x/A].

Theorem: If B SN, B* ~ C, C € IF then B ~ c0 , C~ ~ C witheither (1) C~

non-main reduces to C, or (2) c
0

€ H

Proof: As in· 4.7.4, by ind. on (i) 6{8), (ii) 9-(B). Here e refers to th

current reduction Sn+'p. Let B* main reduce to C, B l x. If the

first main step can be mimicked in B use ind. hyp. (i). Otherwise,

by ind. hyp. (ii) B ~ 0(D), D € H, 0(D)* ~ C. If DE F then

0(D) EH and we are done. Otherwise D {D3}((yJD1 e (yJD2l,

D
3

E F. Then B properly reduces toE= {D3}((y]0(D1) e [y]0(D2ll,

E E H, and by the previous lemma E* ~ C, q.e.d. 0

5.1.5 Improving the SN-conditions by im-reduction

The crucial SN-conditions for6n +' (in AUT-Pio) is

If (1) A SN, B SN, (2) B ~ [x]C .. C[AD SN and for j=1,2

Now the p-reductions have improved our dead end set, but the problem is

that they make the SN-conditions quite complicated. E.g. in order to

prove that {A}{B}([xJC
1

e [x]C
2

) is SN weneed that {A}C1 is SN, in

particular if c
1

~ [y]E we need that E[A) is SN etc. I.e. the SN-con

dition of {A}B ceases to be easily expressible in terms of direct sub

expressions of reducts of A and B.
In order to solve this problem we add im-reduction, But at first

we show that the dead end set is not changed by this addition.

291

5.1.6 The dead end set of Sff+'p,im

Luckily the dead end set remains H. Let ~ stand for > The
-S1T+'p,im'

first lemma of 5.1.4 can be maintained. For let a p-main step be

follwed by an im-main step. Then we can skip the main p-step and just

apply the im-step internally.

If

The next corollaries need an obvious modification, in particular:

IF then either (1) B ~ i. (A),
J

C.[AD ~ D (for j=l or j=2), or (2) C. ~ D (for j=l or j=2),
J J

And the property thereafter becomes:

If 0(8) ~ D, D E IF then either (1) B ~ C, C E IF, 0(C) 2 D, or

{2) 0(B) = {B}([x]C
1

$ [x]C
2
), Cj ~ D (for j=l or 2)

But the second lemma of 5.1.4 remains unchanged, Namely, if an express

ion allows p-main reduction but also im-main reduction, then we can

insert p-main followed by im-main befare performing the im-main step.

E.g. {{B
1

}([xJC
1

e [xJC
2

)}([yJD
1

e [yJD
2

) >p

{B
1

}([x]{C
1
}([xJD

1
e [yJD

2
l e ··•) >im {C

1
}([yJD

1
e [yJD

2
) >im D

1
.

so, the theorem of 5.1.4, that the dead end set is still H, carries

over too.

5.1.7 The new SN-conditions

The point of the im-reduction is that the SN-conditions for

e~+'p,im are identical with those for S1r+' (see 5.1.5). First we give

the SN-conditions of {B}([x]C
1

$ [xJC
2
). These are (1) B SN, c

1
SN and

c
2

SN, and {2) B 2i.(Al ". C.[A] SN (for j=l and 2).
J J

Proof: Let the above condition be fulfilled. Use ind. on (1) 6(B),

(2) ~(B), The interesting case is when the first main step in a

reduction is a p-step. So let B 2 {B
3

}([yJB
1

e [yJB
2
), to prove

that {B
3

}([y]{B
1

}C $ [y]{B
2

}C) is SN, with C [xJC
1

e [xJC
2

• By

ind. hyp. (1) or (2) we just need that B
3

is SN (trivial) that

}C SN for j=1,2 and that {Bj[D]}C is SN, where B3 ij(D).

Since B properly reduces to both B. and B.[D] (in case 2 (D))
J J

we can use ind. hyp. (1) and get what we want. D

292

Theorem: The SN-conditions for Bn+'p,im are identical with those of

Brr+' (see 5.1.5).

Proef: Let {A}B fulfill the SN-conditions (1), (2), (3) of 5.1.5. We

use ind. on 6(B). The interesting case is when the first main st~

is p. The case that B ~ [xJB
1

e [xJB
2

has been done before, so le

B ~ {B
3

}((xJB
1

e [xJB
2
), to prove that {B

3
}([x]{A}B

1
e (x]{A}B

2
)

is SN. I.e. that B
3

SN, that {A}B
1

and {A}B
2

SN and that {A}B
1

UDD

{A}B2[DD are SN whenever B
3

~ ij(D) (j=l or 2). Now B properly

reduces to both Bj and Bj[D! (if B3 ~ ij(D)) so we use the ind.

hyp. and get what we want. 0

In other words: we just need that the direct subexpresslons and t

IE-main reducts (not aZZ the main reducts) are SN for proving that an

expression is SN.

5.1.8 The substitution theerem for SN

Notation: We just write ~(A) </$ ~(B) to abbreviate ~(~(A)) </$ ~(~(B)

Theorem: B SN, A SN, ~(x) = ~(A) ~ B[x/ADSN

Proof: Ind. on (I) ~(A), (II) 6(B), (lil) t(B}. The crucial case is

when B {B
1

}B
2

and B[AD IE-main reduces. If this first main step

can be mimicked in B use the second ind. hyp. Otherwise we end up

with {Bi}C or {C}B2 with C € Hand B1 ~Bi or B2 ~ B2

[yJD
1

e [yJD
2

, respectively. If C € G then ~(Bil < ~(C) $~(x) so

a first main reduction of ({BiJC)[A]l involves a substitution la/E

with ~(2) $~(Bil <~(x). And a first rnain-IE reduction step of

({C}B;llUll must be a +'-step, so involves a substitution h/ED

with C[AD ~ i.(E). So in that case too ~(Z) = ~(E) < ~(C) $~(x).
J

Anyhow if C € G, we can use ind. hyp. (I). Otherwise

c = {C3}([y]C1 e [y]C2), with c3 € G. Then a p-step is possible

and can be inserted befere doing the main IE-step. This p-step ca

be mimicked in the reduction of B, so we can use ind. hyp. (Il).

5.1.9 SN for AUT-Pio and AUT-Pil

Like before, an immediate corollary is Bn+'p,im-SN for AUT-Pio, s

Sn+'-SN for AUT-Pi 0, whence Srr+-SN for AUT-Pil• Then by pp we can ex

tend the AUT-Pi1 result to Srr+ncr-SN. (Not for E.)

293

5.1.10 An alternative method

Actually im-reduction can be avoided in this proof. Namely the

effect of p-reductions on the SN-conditions can be expressed by means

of certain inductively defined sets.

We define a set of expressions B! by

B! = B + {U}([x](B!) e U}+ {U}(U e [x](B!)).

I.e. B! contains all these expressions that im-reduce to B.

Then the SN-conditions for Sn+' become

rf (1) B SN, C SN, (2) B ~ B' E A!, C ~ C' E ([y]Dl! ~ D[A] SN,

and (3) B ~ B' E (i.(AJJ!, C ~ ([y e [yJC
2

J! ~ C.[AD SN (j=1,2)
J J

then {B}C SN.

5.2 A secend proof of Sn+'-SN, using im-reduction

5.2.1 This proef is basedon the secend insteadof the first s-SN-proof

of Ch. IV (sec. IV.2.5, see also vrr.4.5). There we did not use the

square brackets lemma, and no dead end set, so we can do without p

reduction. Our language is AUT-Pio, again, and ~stands for ~ S~+',im.

5.2.2 Replacement theerem for SN

As explained in VII.4.5, the kernel of this type of proof is a

replacement theorem, rather then a substitution theorem, for SN.

Theorem: If B SN, A SN, U(X) J.J{A) then B[x/A]LR SN.

Proof: By ind. on (I) u(A), (II) 8(8), (III) R..(B). We write * for

[x/ADLR' Consider a reduction sequence B* >
1

•••> 1 F >
1

G, where

the contraction leading from F to G is the first contraction not

taking place inside some reduct of ene of the inserted courrences

of A. Realize first that the number of those inside-A contractions

is finite, because A is SN. Now we prove that G is SN. Distinguish

two possibilities:

(a) The step F >
1

G does not essentially depend on the inserted

294

A's and can be mimicked in B. I.e. B >1 Go, GS ~ G. In this case

we use ind. hyp. (II).

(b) Otherwise some reduct of some inserted A p~ays a crucial role

in the redex contracted. If F >Gis a ~-step, then, e.g.,

B -
G

• • •x• • •:c • • • B* - • • •A • • •A • • • F = • • •A' • • •<C C > • • {1) I (l) I- 1'2(1)
•••A'•••C1•••. Now ferm B0 : •••x•••y••• from B by replacing

x(l) by a fresh y, with ~(y) a 1 (where a= a 1 x a
2
). And

B E0[y/x
0

lll so B0 is SN, acB0) $ acB>, .t<Bo> < .t(B). so by ind

* * hyp. (II) or (III), B
0

is SN and B
0

~ a0 = •••A'•••y••• with

G = G0[y/C1 DLR' Here G0 is SN, c1 is SN, ~(yl : ~(Cj), .t(~(y)) <

R.(~(X)) so we can apply ind. hyp. (I) to get that Gis SN. If

F > Gis a a-step argue as in IV.2.5.3 or VII,4.5,6. If F > Gis

a +'-step, the redex contracted is, e.g., {i
1

(D)}([yJC
1

e [y]C
2
),

reducirig to C
1

[DD. Now distinguish (bl) a reduct of an inserted A
is crucial in i 1 (D), (b2) a reduct of an inserted A is crucial in

([yJC1 e [yJC2). First case (bl). Then B = •••x•••{x}C
0

•••,

C~ ~ [yJC1 e [yJC2 , A~ i 1 (Dl. By a norm argumentthee-term must

be present in B already, so c0 : [yJE1 e [y]E2, E; ~ C
1

, E; ~ C2.

Now form B0 = •••x•••E1•••• This is an im-reduct of B, so SN and

by ind. hyp. (II) B~ SN, reducing to G
0

= •••A'•••C
1
•••, where

G: •••A'•••C1(DD···· Clearly G0 SN, D SN and R.(~(D)) < .t(~(X)).

So G = G0[y/DDLR SN by ind. hyp. (I). In case (b2), argue as int:

a-case. Finally, the redex contracted in F is an im-redex, in whi•

A plays a crucial rele. I.e. B •••x• .. {C
0

}x•••, A ~ [yJD1 e [y]D

C~ ~ C, F: •••A' .. •{C}([yJD
1

lil [yJD2)•••, G: •••A'•••D
1
.... For1

B
0

= .. •x• • ·y .. ·, B = B0[y/{C0}xDLR; so either by ind. hyp. (II)

or (III) B~ is SN, reducing to G0 = •••A'•••y•••. Clearly D1 SN,

R.(~(D 1)) < t(~(x)) so by ind. hyp. (I) G: G0[y/D1 DLR is SN. 0

5.2.3 An immediate corollary of this replacement theerem is the

ordinary substitution theorem, From this, as before, fellows Sn+'im-SN

for AUT-Pi 0• So we get Sn+on-SN for AUT-Pil•

5.3 A proef of a~+no-SN by computability

5.3.1 In this proof we do not include no by a pp-result afterwards,

but consider these ext-reductions from the beginning of the proef on.

295

We must consider AUT-Pi 1 because AUT-Pi 0 is not closed under n. our

definition of aomputability has been strongly inspired by de Vrijer's

definition in [70].

De Vrijer's definition is phrased in such a manner that the im

portant properties: (1) computability implies SN, (2) computability is

preserved under reduction, follow almost immediately. Then, as usual,

we prove by ind. on length that expressions are aomputable under sub

stitution.

Notice that we do not include g,

5.3.2 The definition of computability

We write C for the set of computable terms of norm a. The set C
a a

is defined by induction on the length of a, as fellows:

Let B E a. Then B E c if B SN and the following requirements are
ct

fulfilled:

(1) ct '\ a2, B 2: [y]C, A E Cctl ~ C[AD E Ca
2

(2) a - al ® ct2' B ;:: <C,D> ~ C E Cal' D E Ca2

(3) a a1 e a2 , B 2: ij(C) ~CE Ca· (j=l,2)
J

(4) ct (ct
1

e a
2

) -+ a
3

, B 2:C$D~C E c(:l1-+a3 I D E CCI2-+a3.

Notice that each clause in the definition of C only depends on
a

C 's with S shorter than a •
. B

5.3.3 We write C for the set of all computable expressions, the union

of all the C's. By definition: A E C ~A SN. Each condition in the
a

definition of computability of B has the form: B 2: C ~ P(C), with P

some condition on C.

So computability is preserved under reduction.

5.3.4 Now we try to express the computability of an expression in terms

of the computability of its subexpressions. First a lemma.

Lemma:

(1) [x]C 2: [x]D ~ C 2: D

(2) <C,D> 2: <.E,F>,. C 2: E, D 2: F

296

(3) i.(C) ~ i.(D) • C;;?; D (j=1,2)
J J

(4) C e D ;;?; E e F • C <! E, D ;;?; F

Proof: Without main reduction it is trivia!. Otherwise it is n or a.

E.g. if <C,D> ~ <E,F> then C <! <E,F>(l) ;;?; E, D <! <E,F>(
2

) ~ F

q.e.d. By the way, property (4) even holds in presence of E· D

Lemma (computability conditions):

(0) variables are in C

(1) A SN, C E C, D E C • <A,C,D> E C

(2) A SN, CE C • i
1

(C,A> E C, i 2(C,A) E C

(3) C E C, D E C • C e D E C

(4) CE C • C(l) E C, C(2) E C.

(5) B E C, C E C • {B}C E C

Proof: (0) is clear. (1), (2), (3) by the previous lemma. (4) as follo\

Let c E c then c SN so c(j) SN. If c(j) ;;?; [y]D then c;;?; <C1,C2>

with C. ;;?; [y]D. Each of the C. is in C, so [y]D satisfies the re-
J J

quired condition. Similar if C(j) s <D1 ,D2>, C(j) ;;?; i 1 (D) etc.

Proof of (5): Let B,C E C so B,C SN. Induction on ~(B). We first

check the SN conditions. Let C <! [y]D then D[BD E C so SN. Or let

B <! ij(D), C <! c 1 e c2, to prove that {D}Cj is SN. Well, both Cj'l

are in C, D E C and we can use the ind. hyp. to prove that

{D}C, E C (so SN). Further, if {B}C;;?; [y]E (or reduces to <E,F>
J

etc.), this is only possible aftera main step, so either via somE

D[BD with C ~ [y]D or some {D}Cj where B <! ij(D), C <! c1 e c2•

Those expressions were in C so [y]E (and <E,F> etc.) satisfy the

required conditions.

5.3.5 Computability under substitution

For expressions [y]C such simple computability conditions cannot

be given. We define an even strenger notion than computability.

Definition: B is said to be aomputabZe under substitution (aus) if

A1,···,An E C, ~(xi) =~(Ai) for i=1,•••,n • B[x!ÄD E C

D

297

Same easy properties are:

(1) B Cus ~ B € C (e.g. take n=O)

and (2) B Cus, B ;:: C""' C € C

Then a lemma: Let U(C)

Proof: Clearly cis SN. We use ind. on t(al). If c;:: [y]D, FE cal we

must prove D[FD E Caz• This holds because {F}C ;:: D[FD. If

C ~De E we must prove that D,E E C. For i
1

(F) E Cal'

{i1 (F)}C€C so {F}D E C. Now use the ind. hyp. Similar for E. 0

5.3.6 Lemma: B Cus,CCus • [y:B]C Cus

Proof: Let C Cus, B Cus, Ä E C of the right norms. Abreviate [x/Ä] by *
We must prove that [y:B*Jc* E C. Well, B* € c, c* E c so

[y : B*]C* E SN • If [y:B*JC*;:: [y:D]E, FE C of the right norm then we

need that E[F] E C. Because C is Cus, C[x,y/Ä,FD E c, which ex-

pression reduces to E[FD, q.e.d. In particular, if

c* ~ {y}(El e E2), y * FV(E1 $ E2) I we have that {F}(E
1 lll E2) E c,

sa by the lemma E
1

lll E
2

E C, E
1

E C, E C, q.e.d. D

Theorem: All AUT-Pil expressions are Cus

Proof: Variables are Cus by definition. Further use induction on length.

For the abstr case use the previous lemma. For all the ether cases

use the lemma in 5.3.4. E.g. to prove that {B}C is Cus. Let * be

as in the previous lemma. By ind. hyp. B* E C, C* E C, so

{B*}C* E C.

Corollaries: (1) All AUT-Pil expresslons are computable

{2) All AUT-Pil expresslons are S~+ncr-SN

5.4 Streng normalization for AUT-Pi

5.4.1 The normability of AUT-Pi

In order to extend our results from AUT-Pi to AUT-Pi we must first

extend our definition of norm (see 4.2.3), and implicitly, of norma

bility, as fellows:

298

ll(T) - T

ll(A) - a-+ fl .. ll(l:(A))

A, B of degree 2 •)l(A e B) =)l(A) e ll(B)

And we must say what the norms of the variables are

ll {X) ::: ll {typ {X)) •

• Our definition of normability,_ here, is modelled after the norma-

bility definition of AUT-QE {weak normability), in particular as far as

the handling of 2-variables is concerned. For details see IV.4.4-IV.4.5

First we define norm inclusion c:

(1) et. a norm =<> a c T

<2> a c a .. <Y ~ a> c <Y a>

Then we say that A fits in B (notation A fin B) if:

degree(A) 3 • ll (A) - ll (B)

degree(A) 2 • ll (A) c ll (B)

Now we define the norm of constant expressions

Ä fin ë[Ä] ..)l(c(Ä)) := 1-!(typ(a)[Ä])

Ä fin ë[ÄJI .. ll{d(Ä)) := ll(def{d)[Ä])

where x E ë is the context of the scheme, in which a (resp. d) was in

troduced.

We want to show that correct expressions are normable, and of

course that whenever A E B, A fits in B. In view of the instantiation

rule and the fact that norms can change under substitution (for 2-

variables) we prove, as inCh. IV.4.5 a kind of normability under sub

stitution.

Theorem: If Ä fin Ê[ÄD, y E Bj-c E D then C[Ä) fin D[Ä) (note that "fitti

in" implies the normability of the expressions involved)

Proof: Ind. on correctness.

299

Corollary: ~CE D • C fin D (so C, D normable)

5.4.2 Note: By the above defined concept of normability lots of ex

pressions become normable which are certainly not correct in AUT-Pi.

E.g. {A}(n([x:B]C)), with J,l(A) l.I(B), and (l::(B)) (
1
), with

]J(B) 8
1

+ 8
2

• This is a consequence of the fact that AUT-Pi is handled

just like AUT-QE: n•s are (as regards norms) ignored, and !'s are in

some sense identified with pairs.

5.4.3 Extending the SN-result to AUT-Pi

Clearly the presence of non-reducing constants such as !, n,
(for 2-expressions) and 1 does not harm the SN-results of the previous

sections. We just have to add ö-reduction. The eubstitution (resp. re

placement theorem for SN can easily be extended because ö-contractions

in E1Ix/All (LR) either take place inside A or can be mimicked in B al

ready. Then we can preeeed as in IV.4.6 or directly prove B norrnabie •

B SN, by ind. on (1) date(B), (2) ~(B). The new case is when B ~ d(ê).

The C. 's are SN by ind. hyp. (2). Further we want that def(d)[ë] is SN.
~

Well, def(d) is SN by ind. hyp. (1) and def(d)[ë] ~ def(d)[C
1

] ... ~Cn]l.

So by iterated use of the substitution theerem we are done. Later we

can add on, by pp.

Alternatively we can extend the SN proof by aomputability to the

present case, viz. by leaving the definition of computability unmodified

and prove computabiZity under substitution by ind. on (1) date, (2)

length. In particular let A
1
,···,Ak E C of the right norms, let* stand

for [x/Ä], let B~,···,B~ E C. Then we must prove that d(Ë)* E C. The

B*'s are SN. By ind. hyp. (1) def(d) is cus, so def(d)[Ë*] E C, so SN.
i

Further, if d<B*) ~ [y]E (or <E,F> etc.) then this reduction passes

through def(dl[B*] (which was in C).

So, finally we have 8~+onö-SN for AUT-Pi.

300

VIII.6 Some additional remarks on AUT-Pi

6.1 The conneetion between AUT-QE and the abstr part of AUT-Pi

Here the abstr part of AUT-Pi is the part generated by the genera

rules (2.2.1, 2.2.2) and the specific rules group I (2,3), If it werel

for the role of n, and the rule of product formation,this part of AUT

would be identical to AUT-QE.

In the introduetion to this chapter we mentioned already that the

rule of type-inclusion is somewhat ·strenger than the rule of product

formation. This means that the obvious translation of AUT-Pi, viz. jus

skipping the n•s produces correct AUT-QE, butnotall of AUT-QE. Namel

without n, the rule of product formation becomes

(I)

which is just a specific instanee of the type-inclusion rule

(II)

Let us see whether sensible use of (I) can yield something like

(II). So let~ E[y:S][x:a]T. Then y E S~{y}~ E [re:a]T (where y consist

of the y. 'sin the reversed order). So by (I) y E ä~{y}~ ET, and by
l. + + --+

iterated use of the abstr rule we get r~ E T with ~ = [y:B]{y}~.
Clearly

which 1nd1cates that AUT-QE is not a very essential extension of the

image of AUT-Pi under the translation. Compare De Bruijn [15, 17].

6.2 The CR problem caused by &

In Ch. II we gave a counter example for Se-CR. Namely [x]x and

[yJi
1

(y) $ [y]i
2

<y> are distinct Se-equal normal forms (just two

different ways to write identity on a $-type). This suggests tosave

CR by adding ealt (see 2.6)

301

However, Ealt and + interfere in a nasty way:

[x](•••{x}F•·•) e [xJ(•••{x}G•••) <++ [x](··•{i
1

(x)}(F e GJ···) e

[xJ(•••{i2 (x)}(F e G)•••) >E [x](•••{x}(F e G)•••), so this does not

help.

In principle, CR is not too important for our purpose, we rather

need a good decision procedure for definitional equality. Just like

(in V.4) we suggested to implement n-equality by the rule

{x}F Q G • F Q [x]G

we eonjeeture here that we could generate full equality (including E)

by adding

But in order to quarantee the well-foundedness of such an algo

rithm, we need of course some kind of strong normalization result,

which applies in the present situation.

The general pattern of the counterexample to +ealt-CR reads

[x]O({x}F) e [x]0({x}G) Q [x]O({x}(F eG))

where 0 is a very general eperation on expressions. This shows that

extensional equality generates the equality induced by permutative re

ductions (sec. 4.3) 0({A}([x]B e [x]C)) Q {A}[x]O({x}([x]B e [x]C))

Q {A}([x]O({x}[x]B) • [x]O({x}[x]C)) Q {A}([xJO(B) • [x]O(C)). E.g.,

{D}{A}([x]B e [x]C) {A}[x]{D}{x}([x]B • [x]C)

>galt {A}([x]{D}{i 1 (X)}([x]B e [x]C) e [x]{D}

{A}([x]{D}B e [xJ{D}C), q.e.d.

(x)}([x]B • [x]CJ)
'+'

Conversely, we might generate part of the e-equality by adding

general permutative reductions, paying due attention to the thus arising

SN problem.

6.3 The SN-problem caused by €

we strongly believe that SN holds for the full AUT-Pi reduction

(including e), and that there are just some technica! problems which

prevent the proofs of the preceding sectien to apply to that situation.

We briefly sketch why each of the three proofs fails in preserree of e.

302

The problem with the first proef (5.1) is that the dead end set

for, e.g., St-reduction is not so easy to describe. E.g.

(y]{{i1 (y)}x}F e [y]{i
2

{yl}F is a typical dead end for Be. Of course

Bn- or Bo-dead ends are not manageable either, but on can be included

afterwards, using pp.
Then the secend proef (5.2). An e-redex [y]{i

1
{y)}F $ [y]{i

2
(y)}F

can be created by substitution [x/AD in two different ways; (1) from

x e [y]fi2 (y)}F, A= [y]{i1 (y)}F (and similar with the right hand part

(2) from [y]{i
1

(y)}F
1

• [y]{i
2

<y)}F2 , F
1
[A] : F, F

2
[A] : F. In case (1

we are suggested to replace x e (y]{i1 (y)}F by a single variable z, an

to introduce a new substitution [z/F). However, t(~(z)) > t(~{X)),

which does not fit in the proef at all. But we can remove this case b~

just considering AUT-Pio. Case (2) does notpose a problem; the sub

stitution plus reduction can be simulated by reduction plus substituti

starting from [y]{i
1

(yl}F
0

$ [y]{i
2

(y)}F0 , where both F
1

and F
2

can be

constructed from F
0

by substituting A for some of free x's. Besides,

the second proef is based on replacement. This means that the e-redex

above can also be created from, e.g., (3) [y]{x}F $ [y]{i 2ty)}F, with

A: i
1

(y), or (4) [y]{i
1

(X)}F e [y]{i
2

!yl}F. These two expressions do

not reduce, unless we switch to a generalized form of Ealt (which does

not solve the problem, though- see below).

Finally the computability method (5.3} fails because the propert1

FE C, GE C • F $GE C is not so easy anymore. For, let

F ~ [x]{i
1

(x)}[y]D, G ~ [x){i
2

(x)}[y]D. Then we just know that

A E C • D[i
1

!Al] E C, D[i2<A>] E C, but we want that DIA] € C for

general A € C.

We have tried to adapt the second SN-proof to this situation, vi2

by restricting to AUT-Pio 1 and by introducing a liberalversion of

&alt' named E'.

e'; [y]F[i
1

(y)] EP G > [y]F, Ge [y]F[i
2

!yl] > [y]F

This can be considered a kind of improper reduction in the sense that

it identifies expressions which in the intuitive interpretation do

correspond to different objects. A typical way of.creating a new e'

redex is, e.g., from [y]x EP G by the replacement [x/i1 (y)]LR, reducinç

to [y]y. one can indeed mimiek this by first reducing to [y]x, and thE

apply a new replacement, viz. [x/y]. But the norm of this new x is

longer than that of the old one.

REFERENCES

[1] P. Andrews, Resolution in type theory, Journ. of Symb. Logic,
36 (1971), p. 414-432

[2] H.P. Barendregt, Some extensional term models for combinatory
logies and À-calculi, Ph.D. Thesis, Utrecht 1971

303

[3] H.P. Barendregt, Pairing without conventional restraints, Zeitschr.
f. math. Logik u. Grundl. d. Math. 20 (1974), p. 289-306

[4] H.P. Barendregt, The type free À-calculus, in: Handbock of Math.
Logic, Barwise (ed.), North Holland, Amsterdam 1977

[5] H.P. Barendregt, J. Bergstra, J.W. Klop and H. Volkema, Represent
ability in lambda algebras, Indag. Math. 38 (1976, p. 377-387

[6] Ch. Ben-Yelles, Artiele to be published in Zeitschr. f. Math. Logik
u. Grundl. d. Math. 1980

[7] s. de Boer, De ondefinieerbaarheid van Church' 5-functie in de
À-calculus en Barendregt's lemma, stageverslag, Eindhoven 1975

[8] N.G. de Bruijn, The mathematica! language AUTOMATH, its usage and
some of its extensions, in: Symposium on Automatic Demonstrat
ien (IRIA, Versailles 1968}, Lect. Notes in Math., 125,
p. 29-61, Springer, 1970

[9] N.G. de Bruijn, AUT-SL, a single-line version of AUTOMATH, AUT20*) 1

1971

[10] N.G. de Bruijn, Lambda calculus notatien with nameless dummies, a
tool for automatic formula manipulation, with application to
the Church-Rosser theorem, Indag. Math. 34 (1972), p. 381-392

[11] N.G. de Bruijn, AUTOMATH, a language for mathematics, notes (by
B. Fawcett) of a series of lectures (Séminaire de Math.
Supér., Montréal, 1971), Montréal 1973

[12] N.G. de Bruijn, Set theory with type restrictions, in: Infinite
and finite sets I, Hajnal et al. (eds.), p. 205-214, Colloquia
Math. Soc. Jan. Bolyoi 10, 1975

[13] N.G. de Bruijn, The AUTOMATE Mathernaties Checking Project, in:
Proc. of the symp. APLASM I (Braffort volume), Eraffort (ed.),
AUT34, 1973

[14] N.G. de Bruijn, Some extensions of AUTOMATH: The AUT-4family,
AUT44, 1974

[15] N.G. de Bruijn, Some auxiliary operators in AUT-n, AUT51, 1977

Items marked AUT ••• are reports distributed by the AUTOMATH group,
Dept. of Math., Techn. Univ. Eindhoven.

304

[16] N.G. de Bruijn, Lambda calculus with namefree formulas invalving
symbols that reprasent reference transforming mappings, Inda~
Math. 40 (1978), p. 348-356

[17] N.G. de Bruijn, AUT-QE without type-inclusion, AUT56, 1978

[18] N.G. de Bruijn, A noteon weak diamond properties, AUT57, 1978

[19] N.G. de Bruijn, A namefree À-calculus with facilities for internë
definitions of expressions and segments, AUT59, 1978

[20] N.G. de Bruijn, A survey of the project AUTOMATH, in: Combinatory
Logic, lambda calculus and formal systems (Curry Festschrift)
Hindley and Seldin (eds.), Ac. Press 1980

[21] J.P. Bulnes-Rozas, GOAL: A goal oriented commend language for intE
active proef construction, Ph. D. Thesis, Stanford A.I. Lab.,
Memo AIM-328, Stanford 1979

[22] M. Coppo, M. Dezani-Ciancaglini and B. Venneri, Functional charac
ters of solvable terms, Zeitschr. f. Math. Logik u. Grundl.
d. Math., to appear

[23] M. Coppo and M. Dezani-ciancaglini, A new type assignment for
À-terms, Archiv. Math. Logik 19 (1978), p. 139-156

[24] A. Church, A formulation of the simple theory of types, J. of s~
Logic 5 (1940), p. 56-68

[25] H.B. Curry and R. Feys, Combinatory logic I, North Holland, Amst~
dam 1958

[26] H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory logic II,
North Holland, Amsterdam 1972

[27] D.T. van Daalen, A description of AUTOMATH and some aspects of it!
language theory, in: Braffort volume (see [13]) reprinted in
[37]

[28] G. Gentzen, Untersuchungen über das logische Schliessen, Math.
Zeitschr. 39 (1935), p. 176-210, p. 405-431

[29] G. Gentzen, Die Widersprachsfreiheit der reine Zahlentheorie,
Math. Annalen 112 (1936), p. 493-565

[30] J.Y. Girard, Une extension de l'interprétation de Gödel à l'analy!
et son application à l'élimination des coupures dans l'analy!
et la théorie des types, in: Secend Scand. Logic Symp. {Oslo
Volume), Fenstad (ed.), North Holland, Amsterdam 1971

[31] J.Y. Girard, Interprétation functionnelle et élimination des cou
pures de l'arithmétique d'ordre supérieure, Thèse, Paris 197:

[32) M. Gorden, R. Milner and C. Wadsworth, Edinburgh LCF, A mechanica:
logic of computation, Edinburgh 1979, submitted to Springer
Lect. Notes in Comp. Sc.

305

[33] J.R. Hindley, Combinatory reductions and lambda reductions compared,
Zeitschr. f. Math. Logik u. Grundl. d. Math. 23 (1979),
p. 169-180

[34] W.A. Howard, The formulae-as-types notion of construction, unpubl.
1969, to appear in Curry Pestschrift (see [20])

[35] H. Jervell, A normal form in first order arithmetic, in Oslo volume
(see [30])

[36] L.S. van Benthem Jutting, A normal form in a À-calculus with types,
in: Mitt. d. Gesellsch. f. Math. u. Datenverarb. Bonn, 17,
Tagung üb. form. Sprachen u. Programmiersprachen, Oberwolfach
1971

[37] L.S. van Benthem-Jutting, Checking Landau's "Grundlagen" in the
AUTOMATH system, Ph.D. Thesis Eindhoven 1977, Math. Centre
Tracts, 83, Amsterdam 1979

[38] L.S. van Benthem-Jutting and R.M.A. Wieringa, Representatie van
expressies in het verificatieprogramma YERA 1979, Internal
Report, Eindhoven 1980

[39] S.C. Kleene, Introduetion to Metamathematics, Van Nostrand, New
York 1952

[40] D. Leivant, Streng normalization for arithmetic (variations on a
theme of Prawitz), in: Proof theory symposium Kiel 1974, Lect.
Notes in Math, 500, p. 182-197, Springer 1975

[41] J.J. Lévy, Réductions sures dans le lambda-calcul, Thèse 3° Cycle,
Paris 1974

[42] J.J. Lévy, An algebraic interpretation of the ÀSK-calculus and a
labelled À-calculus, in À-calculus and computer science theory
(Rome volume), c. Böhm (ed.), Lect. Notes in Comp. Sc., 37,
p. 147-165

[43] C.R. Mann, The connections between proof theory and category theory,
Ph. D. Thesis, Oxford 1973

[44] P. Martin-Löf, Hauptsatz for the theory of species, in: Oslo Volume
(see [30]), p. 217-234

[45] P. Martin-Löf, An intuitionistic theory of types, Unpubl. 1972

[46] P. Martin-Löf, An intuitionistic theory of types, predicative part,
in: Logic Coll. 73, Rose and Sheperdson (eds.), North Holland,
Amsterdam 1975

(47] P. Martin-Löf, About models for intuitionistic type theory and the
notion of definitional equality, in: Proz. of the third
Scand. Logic Symp., Karger (ed.), North Holland, Amsterdam
1975

306

[48] G. Mitschke, À-Kalkûl, o-Konversion und axiomatische Rekursions
Theorie, Habilit. Schr., Darmstadt 1976

[49] R.P. Nederpelt, Lambda-Automath, AUT21, 1971

(50] R.P. Nederpelt, Lambda-Automath II, AUT22, 1971

[51] R.P. Nederpelt, Streng normalization for a typed lambda calculus
with lambda structured types, Ph. D. Thesis, Eindhoven 1973

{52] H. Osswald, Ein syntaktischer Beweis fûr die Zulässigkeit der
Schnittregel im Kalkül von Schûtte für die intuitionistischer.
Typenlogik, Manuscr. Math. 8 (1973), p. 243-249

[53] P. Penning, Automath bewijzen voor tautologieën, Stageverslag,
Eindhoven 1977

[S4] G. Plotkin, Lambda-definability in the full type hierarchy, in:
curry Festschrift (see [20])

[SS] W. Pohlers, Ein starkas Normalisationssatz für die intuitionisti
schen Typen, Manuscr. Math. 8 (1973), p. 371-387

[S6] G. Pottinger, Letter to Prawitz, April 18, 1977

[57] G. Pottinger, On analysing relevanee constructively, Studia Logies
38 (1979), p. 171-185

[SS] G. Pottinger, A type assignment to the strongly normalizable
terms, in: Curry Festschrift (see [20])

[S9] D. Prawitz, Natura! Deduction, a proof theoretic study, Almquist
and Wiksell, Stockholm 1965

[60] 0. Prawitz, Ideas and results in Proef Theory, in: Oslo Volume
(see [30]), p. 235-307

[61] L.E. Sanchis, Functionals defined by recursion, Notre Dame J. of
Formal logic 8 (1967), p. 161-174

[62] D. Scott, Constructive validity, in: Symp. on Automath. Demonstrat
ion (see [8]), p. 237-275

[63] J.P. Seldin, Review of [10], Journalof Symb. logic 40 (1975),
p. 470

[64] J.P. Seldin, A theory of generalized functionality I, Unpubl. 197é

[65] J. Staples, Church-Rosser theorems for Replacement Systems, in:
Algebra and Logic, Lect. Notes in Math. 450, p. 291-307,
Springer 1975

[66] J. Staples, A lambda calculus with naive substitution, Unpubl.
Brisbane 1977

[67] s. stenlund, Combinators, À-terms and proef theory, Reidel 1972

[68] w.w. Tait, Intentional interpretation of tunetionals of finite
types, Journ. of Symb. Logic. 32 (1967), p. 198-212

307

[69] A.S. Traelstra et al., Metamathematical Investigation of Intuition
istic Arithmatic and Analysis, Lect. Notes in Math., Springer
1973

[70] R.C. de Vrijer, Big trees in a À-calculus with À-expressions as
types, in: Rome colurne (see [42]), p. 202-221

(71] R.C. de Vrijer, A syntactic model for À-calculus with surjective
pairing, Ph. D. Thesis, Eindhoven, to appear

[72] c. Wadsworth, Semantics and pragmatics of the lambda calculus,
Ph. D. Thesis, Oxford 1972

[73] R.W. Weihrauch, A users manual for FOL, Stanford A.I.-lab. memo 235,
Stanford 1977

[74] R.M.A. Wieringa, Binaire optelling en vermenigvuldiging in AUT-QE,
Stageverslag, Eindhoven 1976

[75] I. Zandleven, A verifying program for AUTOMATH, Eraffort volume
(see [13]), AUT36, 1973

[76] J. zucker, Cut-eliminatien and normalization, Annals of Math.
Logic 7 (1974), p. 1-112

[77] J. zucker, Formalization of classical rnathematics in AUTOMATH,
Actes du coll. intern. de logic, Guillaume (ed.), Clermont
Ferrand 1975

[78] o.A. Turner, Another algorithm for bracket abstraction, Journ. of
Symb. logic 44 (1979), p. 267-270

[79] R.C. de Vrijer, "Stelling" to his [71]

308

SAMENVAlliNG

In het Automath project zijn een aantal wiskundige talen ontwikke:

die geschikt zijn om grote stukken wiskunde zó weer te geven dat een

computer de correctheid van de wiskundige redenering kan controleren.

Het programma dat deze controle verzorgt wordt verifiaator genoemd. De

belangrijkste Automath talen zijn AUT-68, AUT-QE en AUT-Pi.

De Automath talen zijn gebaseerd op systemen van gegeneralizeerde

getypeerde. Ä-calaulus. De taaltheorie houdt zich bezig met syntaktischj

kwesties, betreffende de definitiegelijkheid, de reductie-relatie en dj

typeringa-relatie in deze systemen. Drie belangrijke eigenschappen

waarop de taaltheorie zich richt zijn: (sterke) no~alisatie, gesloten·

heid en Churah-Rosser eigenschap. Deze eigenschappen zijn onder meer

van belang om de correcte werking van de verificator te kunnen aantone1

Dit proefschrift kan worden opgevat als een voortzetting en een

aanvulling op taaltheoretisch werk van Nederpelt en de Vrijer. Hoofdst1

I geeft een overzicht van het Automath project, gaat uitvoerig in op dj

rol van de taaltheorie binnen het project, en wordt besloten met een

uitgebreide samenvatting van het proefschrift. Hoofdstuk II bevat de

nodige preliminaria. Hoofdstuk III behandelt de theorie van afkortingel

In de hoofdstukken IV, V en VI worden achtereenvolgend de drie genoemdj

belangrijke eigenschappen bewezen voor AUT-68, AUT-QE en nog enige

varianten. Hoofdstuk VII gaat in op de theorie van Nederpelt's Automatl

systeem A. De drie belangrijke eigenschappen worden bewezen (dit beves·

tigt twee vermoedens uit Nederpelt's proefschrift), en tevens wordt de

Vrijer's grote-boom stelling van een nieuw bewijs voorzien. Hoofdstuk

VIII bevat de theorie van AUT-Pi. Geslotenheid wordt bewezen voor het

volledige AUT-Pi, alsmede sterke normalisatie en Church-Rosser voor eeJ

deelsysteem van AUT.Pi.

Sommige resultaten uit het prOèfschrift zijn niet alleen van toe

passing op Automath maar ook van belang in de À-calculus, en, door de

formulae-as-types interpretatie, voor bewijstheorie.

309

CURRICULUM VITAE

De schrijver van dit proefschrift werd in 1949 in Bergeijk

geboren. Na het eindexamen gymnasium S aan het Lorentzlyceum te

Eindhoven, begon hij in 1966, op aanraden van Prof.Dr. J.J. Seidel,

aan de studie voor wiskundig ingenieur aan de Technische Hogeschool

Eindhoven. In juni 1972 studeerde hij met lof af, bij Prof.Dr. N.G.

de Bruijn. Na zijn afstuderen was hij tot eind 1976 verbonden aan

het Project Wiskundige Taal AUTOMATH, als wetenschappelijk mede

werker in dienst van de Nederlandse Organisatie voor Zuiver-Weten

schappelijk Onderzoek (Z.W.O.), en onder leiding van Prof. de Bruijn.

Sinds maart 1977 is hij wetenschappelijk medewerker bij Prof.

Ir. w. Baarda, op de afdeling Geodesie van de Technische Hogeschool

Delft:

Adress of the author:

Department of Geodesy

Technological University

Thijsseweg 11

Delft

STELLINGEN

I

Laat het systeem AUT-2 als volgt gedefiniêerd zijn.

De types zijn opgebouwd uit het grondtype T met behulp van + •

JYpe-inoZusie c is gedefiniëerd door:

(1) a een type • a c T

(2) al cal, a2 c a2 ... (al+ a2) c <al+ a2l

E~essies A behoren tot AUT-2 als ze een type t(A) krijgen volgens

(1) t {.:ca) : = a

(2) t(À.:ca. A}:=: (a+ t(A))

(3) t(Al (S + y), t(B) c a .,. t(AB): y

Sterke normalisatie voor AUT-2 kan bewezen worden met de elementaire

methodes van dit proefschrift.

Lit. dit proefschrift I.4.12, IV.1.5, IV.2.4.

II

Een theorie van getypeerde À-calculus heet w-onvoZZedig in type a + a
afgekort a+ S ~w, als er gesloten F,G van type a+ S zijn, zodat

F !- G en VA:a(A gesle>ten.,.FA = GA).

Laat o het grondtype zijn, laat = staan voor Sn-gelijkheid.

(i) Zijn er alleen constanten van type o, dan (o + o) + (o + o) 1-w

(ii) Is er tenminste één constante (0) van type o en precies één con-

stant.e (s) van type o + o dan (o + o) + o 1- w

(ii~Voegt men, naast 0 en s, constanten toe voor primitieve recursie,

waarbij = met de bijbehorende reductie wordt uitgebreid, dan

o + o 1- w {en (o + o) + o ,.f- w, zoals blijkt uit een constructie

van Tait).

Lit. H.Friedman, Equality between functionals, in: LogicColloqui

(ed. Parikh), Lecture Notes in Mathernaties 453, p. 22-37,

Springer 1975.
G,Pl.otkin, The À-calculus is w-incomplete, Journ.of Symb.

Logic 39 (1974), p. 313-317.

III

Het vermoeden van Hindley dat de reductierelatie ~
0

gedefiniëerd
c~~

door

A ~can8 : •AÀ ~an BÀ

niet Church-Rosser is, is juist.

Lit. J.R.Hindley, Combinatory reductions and À-reductions

compared, Zeitschr.f.math.Logik u.Grundl.d.Math.23(1977),

p. 169-180.

IV

De door Barendregt et al. gestelde vragen

(1) is er een term F zodat

FM normaliseert ~Meen numeral

(2) is er een term F zodat

FM solvable *Meen numeral

kunnen ontkennend beantwoord worden.

Lit. H.P.Barendregt, J.Bergstra, J.W.Klop, H.Volken,

Representability in lambda-algebras, Indag.Math.

38(1974), p.177-187.

Het verwerpen van regel~ (A=B • ÀX.A = ÀX.B) in de À-calculus,

zoals Martin-Löf dat op filosofische gronden bepleit, heeft on

aangename consequenties voor de praktische uitvoerbaarheid van

de decisiemethode voor definitiegelijkheid.

Lit. P.Martin-Löf, About models for intuitionistic type

theories and the notion of definitional equality,

in: Proc. of the third Scand. Logic Symp. (ed. S. Kanger},

p. 81-109, North-Holland 1975.

Dit proefschrift, V.4.4.

VI

Een uitbreiding met simultane zoekfaciliteiten (in de vorm

van een beheerste "breadth-first search") kan de efficiëntie

van de verificatieprocedure voor definitiegelijkheid in Auto

matb-talen aanmerkelijk verbeteren.

Lit. Dit proefschrift, III. 6, V.4.4.

I.Zandleven, A verifying program for Automath,

Proc. of the symp. APLASM (ed.Braffort), Parijs

1974.

VII

Aankomende studenten (niet alleen wiskundigen) zijn meer gebaa1

bij een kennismaking met een Automath-achtig systeem voor de

weergave van logisch redeneren, dan met de uiteenzettingen ove1

waarheidstafels die traditioneel tot de stof van inleidende

logica-colleges behoren.

Lit. N.G. de Bruijn, Wees contextbewust in WOT,

Euclides 55(1979/1980), p. 7-12.

R.P.Nederpelt, Bewijsmethoden, syllabus onderafd.

Wiskunde, T.H. Eindhoven.

VIII

De - onnodige - conceptuele en technische moeilijkheden die

samenhangen met het begrip assumptiekZasse in gebruikelijke

natuurlijke-deductie systemen kunnen worden vermeden door

een lineaire representatie van bewijzen te gebruiken zoals

bijvoorbeeld bij Fitch en in Automath.

Lit. G.Kreisel, Four lectures on proef theory,

Clermont-Ferrand 1975 (p.26-27}.

D.Leivant, stélling II bij zijn proefschrift,

Amsterdam i976.

J.B.Fitch, Symbolic Logic, An Introduction,

New York 1952.

D.Prawitz, Natural deduction, Almquist en

Wiksell, Oslo 1965.

Het vermoeden van Alberda dat de voorwaarde

2
c
-<
d2 2!;uax

voldoende zou zijn voor de positief~definietheid van de

bijbehorende kriteriummatrix is onjuist.

Lit.J.E.Alberda, Planning and optimization of

networks: some general considerations, Bolletino

di Geodesia e Scienze Affini 33(1974), p. 209-240.

x

De indexnotatie van Ricci en de kern-indexnotatie volgens

Schouten druisen in tegen de gebruikelijke conventies be

treffende notatie en kunnen daarom in het lagerejaarson

derwijs maar beter vermeden worden.

XI

Het aanstellen van wetenschappelijk medewerkers in deel

tijd-betrekkingen kan voor de werkgever een lucratieve

aangelegenheid zijn, aangezien vaak een groot deel van

de resterende tijd tóch voor wetenschappelijk werk zal

worden gebruikt.

XII

De tegenstellin~ die men gewoonlijk veronderstelt tussen kennen

en be(Jl'ijpen is aanvechtbaar: uit het hoofd kennen kan al een

vorm van begrijpen zijn. Bovendien kan ieder begrijpen door een

diepere vorm van begrip achterhaald worden.

Lit. Theo Tijssen, De gelukkige klas, p.42-50,

Amsterdam 1974.

J.v.Dormolen, Didactiek van de Wiskunde,

p. 61-74, Utrecht 1974.

Eindhoven, 15 februari 1980 D.T. van Daalen

