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I INTRDDUCTION AND SUMMARY 

This thesis gives an account of the author's lan,guage theoretiaal 

studies on the Automath lan,guages, during his work in the project 

Mathematiaal Lan,guage AUTO~TH (under supervision of Prof. De Bruijn) 

at the Eindhoven University of Technology. These studies can be con

sidered as a continuatien and completion to previously publisbed work 

of Nederpelt [51] and De Vrijer [70].*) 

Actually, an introduetion to the remaining chapters of the thesis 

is hardly necessary because they are formally self-contained and pro

vided with lengthy introductions themselves. However, we like to make 

some general remarks on the Automath project, hoping to clarify some 

points which have sametimes given rise to misunderstanding. Most views 

expressed are common in the Automath project, but some are personal 

views, not necessarily shared by other workers in the project. 

We start with preliminary remarks, followed by a survey of the 

Automath project. We discuss the language theory and its role in the 

project. We give an informal introduetion to the various Automath 

languages and explain how mathematiaal reasoning can be represented. 

Finally we summarize the contents of this thesis. Occasionally we make 

a comparison with related logical systems and related enterprises else

where. For more information on the subjects of this chapter we refer to 

De Bruijn [13,20], Jutting [37], Zucker [77) and Van Daalen [27]. 

I.l Preliminary remarks 

1. 1 - Reliabili ty and formal rigour 

The Automath project originally arose (around 1966} from the idea 

that it was desirable to increase the dependability of pieces of mathe

matics by having them checked by a computer. To this end the rnathematics 

involved was to be formalized in a mathematiaal Zan,guage allowing 

computer verification. 

First sarnething about this part of the motivation. One might wonder 

whether greater dependability is desirable at all and if so, in what 

parts of mathernaties -, and whether formal rigour (as imposed by the 

in brackets refer to items on the list of references. 
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computer) contributes at all to dependability, Critics sametimes argue 

that correctness of a mathematica! text, or of a proof, after all depend 

on human insight in the situation and understanding of the concepts in

volved. And, consequently, they sometimes suggest that forma! rigour 

can be opposed to reliability, because the presence of tóo many formal 

details may spoil the understanding. 

There is, generally, some point in this criticism, but all the same, 

many mathematicians sometimes produce faulty proofs and, even, false 

theorems. This just means that they have been cheated by their intuition 

Such mistakes cannot be said to be aaused by lack of rigour but, rather, 

would have been prevented by being more rigoreus. E.g. by tormalizing 

the subject matter in a well-chosen formalism. In general, the possibil

ity of computer verification plays a minor role here and, as De Bruijn 

puts it, thè computer is just there to set the standards, Serieus errors 

won't survive the process of formalization and will never be fed into 

the machine. However, after having taken the trouble to produce a 

"fully forma!" proof with possibly lots of technica! details it is nice 

to have a patient computer actually waiting to read it and relish the 

details. In particular, because on rereading, the details indeed may 

spoil one's own understanding. 

Besides (this is our second point against the criticism), wethink 

that the latter situation can be avoided by using a good formalism, 

which allows a formalization faithful to the informal ideas one had in 

mind (see also 1.4). *) 

It has, of course, never been intended that computer verification 

might rep~ae human understanding, and that formalization might cover 

all of mathematics. We just note that formalization sometimes can 

support our understanding and guide our intuition. 

1.2 The "data bank" aspect 

According to the above criticism one never can rely on results one 

does not fully understand. Such an orthodox point of view we think un

satisfactory; one sometimes wants to use what might be called "more or 

less black boxes", e.g. one sometimes wants to believe a theerem without 

knowing, or without quite understanding, its proof (e.g. one does not 

understand the proef any more). 
_*_) __ 

Numbers not in brackets refer to sections in the present volume; if 
not starting with a Roman numeral they indicate sections inside the 
current chapter. 



Here we touch a certain "data bank" aspect (as opposed to the 

checking aspect) of such a formalization project: the codification and 

storing of a large amount of dependable and unambigous mathematica. 

1.3 The experimental character of the project 

Thus far about the original motivation. The present author likes 

to consider the Automath project as an experiment in order to answer 

the question: can we develop formalisros (mathematica! languages), in 

which mathematica! texts aetually can be formulated in such a way that 

mechanica! verification (by a computer} is aatualZy possible. Apart 

from the emphasis on computer verification there is another difference 

as compared with aarlier formalization projects: it is required that 

both writing (i.e. translating rnathematics into Automath) and eheaking 

are practiaally feasible (and it would be nice if it were readable 

too), and that the formalismis kind of universal, i.e. suitable for 

large parts of mathematics. 

1.4 The correspondence with ordinary reasoning 

In Automath it is attempted to achleve the feasibility of the 

writing stage by keeping as close as possible to ordinary informal 

mathematical reasoning, and to existing good mathematical habits. This 

then was to result in the possibility of a fully formal proof net 

blurring the understanding - campare a well-structured computer pro

gram -

Keeping close to ordinary reasoning also serves the feasibility 

of the checking process: in principle we do nat expect more from the 

machine than we would expect from a human checker - though of course 

we expect the machine to be much faster and more accurate than a 

3 

human -. The feasibility of the checking requires that all of the rea

soning is formalized in the language, whereas usual logical systems 

generally formalize only part of it and leave the rest to informal meta

language. In particular we mention the handling of proofs, the handling 

of variables and the handling of abbreviations (i.e. the introduetion 

of new defined constante, see 4.3). 
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1.5 The didactica! aspect 

A side effect of the analysis of mathematica! reasoning needed for 

the development of a formalism meeting the above Specificatiens might 

be a better insight into ways of presenting and teaching mathematica. 

This, didaatiaaZ, aspect of Automath (beside the aforementioned aheak

ing and storing aspects) proves indeed to ba important: Nederpelt and 

De Bruijn have used Automath-like systems to explain first-year mathe

matica! students and matbematics teachers-to-be some principles of 

mathematica! discipline. Research in this direction now falls under the 

WOT project ("Wiskundige Omgangs Taal", this is Dutch for: mathematica! 

vernacular), which is going on in Eindhoven. One trias to codify ele

ments of natural mathematica! reasoning into a rather precise language 

which is inspired by Automath but does not particularly aim at computer 

verification. 

1.6 The possible foundational contribution 

From the modest statement of the aims of Automath, above, it will 

be clear that Automath has no streng foundationaZ aZaim - in the usual 

logica! sense - or philosophical position to defend like some of its 

forerunners. But if one wants to hear such a claim it might be the 

following one: that it is possible to present large parts of ordinary 

matbematics in Automath in a naturaZ way. In particular that large 

parts of even al-assiaaZ reasoning fit quite well in t:he "minimaZ Zogic:" 

of Automath (see 5.10) and that large parts of classica! matbematics 

can be founded on the typed >..-aaZcmZus frame work of Automath (see 5.3) 

rather than on axiomatic set theory. (In fact this claim is a sine qua 

non to the Automath project.) 

Besides, the original, simple wish to increase the reliability of 

matbematics can, from a practical point of view, also be considered as 

a foundational contribution. 

1.7 The nature of Automath 

A more ambitieus, less carefull phrasing of the aim of Automath, 

viz. the development of a language in which aZZ matbematics can be 
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expressed so meticulously that syntaatiaat correctness would entail 

mathematiaat correctness, has sametimes given rise to confusion. 

Logicians then argued that such an enterprise was doomed to failure, 

firstly, because it would contradiet the inaompteteness theorema and, 

secondly, because it would contradiet the undeaidability: the computer 

certainly would not be able to check for correctness (to deaide, as one 

says) any substantial part of mathematica. 

We will explain that such criticism is hardly to the point. The 

basic system of Automath just covers a tiny part of mathematica, so to 

say minimal prediaate logia. The Automath user himself has to add to 

this basic system all the axioms and constants necessary for his specific 

area of interest, and he has to supply more axioms and constants when

ever he wants to increase the expressive power of his language or the 

strength of his theory. Further, the computer is certainly not supposed 

to decide the truth of the axioms, it is even not supposed to decide 

derivability from the axioms, but just verifies derivations (i.e. 

1.8 Some proof checking systems 

In the Automath project the computer is not expected to check (e.g. 

to prove) theorems but, rather, is expected to check whether something 

is a proof and whether it proves a certain theorem. Thus, the project 

can be compared with two other major proof-aheaking projects: the FOL 

(First Order Logia) project of Weyhrauch c.s. in Stanford [21, 73], and 

the LCF (Logia Of Computable Funations) of Milner c.s. in Edinburgh 

[32] • 

FOL is based on classical first order logic, in natural deduation 

style, and is intended to be universal like Automath. However, according 

to Bulnes [21], the system (still) has some difficulties in asping 

with sorts (or types) which seems to make the system less appropriate 

for parts of rnathematics not based on classica! set theory. 

The kernel of LCF is a system called PPÀ (polymorphia prediaate 

À-calculus) a system of typed À-calculus plus fixed point induction 

plus logic, also in natural deduction style, based on Scatt's work in 

the theory of computations. It is especially intended for problems con

cerning algorithms and programming languages. 
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In principle, these two systems are not more inte~ctive than 

Automath, since in Automath as well line after line can be fed into the 

machine, thus incrementally constructing pieces of correct mathematica. 

However, recently both systems have been enriched by a strong beuristic 

mechanism allowing socalled top-dOwn proof {i.e. working from the result 

backwards to the assumptions). In fact, by these mechanica, called 

GOAL_{for FOL) and ML {for LCF) respectively, a kind of clever mixture 

between a proof-checker and a theorem-prover bas been created {in fact 

the "top-down tacticals" are just a par>t of ML, which also contains 

some other useful mechanisms). 

The basic elements of Automath just include what may be called 

"constructive reasoning", as borrowed from ordinary, informal, sound 

mathematica! practice. Of these we mention the "linear" natural deduct

ion system (see 4.5,p.23)used in the construction of both proofs and 

objects, the facility to abbreviate expressions by a new name (with para 

meters) at any desired moment (see 4.3, and the introduetion to 

eb. III) , and the supp:ression meahanism for "fixed" parameters (see, 

e.g., [27, sec. 2.15]). A consequence of the logical weakness of the 

basic system is the required universality: 

free in the use of his Zogical axioms. 

1. 9 Proof checking vs. theorem proving 

the Automath user is even 

When constructing a proof-checking or theorem-proving system one 

bas to decide how to devide the total amount of work between the human 

writer and the machine. In general it is assumed that easier writing 

makes more difficult checking and vice-versa. A distinctive principle 

of Automath languages always has been that the computer actualZy must 

be able to cope with its task. So, at least, the system the machine is 

supposed to decide must be formally decidable. In fact we want feasible 

decidability (cf. 2.10). On the other hand it is required that the 

writer's burden is as light as possible. 

A nice point is that, in contrast with the above stated general 

view, easier writing sametimes makes checking easier too. Viz. if the 

system allows the writer to omit parts of the argumentation these parts, 

of course, do not need to be checked: But, on the other hand, a certain 

redundancy will help the machine to detect the, almost inevitable, minoi 

errors at an early stage. 
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In view of feasible decidability general theorem proving is out of 

the question. But it ie in the spirit of the Automath project to success

ively extend an existing, working, verification system with new tools 

that handle additional, feasible tasks. In such a way one might turn 

one's proof-checking system into a partial truth-checking (i.e. theorem 

proving) system, notably in well-defined restricted domains. Put differ

ently, the machine might be allowed sametimes to aalculate facts, rather 

than proving them. Although, if one would allow the user of the system 

toprogram such attached mechanisms himself, it would be preferable, 

if also a proof would be generated and checked (cf. 2.3). 

In fact, the Automath proof-checking system has always contained 

such a partial truth-checker, viz. a decision procedure for the formulae 

<definitional equations and typing fo~ulae) of the underlying typed 

À-calculus (see 4.1). 

1.10 Same characteristic features of Automath 

We just mention here (but will come back to it) that the parallel 

natural deduction treatment of objects and proofs, which we think quite 

natural, and characteristic for Automath, gives rise to a generalized 

typed À-calculus, By "generalized" we mean that the types are nat given 

beforehand, but are rather constructed along with the terms and can 

have complicated form (cf. 4.1). In IV.l there is given a further 

classification of such systems, into pure, extended and arithmetical 

systems. The pure systems have the ordinary À-calculus operations only, 

the extended ones have additional logical operations, and the arith

metical systems have arithmetic built in in the farm of a recursion 

operation. The pure and extended systems are the subject of this thesis. 

The Automath languages AUT-68 and AUT-QE (4.5-4.7) belang to the 

pure, the language AUT-Pi (in Ch. VIII) belengs to the extended systems 

and there are no arithmetiaal Automath languages. This is a fundamental 

choice: the addition of a built-in recursor might give rise to definit

ional equations which are nat feasibly decidabie and, besides, we don't 

think that the presence of a recursion would make the representation 

of ordinary mathematica! reasoning any easier. Consequently, the natura! 

number structure is not built in, but has to be introduced axiomatically, 

just like any other mathematica! structure. Needless to say that the 
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Church {or, any other) representation of numbers in À-calculus does not 

come in. 

1.11 Propositions as types 

The parallelism between objects and proofs, types and propositions, 

defiriitional equality and proof theoretic conversion, for short: the 

propositions-as-types notion of construction, was first hinted at by 

Curry and Feys [25]. Later on it was developed further by Howard [34] 

and employed by him and other logicians (Scott[62], Prawitz [60], Martin 

Löf [45], Girard [31]) in faunding a theory of constructions, in proof 

theory, and in constructing an intuitionistic theory of types. In the 

meantime, it was independently discovered by De Bruijn (he also inspired 

Scott [62]) and used in the Automath project. 

1.2 A survey of the Automath project 

2.1 The AUT-QE stage 

The experimental, practical character of the project clearly re

quired: (i) the development of appropriate languages, (ii) the construct 

ion of programs for verifying these languages, {iii) the actual writing 

and checking of large pieces of mathematica. 

There exists not just one Automath language, but a whole family of 

Automath languages. The first language (around 1968) which had the 

characteristic typed À-calculus structure was AUT-68. Befere 1968 there 

were just some sub-languages: LSP (see eh. III) which codified the 

abbreviation device, PAL which already had type structure but still 

lacked À-calculus (see [11]). Experience with AUT-68 led almost imme

diately to the construction of AUT-QE, which proved to be quite suitable 

for the then adopted propositions-as-types style of writing mathematica. 

So the first language around which the project was centered was 

AUT-QE. De Bruijn's sketch of a verifying program was elaborated and 

implemented by Zandleven [75]. Jutting translated Landau's "Grundlagen 

der Analysis", and his translation was completely checked by the veri

fying program. This enterprise has been extensively documented in [37]. 

The Chapters V, VI of this thesis are mainly devoted to AUT-QE. 



2.2 The AUT-Pi stage 

It was always foreseen that, on the basis of the experience with 

AUT-QE, higher-level, easier-to-write, so called super-Zanguages were 

to be developed, possibly for "special purposes", i.e. specific areas 

9 

of mathematics. The second language playing a central role in the project 

was AUT-Pi, developed by Zucker. 

This is indeed a kind of super-language extending AUT-QE in two 

respects. Firstly, the mathematical basis of AUT-Pi is somewhat stronger 

(it is an extended system, i.e. there is slightly more logic built in). 

This answered, e.g., in combination with the principle of irreZevance 

of proofs ( see 5. 2, and [ 20] ) Jutting's need for easier embedding 

and "exbedding" facilities (see [37] ). Secondly it contains some handy 

"syntactical features" which make life for the Automath user somewhat 

more comfortable. We mention the synt-facility for syntactical operat

ions on expressions (which, i.a., allows to omit redundant parameters 

(but see 1.3)), and the presence of strings and teZescopes. More about 

this can be found in [37, 77]. 

However, the use of these syntactical mechanisrns is not restricted 

to AUT-Pi, they can as well be added to AUT-68 and AUT-QE. This seerns 

to be particularly worthwile, because the strings-and-telescopes in 

some sense duplicate the pairs-and-products of AUT-Pi (see VIII.l.S). 

Zucker (assisted by A. Kornaat) ernployed the new language for a 

modern, thoroughly classical (in the sense of "classical logic") 

treatise on the principles of real analysis, thus contributing to the 

foundational claim rnentioned above. A survey of the AUT-Pi part of the 

project is to be found in [77]. 

A new verifying program was designed by Zandleven, developed by 

him and Kornaat, and is now being finished by Jutting. Apart frorn the 

fact that this new verifying program accepts AUT-Pi as well as the older 

languages, it also contains improved facilities for handling bound 

variables (see 3.4) and for storage manipuZation. The latter proved 

necessary because with the first verificator, which left the handling 

of the extensive storage requirernents to the computer systern, working 

in interactive mode turned out to be curnbersome. 

Apart frorn the two major Autornath texts produced by Jutting, Zucker 

and Kornaat there have been forrnalized rnany smaller pieces of rnathematics 
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into Automath by a variety of authors, mostly students. In Bulnes 

it has been suggested that the size and scope of the proof checking 

projects performed in FOL were comparable with size and seope of e.g. 

Jutting's opus. The present author disagrees: The amount of material 

handled in FOL is in no way comparable to what has been done in Auto

math. 

2.3 The multi-level approach 

The words "higher-level languages" suggest a separation between an 

object language, and a formal super-lanquage which provides easier 

writing. Texts in the latter lanquage may then be mechanically trans

lated into object-language, which in turn is to be verified by the 

machine. In AUT-Pi, contrarily, there is, in principle, no such separat· 

ion of levels: all the additional features are incorporated into the 

language. we write "in principle", because the synt-facility is indeed 

somewhat related to this multi-level approach. 

There have also been certain proposals actually directed towards ti 

multi-level framework. E.g. Wieringa (now working on the application of 

Automath to programming language theory), bas once constructed a system 

that answers simple arithmetical questions (n * m = ?) and provides the 

resulting equation with a proof in AUT-QE. This AUT-QE proof turns out 

to be correct, of course! Similarly, there has been constructed a mecha

nism that decides propositional formulas and provides the true ones 

with an AUT-QE proof [53,74]. Compare also the discussion in 1.8 about 

partial theorem-provinq mechanisms. 

In FOL and LCF partial theoremprovers and multi-level approach are 

present too. We mention the FOL procedure MONADIC, which decides formulë 

of menadie predicate calculus, and the ATTACH facility, allowing the 

machine to establish combinatorial facts by actual calculation. As for 

LCF, the meta-language ML is presented as a kind of programming languagE 

for manipulating the objects of the PPÀ system. 

2.4 The theoretical aspects 

Of course the development task in the project, viz. of developing 

languages and verifying programs, and of writing mathematica in Automatl 



also gave rise to theoretica! studies. Here we distinguish: 

(1) language theoretica! studies, 
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(2) studies concerning the way mathernaties is formalized in Auto

math. 

This thesis deals with the language theory (1), which wedefine as 

the theory of the underlying typed À-calculus of the Automath languages. 

Object of study is the syntactical structure consisting of the Automath 

expressions, provided with the relations reduotion, 

and the typing reZation (or typing funotion). See 

equaUty 

As regards (2), we mention some typical logical questions: what do 

we gain and loose by such formalizations, and: what is the relation 

between the Automath formalization and, say, some standard formulation 

of a piece of mathematics. Such questions are interesting, mostly be

cause of the unconventional way in which rnathematics is formulated in 

Automath. In particular, the fact that the proofs explicitly enter the 

Automath formalization is important. E.g. it allows detailed analysis 

of proofs, and of reasoning, and it gives rise to, as we say, generalized 

Zogie (see 5.10,[20] or [77]). 

Then the studies (2} can, i.a., indicate what Automath language is 

suitable for what kind of mathematics. Roughly speaking, we might say 

that (2) concerns semantiaal questions, in contrast with the basically 

syntaetie questions of the language theory, treated below. 

2.5 What is language theory? 

The results of the language theory are important for the construct

ion of the verifying program and for proving its correctness. Further 

they serve as a foundation for the study of rnathematics in Automath, 

i.e. the studies (2) mentioned above. E.g. the consistency of the under

lying typed À-calculus (as provided by Churah-Rosser theorema and the 

like, see below) is clearly a prerequisite for the consistency of mathe

matics formalized in Automath. 

Nevertheless, the language theory concerns the expresslons and 

formulas as mere syntaatiaal constructs, thus abstracting from possible 

mathematica! content. Hence, the language theory also abstracts from 

particular sets of constants and axioms (socalled hooks) belonging to 

a particular piece of mathematics. 
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We take the point of view that the languages of the Automath family 

are characterized by their set of aorreat (i.e. well-formed according 

to the rules and restrictions of the various languages) books~ formulas 

and expressions, rather than by a certain specific definition, i.e. a 

specific set of rules. Two definitions are said to be equivalent if they 

define the same language. One language is said to be an extension of 

another language if its set of correct expressions, books etc. contains 

the set of correct expressions, bcoks etc. of the other one. 

2.6 The aims of the language theory 

Now we mention some typical theoretica! aims. On the one hand, the 

design and comparison of language definitions, in particular the compa

rison of socalled E-definitions, which generate the language in question 

by a set of production rules, with the algorithmia definitions which 

describe the language by giving its verifying program. 

On the other hand there is the comparison of the distinct languages 

leading to aonservativity and unessentiaZ- or definitional extension 

results (see V.3.3 for the terminology). 

Last but not least we mention the deaidability of the Automath 

languages, which is, in principle,essential for the aim of the project, 

mechanica! proof-checking. The latter goal (to prove the decidability) 

consists of: (1) indicating a decision procedure, (2) proving its equi

valence with a given language definition (these parts can be skipped if 

the language in question is given by a definition of the algorithmic 

type}, (3) proving the terminatien of the indicated procedure. 

2.7 Three desirable properties 

The main tool of the language theory is the detailed study of the 

socalled reduation relations involved. Roughly speaking, reduction of 

expressions amounts to step by step evaluating, step by step transformir. 

the expression (cf. 4,3), until possibly an irreduaible (or: no~al) 

expression is reached. Definitional equality is the equivalence .relatior. 

generated by reduction (the precise definitions are in II.3-4). 

Now three important desirable properties of the systems, in con

neetion with reduction and definitional equality, are: (1) no~alizatior. 



and strong normalization, (2) the alosuve property, (3) the Church

Rosser property. 
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Normalization states that all the correct expressions indeed reduce 

into a normal expression, i.e. there is a reduction sequence, a sequence 

of expressions produced by successive evaluation steps (reduction 

steps), ending in an irreducible expression. Strong normalization says 

that all the reduction sequences of correct expressions terminate. The 

alosure property (this term is due to Nederpelt) says that correct ex

pressions remain correct under reduction. Finally the Church-Rosser 

theerem (a corollary of the Churah-Rosser property) states that two de

finitionally equal expressions have a common reduct, i.e. an expression 

to which they both reduce. For precise definitions see II.S. 

2.8 Formal vs. feasible decidability 

A typical application of Church-Rosser theerem and normalization 

is the deaidability of the definitional equality on the set of correct 

expressions. First, by the Church-Rosser theorem we have socalled 

uniqdeness of normal forms: An expression has at most one normal reduct. 

So by combining this with normalization we can define the normal form 

of an expression. Then, thanks to these properties, two expressions are 

definitionally equal iff they have the same normal form. These can be 

effectively computed, thus yielding decidability (of definitional 

equality, from which the decidability of the typing relation fellows). 

However, computing normal forms is not a very practical way of de

ciding definitional equality, because normal farms can be very long and 

complicated eXPressions, and the reduction sequences leading to them 

often require many reduction steps. A more practical decision procedure 

rather relies on streng normalization. Namely, when confronted with two 

expressions A and B we can try to successively apply well-chosen re

duction steps on either A or B until we possibly arrive in a common reduct 

(thus establishing definitional equality) or we arrive in reducts 

A' (of A) and B' (of B) which can be recognized not to be definitionally 

equal. Strong normalization warrants that this process anyhow terminates, 

no matter what reduation strategy has been chosen. Although, in the 

worst case it might end in normal forms A• and B', in particular this 

might happen if A and B are not definitionally equal. 
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Since reducing to normal forms is simply not acceptable in feasibl 

verification procedures, the importance of the formal decidability resul 

and of the cornp~eteness of the indicated more practical decision proce

dure must not be overemphasized (as observed by De Vrijer in [79]) -

though these facts are, of course, important for a good understanding 

of the procedure - In practica, in the Automath project, the action of 

the verifier can be explicitly bounded by giving a suitable upper limit 

to the amount of work (e.g. number of steps) it is allowed to perform 

when trying to establish a definitional equation. If, within this bound 

no common reduct is reached the equality of the two expressions is pro

visionally refused and the verifier will ask for further information. 

This, we think, is in full accordance with the fact that, in principle, 

the verifier is not expected to do more than a human checker, For more 

comment on áctual verification see III.6, V.4.4 and VIII.6. 

Strong normalization has, apart from this, more or less practical 

application, some theoretically useful consequences. E.g. it simplifies 

the Church-Rosser proof in any case, and it seems indispensable for the 

case where surjective pairing is present. Besides, certain proofs of 

closure (for Nederpelt's A) depend on strong normalization (in fact on 

an even strenger terminatien property, the big tree theorem). 

Cf. VII.1.2, VII.3, VII.S. 

2.9 The consequences of closure 

As an application of closure it is somatimes mentioned that it 

saves time for the verifier. Namely that the verifier does not need to 

check for correctness again and again when reducing an expression. 

More specific, the combination of closure and Church-Rosser is 

important in the verification procedure. First, the Church-Rosser 

theerem says that definitional equality (via any sequenae of correct 

expressions) can be replaced by definitional equality established via 

a common reduct. Secondly the closure proparty states that the latter 

equality passes through correct expressions only. 

Besides, closure is connected with many other interesting propertie 

which are in fact characteristic for the Automath languages, like pre

servation of types (under reduction; this proparty is elsewhere soma

times called c~osure of the types under reduction), uniqueness of types 



(this means that proper inclusion of types is impossible), uniqueness 

of domains, and soundness of (definitional) equality with respect to 

expression formation and typing relation. See 4.1, 5.4 and V.1.3. 

Further, closure is necessary in the Sn-Church-Rosser proofs 
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(see VI), for showing the equivalence of various language definitions, 

and for showing the connections between the various languages. 

2.10 The "unstability" of the difficulties of language theory 

When proving the nice properties connected with closure one often 

uses induction on the definition of correctness (for terminology about 

induction see II.O). This means that the choice of definition, i.e. the 

order in which the expressions are generated, can be important. 

In fact, the present author thinks it surprising how important the 

choice of definition can be in this respect. Example: A proof of closure 

directly from the algorithmic definition turns out to be rather involved 

(see VII.3.3), whereas De Vrijer [70] formulated his system ÀÀ-~ 

(essentially AUT-QE+, see 4.9) in such a way that closure was straight

forward. (On the other hand, De Vrijer had to prove his big tree theorem 

in order to get decidability, whereas decidability for the algorithmic 

system just fellows from normalization). 

Similarly, there is much difference between closely related 

languages, as regards the difficulties they pose in proving their nice 

properties: Seemingly harmless modifications of the languages - hardly 

increasing their expressive power can make some parts of their 

language theory considerably more difficult. We mention the transition 

from AUT-68 to AUT-QE, from AUT-QE to AUT-QE+, or the extension from 

AUT-QE+ (even without type-inclusion) to Nederpelt's system A. See sec. 

4 for the characteristics of these 1anguages. And there is the addition 

of the "extensional" reductions n, a and c: (II.3) which essentially 

complicate the Church-Rosser proof (c: even spoils the property) without 

contributing much to the expressive power (see e.g.[37, p. 42]). By the 

way, the phenomenon that hardly impressive modifications can give rise 

to considerable extra difficulties is itself the raison d'être of a 

large part of the Automath language theory: Some properties (closure, 

i3n-church-Rosser) are interesting properties in Automath, but in ordinary 

typed À-calculus just trivialities, though the Automath languages can 

be considered as mere generalizations of the latter system! 
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Returning te the Automath languages: generally, we have chosen the 

strategy of first proving the nice properties for a - in this respect -

simple system, and then trying to extend these results to more compli

cated languages. See v.3, VII.6. 

1.3 Sarnething on bound variables 

3.1 In this thesis we consider expressions moduto a-conversion (re

naming of bound variables), i.e. our relation of syntaaticat identity

actually stands for a-convertibility (II,2.2). So, in the sequel, we 

leave the complications concerning the handling of bound variables out 

of the discussion. This can be accounted for, e.g., by referring to 

Curry's classica! exposition on substitution [25], to Nederpelt's notion 

of distinctly bound expressions [51], or via the correspondence with 

one of the proposals to eliminate the names of bound variables altc

gether (De Bruijn [ 1 0], Staples [ 66]) • 

3.2 Both these proposals for nameless dummies reflect the idea that a 

bound variabie occurrence is just an open position in an expression, 

which has to be uniquely linkable to its binding À. De Bruijn performs 

this unique linking by replacing such an open position with a positive 

number, the referenae depth, viz. the distance to its binding À. I.e. 

the number of À's one encounters scanning the expression from within 

until one arives at the binding À (the latter included). E.g. the bound 

occurrence ~ in ~·y(y~) has depth 2, the two bound y's have depth 1. 

Of course the bindine variables going with a À can he skipped in this 

notation. Staples, on the other hand, replaces all such open positions 

with one and the same standard symbol (one might as well leave them 

open) and provides the linking information by attaching a list of posit

ions to every À. These positions are coded in the form of binary strings 

with 0 standing for left part and 1 for right part of the expression. 

E.g. the position ~ in Ày•y(y~) is coded 111, and the y's in y(y~) have 

codes 0,10 respectively, 

In other words, in De Bruijn's notatienone counts backwards from 

a bound position to its binding À, in Staples' notatien one counts for

wards from a binding À to the positions it binds. Example: the name-
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carrying expression ÀXy•y(y~becomes À(À(1(12))) and À(lll) (À(Q,lO)(X(XX))) 

respectively, where we have taken x for Staples' standard symbol. 

3.3 De Bruijn admits that his system is not particularly suitable for 

(i) easy reading and writing, but claims it to be good for both (ii) 

metalingual discussion and (iii) mechanica! manipulation - what is was 

invented for, in the context of the Automath project • In fact, De 

Bruijn's system is just the symbolic representation of the most straight

forward computer implementation of À-expressions. 

Staples thinks his system is better than De Bruijn's for purposes 

(i) and (ii) and does not know about (iii). The present author thinks 

there is not much difference between the two systems as regards (i) 

and (ii) (probably De Bruijn's is somewhat better for (i)), but thinks 

that De Bruijn's is definitely superior for (iii). He ~inks further 

that both systems, when compared to ordinary name-carrying À-calculus, 

are better for (ii) - unless, of course, one wants to study a-conversion -

but so much inferior for (i) - at least to people accustomed to ordinary 

notatien but probably to others as well - that he has preferred the 

ordinary approach in this thesis. 

3.4 Zandleven has actually used De Bruijn's system in the implementation 

of Automath, extending it to a system of socalled substitution: 

substitution instructions are incorporated into the syntax of the sys

tem, and so, they can be postponed until needed {e.g. for establishing 

definitional equality). Since the substitution instructions are also 

coded by means of reference depths, we call the system a system of 

iterated referenaea (documented in [38]). Closely related are De Bruijn's 

system of referenee transforming mappings [16] and Wadworth's system of 

graph reduation [72]. Wadsworth's system is not namefree, but he surely 

hints at namefree implementation. De Bruijn and Wieringa[19,80] have also 

studied even more general namefree À-calculuses. 

3.5 In a review [63] of De Bruijn's artiele [10], Seldin suggested that 

combinatory logic is as good as any other system for nameless represent

ation of bound variables. Since most À-calculus theories can only parti

ally be represented in combinatory logic (see, e.g., Hindley [33]), and 

since the usual translations are rather clumsy (though perhaps Turner's 
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recent proposal [78] might be satisfactory) we think that Seldin's 

remark is not quite correct. (Lately (Swansea, 1979, oral communication) 

Seldin seemed to agree with this view himself.) 

1.4 The Automath languages 

4.1 General language rules 

We give a tutorial survey of the characteristics of the saveral 

Automath languages. Other introductory raferences on AUT-68 and AUT-QE 

are [27,11], for AUT-SL see VII.l or [51], forAUT-Pi see VIII.! or [77}, 

See also the discussion in IV.l. 

We have already announced the generalized type-structure of Auto

math: the types can be complicated expressions themselves (e.g. they 

can depend on variables), they are constructed along with the terms and 

hence, the typestructure cannot be given befarehand - as is usual in 

ordinary typed À-calculus -. 

So the type-assignment is itself part of the system and does not 

belong to metalanguage. Consequently the system has besidee formulas 

A Q B 

expressing the definitional equality of the expressions A and B, also 

formulas 

A EB 

standing for A has type B. An alternative notation for Q is ~ or just 

(e.g. in[ll, 37 ,70)), forA E B one somatimes writes A B (in [;20 ,77]). 

In fact, in accordance with the implicit character of definitional 

equality (see below), the Q-formulas are not written down, when actually 

using the Automath system, but are just introduced in the language 

theory for formal purposes. 

All Automath languages have the right hand equality PUle (or rule 

of type conversion) 

A E B, B Q C • A E C 
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Most languages also have the left hand equality rule LQ 

AEC,AQB,..BEC 

as a derived rule (contrarily to the right hand rule, which is part of 

the language definition}. Further, most languages satisfy uniqueness 

of types 

A E B, A E C ,.. B Q C 

i.e. the "converse" of type conversion. In such languages there can be 

defined an operatien typ, such that, for all correct A, 

A E typ(A), and 

A E B,.. B Q typ(A) 

(this explains why the decidability of Q entails the decidability of EJ. 

The expressions are formed from variables x, y etc. and constant

expressions e(A
1

,•••,Ak) by the operations of À-abstraation and appliaat

ion (in the socalied pure languages AUT-68, AUT-QE, AUT-SL) and possibly 

other operations (in the extended system AUT-Pi). Expressions formed 

according to the rules and the restrictions (in particular the type 

restrictions)of the various languages are said to be the oorreet express

ions of those languages, in contrast with the (general) expressions just 

resulting from unrestricted use of the formation operations. 

4.2 Abstraction and application 

The eperation À-abstraotion leads to abstraation-expressions 

[x:A]B. Generally such an expression can be interpreted as the funetion 

Àx:A·B, with domain A and producing values B[D] when applied to argu

ments D E A. Here the postfix [D]I belongs to the metalanguage; it is 

short for [x/D]J, i.e. substitution of D for the variabie x. 

The appliaation eperation constructs the applieation expression 

{A}B. This expression must be interpreted as the result of applying the 

funation B to the argument A, i.e. the object usually denoted B(A) or 

BA. The choice of putting the argument in front, between brackets, 

combines nicely with the notational habit of putting the binding variable 

x:A in front too, between a different kind of brackets, and is generally 
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preferred in the Automath project. Of course, people grown up with the 

usual À-calculus conventions find it difficult to get used to such a 

new notation. {Admittedly, it would have been consistent with our notat

ion for application to put the substitution operator in front too. How

ever we do not find this too important because substitution just belengs 

to metalanguage.) 

4.3 Reduction and definitional equality 

The definitional equality is a restricted form of equality, just 

covering certain identifications which in ordinary matbematics are 

understood without any explicit justification. It is defined in a com

binatorial, syntactical way, viz. as the equivalence relation generated 

by socalled reduation steps. Each reduction step replaces a part of an 

expression, a redex, by another expression, a socalled aontractum. This 

is the usual terminology in À-calculus, where definitional equality is 

often called aonvertibility. In order that the so-defined relation is 

acceptable as definitional equality, it must clearly be required that 

redex and contracturn are intuitively equal. Our notatien for reduction 

is ~. The reductions associated with abstraction and application are 

B- and n-reduction: 

8-reduction: {A}[x:B]C ~ CKA] 

n-reduction: [x:B]{x}C ~ C if C does not depend on x. 

There is also associated a reduction (called o-reduction) to the 

expressions d(A
1

, • • • ,Ak) where d is a defined constant. For such defineé 

constants defining axioms (abbreviations, with parameters) 

are given. Here the postfix [x1,··•,xk] is to indicate that D may depené 

on the variables shown. 

The ö-reduction reads 
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substitution of A1,···,Ak for ~ 1 ,•··,~k. Our ê-reduction is distinct from 

ether ê-reductions in the literature (cf. II.3.2.4). 

The equality generated by 6, n and ê indeed corresponds to the in

tuitive interpretation of abstraction and application, and to the idea 

of abbreviation. However, certain restrictions have to be fulfilled. In 

particular, n-equality is only acceptable if the C (in the n-redex, 

above) is also a function, with domain B. Since in the general, unre

stricted expressions such provisions are not necessarily satisfied, we 

define Q between correct expressions A and B only, and also require 

that the expressions "in between" A and B (i.e. via which the conversion 

from A to B can be established) are correct as well. For precise defi

nitions of reduction and equality see II.3-4, for Q see V.2. For the 

additional operations (with associated reductions) of AUT-Pi see VIII.l. 

4.4 Type assignment 

Type assignment takes place tagether with expression formation. 

The variables get a type by assumption (of the form ~ E A). Formulas 

are derived and expressions are constructed in natural deduction style, 

i.e. relativa to a set (in our case: a string) of assumptions, called 

the aonte~t of the formula, resp. the expression. Such a context has the 

farm 

where all the ~i are distinct. (This notion of context is only vaguely 

related to the notion of context nowadays used in À-calculus theory.) 

If ~ is a context we sametimes write 

~~A, t,;~A E B, t,;~A Q B 

to indicate that an expression ar formula is correct, resp. derivable, 

with respect to ~. Here ~ contains so to say the type declarations of 

the variables on which A (resp. A E B, A Q B) depends. 

The constant expressions obtain a type by instantiating of (i.e. 

substitution in) a saheme. A scheme consists of an axiomatic type 

assignment with parameters 
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relative to a context 

Only such instantiations a(A
1
,···,Ak) are admitted, where the A

1 
meet 

the type requirements of the context, i.e. 

Then the type assiqnment to the constant expression bacomes 

() ( ,1 I ••• ,A ) E C[A I ••• ,A D • 
ï k 1 k 

A list of constant schemes is called a book and the constants a 

are called book aonstants (to distinquish them from the lanquaqe con

stants). Thère are two kinds of constants, viz. primitive constants, 

having a type-assignment only, and defined constants, having a defining 

axiom (as mentioned in 4.3) and a corresponding type-assignment (see 

below). Allconstantsin the book are distinct so each book constant 

has a unique type-assignment (resp. unique defining axiom). If d has 

defining axiom d(x1,··•,xk) := D and typinq d<x1,•••,xk) E C then, for 

the sakeofthe intuitive interpretation, it must be required that 

D E C w.r.t. the context of the scheme. This is the compatibility con

dition of def and typ. For more precise definitions see IV.3.2,IV.3.3, 

V.2.1. 

4.5 The rules of AUT-68 

As for the application and abstraction rules, we first describe 

the simplest language, now named AUT-68. This language has three kinds 

of expressions: te~s (also called expressionsof degree3, or: 3-ex

pressions), types (with degree 2, or :· 2-expressions) and a single un

typed constant type (also denoted T, and called a supertype or 1-ex

pression, of degree 1). Languages with expressiena of degree 1, 2 and 

3 only are said to be regular. 

The 1-expressions generally serve as types for the 2-expressions, 

but do not have a type themselves. Notice that the word "type" is used 

ambiguously here, viz. to name the 2-expressions and in the sense of: 

"being the type of". Typically, the types are the types of the terms 

and (in AUT-68) type is the type of the types. 
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So, in AUT-68 there are two cases A E B: either A is a term and 

Bis a type, or A is a type and B type<= means syntactical identity). 

In termsof degrees: if A EB, B has degree i then A has degree i+l. 

This property holds generally, also in the irregular languages, like 

AUT-SL, where expressions of all positive degrees are admitted. 

Now we give the term formation rules for AUT-68. First notice that 

all variables have a type, so must be a type variable (of degree 2) or 

a term variable (of degree 3). The abstraction rule reads: if from an 

assumption x E A, and possibly ether assumptions net depending on x, it 

can be derived that B E C, where x is a term Variable and B is a term, 

then ene can conclude that [x:A]B E [x:A]C and disaharge the assumption 

x E A. In natural deduction notatien 

[x E A] 

term abstraction rule degree(x) degree (B) 3 

B E C 

[x:A]B E [x:A]C 

Actually, in Automath only the last assumption in the context is allowed 

to be discharged. The remaining assumptions clearly satisfy the above 

mentioned restrietion (of not depending on X). We refer tothefact that 

the context is a string rather a set (and consequently, that the assumpt

ions can be removed according to the last-in first-out principle) by 

speaking of the linear natural deduction character of Automath. In the 

notatien of this thesis the rule becomes: 

~2A, (x E A~3B E C) ,. [x:A]B E [x:A]C 

with ~ standing for correctness, resp. derivability, with the super

scripts indicating the degrees (for the precise conventions see V.2.1.1). 

In order to guarantee that the type of correct expressions are 

correct toe, there must be an abstraction rule for types as well. This 

one reads 
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type abstraction 

rule AUT-68 

In our notation 

[.x E AJ 

c E type 

[.x :A ]C E type 

~ 2A, C.x E A~C E type} .,.. l.x:A]C E type 

degree(.x) 3 

Then there is the application rule for AUT-68: 

application 

rule AUT-68 . 

4.6 Interpretation 

DE A B E [.x:A]C 

{D}B E CffD] 

Now something about interpretation. With the 3-expressions [.x:A]B 

and {D}B constructed above there is no problem: [.x:A]B is the function 

À.x:A•B, {D}B is the result of applying function B to argument D. But 

consider the 2-expression [.x:A]C occurring in the rules above. Under 

the most convenient interpretation, maintaining that a type is a kind 

of set or claas, and that the E-relation is a kind of element relation, 

[.x:A]C must stand for the object usually denoted n C or n(À A•C) • 
.x:A .x: 

I.e. the cartesian product of all the CffD], forD E A. IncaseC does 

not depend on .x, this product reduces to the function space A ~ C which 

in type theory would be denoted CAC) or the like. In other words, (.x:A]( 

is the "set" (class, aggregate) consisting of all the functions B with 

domain A which, when applied to arguments D in A, produce values be

longing to C[D]. This is precisely what the appl rule says. So in this 

interpretation the abatpactoP [.x:A] has two different meanings: when 

used with a term it gives a function, when used with a type it gives a 

kind of set. Or, we can say that [x:A] has just one meaning, viz. ÀX:A, 

but that the n has been omitted, for brevity, in a situation where no 

confusion is reasonably possible. This is the standard interpretation 

corresponding with the notatien in related typed À-calculus systems and 

in AUT-Pi (see VIII.l). 
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However there is a second, alternative, interpretation, too. It is 

not necessary to stick to the idea that types are sets and that E is a 

kind of element relation. Namely, we can very well interpret [x:A]C as 

the function Àx:A•C, if only we accept that a funetion can act a type. 

Then, the term abatr rule says (i.a.) that the type of a function is 

again a function, with the same domain, and, conversely, the appl rule 

says (i.a.) that the functions of degree 3 are eharaeterized by having 

a function for their type, from which their domain can be read off. In 

this interpretation the conclusion of the term abstraction rule 

([x:A]B E [x:A]C) just mean VD E A (B[D] E C[D]), i.e. the rule abstracts 

the formula B E C rather than the expresslons involved. In algebraic 

terms: the rule can be considered as a diatribution rule of the ab

stracter [x:A] w.r.t. the E-relation. 

This, second, interpretation has given rise to several extensions 

of the language, viz. to AUT-QE, to socalled +-lanquages (AUT-68+ and 

AUT-QE+), and even to AUT-SL (i.e. Nederpelt's A). 

4. 7 AUT-QE 

First the extension to AUT-QE. Since we interpret the 2-expression 

[x:A]C as a (type valued) function, and since we want a uniform metbod of 

type assignment for both term valued and type valued functions, we 

drop the restrietion to B of degree 3 in the term abstraction rule of 

AUT-68, thus getting the 

general abstraction rule: ~ 2A, (x E A~B(E C)) ~ r[x:A]B(E [x:A]C) 

so the degree restrietion for the variable x is maintained. In the new 

rule there is included (skip the two E-parts between parentheses) the 

abstraction rule for 1-expressions, to guarantee that the types of 

correct expresslons are correct again: 

so in AUT-QE there are other supertypes than just type, of the 

form 
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These expressions have or1g1nally been named quasi-expressions, whence 

the name of the language AUT-QE. 

The application rule of AUT-68 is maintained in AUT-QE: 

application rule I D E A, B E [x:A]C • {D}B E C[D) 

but is more general here, because it can be used with Bof dégree 3 and 

2 now (in AUT-68 only with Bof degree 3). Besides, AUT-QE has, in 

accordance with the proposed interpretation, another appl rule: 

application rule II E E A, B E C E [x:A]D • {E}B E {E}C 

Namely, [x:A]D is a function with domain A, so C is a function with 

domain A, so B is a function with domain A and can be applied to the 

argument E E A. (In fact, this rule can be derived from appl rule I by 

n-equality, which confirms the agreement with the interpretation.) 

Just like a degree 2 abstr expression of AUT-68 allows different 

interpretations,viz. as a set or as a function, a degree 1 abstr ex

pression of AUT-QE has such different interpretations too. Under the 

first interpretation the expression [x1 :A
1
J·••[xk:Ak]type stands for 

the object 

This corresponds with the notation of AUT-Pi, see VIII.1. Under the 

second interpretation it stands for the object 

À- ·A .À- ·A .••·À- ·A .type "'1. 1 ""2. 2 ""k. k 

4.8 Type inclusion 

Now let x E A~C E type. Two rules of type assignment are applicable 

viz. the type abstr rule of AUT-68 and the general abstr rule, giving 

rise to 

[x:A]C E type, resp. [x:A]C E [x:A]type 

Generally a 2-expression [x
1

:A
1

J•••[xk:Ak]C of AUT-QE has as its 

possible types 
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This ambiguity of types, which is typical for AUT-QE, is usually imple

mented by adding a rule of type inalusion 

and dropping the type abstraction rule of AUT-68, which now becomes a 

derived rule. In fact, the type inclusion rule is somewhat strenger 

than the type abstraction rule of AUT-68 (or, similarly, the product 

rule of AUT-Pi). See VIII.1.5 and VIII.6. 1. 

Clearly the property of uniqueness of types 

A E B, A E C * B Q C 

is, for 2-expressions A, not valid any more in AUT-QE. This is,however, 

the only case of proper type-inclusion in Automath languages. We intro

duce C to denote type-inclusion, i.e. 

B C C :- VA (A E B ,. A E C}. 

For the precise definition see V.2.13 or V.3.2. The possible types of 

a 2-expression appear to be linearly ordered under C, so 

A E B, A E C ,. B C C or C C B 

and it is still possible to define a oanonioal type which is minimal, 

w.r.t. C, among the possible types (and hence gives maximal information), 

i.e. such that 

A E B ,. A E typ (Al C B. 

4.9 +-languages 

Now the extension to +-languages. Reeall that in AUT-68 there were 

abstr expressions of degree 3 and 2, but appl expressions of degree 3 

only. We say the value degrees are 2 and 3, and the funation degree 

is 3. Here we use the terminology of V.2.7: Bis called the Value paPt 

of [x:A]B and the function part of {A}B. Similarly AUT-QE has value 
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degrees 1, 2 and 3 and function degrees 2 and 3. Such languages, where 

the minimal value degree is not a function degree are named non-+

laniJuagee. 

However, if the abstraction expressions of minimal value degree 

are functions, it is reasonable to have an appl rule for them too: 

appl rule 
+-languages D E A~ B Q [x:A]C ~ r{D}B 

In particular, if D EA~ r[x:A]C then HDHx:A]C. Indeed, by adding the 

above rule for B of degree 2 to AUT-68 we arive at the +-language 

AUT-68+. And by adding it to AUT-QE for B of degree 1 we arive at 

AUT-QE+ (which is essentially ÀÀ-~, the Zegitimate fragment of De 

Vrijer's ÀÀ [70]). In principle, the new ruleis a derived rule for B 

not having minimal value degree. The words "in principle" here refer to 

certain problems with type inclusion and defined constants, explained 

at length in V.1.7, V.3.3 and V.4.2. 

It will be shown (V.3.3 , V.3.4 ) that a +-language is an un

eaaential (and even, definitional) extenaion of the corresponding 

non-+-language (see v.3.3): 

~ A ~ 3A I (~A ' & A Q A ' ) + + 

i.e. to each A in the +-system there corresponds a definitionally equal 

A' correct inthesmaller system. 

In all the languages now defined, the rule 

general application 
rule B E C~ r{A}C ~ {A}B E {A}C 

is a derived rule. Alternatively, this rule can be adopted in the 

language definition, either with the application rule I (in the non

+-languages), or with the application rule for +-languages, to generate 

all the appl expresslons of the various languages. The nice point about 

the general application rule is that it (similar to the general ab

straction rule) can be considered as a kind of distribution rule, viz. 

of the applicator {A} w.r.t. ~e E-relation. 

Though in AUT-QE+ we have achieved a fairly uniform treatment of 

expresslons of all degrees, we still have maintained the restrietion 

that only abstractors [x:A] with degree(x) = 3, degree(A) 2 are 
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formed. In other words, only term variables are quantified. So there 

is na quantification over type variables and we say that our systems are 

first-order (this term refers ta the fact that in the propositions-as

types interpretatian quantificatian over types gives rise ta higher

order Zogie). Cansequently only applicators {A} with degree(A) = 3 

are admitted. We say that the only domain degree is 2, and the only 

argument degree is 3 (A is said to be the domain of [x:A]B and the 

argument part of {A}B). Apparently there is a certain duplication in 

having bath instantiation and application in the system. However, 

because of the aforementioned application restrietion instantiation 

cannot be missed: substitution of 2-expressions (for type-variables) 

cannot be performed by means of application so has to take place by 

means of instantiation. (See also 5.6) 

4.10 AUT-SL 

Now we explain haw AUT-SL (i.e. Nederpelt's A) can also be con

sidered a result of our extended interpretation of the E-symbol. Namely, 

now that we have accepted that funetions can be inhabitabte, i.e. can 

be the type of ether expressions, there seems to be no principal ob

jection against allowing eaeh expressian to be inhabitable. This is 

indeed the most striking characteristic of A: there are expressions af 

all positive degrees admitted, soA is irregutar (sec. 4.5). (Here is 

an analogy with the tanguage af set theory where a priori na term is 

excluded from being inhabitable, i.e. from being a set}. 

Further, in A all degrees are domain degrees, sa all degrees but 

are argument degrees, sa instantiation can be missed and, indeed, 

has been dropped. Still, we shall not call A a higher-order language 

(IV.l.5.3, VII.l) because any farm of type inclusion has been omitted. 

Sa, AUT-68 and AUT-QE which are based on type-inclusion, are nat in

cluded in A, and uniqueness of types holds in A. For more informatian 

about the background of A see VII.l. 

The definition of A either must contain the general application 

rule, above, ar for Bof degree k, k ~ 2, 

D E A, B Ck E ••• E c1 _ [x:A]E ~ {D}B E {D}Ck-l 
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In fact, Nederpelt gives an a~orithmia definition of A, in terms 

of a type function typ, and in terms of unrestricted reduction 2, in

stead of a socalled E-definition in terms of E- and Q-formulas, such 

as the definitions given above. For a discussion of algorithmic definit 

ion vs. E-definition see V.1.2 and for the equivalence of both definit

ions see V.4. 

Because of the simple form of the general abstraction and applicat 

ion rule, the function typ has a very simple definition too, in partic

ular 

typ({A}B) ·- {A}typ(B), typ([x:A]B) ::: [x:A]typ(B) 

Nederpelt gives a socalled appliaation aandition which in our 

notation, for B of degree k would read 

(where typk-l stands for k-1 successive applications of the function 

typ), completely in accordance with our application rule for Bof degre' 

k, above. By the way, we write, like Nederpelt, typ* for the typk-l of 

expressions of degree k. 

The language A was invented for theoretica! purposes. It is in

teresting because it has a very simple and elegant definition and exhi

bits some typical Automath features. However, because it is in some 

sense weaker (no type inclusion) than AUT-68 and AUT-QE, results valid 

for A cannot directly be transferred to these, from a practical point 

of view, more important languages. In particular, the "stnat" noma

bility of A (proved by Nederpelt) is easier to prove than the '~eak" 

nol'mability of AUT-QE (see IV. 3-4 ) because of the weak seaond order 

aspect AUT-68 and AUT-QE. See IV.l.S See also VIII.4.2.2 for an in

teresting interpretation of these normability results (inspired by 

Ben-Yelles [6]). 

Conversely, the facts that A is a +-language, is irregular, and 

has no abstraction restrictions, pose certain difficulties which in 

the theory of AUT-68 and AUT-QE can be avoided. 

The present author has mainly devoted his lanquage theoretica! 

attention directly towards the lanquages actually being in use: 

AUT-68, AUT-QE and AUT-Pi. In this theses we have indeed at some places 

introduced new languages (for technica! or expository reasons), but we 
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have tried to exhibit the precise connections with existing languages. 

Also, we have devoted a chapter (VII) to A, which deserves some interest 

of its own. 

4.11 AUT-Pi 

For an informal introduetion toAUT-Pi see VIII.1. In AUT-Pi the 

standard mathematica! distinction between types (being inhabitable) and 

functions (not being so) is made by putting in n•s at the proper places 

(whence the name AUT-Pi). In VIII.6 the difference has been indicated 

between the rule for inserting D's (the produet ru~e) and the rule of 

type-inclusion of AUT-QE. 

4.12 Two higher-order languages 

For completeness reasans we mention two proposals for higher order 

languages. First, De Bruijn once proposed a language AUT-4 [14], where 

the proofs come in as degree 4 expressions (whence AUT-4), instead of, 

as usual (5.9, 5.2}, as degree 3 expressions. AUT-4 would have provided 

an application of the higher degrees of irregular languages, but has 

never been used or implemented. Secondly, the author has introduced a 

language (let us name it AUT-2) which has expresslons of degree 1 and 

2 only, with unrestricted type-inclusion rule (sec. 4.8) and without 

abstraction restrictions. This language proved to be essentially 

identical to a system of type-assignment to À-calculus terms invented 

by Dezani and Coppo[22,23] for quite different purposes. These two 

languages are not discussed in this thesis. It seems that (strong) 

normalization for AUT-4 can only be proved by Girard-like methods Do, 
31],whereas for AUT-2 we haveastrong normalfzation proof in the style 

of this thesis. 
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1.5 Mathernaties in Automath 

5.1 Survey of this sectien 

Because of the presence of a type (type) of types, the presence 

of type-variables and the generalized type-structure, people often tend 

to overestimate the expressive power of (i.e. what can be said in) the 

Automath languages. Here we refer to the expressive power of the 

languages as auch, i.e. to what can be said directly in the basic 

system, without any constants added. (B~cause, with additional constant! 

as we shall see, almest anything can be expressed, just like in the 

language of first order predicate logic.) 

Below we sketch what has become the standard development of mathe

matics in Automath. The emphasis wil! be on the inherent limitations 

of Automath. Occasionally we make a comparison with closely related 

systems: Seldin's system of generalized functionality [64], Scott's 

system of constructive validity [62] and Martin-Löf's systems of in

tuitionistic type theory[45,46], and Girard's systems for analysisDl]. 

Throughout we camment on the typical Automath features. 

5.2 The t-part and the p-part of Automath 

Let us, for the sake of the exposition, divide rnathematics in two 

parts: one part, let us say the object part, dealing with the construct· 

ion of mathematica! objects (resp. types), and one part, the logical 

part, for reasoning about these objects. Our framewerk of Automath 

languages, above, is formulated in terms of objects and types, rather 

than in logica! terms: there are, indeed, Q- and E-formulas expressing 

facts about the objects, but they just play an auxiliary role, viz. to 

control the construction of the correct (sec. 2.6) objects. 

Following[37,77] we name the fragment of Automath that deals with 

the object part the t-fragment (for terms, types and type-valued funct

ions), and the fragment of Automath repreaenting the logical part the 

p-fragment (for proofs, propositions, predicates). Degree i (sec. 4.5) 

expressions of the t-fragment and the p-fragment are said to be i-t

expressions and i-p-expressions respectively. 
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So, whereas the preceding sections suggest how the t-fragment can 

be developed (3t-expressions for objects, 2t-expressions for types), it 

is a priori net clear how the p-fragment will express the logical part. 

Essential is that the E-formula A E B, of the p-fragment, with A a 3p

expression and B a 2p-expression, is interpreted as expressing the truth 

of the proposition B (i.e. as expressing B itself). So, a proposition 

is true (asserted) if "we have sernething in it", i.e. if we have a (3p-) 

expression having the proposition for its type. 

There are several ways of interpreting the realizer A (we borrow 

this term from Pottinger [58] who borrowed it from Helman), i.e. the 

expression we have in the proposition B: as an abstract proof construct

ion proving B, as a symbolic translation of a natural deduction proof 

figure (with Bas its end formula), or as just some indication (some 

reference to the fact) that B holds. If we are interested in constructive 

foundations the first interpretation is appropriate. If we want to study 

proof figures (e.g. in view of normalization properties) the second 

i~terpretation is the best one. If we just want classica! logic the 

third point of view seems to be right, and it also seems justified to 

identify (in the sense of definitional equality) all the realizers of 

one and the same proposition. This identification principle is called 

irreZevance of proofs[77,37,20]. 

We will explain that the propositions-as-types way, as sketched 

above, of fitting the logical part of rnathematics into a typed À-calculus 

framewerk arises quite naturally from the idea of mechanica! proof

checking (and, on the other hand, that it is the only way of expressing 

actual reasoning in termsof theE- and Q-formulasl. 

5.3 The t-fragment 

Generally speaking, the systems introduced in sec. 4 are as yet 

still empty because we have not introduced any ~onstants. Here we adopt 

the common point of view that the meaningful objects (resp. types) of 

a theory correspond to lts closed expresslons (i.e. those not depending 

on variables). One way to construct closed terms is from constants, 

another way is by binding the variables in an expression, i.e. by À

abstraction. Since in most Automath languages abstraction over type

variables is forbidden we need at least one primitive type-aonstant 
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befare we can start generating closed expressions. (Here A is an ex

caption: In A the basic constant T (this is just an alternative notatioJ 

for type) can be used as a ground type and we can directly start con

structing functions of type T ~ t etc. 

In the Automath project it has sametimes been stated, that there 

is no essential difference between a constant without parameters - i.e. 

introduced in an empty context - and a variable. This is formally right 

a constant can be conceived as a variable one does not want to get rid 

of, and for which no substitution is possible. conceptually however, 

it seems better to maintain the distinction. 

We just sketch very briefly how the typed À-calculus framewerk of 

Automath can be used te construct the objects (numbers, functions, 

functionals) forming the universe of discourse of ordinary mathernaties 

(say, analysis). one first introduces some primitive type aonstants 

(2t-expressions) for the greund types, the natuval and the real numbers 

say, by statingas an axiom (i.e. an axiom scheme in an empty context): 

nt E type, rl E type. (Of course, if ene knows a bit more one can also 

define the reals in terms of the natural numbers, but that does not 

concern us here.) Secondly, one introduces some primitive te~ constant. 

(3t-expressions) for generating the objects of these types. E.g. in 

order to construct the natural numbers one states axioms one E nt, 
sucfun E nt ~ nt (the successar function, which can alternatively be 

introduced by a scheme, see below). From these constants we get the 

natural numbers, which we can give a new name by introducing defining 

eonstants: two := {One}sucfun, three := {two}sucfun(Q{{one}sucfun}sucfu 
etc. If one likes, ene can also introduce primitive constants 

plusfun E nt ~ (nt + nt) and timesfun E nt + (nt + nt) for plus and 

times on the naturals. Additional (equality) axioms will be needed to 

fix the properties of the thus constructed objects, but these rather 

beleng to the logical part. Similarly, constants can be introduced 

(with the additional axioms) to generate the objectsof type rl. 
By À-abstraction closed expressions of higher type are constructed 

These higher types themselves {we already used some of them) are also 

constructed by À-abstraction (in AUT-QE etc.) or by À-abstraction and 

product formation (in AUT-Pi). E.g. we get nt ~ rl, the type of real 

number sequences, (rl + rl) ~ rl the type of real functionals etc. 

We see that up to now there seems to be no possibility to introduce 
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(products of) the aonstant type-valued functions 

[x:ntJnt, [x:ntJ(nt + nt) etc. 
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In fact, the type-valued functions do not become essential befere 

we arrive at the p-part. However, we give an example of a typical type

valued function in the t-part (see [37]): In the context x E nt we can 

introduce the primi tive 2t-constant 1 to (x) intended to contain the 

natura! numbers up to x, as fellows 

x E ntr1to(x> E type 

(This cannot become an actual subtype of nt (cf. 5.4), injection funct

ions and equality axioms wil! be needed.) From this scheme we can con

struct the non-trivia! type-valued function [x:ntJ1to(x) (a 2t-express

ion). It dependsof course on the additional axioms what objects will 

belang to this type. 

It is an interesting question what higher type objects (functions 

and functionals) can actually be defined by mere À-abstraction (either 

from object constants, or just from variables): of course we have 

aonstant functions and seleators Àx1 ···xn.xj, and we can define composit

ion of functions, but what else? For an answer see Plotkin [54] • 

5.4 Some camment on the t-part 

From the examples, above, several characteristic features and limit

ations of Automath become clear. First, that the whole development is 

based on typed À-calculus rather than on set theory. More about this 

in the next section. Then a point on defined aonstants: from our present 

point of view (What objects are actually constructed?) they are irrele

vant, because they just serve as new names for objects already present. 

From a practical point of view, however, they form an indispensable 

feature of Automath. 

Another characteristic facility of most Automath languages is that 

a function can be introduced in two ways, viz. either as a single higher 

type constant or, by a scheme, as a constant depending on parameters 

(in this case the constant rather stands for the function value). Above, 

sucfun, plusfun and timesfun were introduced by the first method. Alter

natively, one might introduce suc, plus and times by an axiomatie typing 
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scheme; i.e. depending on variables of type nt: 

x E nt~suc(x} E nt 

x E nt, y E nt~plus(x,y) E nt etc. 

That these mechanisms really farm a duplication is shown by the fact 

that they can be defined in termsof each other, e.g. 

sucfun := [x:ntJsuc(x), resp. 

x E n~suc(x) := {x}sucfun etc. 

More about schemes can be found in section 5.6. 

Now we arrive at some mutually related characteristic limitat

ionsof the Automath languages (further elaborated in 5.7). First that 

hardly any mathematica! structure is given beforehand: even the natural 

numbers have to be introduced by a series of constants and axioms (this 

point we have mentioned before). 

Secondly that a type must be present befare it can be postulated 

to be inhabited, i.e. a type must be introduced befo~e the objects of 

that type. This contrasts with the common ideas about the set theoretic 

hierarochy where sets cannot be constructed unless their elements are 

given (and g~asped, as one says). In fact, this distriction between 

types and sets suggests that, after all, the ground types must be 

understood as syntactic linguistic categories rather than as actual 

mathematica! objects themselves (compare [46]). Then, the higher types 

can be understood in terms of the ground types. 

A third limitation of Automath (related to the secend one, though) 

is the uniqueness of types. In the above development one might think 

it handy if the number one of type nt would be of type rl as well and, 

more general, if nt would be an actual subtype of rl (in the sense of 

C, see 4.8). such proper incZusion of types is not expressibZe in 

Automath, and non-triviaZ inte~sections of types are not p~esent either 

(Whether the identification of the natural number one with the eerras

ponding real number would be justified is another question. See De 

Bruijn [12].) 
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5.5 The typed À-calculus framewerk 

This sectien tries to support the choice of basing Automath on the 

concept of function rather thah on the concept of set. The first point 

is, that in aûnost any interesting part of mathernaties some farm of 

abstraction is needed, either as À-abstraction, or as a comprehension 

axiom. (The alternative to abstraction is a development in the style of 

combinatory logic, as in von Neumann-Bernays-Gödel set theory.) As 

stipulated by De Bruijn[lO], À can be consideredasthe, neutral binding 

operator, not to be explained in more primitive terms. E.g.the camprehens

ion set {x!A} can be defined in terros of À by, say, setof(ÀX.A). 

The secend point is, that the primitive concept of function is 

basic in ordinary rnathematics (analysis, say). It is, of course, well

known that the graph of a function can be coded (implemented, say) as 

a set and we don't deny that the graph concept itself can be clari-

fying -, but in ordinary rnathematics there is usually no point in this 

implementation. In fact it just shows the well-definedness of the 

function concept (i.e. of a function on a given domain) in terros of the 

commonly accepted formal development of axiomatic set theory - which for 

a practical mathematician is hardly doubtful and probably uninteresting-. 

Campare [12]. Similarly the possibility of implementing other familiar 

concepts (the natural numbers, the reals, the complex numbers) in axio

matic set theory, or in any other form, is usually of no practical im

portance. 

By basing one's function concept on Sn-À-calculus one gets the 

possibility of making explicit definitions of functions (by À-abstract

ion), and of making these identifications (by definitional equality) 

that fellow from these explicit definitions. Clearly, the graph concept 

of functions gives more, viz. extensionality, whereas Bn-equality just 

pins down the function intensionally, i.e. as a rule. Additional equal

ity axioms (not for definitional, but for hook equality) are needed 

for extensionality. We stress that n just gives a very weak form of 

extensionality. According to Scott, the n-equality Àx.fx = f (in ordinary 

À-calculus notation) must not be understood as extensionality but rather 

as stating that f is a function. So, in a typed setting n seems to be 

anyhow justified: the mere correctness of [x:~]{x}f (in Automath no

tation) warrants that fis a function. However, n-equality presupposes 

uniqueness of types! 
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Above we have taken for granted that the appro~riate practical 

function concept is a typed one. Indeed, free, untyped À-calculus is a 

farreaching,a priori just formal, extension of this concept (compare, 

e.g., the notations for limits and formal series, in analysis). It is 

an extension useful for studying computations but which does not seem 

very well applicable to "ordinary" mathematica. Compare LCF, being in

tended for the farmer purpose and actually based on the polymorphic 

typed À-calculus PPÀ, where the type conventions are not quite as stric 

as in ordinary typed À-calculus. 

We note that these two restrictions of the definitional equality 

(that it just covers intensional equality, between ordinavy typed À

calculus objects) are essential for its being decidable (in contrast 

with, e.g., the convertibility in PPÀ). 

5.6 Axioms vs. schemes, abstraction vs. abbreviation 

In 5.4 we saw that there are two possibilities to introduce primi

tive constants for the construction of functions, either at low type 

level (example: suc) in a acheme, or in a higher type by an axiom 

(example: SUCfUn). The difference between the two approaches is that 

from a scheme objects are constructed by inatantiation (example: 

SUC(One)), and from the corresponding higher type axiom by application 

(example: {one}sucfun). In most logical formalisms the distinction 

between instantiation and application cannot be stated in such an ex

plicit form, since their instantiation mechanisms beleng to meta

language. 

Similarly there are in Automath (usually) two possibilities for 

making explicit definitions of functions: by À-abstraction and by a 

definitional axiom scheme.These definitions are respectively eliminated 

by application plus 8-reduction and instantiation plus ó-reduction 

{this duplication is eliminated in Nederpelt's A). 

Apart from the fact that writing schemes allows a form of (sub

stitutional) quantification of variables not quantifiable by À (viz. 

type variables), it also allows quantification of more variables at a 

time. However, as one knows, this simultaneous quantification can be 

simulated by successively quantifying one variabie at a time. 

So, roughly speaking, what can be done by schemes can also be done 
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by À-abstraction. In some sense schemes are simpler than abstraction: 

higher type objects are avoided. Indeed, in the Automath project a 

schematic introduetion of constants (i.e. SUC instead of sucfun etc.) 

would generally be preferred. And, rather than asking how instantiation 

can be dismissed in faveur of application, one should ask what abstract

ion, application and higher type objects actually contribute. We think 

that À-calculus only comes in when one wants to express nested quanti

fications (either substitutional or by À-abstraction) such as, e.g., 

needed when quantifyingoverfunctions or defining functionals. Example: 

the proposition cont(f) expressing the continuity of f depends on the 

higher type variable f. If one wants to use this proposition (by in

stantiation), higher type objects (like [x:rl]F) must be substituted. 

De Bruijn has, accordingly, conjectured that up to 18th century mathe

matics is expressible without À-calculus and, hence, that the primitive 

Automath language PAL would do for that subject. 

5.7 More on the language restrictions (as mentioned in 5.4) 

The fact that no arithmetic is built in, distinguishes Automath 

from systems meant to give a foundation for constructive mathematics. 

In particular, we want to make a cernparisen with the system of Scott 

[62] and Martin-Löf [45] because these two systems have the same gene

ralized type-structure as Automath, and the same way to represent 

reasoning, viz. a propositions-as-types way. 

Scott sketches a general recursive construction mechanism that 

allows the definition of the natural numbers from a finite set of given 

ground objects. Martin-Löf's introduetion of the natural numbers is 

more like ours: he introduces zero and suaaessor but additionally he 

has reaureion over the natural numbers built-in in his language. 

The main difference between built-in arithmetic and arithmetic 

introduced axiomatically (as in Automath) is that in the case of built

in arithmetic ene gets the equations following from the recursive 

definition of a function for free, i.e. as definitional In 

Automath one can also introduce a constant intended for primitive recurs

ion but the point is that the additional equality axioms,needed to give 

such a constant its meaning, concern book equality, not definitional 

equality. This limitation also distinguishes Automath from LCF, where 
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recursive definitions of functions is. indeed possible. 

Now we come back to the second and the third limitation: that a 

type must be present before its inhabitants and, that in Automath uniquE 

ness of types holds. These limitations prevent any inductive constructit 

of a type, in a general sense: both the recursive definition of a type, 

and, even, the construction of a new type consisting of, e.g., a finite 

number of previously given objects, are impossible. Such previously 

given objects have a type already and it is simply not possible to statE 

as an axiom (neither as an assumption) that such an object aZso belongs 

to a different type. In AUT-Pi (and in Scott's and Martin-Löf's system 

as well) there is the possibility to construct binary disjoint unions 

of previously given types but, even there, the objects of the old types 

cannot be identified with the object of the new types: injeation funat

ions are needed. 

5.8 A comparison with generalized functionality 

Uniqueness of types seems a good starting point for a comparison 

with Saldin's system of generaZized funationaZity [64]. This is a gene

ralization of Curry's systems of basia funationality [25, 26]. Basic 

functionality has the usual function types a~ B (there denoted FaS), 

but generalized functionality has the generaZized type-struature of 

Automath and the other two systems, above. Actually we took the word 

"generalized" from Seldin. The product types denoted above as [x:a]S 

or O([x:a]S) or n S are in Saldin's system written as Ga(~.S). This 
x:a 

is, including the introduetion and eliminatien rules for G (i.e. our 

abstraction rules) all quite similar to the product types of Automath. 

However, an important difference is that in Saldin's system the 

variables do not get a fixed type and consequently, the system rather 

must be viewed upon as a system of type assignment to (certain) terms 

of the type free À-calculus. E.g. the identity I belengs to every type 

a~ a (where a is a type), whereas in Automath we have different 's, 

denoted [x:a]x, at every type a. Consequently, a term can indeed belong 

to different types. 

In functionality theory the statement A has a type B is denoted 

BA (the prediaate B applies at the subjeat A, as one says) and is it

self an object (ob) of the system. In principle, interference of B and 
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A (by reduction, where B acts as a function, with argument A) is not ex

cluded. However, in the separated systems, where the equality rules 

operate on subject and predicate separately, the interterenee is tor

bidden and BA is just an alternative notatien of our A E B. (Notice that 

this kind of interterenee in the case of Automath, where (except in 

AUT-Pi) [x:A]B can be both a function and a type, would be disastrous.) 

A point of difference between Seldin's system [64] and our systems is 

that the type formation rather belengs to his meta-language (and is less 

restricted then ours: he just respects the arity (i.e. number of argu

ments) of the type valued functions). Seldin proves for his system the 

subject reduction theorem (our closure theorem) and the normal form 

theorem (our normalization theorem) . 

The systems of functionality are said to be systems of illative 

(combinatory) logic. The word "illative" now refers to the presence of 

other basic constants (viz. F and G) than just the combinatars (or, 

alternatively, than just À-abstraction). Originally, Curry rather meant 

the word "illative" to stand for inferential, i.e. also dealing with 

the logica! part (cf. 5.2) of mathematics. In view of the facts, that 

the Automath languages are quite similar to functionality systems, and 

that Automath is indeed intended to represent both the object part and 

the logica! part of mathematics, it seems justified to call Automath 

a system of illative combinatory logic (or rather illative À-calculus). 

5.9 The p-fragment 

Reeall that the logica! part of rnathematics (the reasoning) is 

represented in Automath by a propositions-as-types method. The standard 

way of developing propositions-as-types in the p-fragment of Automath 

is as fellows. The propositions enter as special types (2p-expressions 

of type prop, where prop is another basic constant, a lp-expression, 

that behaves just like type). 
We saw that a proposition is true if we have a realizer, a 3p

expression in it. A proposition B is assumed by introducing a variable 

realizing (i.e. of type) B, and a proposition B is stated as an axiom 

(resp. axiom saheme) by introducing a primitive constant (resp. primitive 

constant depending on parameters) realizing B. The impliaation B • C 

is represented by the function type B + C (in AUT-68- and AUT-QE-notation 
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[x:B]C); Introduction- and elimination. rules for ~ correspond with the 

abstraction and application rules of Automath. 

The standard development of (classica!) logic in Automath starts 

with the introduetion of a primitive 2p-constant con E prop, to repre

sent the Contradietory proposition, i.e. falsum. Clearly COn is intended 

to remain empty. sa, the negation of a propaaition a (i.e. a ~falsum) 

can be represented by [x:a]con, which we abbreviate by non(a). Hence 

the double negation of a becomes non(non(a)) (Q [x:[y:a]conJconJ. Then, 

for classica! logic, a primitive realizer, called dnl, for the double 

negation law is introduced by a scheme 

a E prop, a E noncnon(a))~dnl(a,x) E a 

We also promised some book equality axioma for giving the express

ions of the t-part their meaning. To this end a primitive propaaition 

eq, for book equality between objects of the same type, is introduced 

by a scheme 

a E type, Q E a, b E c4-eq(a,a,b) E prop 

tagether with, e.g., primitive realizers for reflexivity (i.e. in 

eq(a,a,a)), symmetry (i.e. to infer eq(a,b,a) from eq(a,a,b)) etc. 

Prediaates are special type-valued, viz. proposition-vaZued funct

ions, formed from propositions by À-abstraction. In constant with the 

type-valued functions of the t-fragment (cf. 5.3), predicates are 

usually non-tl'ivia"l type-valued functions. E.g. the proparty "being 

equal to one" on type nt is expressed by the predicate 

[x:nt]eq(nt,one,x). The (minima!) type (cf. 2.10) of this predicate is 

nt ~ prop, in AUT-QE written [x:nt]prop and in AUT-Pi written 

n<[x:nt]propl. 
These typical lp-expressions of AUT-QE and AUT-Pi allow the intro

duetion of predicate variabLes and, hence, the formulation of schemes 

depending on predicate parameters. An important scheme containing a 

predicate parameter is the axiom scheme forinduction over the natura! 

numbers. 

If P is a predicate on type a (having type a ~ prop) then the 

product n P(re) (in AUT-Pi this is written O(P), in AUT-QE it is just 
x:a 

P itself) stands for the proposition V P(x). Introduetion and eliminre:a 
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ation rules for Y correspond with the abstraction and application rules 

of Automath. 

5.10 Same camment on the p-part 

The above examples illustrate why the formulation of schemes with 

type-variables (and prop- and predicate-variables) are useful. Other

wise we would have needed e.g. separate dnl's for every proposition, 

separate book-equalities at every type, and a separate induction axiom 

for each predicate on type nt. And it also becomes evident why abstract

ion over degree 2 variables is called higher order quantifieation: 

proposition and predicate variables are 2-variables and abstraction 

correspcnds to universal quantification. See further sec. 5.12. 

By using Automath in this propositions-as-types fashion we get an 

almast ordinary many sorted first-order predieate logio, viz. over a 

pure (or extended) typed À-calculus. It depends mainly on the axioms 

concerning falsum what kind of logic we get: minimal logie (without 

axioms), intuitionistia logia (with absurdity rule), or alassieal logie 

(as above, with the double negation law, or the like). Additional 

constants and axioms can be added for the introduetion of further mathe

matical structures {see, e.g. Jutting [37]). 

We wrote that Automath is an aûnost ordinary predicate logic, 

"almost" because there is one unconventional feature: Expressions for 

proofs {i.e. realizers) can occur inside the expressions for mathematical 

objects and for propcsitions, i.e. mathematical objects and propositions 

can become dependent on the truthof (other) propositions. Example: Let 

P be ft predicate on type a, let 3!x.P{x) (how this is defined does not 

matter here). Then the axiom of individuals [37], which is usual in the 

standard development, introduces a constant (a iota-symbol) ind(a,P,t) 

tagether with the appropriate axioms, for the unique object satisfying 

P; bere t realizes 3!x.P(x). Of course, ind(a,P,t
1

) and ind(a,P,t2) 

are book-equal. However, irrelevanoe of proofs is needed to make these 

expressions definitianally equal (cf. 5.2). 

In this way implications « • S (generalized impliaations, as we 

say) are formed where S cannot be stated unless a holds, and similarly 

we can get generalized conjunations. Such prapositions are said to 

beleng to generalized logio (see[20,37,77]). 
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The propositions-as-types development of sec. 5.9 is not the only 

one possible. Alternatively, the propositions can be introduced as 

ordinary types (of type type), or as 3-expressions of a new type bool. 

Since in the first alternative no distinction is made between proposit

ions and ordinary types (in fact there is no p-fragment, only a t

fragment) the realizers enter the discussion as ordinary objects (con

structions) too. This seems to be the proper choice if we want to s~udy 

constructive foundations. Of course, irrelevance of proofs is out of 

the question here. The secend implementation, where the propositions 

enter as degree 3 expressions, gives rise to higher order logic. In 

this case the truth of a proposition B is expressed by a formula 

tE B1
, where B1 is an ordinary type (the "proo[-type" of B) associated 

with the proposition B. This "proof-type" of B (usually denoted TRU[(B), 

or ~(B) or proof(B)) has to be introduced because Bitself is not in

habitable {unless we use AUT-4, see 4.12}. In Jutting [37] there is also 

a development in the bool-style. 

5.11 On propositions-as-types 

In fact, Automath is not just a predicate logic but rather the 

proof system of a predicate logic, because a formula A of the logic is 

not expressed directZy but via a statement of the underlying typed À

calculus, of the form t E A. so it is reasonable to ask for the decida

bility of the system: proof systems have to be decidable. One might 

wonder, though, why we took such a peculiar proof system, this formulae

as-types kind of formalization. 

Our main point is that the formulae-as-types way of implamenting 

a proof system is a straightforward one. The classical notion of formal 

proof is: a finite sequence of formulae, each of which is either an 

axiom or fellows from the preceding ones by application of an inference 

rule. This meagre notion of proof is already decidable but useless for 

our purposes because the decidability is not feasible. For ether pur

poses as well (proof theory) this notion of proof is considered too 

uninformative. 

The first impravement coming to mind is to provide each formula 

(let us say: Zine) in the sequence with additional information: (1) 

a ZabeZ (e.g. a mere line number, or a more expressive identification), 
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for later reference, (2) some ~eason, some justifiaation for that line. 

The information (2) has to indicate: (a) what inference rule is used 

far establishing that line, (b) on which previous formulas (indicated 

by their labels) that inference rule has to operate. The axioms in the 

sequence do not get a justification but just a flag AXIOM, say. Notice 

that the justification part of a line can also be conceived as an in

struction to operate with the indicated inference rule on the indicated 

preceding lines. If the proof is correct, the formula part of the line 

will be the result of this operation. 

Another, independent, impravement is to allow praofs f~om assumpt

ions, in natural deduction style. In this case additional information 

must be given with each line to indicate the context in which it is 

valid (i.e. the assumptions on which it depends). 

The proof system we have now arrived at seems to be a natural one 

for mechanical proof-checking: each line consists of four parts, a aon

text part, an identifier part, a justifiaation part and a fo~Za part. 

Just a slight generalization leads us to Automath. First, we allow the 

justification part to be a compound expression coding ite~ated use of 

inference rules. This will save a lot af lines in the proaf. Secondly 

we allow each theorem from assumptions and depending on propositional 

or predicate variables to be used in subsequent lines as a new 

inference rule. This gives the system on the flexibility and generality 

af ordinary mathematical reasoning. 

Still one step has to be made: to recognize that what happens in 

our proof system is completely parallel with what happens in our typed 

À-calculus framework. That making assumptions amounts to introducing 

variables, that stating axioms amounts to introducing primitive con

stants, and that deriving theorems can be conceived as introducing de

fined constants. Finally, the abstraction and application rules of the 

typed À-calculus amount to the introduetion and eliminatien rules for 

implication and universal quantification. Then the abbreviation line 

a E A, y E B * d : D E C 

(this is the proper book-and-line format, we would rather write 

x E A, y E Bf-d(x,yl := D E C or the like) can be understood as "from 

the assumptions A, B the formula C can be derived by using the compound 

instructien D; this theerem can be referred to as line d". 
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· So, we can explain formulae-as-types as just a practical way of 

implementing a proof-checking system. Fitting the proof system into 

typed À-calculus gives rise to an unusual interpretation of the E-symbol 

but 'there is noharm in that (compare 4.6). The third interpretation 

of realizers (cf. 5.2) seems appropriate to the above explanation: a 

realizer is a mere indication that its formula holds. 

A completely different question is: would there be anymore direct 

way of repreaenting reasoning via the E- and Q-formulas of the under

lying typed À-calculus of Automath? The answer to this question (no) 

sheds some light on the particular limitations (see 5.7) of Automath. 

The first point is that the E- and Q-formulas themselves do not allow 

any reasoning. The only E-assumptions we can make are the typing assumpt 

ions for variables, and the only E-axioms we can make are the typing 

axioms for the primitive aonstants. The Q-formulas are even more im

plicit: Q-assumptions are not allowed at all, and the only Q-axioms are 

the abbreviations. (Scott [62] indicates that allowing Q-formulas for 

assumptions would spoil the decidability). For the rest, E- and Q-formu

las just hold or not: if they do not hold they cannot even be stated as 

an axiom or as an assumption. Consequently they cannot be negated 

or used in a reasoning ad absurdum. Then, we might look for another tric 

{different from propositions-as-types) to repreaent reasoning. One idea 

might be to introduce a type of truth-values and to see to it that 

each proposition {or some object associated to it) would be definition

ally equal to a truth value. Another idea might be to introduce a type 

for the true propositions (or objects associated to them) and a type 

for the false ones(or objects associated to them). Apart from the fact 

that these proposals simply are not feasible (just try) they would 

imply that all propositions would become decidable (because E and Q are 

so) and that is not what we want. 

5.12 A comparison with higher order systems 

We have mentioned before that abstraction over type-variables is 

not allowed in Automath. In this respect Automath is distinct from 

both Martin-Löf's system and Girard's systems. Martin-Löf distinguishes 

small types and large types. An example of a small type is the type of 

the natura! numbers, examples of large types are: the type V of smal! 

types (like our type) and the types which reprasent propositions (in 
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the propositions-as-types sense). Now variables ranging over small types 

can be quantified, but quantification over, e.g., propositional variables 

is still not permitted, so Martin-Löf's system does nothave higher order 

logic. 

However, Martin-Löf's system is higher-order in our technical sense 

(see IV.1.5) because, by his built-in recursion mechanism, a type-valued 

function, T say, can be defined such that e.g. T(O) = nt, T(n+l) = 
T(n) ~ nt (where nt is the type of natural numbers). Then the product 

n(T) consists of functions with values (numbers, functions, functionals) 

of arbitrary high complexity (Seldin would say rank). Note that in 

Automath such functions of unbounded functional complexity cannot be 

defined: crucial in the recursive definition of T is the presence of 

the function Ày:V. (y ~ nt) (with y a type-variable!) which takes T(n) 

to T(n+l). 

Girard's systems actually contain higher-order logic, because 

quantification over all type-variables is admitted. E.g. (we use Auto

math notation) the object [a:type][x:a]x of type [a:type][x:a]a can be 

constructed. In fact Girard would write that DTa.ÀXa.xa is of type 

Aa.(a ~a). 

I.6 The contents of this thesis 

6.1 This thesis has become a comprehensive volume on results and 

methods in the language theory of Automath: most of the language theo-

retical questions, as they are stated above, are treated for most of 

the current Automath languages. 

Since many results are quite technical we aften, for better access

ibility, give a double exposition. First an informal, heuristic one, to 

explain the ideas, followed by a more rigarous one with some (sometimes 

many) technical details. If one likes, one can skip the latter. 

Most chapters are almast independent and self-contained: they have 

their own introductions, definitions are repeated etc. For many results 

some different proofs are given, and some known theorems from [51] and 

[70] get new proofs. 

The discussion is mainly directed towards the Automath languages 

and the Automath project. However we think that some results may be of 

more general interest: to À-calculus and, by the propositions-as-types 

isomorphism, to proof-theory. 
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6.2 This thesis {apart from the introduction) can be divided into three 

parts: (1) a general, preparatory part in a type-free setting (Chs. II 

and III), (2) a part on pure (see 1.10) typed systems, with application 

to AUT-68, AUT-QE and AUT-SL (Chs. IV-VII), (3) a part on the extended 

(1.10) language AUT-Pi (Ch. VIII). 

Ch. II deals with the preliminary definitions: expressions, sub

stitution, reduationB, definitional equality. The expressions are al

ready internally decorated with type labels, but a typing relation is 

not yet defined and, hence, the types do not restriet the expression 

formation. Various properties are introduced and discussed in a gene

ral setting: noPmalization and strong normalization, alosure, Churah

Rosser and postponement. The possible interference of the various kinds 

of reduction is analyzed, in conneetion with the latter two properties. 

Finally the important reduation-under-substitution lemma of type-free 

À-calculus is proved. 

It is advised not to miss II.0.4.2: we introduce some handy but 

slightly unusual notational conventions (in particular on tacit exist

ential quantification). 

Ch. III deals with the isolated study of one specific kind of re

duction, viz. o-reduction (see 4.3). A Church-Rosser proef is given, 

and various ways of proving strong normalization are indicated. Partic

ularly interesting is De Bruijn's strong normalization proof for o-re

duction, which simply calculates the maximum length of a reduction 

sequence. 

6.3 Each of the chapters IV, V, VI is devoted to one specific aspect 

of the pure typed systems: (streng) normalization, closure and Church

Rosser (cf. 2.7) respectively. Ch. IV starts with an introduetion on 

typed À-calculus systems in genera!. Like Nederpelt in [51] we use the 

following strategy to prove (strong) normalization for our languages: 

first we introduce a general system of normable expressions (for short: 

a normable system), then we prove (strong) normalization for this systea 

. fihally we prove that both AUT-SL {i.e. A) and a liberal, comprehensive 

version of AUT-QE (including all the current versions of AUT-QE and 

AUT-68} are normable. 

There are given three new proofs of strong B-normalization for 

normable systems. Because the usual pure first-order (see p. 29) typed 

systems are clearly normable, these proofs are quite generally applicab] 
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are not based on a notion of computability. 
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Ch. IV also contains the precise definitions of hook, context and 

degree, and there is defined a typing re~ation (or rather: a typing 

funotion). However, in the normable expressions the typing restrictions 

on the expression formation are not fully respected, but only a weak 

form of them. 

6.4 Ch. V gives a framewerk (the E-definition) for generating the 

oorreet expressions and formulas of the various Automath languages. It 

mainly concentrates on the regu~ar languages (see 4.5) AUT-QE, AUT-68 

and their variants. 

Then the o~osure proofs are given: first of AUT-QE with Bn-reduct

ion (so without Ö) then of some more liberal versions AUT-QE+, AUT-QE* 

with full reduction. Several unessentia~-extension results are presented. 

Since the closure proofs of Sn(ö)-AUT-QE are technically somewhat com

plicated, we also indicate how, e.g., 8-AUT-QE and Bno-AUT-68 allow a 

simp~er closure proof. 

In the last section of Ch. V we prove - anticipating the Church

Rosser result of Ch. VI - the equivaZenae of the E-definition with the 

aZgcrithmic definition (see 2.6). Quite some attention is paid to the 

choice of a typing function and a domain funation for the various 

languages. Finally we make a few remarks on practica~ verifiaation of 

Automath languages. 

6.5 InCh. VI we prove the Churah-Rosser property for the pure Automath 

languages. In particular we solve the Bn-Ghurah-Rosser problem caused 

by the presence of the type-Zahels (which are themselves expressions) 

inside the abstraction expressions in Automath. Nederpelt [51] first 

indicated this Bn-problem and correctly conjectured that Bn-Church

Rosser holds in the correct expressions. Except for the Sn-case, the 

Church-Rosser property for pure systems can be proved in the genera!, 

unrestricted expressions (as indicated inCh. II.6). 

In fact, we first prove Bn-church-Rosser for a weak form of n-re

duction, just sufficient to cover the n-reductions needed in the veri

fication of Jutting's Landau-translation. Afterwards we tackle full 

n-reduction. 
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Resuming, Chs. IV-VI show that the pure Automath languages satisfY 

the three desirable properties (cf, 2.7). 

6.6 Ch. VII deals exclusively with the language theory of Nederpelt's 

A (or: AUT-SL). Here our pcint of departure (in contrast with Ch. V) is 

the a~orithmia definition.We introduce the socalied degree-norm correct 

expressions. We show that alosure and Churah-Rosser can directly be 

proved from the algorithmic definition, with the help of the big tree 

theorem. We give two new proofs of this theorem, the first one being a 

mere extension of the secend streng normalization proof of Ch. IV, the 

secend one rather based on the first streng normalization proof in IV 

and making use of the book-keeping pairs from de Vrijer's proof of the 

big tree theerem for his system ÀÀ [70]. 

Finally we campare various versionsof A: withand without constant< 

(resp. defined aonstants), the single-line version and the book-and

aontext version etc. 

As regards the three celebrated desirabie properties for A, Ch. VII 

just duplicates the Chs. IV-VI. 

6.7 Chapter VIII discussas extended systems, in particular AUT-Pi. In 

the first sectien the additional type forming operations: binary union 

{$), disjoint sum (~J, aartesian product (n}, the additional term 

forming operations: injeation (i
1 

and i 2), plus($) and pairs (<•,•>), 

and the additional reduations: +, ~, ~, a are introduced ~nformally, 

and the conneetion with full intuistionistia prediaate logia is ex

hibited. 

we generata AUT-Pi by an E-definition and prove the alosure proper~l 

We tackle strong normalization as in IV (and VII) : we extend the notion 

of form and define two systems AUT-Pio and AUT-Pil which are extended 

normable. For these systems we prove a variety of streng normalization 

results. First we show that the methods of IV immediately cover the 

s~no-case, but that the presence of +-reduction requires additional 

· attention {the socalled dead end set becomes unmanageable). 

Three new proofs for strong B~+na-normalization are presented, two 

of them making use of some additional technica! reductions (permutative 

and improper reduations}, the third one using aomputability. Then these 

streng normalization results are transferred to AUT-Pi, 
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However, for fu~~ (i.e. STI+ncrE-) AUT-Pi the language theory is not 

finished, fu~~ ChuPoh-Rosser is simply false, and full strong normaZ

ization we have not been able to settle (though we strongly believe in 

it). 

6.8 The results of this thesis, even when pertaining to type-free À

calculus, are derived by syntactic, combinatoPiaî methods (in contrast 

with the model theoretic and recursion theoretic reasoning aften used 

in À-calculus nowadays) • 

Another point about methods is, that we have been able to avoid 

the notion of residuaî (and we don't employ the underîining method of 

Barendregt [2] either). Cf. the reduction-under-substitution lemma in 

II.ll. 

Finally we mention that (except in VIII, the last proof) we have 

not used any notion of computability or the like in our streng normal

ization proofs, but have restricted ourselves to a priori elementary 

methods (cf. IV.1.6.3). 

6.9 Now we list some language theoretical subjects which we think to 

require further attention. 

In view of 6.7 a further analysis of the definitional equality in 

AUT-Pi is needed. In particular a decision procedure is wanted (though 

not absolutely necessary, see 2.8) that does not rely on Church-Rosser 

(a suggestion is made in VIII.6.2). Or, alternatively, a new reduction 

relation may be indicated that generates e-equality and does satisfy 

Church-Rosser. 

Secondly, some more work on the comparison of languages would be 

welcome. E.g. the pPecise connections between AUT-68 and AUT-QE have 

never been made explicit. Here we do not mean the connections between 

their rules, but rather between what aan be said in these languages. 

To be specific, we think that AUT-QE books can be translated into 

AUT-68 hooks, and that AUT-synt might play a role in this respect as 

well. 

Another point deserving interest is the role of the "extensional" 

reductions n, a and E. Notably, we think that these reductions can be 

avoided by first translating (performing n-expansion etc.) and after

wards performing the corresponding intPoduation-e~imination reductions 
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8, ~ and + (compare [37, sec. 4.1.1]). Actually we have·tried the n

case but got stuck in technical difficulties with the type-labels. 

In ~III.2.7 we describe a natural extension of AUT-Pi, which never· 

theless causes our treatment of strong normalization to fail hopelessly. 

This is an interesting point of study too. 

Finally we mention some subjects that fall somewhat outside the 

scope of this thesis but are very important for the actual implementat

ion: (1) iterated referenaes etc. (see 3.4) , (2) AUT-synt, (3) strings

and-telesaopes. Work in this direction has been done by Zandleven, De 

Bruijn, Jutting and Wieringa (see 3.4) but we think that further study 

is required, 
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CHAPTER II. MISCELLANEA 

Sectien 0 of this chapter gives some camment on methods (inductive 

definition and inductive proof) and introduces some notational conventions. 

The sections 1-4 form a brief introduetion to the various À-cal

culus systems considered in this thesis. The sections 5-7 contain some 

general considerations on the ciosure property, the Church-Rosser prop

erty, (streng) normalization and postponement (for a combination of 

reductions). Also some results of this kind are stated, and a proof of 

the Sr,-Church-Rosser property for untyped À-calculus is included. 

In the sections 8 and 9 the Church-Rosser property anà postponement 

are discussed for the specific reduction relations considereà. 

Section 10 defines the concept of multiple substitution, and 

sectien 11 proves a lemma (the reduction-under-substitution lemma) 

which has interestinq applications in untyped À-calculus. 

II. 0. Preliminaries 

0.1. Inductive definitions 

Throughout this thesis many notions (predicates and relations) are 

given by so-called ordinary induative definitions. An ordinary inductive 

definition of, e.g., the predicate P consistsof a finitesetof indue

tive alauses or ruZes of the form: 

"if P(a1J and P(a2) ... and P(ak) then P(<j>(a
1

, ... ,ak))", 

where k ~ 0, <j> is a k-ary operatien and , ••• ,ak are variables. *) 

In such an inductive definition it is, without further notice, 

intended that P(a) holds, only if this fellows from iterated applica

tion of the rules. We may assume that there is at least one clause 

with k = 0 and <j> a constant - a starting clause - We say that P is 

inductively generated from the starting clauses by closure under the 

ether clauses. 

It will be clear how inductive definitions of binary relations, 

or of several notions simultaneously have to be interpreted. With in

ductive definitions of (partial) functions, we have to be more care-

ful, of course. 

*) In fact, the definition of eomputability in VIII.5.3 is of a more 
general nature .• 
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0.2. Inductive proofs 

Let< be a partial orderand let< be well-founded, i.e. thereare 

no infinite (strictly) deseending sequences a
1 

> a
2 

> •••• Call ba 

desae~-dant of a if a > b; b is a direet descendant of a if a > b and 

there is no a in between. If we can show, for all b, 

(V bP(a)) ~ P(b) a< 

then we can conclude Va P(a). This is called proof by induction on<, 

If there are no infinite (strictly) increasing, bounded above, 

sequences al < a2 < ••• < b either, then for all b, bis either an 

endpoint - i.e. minimal with respect to < - or b has a direct descendan· 

So, in this case, if for all b, a, 

b endpoint ~ P(bl , 

and 

(P (b) A b direct descendant of a) • P (a} 

then Va P(a). This principle of proof is also induction on<. 

Call < finitary, if each a has only a finite number (possibly zero 

of direct descendants. If < is finitary and well-founded and has no in

finite increasing, bounded above, sequences, then by the lemma of 

Brouwer-König, for each a there is a maximum to the length of descendin< 

sequences startingin a. Call this maximum 6(a). Then the various in

ductive proofs of P(a} can simply be reduced to mathematica! induction, 

viz. to induction on 6(a). 

0.3. Induction on definitions 

Let p be given by an ordinary inductive definition. If, for each 

clause in the definition of P, as above, 

then, clearly, P(a) • Q(a) for arbitrary a. 

This kind of inductive proofs can be considered as proofs by in

duction on the finitary, well-founded partial order generated by the 

definition of P (in fact, this order pertains to the objects a ~e~~ed 

with a derivation of P(a). The ai (with labels) are the direct descen

dantsof +<a , ... ,a ) (with its label)). 
1 n 

we shall speak about proofs by induation on P, or over P or on the 

lengthof proof of P(a). 
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0.4. Notational conventions 

0.4.1. Syntactic variables 

Syntaetia variahZes are the variables of our meta-language, denoting 

syntactical objects such as, e.g.,the expressionsof an Automath language. 

Often we reserve some specific syntactic variables (possibly indexed 

or primed) to denote exclusively objects of a specific syntactic cate

gory. E.g. ~, r denote expressions, x, y denote variables, B denotes 

books etc. 

0.4.2. Logical symbolism 

We freely include logical symbols in our meta-language, to shorten 

and to clarify the discussion. As an example of our notational conventions 

concerning the logical symbolism consider: 

A ~ B, A ~ C ~ B ~ D, C ~ D 

tne so-called Church-Rosser property. Written out in full, it would 

re ad 

V B 

So, the conventions are: 

~ C) ~ 3 (B ~ D A c ~ Dl ) • 
D 

(i) • binds loosely, the comma denotes A 

(ii) free variables are tacitly quantified: by an existentiaZ quanti

fier if their first occurrence shows up after the main =-symbol, 

otherwise by a universal quantifier. 

0.4.3. Reasoning about inductive definitions 

Let P be a predicate given by an ordinary inductive definition. Let 

~ 1 , ••. ,~m and ~ 1 , ..• ,~n be additional inductive clauses for P. Let P' 

be generated by adjoining ~ 1 , ..• ,~m to the definition of P (so clearly 

V a (P (a) .. P' (a))) • we say that ~ 
1

, ••• , <Pm are derived rules of P if 

V (P (a) ~ P' (a)) • 
a 

Let P" be generated by adjoining '1' 1 , ... ,'l'n to the definition of P. 

Then, the rules ~ 1 , ••• ,'l'n are derived rules of P' if and only if 

Va (P" (a) .., P' (a)). As an easy shorthand notatien for this situation we 

write (sic) 

~l'''''~m ~ 'l'l'''''~n 

(Le,by adjoining ~ 1 , ... ,~m' the rules ~ 1 , ••• ,'1'n become derived rulesl 
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II.l. Expressions 

1.1. Herewedefine our universe of discourse, the expressions of ge

neralized typed À-calculus. The expressions are formed from variables 

and constante using various operations such as abstraotion, appliaation 

etc. We take (as in de Bruijn [10]) À as our only variable binding 

operatien and denote the other operations by so-called basio constants, 

such as abstr, appl etc. 

1.2. Variables and constants 

The constants are distinguished in basia or language constants 

and the book constants. The latter fall apart in primitive and defineà 

constants. All constants have a certain arity, the number of arguments 

going with them. The arity of a constant f is denoted lfl. 

Th ere is only a small number of basic constants, as listed below 

arity 0 type, prop 
arity prod, sum, proj 1, proj2 
arity 2 appl, abstr, plUS, i nj 1, inj2 
arity 3 pair 

In contrast with this, any alphanumeric string can serve as a 

variable or a book constant. The syntactic categories: variables, 

primitive constants, defined constants, and basic constants, are 

assumed to be mutually disjoint. 

we use x,y,z,u,v as syntactic variables for variables, f for con

stants, a for book constants, p, q for primitive constants, d for de

fined constants and E,r,~, •• ,A,B,C,,.,a,a,y, ••• as syntactic variables 

for expressions. 

1.3. The expressions are inductively defined: 

(i) variables: x is an expression 

(ii) À-expressions: ÀX•E is an expression 

(iii) constant expressions: 1. lfl 0 => f is an expression 

2. lfl k => f<E 1, ••• ,Ek) is an expression 

1.4. Various systems of expressionscan be defined inside this frame

werk by specifying the set of (basic) constants. Thus we have free, 
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i.e. untyped X.-calculus with appl as its only constant, the abbreviation 

calculus LSP ~h. III) with book constants only and, of course, the 

Automath languages. 

In the latter languages, the À-expressions are not present as such, 

but only inside abstraotion expressions: abstr (E 1 ,Àx·~ 2 J. And only 

such abstraction expressions abstr (E 1 ,1: 2) are allowed where r
2 

is a 

À-expression. 

The Automath languages AUT-68, AUT-QE and A have type (and 

possibly prop), abstr and appl astheir only basic constants, and are 

called the pure Automath languages, Besides these basic constants, AUT-Pi 

has all the additional operations mentioned, such as prod, sum, plus, 

injl etc. 

l.S. We use the ordinary Automath notations: 

T for type, rr for prop, n for prod and L for sum 

{A}B for appl (B,Aj , [.x:A]B for abstr (A,À.x•B), 

A(l) for projl(A), A(
2

) for proj2(AJ, <A,B,C> for pair(A,B,C) 

·i
1 

(A,B) for injl(A,B), i
2

(A,B) for inj2(A,BJ 

and A~ B for plus(A,BJ 

In free À-calculus simple juxtaposition is used to denote application: 

BA for {A}B. 

1.6. In {A}B we call A the argument part and B· the funotion part. 

In [x: A]B we call A the domain part and B the vaZue part. 

The domain part A of [.x :A]B and further: the A of <A, B, C>, the 

B of i 1 (A,B) and the' B of i 2 (A,B) are just type-Z.abûs_, present in 

order to fix the type of the expression. For an explanation we refer 

to I. 4. 2 and VIII .1.3. In case we are not interested in thé .type of the 

expression, we simply leave out the type-labels, writing [x]B, <B,C> 

i
1 

(A), i
2

(A) respectlvely. 

The symbol ~ is assumed to have less binding power than the 

other symbols for expression formation. Additional parentheses are in

serted whenever useful to avoid ambiguity. 



58 

1, 7. Strings 

Expression strings E
1

, ••• ,Ek are denoted by Ë, variable strings 

~ 1 , ••• ,~k by x. The empty string is nota priori excluded, The muZti

pZiaity of a string E1, ••• ,Ek is kandis denoted by Ir!. So we can 

rephrase clause 1,3. (iii)2 by 

Further, if IÄI = k, lxl = k then 

{Ä}B is shorthand for {Ak} ••• {A
1

}B, BA for \ ••• (BA 1) ••• Ak) and 

[x:Ä]B for [~ 1 :A 1 J ••• [~k:Ak]B. 

Sometimes, by abuse of notation, we treat variable strings as sets, 

writing, e.g. y € X insteadof : y is among ~1 , ••• ,~k' etc. 

1.8, Length, subexpressiena 

In agreement with 0.3, induction on the definition 1,3 is called 

induction on~ressionsor, also, on the structure of expressions. 

Counting variables and constants as single atomie symbols, the Zer~th 

i(E} of an expression E can be defined by: 

k 
.1'.(~} 1, .I'.(À~·E) .I'.(El + 1, R.<f<Ë» 1 + I 9, (E.) • 

i=l ~ 

Similarly, r is said to be a sub~ression of E, for short 

r c E, according to the following inductive definition: 

(i} E c E 

(iil r c E ~ r c ~·E 

(iii} r c Ei~ r c f<E1, ••• ,Ei'''''Ek) (i= l, ••• ,k) • 

Clearly, c is a partial order. we say that E is a direct sub~ression 

of À~·E and that E
1 

is a direct sube~ression of f<E 1, ••• ,Ek). 

We want that the Aut.omath expressions are closed under taking sub

expressions. So, when discussing these, insteadof (ii) we include (ii') 

(ii'} E c A or E c B ~ E c [~;A]B 

and we restriet clause (iii) to constants f different from abstr. In 

this case A and B are the direct subexpressions of [~:A]B. 
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1.9. Occurrences, suggestive dots 

If E c r, then E can have several oeaurrenaes inside :. such oc

currences can be distinguished by their positions inside r, e.g. like 

in Nederpelt [51, p.18].we shall treat occurrences in an informal way. 

Two occurrences are disjoint if they have no occurrences of symbols in 

common. 

Often, to denote an arbitrary expression with one or possibly 

more specific occurrences of a Subexpression E we write: 

•• • z ... , resp. • • • z •.. l: ••• 

The meaning of these suggestive dot? will be clear from the context. 

We formulate the fUndamental property of sube~ressions in terros 

of suggestive dots: if ••• z ... r ... is an expression then one of the 

following alternatives holds 

(il l: and r disjoint, or (ii) l: c r, or (iii) r ç l:. 

Notice that these cases do not exclude each ether. 

II.2. Syntactic identity, a-equality and substitution 

2.1. Pree and bound variables 

The free variables and the binding variables of an expression can 

be defined informally, as fellows: 

(i) the first occurrence of x in Àx•E is called a bindir~ oaourrenae; 

l: is called the saope of the binding x. 

(ii) an occurrence of x, not being a binding occurrence, is called 

free if it does not fall inside the scope of a binding x. 

(iii) a free occurrelilce of x in l: is calledbound in ÀX•E (by the bind

ing X) 

(iv) x is a free variable of l: (resp. a binding variable of l:} if there 

is a free (resp. binding) occurrence of x in E. 

Thesetof free variables of l: is called FV(l:}. If we write 

••. x ••. x •.. , we intend an expression with some free occurrences of x. 

Fora string Ë, FV(Ë) =U FV(E.}. 
~ 
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2.2. Syntactic identity and a-equality 

By • we denote syntaatia identity, i.e. symbol-for-symbol-equalit~ 

of expressions, module a-equaZity, i.e. renaming ofboundvariables. 

So a name-aarrying expression is considered to repreaent a certain 

name free skeleton - or, alternatively, an equivalence class of 

a-equal name~carrying expressiena -. Our point of view,*) viz. of simpl 

identifying ••• {ÀX• •• • x •• • x ••• ) ••• and ••• (Ày• •• • y •• • y ••• ) •• , can be 

justified by referring to Curry [25 ], Nederpelt [ 51 ] or de Bruijn 

[ 10 ] • The latter reference gives a treatment of a formalism of 

namelees duromies (see 1.3), which is actually used in the current-

ly implemented verifièr for Automath languages. 

The notatien = extends to strings: Ë • r, if lil = lfl and, for 

i 1, ••• ,1~1, E. = r .• Further, E' r means: not (E • f), and similar· 
~ ~ 

ly for strings. 

2.3. Now that we have introduced • we return to the notion of subex

pression. We say that E is a proper sube~ression of f, for short 

E sub r, if E c rand E + r. Clearly, sub is the transitive relation, 

inductively generated by the relation 

• We have such properties as: 

E c r , r a variable or constant ~ E • r 

is direct Subexpression of 

And we can make the fundamental property of subexpressiena more 

precise: if r c t., r c 1:. then precisely one of the following alterna

tives holds: (i) E and r disjoint, {ii) E and rare the same occurrence 

(so E = f), (iii) E sub r, or {iv) r sub E. 

2.4. Substitution 

By E[x/A] we denote the result of substituting the expression A 

for all free occurrences of x in r. Similarly by the operator [x/Ä] 

we denote simuZtaneous substitution of A. for the free occurrences of 
~ 

xi' for i l, ... ,k (where k = lxl = IÄI and all xi are mutually dis-

tinct). The notatien extends tostringsin a straightforward way. One 

has to take care that no free variables of the substituted expressions 

come under the "wrong influence" and become bound after substitution. 

For definiteness we give the definition of simultaneous substi

tution, Let E* locally abbreviate E[~/ÄD. Then by induction on E, we 

*) Actually inChs. IV, VII and VIII there are used certain methods 
which are not completely compatible with this approach. 



define r*, as fellows: 

(i) a. * y !! x. *Y :=A. 
~ ~ 

{. - * y X*Y := y b. 

(ii) y t x, V._1 1
-

1 
(x . .:: FV(EJ • y 1 FV(A.ll -

~- , •.• , x ~ 1 

* * {;\y •l:) : = >.y •l: - otherwise re name y in Ay •l: -

(iii)a. * f :af 

b. 

Single substitution [x/A] amounts to the case lxl = 1 above. 

Sometimes, if the x are not relevant or clear from the context, 

then we wr i te 

l:[Ä] instead of l:[X/A] • 

2.5. Two fundamental substitution properties 

Substitution property I: If all free variables of l: are among y 

1:hen 

Substitution property II: If no free variables of Ä are among y 

and x and y have no variables in common, then 

Both proofs are by induction on r. To illustrate I ( in the 

case of single substitution), let l: = .•• y ••• • Then 
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l:[y/B] = ••• B ••• = ••• (,,.:;c,,,), •• and there are no free variable occur

rences outside B. So l:[y/B][x/A] = •. ,{ .•• A ••• ) ••• = l:[y/B[x/A]] q.e.d. 

And to illustrate II. (in the•case of single substitution the conditions 

read: y I. FV(A) and y Ij; :r), let r e .. • y ••• x ... • Then 

l:[y/B] e ... B ••• x ••• e ••• ( ... x ... ) •.• x ••• , 

l:[y/B][x/A] a ••• ( ••• A ••• l •• • A ••• • Further l:[x/A] = .. . y ••• A ••• and 

Ux/A][y/B[x/AU = ... ( ... A ... ) ••• A ... q.e.d. 

2.6. Substitution and subexpressions 

Let, again, = l:[x/Ä]. Then of course, if l: = ... r .•. then 

* * 1: = ••• r .•. , And about the "converse" question: where do occurrences 
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of subexpressions in r* arise from? Let r* s ,,,r,,, , Then precisely 

one of the following alternatives holds: 

* (i) E = ••• r
0 

••• , r
0 

= r, forsoma r
0 

c E, or 

* (ii) 1: • • • .x i •.. , E s •• • A . ••• = ... ( ... r ••• ) ••• , r sub A. forsome i. 
~ ~ 

(I.e. r occurs as a proper subexpression inside one of the substituted 

accurences A . ) • 
~ 

If, e.g., r = f(~) then (i) specializes to: 

(i) a. 1: = ... f<~o> ... , -* 
t:.o .. ö, or 

(i) b, 1: ië x i • .. ' r =Ai . 

11.3. Elementary and one-step reductions 

3,1, The relations of definitionaZ equaZity of expressions will be 

defined inductively, we start with eZementary reduations, then define 

one-step reduations, proceed to more-step reduationsand finally to 

definitional equality. Since we only discuss purely syntactical as

pects here, all these relations are defined on the full universe of 

expressions. 

3.2. Elementary reductions 

3.2.1. s- and n-reductions 

These are the usual À-calculus reductions, associated with the 

basic constants abstr and appl. 

S: {A}[x:BJC 

n: [x:BJ{x}C 

elementary reduces to C[A] 

elementary reduces to C , if x(. FV(C) 

In free À-calculus, with the alternative notations, these elementary 

reductions read 

elementary reduces to C[A] 

elementary reduces to C if x(. FV(Cl 
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3,2.2. rr- and a-reductions 

These reductions are associated with pair and projl, proj2. 
Here 1T is intended to suggest "projection" and a stands for "surject

ivity of pairing", after Barendregt [3]. 

rr: <A,B>(l) el, red, toA 

<A,B>( 2) el, red. toB 

a: <4(l)'A( 2)> (or, with type-label, <B 1A(l)'A( 2)>) 

el. red, toA {However, see VIII.2.5.1.) 

3.2.3. +- and e-reductions 

These reductions are associated with plus and inj. 

+: {i
1 

(A) }(Be Cl el~ red. to {A}B 

{i
2

<Al}(B e C) el. red. to {A}C 

e: ([x:AJ{i
1 

(x,D)}B) e ([x:C]{i
2

(x,E )}B) el. red. toB, 

if X i FV(B). 

As an alternative version of +, suitable for the case where all 

plus-expressions are of the form [x:A]B e [y:C]D, we have (this is + 

combined with Sl 

+': {i
1 

(E,F)} ([x:A]B e [x:C]D) el. red. to B[E], etc .. 

In the chapter on AUT-Pi, some further reductions connected with e 

~ill be introduced, the permutative reduations. 

3.2.4. 5-reduction 

Here o is intended to suggest "definition.aL". This reduction is 

of course associated 'with defined constants, for which a defining 

~~om is given. 

o: d(~) el, red. to Á[X/~] , 

if dis a defined constant with defining axiom d(x)~Á- where FV(Á)c x
This kind of o- or definitional reductions must not be confused 

with Curry's ö-reduction [25], Church's ö (in Barendregt et al.[SJ), or 

the ê-reduction proposed in Staples [65]. 
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3.3. In all the definitions of elementary reductions above, the left 

hand side is called redex and the right hand side is called the oon

:racv~ of the reduction, Elementary reductions are also called 

eon tl•ac tior..s. 

We use some terminology like in Prawitz' theory of natura! de

duction systems [59]: abstr and pair are the negative, and injl, inj2 
are the positive introduetion operations. Further appl, projl and proj2 
are the e~imination operations:'correspondingly, a-, ~- and +-reduct

ions are called the introduation-elimination (I.E.) reductions. The 

reductions n, o and E are called the extensional (ext} reductions. 

3.4. One-step reductions 

We consicter three kinds of one-step reductions > 1 generated in

ductively from the elementary reductions by certain monotonieity rules. 

A subscript or a combination of subscripts indicates which of the 

elementary reductions are included. E.g. >Bnó is a one-step reduction 

generated from elementary 8-, n- and ó-reduction. The three kinds of 

ene-step reductions differ by the monotonicity rules used in their 

definitions. 

For > 1 and t.'îe other relations between expressions, defined here, 

the notatien extends in a straightforward way to strings. E,g, ! > f 
if jËj = IFI and, for i l, ... ,lrl, 

we define E > E' by induction on the structure of E. First, or

dinary ene-step reduction has the following clauses 

(i) if E elementary reduces to E' then E > E' 

{ii) if E > E' then ÀX•E > ÀX•E' 

{iii) if 

{i 

> r then f(E 1 , ••• ,E1 , ••• ,Ek) > j( ... ,Ei-l'r,Ei+l, ... ) 

1, ••• ,k). 

Secondly, the disjoint one-step reduction has an additional cl~us 

(0) E > E, 

and instead of (iii) 

(iii')if Ë > Ë• then f(Ë) > f(E') 

Finally, the nested one-step reduction has the clause (0) - re

flexivity -, the monotonicity rules (ii) and (iii') - just like the 

disjoint one-step reduction -, but insteadof (i) it has (1'), with 

inductively given elementary reductions: 

*) The operatien plus falls somewhat out of this classification. 



(1'} : 6: A> A', C > C' ". {A}[x:B]C > C'[A'] 

n: C > C', x i FV(C) ,. [x:B]{x}C > C' 

- and similarly in free À-calculus -

~=A> A', B > B' • <A,B>( 1) > A', <A 1 B>( 2 ) > B' 

(J: A > A I .. <A ( 1) I A (2)> > A I 

+: A >A', B > B' I c > c• .. 

{i
1

CA)}(BeC) > {A'}B', {i
2

(A)}(BeC)>{A'}C' 

e:: B > B',x t FV{B) • ([x:A]{i
1

(x)}BID[X:C]{i
2

(x)}B) > B' 

ó: if dis a defined constant with defining axiom d(x):=~ 

(FV(~J c x> then Ë > Ë' .. d(Ël > n[x/Ë'] 
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3.5. If E > r and actually some contractions take place in the reduc

t~on step (e.g. when it is an ordinary one-step reduction) then r is 

a !.·:reet reduct of E. By induction on L: it appears that: (1) the set 

of direct reducts of l: is finite (provided there are only finitely 

many defining axioms for each defined constant) and effectively con

structible, so certainly (2) E > r is decidable, 

3.6. The disjoint and the nested one-step reductions are so-called 

a:;mpound (after Curry) or speaial (Nederpelt [51] ) one-step reductions. 

Trcelstra [69] speaks about "clever counting of contractions". 

The terminology can be explained as fellows: whereas ordinary one

s~e? reduction contracts precisely one redex, both special reductions 

allQw to contract several (possibly: none) redices at a time. In the 

":l~sjoint case" these simultaneously contracted radices have to be 

disjoint 1 but in the "ne·sted case" they may also occur inside each 

other, i.e. nested. 

3.7. Let, if p is a reduction relation, p denote the "disjoint version" 

~= p, i.e. the closure of p under (0), (ii) and (iii') and let p denote 

the nested version of p, generated by (0) , (i I ) I (ii) and (iii'l. 

Let US write >1 for ordinary one-step reduction. Then disjoint one-
-

step reduction is >1 and nested one-step reduction is >1. Clearly, 

(0), (i') ... (i) 
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i.e. if an inductive definition contains the rules (0) and (i'), then 

(i) is a dePived ruZe. And, under the same interpretation 

{0}, (iii.} .. (iii) 

So, we have: 

And, since closing once more under a rule has no effect 

3.8, Substitution and one-step reduction 

The point of the special reductions lies in their behaviour under 

substitution. For each of the one-step reductions, we have property I: 

I: B > B' • B[AD > B'[AD 

Proof: By induction on B > B1
, using the substitution properties I and 

II in the case of ö- and 8-contractions respectively. c 

And, property II: 

II: Ä > Ä 1 
• B[Ä] > B[Ä'] 

Proof: By induction on B. Notice that possibly several substituted 

occurrences of A. (which are disjoint) have to be contracted. :-
l. '--

Sa, by 3.7, we have 

III: Ä >1 Äl • B[Ä] > B[Ä' D 
1 

Combining the reductions in B and Ä, there is property 

IV: Ä > Ä I I B > BI .. B[Ä D > BI [Ä I ] 

Proef: By induction on B > B'. In the case of clause (0), use property 

II and 3.7. 

So, by 3.7 again, we have 

V: 
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I I. 4. Reductions and defi ni tiona 1 equa 1 i ty 

4.1. Reduction sequences 

Let > be a one-step reduction. Then a (possibly infinite) sequence 

of expresslons r
1 

> r
2 

> ••• > Ek > ••• is called a reduation sequenae 

of ~ 1 with respect to >, Reduction sequences with respect to >
1 

are 

ordinary reduction sequences. If each Ek+l in the sequence is a direct 

reduct of ~k then the reduction sequence is a striat or proper re

duction sequence. So, e.g., ordinary reduction sequences are strict. 

4.2. Reduction trees 

The strict reduction sequences of an expression E can be arranged 

in a (possibly infinite) finitary labelled tree, the reduation tree of 

E . We think of reduction trees as growing downward: label the root 

with l:, at the first level below come all the direct reducts etc. 

4.3. :tore-etep reduation (or just: reduction), denoted ~,is defined as 

the transitive and reflexive closure of >
1

, i.e.: 

(i) 

(ii) 

(iii) E:?. E', E':?. E" • E ~ E" • 

Again, subscripts going with ~ indicate which elementary reductions 

are included, 

If E ~ r, r is a reduat of E. Clearly r is a reduct of E iff either 

E = f orthereis anordinaryreduction sequence from E tof. In the 

latter case r is a proper reduct of E. 

4.4. Let, if p is a relation, p* beits reflexive and transitive closure. 

* so, by definition:?. is just >
1

• Of course,~ satisfies all the mono-

tonicity clauses: 

r ~ r ..... r ... ~ ... r.,. 

and 
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As in 3.8, Ä 2: Ä', B <! B' _. B[ÄD <! B'[Ä]' 

Further, 

whence 

4,5. We write r < E for E > r, E} r for not (E > f), Similarly for 2:. 

We define: E ~ r : ~ E <! ~ ~ r for some ~. 

So, r ~ r iff E and r have a common reduct. 

4.6. As usual, the relation (possibly with subscripts etc.) 

of definitio~aZ equality (or just: equality) is the equivalence relaticn 

inductively generated from <:: (resp. 2:
8

, ;::Sn. etc.). 

and 

Again, satisfies all the monotonicity rules: 

E r ..... E ••• = ••• r ... 

* .,.. 

So, for equality too, 

Ä = Ä I , B = B' "* B[Ä D B' [Ä•] 

Clearly, is just f* I.e. E = rifforsome k 2: 0 and some _, 

4.7. Insome cases we rather consider a restricted form of=. Let A be 

a set of expressions. Then, we define, for E E A, r E A 

So,if >A and fA are the restrictions of> and f toA, respectively, 

then 



4.8. The relations =, + and ~ (and, if A is recursively enumerable, 

and +A) are, in view of the recurs~vity of >, by their definitions 

recursively enumerable, and, ir. contrast with >, not a priori de

cidable. 

Indeed, in free À-calculus equality and reduction are not re

cursive (Scott, in Barendregt [4]). Below we shall introduce some 

properties which imply the decidability of the various notions. 

An ordinary reduction sequence E = 6
0 

> ~ 1 >,,,> ~k r is a 

~a:_,, reduat-ion sequenae if at least ene of the steps ~i > '\+
1 

is an 

elementary reduction. we say that E main reduaes to r, for short 

69 

A 

;: ?. 
14

Rr. If for j < k, the reduction sequence from l: to ~j is not main, 

then r is called a first main reduat of E. 

It is just the main reductions that affect the ''outside ferm" of 

expressions: if f
1 

and [
2 

are distinct constants and [
1 

(Ï:) ?. f
2

(r) 

then fl ~MR f2 (f). 

Expressions (and their "leading" constants, such as [
1 

in [
1 

(Ï:)) 

are said to be immune if they do net main reduce. E.g., the primitive 

constants, injl and inj2 are immune for all, and the defined constants 

and introduetion constants (sec. 3.3.) are immune for I.E. reductions. 

11.5. Some important properties 

5.1. Below we introduce some important properties, such as closure (Cl), 

streng normalization (SN) and the Church-Rosser property (CR). All 

these properties (and some connected concepts, such as normal forrn, 

lengthof reduction tree (8}) are defined relative toa reduction re

lation?. (and possibly a ene-step reduction >}. Now, prefixes or sub

scripts going with the introduced notions indicate what elernentary 

.:::-a:J.uctions we included in the intended reduction relation. So we speak 

about B-closure, Sö-SN, Sn-CL, eBnó etc. 

5.2. The ciosure property 

s.,:.l.Aset Aofexpressions is aloeed w.r.t. "= (or just: olosed), if 

it satisfies CL, the aZosUPe property (after Nederpelt): 

CL: ~: E A, ~: ~ r • r E A 
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(do not confuse CL with "combinatory logic") 

We alsodefine CL 1, one-step alosure, fora one-step reduction >: 

-For each of our ene-step reductions >
1

, >
1 

and >
1

, we have CL 1 ~CL. 
The crucial point in a proef of CL

1 
is often to prove etosure 

under substitution: 

(in most of the cases additional restrictions on the t
1

, ••• , ï:k have to 

be imposed) • 

5.2.2. Clear.ly, if A is closed, then ~A isprecisely theequivalence re

lation generated by >A (see 4. 7). Proofs by induction on (the definition of) 

<: (or on reduction trees, if these are well-founded) require that the 

system under consideration is closed. 

If <: and ;::• are two reduction relations,;:: ~ 2', and A is closeà 

w.r.t. <:' then A is closed w.r.t. <:. 

5.2.3. Let l be a string of constants. Call ï: an Ï-expression if the 

constants of ï: are among Î· The Ï-expressions are closed under sub

stitution, so they satisfy CL
1 

(provided that the defining axioms do 

not contain constants outside J), so they satisfy CL. Similarly, the 

full universe of expressions is closed under substitution (as we al

ready tacitly assumed) so it is CL. Free À-calculus, and the various 

systems of Automath expressions are CL too (sec •. 1.4 ). 

Clearly, the set of reducts of an expression is closed. In chapter 

IV , we prove that the so-called normable expressions form a closea 

set. In chapter VandVIII we prove that various systems of so called 

oorPeet Automath expressions are closed. 

5.3. Normalization and streng normalization 

5.3.1. Wedefine (relative to a reduction relation) 

(i) ï: is in normal farm (or just: normal) if not ï: > 1 r 
(ii) E has a normal form if E = r for some normal r 
(iii) L normalizes (or just: N(ï:)) if L 2 r for some normal r 
(iv) L strongly normalizes (or: SN(~)) if all proper reduction se-
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quences of r terminate. 

(v) A set A of expressions is said to beN (resp. SN) if 

(resp. SN(l:)) 

5.3.2. Clearly, r is normal iff l: does not reduce properly iff E does 

not contain redices. So the property of being normal is decidable. 

Of course, l: normal ~ SN(l:) • N(l:) ~ l: has normal form. 

If SN(l:) then the reduction tree of l: is well-founded, so (by the 

Brouwer-König lemma) it is finite. Hence, if SN(l:) then we can define 

e ( l:) as the length of the reduction tree of l:, i.e. the maximum length 

of proper reduction sequences startingin l:. And, if SN(l:), then the 

relation l: ~ r is decidable. 

5.3.3. Call a reduction sequence r
0 

> l:l > ... seaured if for some k, 

zk is SN. Th en SN (El iff all the reduction sequences of l: are se-

cured iff all the direct reducts of l: are SN. 

By monotonicity, we have: SN(l:}, r cl:~ SN(r). 

Ccr.versely, if ( 1) r sub l: ~ SN (f) and (2) all first main reducts of 

~ are SN, then SN(l:} - because all its reduction sequences are secured -

5.3.4. Let A and A' besets of expressions, Ac A'. Let~ and ~· be 

!" eduction relations, with ~ ~ ~'. Let A' be SN with respect to ~'. Then 

A is SN with respect to ~ (compare 5.2.2). So, in order to conclude SN 

:er a variety of sets A and reduction relations ~ it is sufficient to 

prove SN for the "union" of these systems. 

As for property N, the implications rather work in the other di-

J::"ection: let~· and ~" be reduction relations, ~ is the "union" of ~· 

ar.d ~". If A is closed w.r.t. ~·, N both w.r.t. ~· and ~", and we have: 

,: normal w.r.t. <!', l: ~" f) ~ (f normal w.r.t. ~') then A is N w.r.t. ~. 

5.3.5. It is well-known that free À-calculus does not B-normalize (e.g. 

consider B := AA with A ÀX•x-x) and that not necessarily N(l:) • SN(l::) 

(e.g. consider (Ày•A)B). 

However, the correct expressionsof all the Automath languages do 

strcngly normalize under all the associated reductions: chapter III 

proves è-SN, chapter IV deals mainly with 6-SN and chapter VIII proves 

~ne strong normalization of AUT-Pi w.r.t. all the reductions considered 
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(and the permutative reductions) except e. 

5,4. Church-Rosser proparty and Church-Rosser theorem 

5.4.1. Wedefine (relative toa reduction relation): 

(i) (Chu~ah-Rosse~ p~ope~ty):CR(L) if ~ s L ~ r ~A~ r 
(ii) (Weak Chu~ah-Rosse~ p~ope~ty):CR1 (L) if ~ <

1 
L >1 r ~ ~ ~ r 

(iii) Ch~ah-Rosse~ theo~em (C-R-thml for A: if L E A,r E A then 

L = r .., L ~ r 

(iv) Weak Ch~ah-Rosse~ theo~em for A: if E E A, r E A then 

E ~Ar -. E ~ r 

(v) A is CR(resp. CR
1

> if E E A .. CR(E) (resp. CR1 (E)). 

5.4.2. Clearly, CR.., CR
1 

(for the converse implication see 6.1.5.), and 

(C-R-thm for Al-. {weak C-R-thm forA). And,if A is closed then 

(A satisfies the weak C-R-thm) ~(A is CR). 

* * Since =is~ and -A is (~Al (sec. 4.7), the C-R-thm (resp. the 

weak C-R-thm) asserts the transitivity of ~ (resp. ~A) • 

If A satisfies the C-R-thm, E E A, L has normal form r E A then 

L ~ r, so N(El • Hence, if E <:A, E has normal forms rE A and /::, € A 

then r = A. Conversely, if A is N and, for normal E,r E A we have 

r I then A satisfies the C-R-thm. 

5.4.3. Anyhow, if CR(E), E ~ r, E ~A, both rand~ are normalthen 

r = ~ (uniqueness of nor.maZ forma). Hence, if CR(E) and N(E} then we 

can define the normaZ form, nf(E), of E. Conversely, if A is closed 

and N and all L <: A have just one normal form then A is CR. 

5.4.4. lf A is N and CR then, for all E E A, nf (E) can be effectively 

computed, so the relation ~A is decidable. So, if A is N and A satis

fies the C-R-thm (resp. the weak C-R-thm) then the definitional equa

lity (resp. ~A) is decidable on A. 

5.4.5. Finally, let A and A' be sets, Ac A'. If A' is CR (resp. CR1, 

etc.) then A is so too (compare 5.2.2 and 5.3.4). 
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:r 6. CR continued 

6.1. How to prove CR 

6.1.1. Here fellowsome elementary considerations on two possible 

methods of proving CR, viz. withand without making use of SN. The 

first method, i.e. with use of SN, reduces the CR-problem to CR
1

. The 

point of this is that CR 1 is usually easily verified. A case analysis 

of CR 1 w.r.t. our list of elementary reductions fellows in sec. II.B. 

The secend method, without use of SN, employs our "nested" ene-step 

reductions. 

For more complete comment on CR-proofs, we refer to, e.g. [2]. 

6.1.2. For good comparison of the methods we introduce a slightly more 

general situation. Let + be some binary relation (think of a reduct-
* 0 

ion relation). Let-+ (resp. -+) be the transitive and refle:x:ive (resp. 

the reflexive) closure of ..... Let B + A stand for A+ B etc. Let l: be 

an expression. We define, for ..,. and l:: (with quantification conventions 

as in sec. II.0.4.3) 

diamond property 
0 0 

:i) r + l: .... !; .. r .... l:' + /:,. 

p Zank property * * 0 

{ii) r + l: .... t:, .. r .... l:' + t:, 

* ! •.• ' weak plank property r + E .... \~.l.~) * * 
1::. .. r .... E' + 1::. 

weak diamond property: * * (iv) r + E .... t:, .. r .... l:' + 1::. 

where the terminology refers to the geometry of the illustrating dia

grams intended. 

we say that the property holds in A, if all E E A satisfy that 

property- but it is not required that the r, f1 and l:' mentioned are 

themselves in A too 

* * 6.1.3. Let us abbreviate the diamond property for + by (i) • Then it 

is clear from the definition that (i)". (iv), that (ii) ". (iii) ". (iv) 

and that (i)*". (iii). Further, if A is closedunder +, then by in

duction on (the definition of) ! : ((i) holds in A". (ii) holds in A), 

and: ((iii) holds in A". (i)* holds in A). So in a closed (under -+) set A: 

* (diamond property for +) ~ (diamond property for +) 
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6.1.4. But if A is closedunder ~, and additionally! is well-founded, 

then we can say more: (iv) holds in A • (i)* holds in A. Proof: assume 

that (iv) holds in A. By induction on the well-founded relation * -+we 

prove that the diamond property for!, i.e. (i)*, holds in A. So, let 

* * * * 1: € Af r + 1: ..... ll. We want a 1: I w i th r + L I + ll. I f L = r ( or E !:.) then 

simply take!' = ll (resp. l: 1 = f). Otherwise (it is advised to draw a 

diagram), forsome r
1 

$ * * E , 11
1 

$ E , r + r 
1 

+ E .... 11
1 
~ ll. By ( i v) f or 

* * some Ei, r 1 .... Ei+ll1 • 

we find ri, lli with r 
hypothesis applied to 

By the induction hypothesis applied to r
1 

and 11
1 

* * * * ~ fi + Ei ...,. lli + ll. Finally, by the induction 

Ei we find the desired l: 1 with 

* * * * f .... fl...,. L 1 +lil+ ll, q.e.d. So, in.this case: 

(weak diamond property for ~) ~ (diamond property for !) . 

6.1.5. Now we comeback to the original situation: if...,. is one-step 

* reduction then the diamond property for -+ :f.s ju st property CR. And if 

we take ordinary one-step reduction for ...,. then the weak diamond proper

ty is precisely CR1 • 

So 6.1.4. provides the first method of proving CR: If A is closeà, 

SN and CR
1 

then A is CR. 

And 6.1.3. provides the secend method, as fellows: call a com

pound one-step reduction > suitab~e if (1) ~ • ~ (i.e. >1 ""'>•> 1*J 

and (2) > satisfies the diamond property. Once such a one-step reduc

tion has been indicated, one can apply 6.3 and prove CR. Indeed, the 

common CR-proofs (for free À-calculus, where SN does not hold) work 

in this. way - i.e. they can be rephrased along these lines - • 

6.2. A survey of results 

6.2.1. The analysis in sec. II.8 of CR1 yields at least -i.e. as long as 1 

do not use SN - some negative results concerning CR. These negative 

results are of two kinds: first there are the problems with the type

labels which were first mentioned by Neuerpelt[Sl.p.71] in conneetion w. 

Bll -reductions. As a re sult Bn-CR simply does not hold in the full uni ver se 

of expressions but only for the correct Automath expressions (chapter v, 

chapter VI). Analogous problems arise from nó-reductions and +e:-re

ductions (chapter VIII) • 

The secend kind of negative result is more serieus: it appears 

that for any reduction relation including Be:-reductions, CR is false, 



even if the type labels are ignored. More about this in chapter VIII 

too (VIII.6). 
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6.2.2. Now we mention some facts which show the relevanee of our com

pound reductions >
1 

and >
1

• First, >l,ó (i.e. disjoint ene-step 6-re

duction) is suitable (in the sense of 6.1.5) for 6-reduction (chapter 

III, sec. 3,3). Secondly, by the way, the disjoint ene-step reductior. 

generated by weak reductions is suitable for weak combinatory logic 

(Rosser, in Traelstra [69]). Further, >1 ,
8 

is suitable for 8-reduct-

ion in free À-calculus (Tait, Martin-Löf, in Barendregt [2] ) and in the 
...., 

generalized typed À-calculus (Nederpelt [51]). In fact, >
1 

is suitable 

for the combination of all the elementary reductions, except c and ~, 

provided we leave out the type-labels. This was proved for Sn~-reduc

tion by Mann [43] ; he also indicated the problem with cr as explained 

in sec II 8.4. Below we prove the suitability of > for free À-cal-
l,Bn 

culus, simplifying the proef of Mann. 

6.3. A proef of Bn-CR in free À-calculus 

6.3.1. This proefvia the suitability of > for free À-calculus 
1, Bn 

(which fact was claimed by Barendregt (2J ) is just slightly more in-

vclved than in the B-case, in contrast with Mann's proef which is un

necessarily complicated. As explained in sec. 6.1.5, the suitability 

is sufficient to prove CR. 

6.3.2. The expressions are: variables x, À-expressions ÀX•A, application 

expressions BA. By writing A', B' we implicitly intend that A >A', 

B > B', etc. The elementary reductions are, as in sec. II.3.4: (13) ( ÀX•E)A> B• V 

(~)x i FV(A) ~ ÀX•Ax >A'. From sec. 3.8 we reeall the substitution 

property V: B[AD > B'[A']. 

6.3.3. If ÀX·A > B then either (1) B = ÀX•A', or (2)A ex , x i FV(Cl 1 

~ > B. So, if ÀX•Cx > B then either (la) B 

B ÀX•D' [y!d 1 or (2) x t FV (C) 1 C > B. 

ÀX•C'x 1 or (lb) C 

6.3.4. If BA > C then either (1) C B'A' 1 or (2) B = ÀX•D1 C = D'[A'll. 

so, if (ÀX•D)A > C then either (la) C = (ÀX•D')A', or (1b) D =Ex, 
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C = E'A', or {2) C D'[A I]. 

6.3.5. Now we just have to prove the diamond property: 

A1 < A > A2 ~ A1 > A3 < A2• We use induction on A. If A = x then there 

is nothing to prove. If A is a À-expression or an application expressior. 

then we must confront the various possibilities {{1), resp. (la) and 

(lb), and (2) of 6.3.3, resp. 6.3.4) of reducing A to A
1 

and A
2 

with 

each other. In both cases (A is À-expression or not) the combination 

(l)v. (1) (i.e. A > A1 , A > A
2 

both by "internal" reduction), (2)v. (2) 

(i.e. A > A1, A > A2 both by an "outside" reduction). and (la) v. (2) 

are just standard. 

6,3.6. so, let ((lb)v.(2)) A :o ÀX'(Ày•D)x, x t. J!V{D), A
1

: ÀX•D'[y/x], 

A2 = E, Ày•D > E • Applying the ind. hyp. to Ày·D we find A3 with 

Ày•D' >A3 < E. Since x t FV(D'), Ày•D' ÀX•D'[y/x], so A
3 

does the 

work. 

6.3.7. And, let ((lb)v.(2)l A (Àx·Ex)D, x t f!V{E), A
1

: E'D', 

A2 = F[D"], Ex> F, D > D". Applying the ind, hyp. to Ex and toD we 

find Hand D"' with F > H < E'x, D' > D"' < D". By the substitution 

property F[D"] > H[D"'] < (E'x) [D'] = E' D' (because x t FIT (E')). So 

this H[D"'] can serve as A
3

, q.e.d. 

11.7. Combined reductions 

7.1.1. Insome cases desirable properties, such as N, SN and CR, fora 

combination of reduction relations ~ and ~· can appropriately be 

proved by first considering ~ and ~· separately and then use certain 

connections between ~. ~· and their "union". An example of this can 

be found in sec. 5,3.4 (second half). 

Interesting questions on the connections of ~. ~· and their "union' 

are whether ~ and ~· aommute (cf. sec. 7.2 below) and whether ~·-post

ponement holds (cf. sec. 7. 3 below). 

7 .1.2. Let i and j stand for (combinations of) elementary reductions, 

and let ij refer to their "union". E.g. if i denotes Sn and j denotes 

6 then ij stand for Sno . We write >1 , >l,i' ~i etc. for the corres

ponding (one-step) reductions. We use si etc. in the usual sense. 



We say that E \ > j r, resp. E 

resp. E ~ r. Similarly ~.>. and 
J. J 

The notation E ~ < f is used for r 
i j 

7.2.1. Church-Rosser for cornbined reductions 
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ï etc. 

In Staples [65] *) 'We find some ingenieus constructions for proving 

that a combined system is CR. Here we restriet ourselves to some simple 

properties. 

We assume that A, a set of expressions, is ij-closed (i.e. closeà 

under ~ .. ), and that all expressions consiàered areelementsof A. 
l.) * 

Clearly, .) is just ~ .. , so if satisfies the diamond 
J l.J 

property then we have ij-CR - because is a· suitable one-step re-

ëuction for ~ij' in the sense of sec. 6.1.5. 

We say that and ~. commute if, for all ï (quantification as 
) 

in 0.4.2) 1 

Thus, if i-CR, j-CR and > and -i 

7.2.2. When do and <:. commute? 
J 

commute then ij-CR. 

We give an analysis analogous to sec. II.6.1.Define, for one-step 

reductions >i and >j' 

(i) diamond property r <. ï > 8 =:>f ï I < ~ 
J i j 

(ii) trapezium property r < ï t::. =:>f EI < 
"" j j 

(iii) plank property r <. E ~. ~ •r <:i J:l < 8 
J l. j 

(iv) weak plank property r < l: <:. 
"" 

.. r <:i El ~j 8 
j l. 

(v) :,;eak diamond property: r <. l: > t::. ""' r ;;: . ïl $, t::. 
J i J. J 

As in sec. 6.1. 3 , (i) .. (ii) Ç> (iii) "* (iv) ç, and ~. 
J 

commute) ... (v) • 

And if ij-SN, > and > satisfy (V) then also ~. anà 2:. commute 
i j J. J 

(as in sec. 6.1.4). 

7.2.3. So, justas in the case of ordinary CR, there are two possible 

ways of proving that and ~. commute (viz. withand without SN). 
J 

With SN, it is sufficient to prove the weak diamond property for >
1 

. 
,l. 

and >l,j' But without SN, we rather look for a compound reduction >i 

*) 
See also de Bruijn [19] 
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such that >i and, say, >l,j satisfy at least the trapezium property. 

7.2.4, The analysis of sec. 8 providesus with the weak diamond pro

party for all combination of n- t 11-, a-, o- and +-reduction (but for the 

type-labels, of course). Let >
1
° . stand for the reflexive closure of 
,~ 

>l,i {i.e. contract one or zero i-redices at a time). Then sec. 8.8 
0 0 0 

also shows that all combination of >
1 

,>
1 

and >
1 

satisfy the ,n ,11 o ,+ o 

diamond property, and that all combinations of >
1

,
6 

{resp. >
110

) with 

>
1 

, >
1 

and >
1 

satisfy the trapezium property (modulo the type ,n ,11 ,+ 
labels). In the Sn-case this gives an easy alternative proof of 6n-CR 

(compare sec. 6.3 ) for the free À-calculus, viz. from 6-CR (e.g. by 

the Tait-Martin-Löf method) and n-CR (which is trivial from e.g. n-SN). 

A simple variant of the CR-proof in sec, 6.3 {or·ratherof the 

CR-proof in chapter III, sec. 3,3) shows that >
1

,
6 

and >
1

,
0 

satisfy 

the trapezium property: f <1 ,
6 

E >1 , 0 ö • r ~ó E' <l,S ö. Alternatively, 

one can prove that ~ 1 , 6 and >1,ê together satisfy the diamond property. 

Resuming, n-, 11-, 6-, ö- and +-reductions commute with each other 

(but for the type-labels). 

7.2.5. Further, sec. 8.8 yields some negative results about the oom

muting of reductions, even if we ignore the type-labels. First there 

is the 6E-problem. 

Secondly, there are the problems with o and E: neither cr nor E 

commutes with any other reduction, 

7.3.1. Postponement 

For some cases of i,j no "new" i-redices are created by j-reduc

tions, and the i-contractions in an ij-reduction can be carried out 

first. This property is called ij-postponement, for short ij-PP. we 

say that E satisfies ij-PP if 

and we say that ij-PP holds in a set A if all E € A satisfy ij-PP. 

Clearly we have ii-PP. Use the index i+ for the "converse" i-re

duction: 

+ r ,~ E r. Similarly >i etc. 
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Then ij-PP is strongly connected with -CR. In fact, in a closed 

(under ) set A, ij-PP is equivalent with the property 

r 

i.e. >+ and z. commute in the sense of 7. 2.1. -j ). 

7.3.2. When does pestponement hold? 

Let us confine the discussion to a closed (under set A. Since 

t~e question of ij-PP just amounts to the question whether ~ and 
i 

corr~ute, we can simply fellow the development in sec. 7.2. ~efine, for 

one-step reductions >, and >. 1 ). J 

(i) trapezium property I : "' > > r => L: > r "' j i j 

(ii) trapezium property II: l: > > r => l: .~. r 
J i :L J 

Si nee both trapezium properties imply ij-PP, it is sufficient 

for ii-PP to indicate a suitable one-step reduction >, (resp.>.) 
- J :L 

satisfying trapezium property I (resp. II). 

But, if we have i-SN, we can do with a weaker form of (ii), 

(iii) 

For, using induction on~., we find 
J 

(iv) >, . r • E > r 
1,1 1, ij 

So, assuming i-SN, we can use induction on the well-founded re-

lation and prove ij-PP, as follows: let E r. If E r there 

is no~hing to prove. Otherwise, E > rl 1, i 
f, forsome r

1
• By 

E
1 

~ij r
1

• By the induction hypothesis applied to L: 1 

~.3.3. Some results 

we 

The fact that Sn-PP holds belongs to the tradition of the free 

~-calculus. Nederpelt's proof (in [51]) shows the trapezium property I 

for the combination of >l,S and ;l,n' As Nederpelt points out, Curry's 

proof in [25] which instead aims at the trapezium property II fcr a 

ccmpound one-step 8-reduction (lvith >
1 

) is defective (though > ,n 1, 
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would have worked) • 

From sec. 9.2.4 it is clear that the following combinations of 

reductions satisfy property (iii) of sec. 7.3.2: of >
1 0 with > , of 

,.., 1 , 11 
> 1 with >

1 
, and of >

1 
a with >

1 
• Assuming some weak type re-

,11 ,a ,..,+ ,11 
strictions (clearly satisfied by correct Automath expressions) we also 

get property (iii) for > 1 ,a with > 
1 
,o, and for > 

1111 
with > 

1
,

11 
• This, 

together with the appropriate SN-assumptions, yields that the com-

bination of the I.E. reductions (sec. 3.3) 611+ with the ext-reduc-

tions o and n allows postponement of these ext-reductions. 

Alternatively, we can extend Nederpelt's construction to these 

cases, wi th the nested version > 
1 

. (and get PP without resorting to 
,no 

SN l . 

Anyhow, e-reduction is an exception: its postponement is not pos

sible, viz. in combination with 8+-reduction. 

7.3.4. As an application of PP in genera!, we give the following theore~ 

if i-SN, j-SN and ij-PP then ij-SN 

Proef: Let E be an expression. By induction on the i-reduction tree 

of E we show that all ij-reduction sequences of E are secured. Let 

E >1 rl >1 r 2 > 1 ... . By PP, for all k, E ;:: ;a rk. The j-reduction 
i j 

tree of E is finite, so, if for all k, E rk, the reduction sequence 

is finite (whence secured), Otherwise, forsome properi-reduct E' and 

somerin the reduction sequence, E' ~ .. r. By induction hypothesis, 
~J 

E' is SN, so r is SN so the reduction sequence is secured q.e.d. 

7.3.5. In fact it is more straightforward to prove the theerem from 

property (iii), sectien 7.3.2. (which holds in all our PP-cases), 

directl:t: 

If i-SN, j-SN and property (iii} holds (i.e. > "* > -l,i l,i 
) then 

ij-SN. 

Proef: Let E be an expression, let E >
1 

r1 >1 r 2 >1 
• Again, we 

use induction on the i-reduction tree. If the reduction sequence just 

contains j-reductions, then it isfinite,by j-SN.Otherwise, forsome k, 

E ~j fk >l,i fk+l' By (iii), forsome E', E >1,i E' ~ij fk+l' 

By the ind. hyp. E' (so rk+l) is ij-SN, and the reduction sequence is 

secured q.e.d. 

As a corollary of this, we have e-SN- Bn-SN. 



7.4.1. weak postponement 

For some cases of i,j, indeed no essentially new i-redices are 

created by the j-reductions, but if one starts with carrying out the 

i-contractions, possibly too many i-redices are contracted. We say 

that weai~ ij-postponement (weak ij-PPl holds, if for all l:, 

l: ~ij r • z ~i~j r• ~i r 

In particular, as sec. 9.3.1 shows, we have only weak ó8-PP. 
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There are two relevant ways of proving weak ij-PP, viz. w::.tt and 

without use of i-SN. First, without i-SN. We introducesome properties: 

'i) l: > .>. r ". l: > 
,.,, < r (a kind of weak trapezium 

J l i -i 
property I) 

(i i) l: > ... l: > .~. r' r (a kind of plank property) 
i l J 

(iii) l: r ... l: > > r' $, T' 

-i-j i 
l 

Ass~ue that i- and j-reduction cornmute. Clearly, (iii) implies weak 

~j-PP, and {by induction on (i) implies (ii). Further, if i sa-

tisfies the plank property for CR (<.~. =<> 
l l 

<i), then (ii) implies (iii). 

So: if 

:1) > satisfies the plank property for CR, 
l 

(2) i and j commute, 

:3) property (i) holds, then we have weak ij-PP 

(hence without using SN). 

Then, with SN. We introduce a weak farm of property (iii) sec. 7.3.2. 

liv) l: > > 
j 1, 

r 

Assume that i-reduction and ij-reduction commute. Then (iv) gives, by 

induction on 2 . , 
J 

> r .., l: > 
l,i 1, 

r, r 

By induction on i-reduction trees, we get: 

if (1) i-SN, (2) i-CR, (3) i and j commute (so, with i-CR, i and ij 

commute) 1 (4) property (iv) holds then weak ij-PP. 

7.4.2. As a corollary of (1) i-CR, (2) i and j commute, (3) weak 

(4) i-N (i.e. i-normalizationl we get: l: 2. r '* i-nf(l:) 
J 

i-nf(:'). 

An alternative way of getting the latter property (which, in turn, im

plies weak ij-PP) avoiding the question whether i and j commute, is 
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from: (1) i-CR, (2) i-N , (3) weak ij-PP and (4): for all E, 

r 

7.4.3. Section 9.3.4learns us that ój-PP holds for all reductions j 

except S-reduction. This can be proved eitl1er from ó-SN (Chapter III) 

and property (iii) sectien 7.3.2 or without ó-SN, by showing trapezium 

property II (sec. 7.3.2) for >l,ó and >l,j' 

Further ó commutes with all reductions but cr and e. For the latter 

two reductions, however, we can prove (with cr and e in the role of j): 

E' !> 0j 6 

sa, assuming ó-CR and ó-N, for all reductions j but B we have already: 

E:<:.r~.s-nftEl 
) 

ó-nf (fl 

Finally, we have weak óS-PP, with use of ó-SN and property (iv) 

above, or alternatively from property (i) above {quite simple, with 

>1, 6 and >1,
8

>. so, in this case too, if ó-N and ó-CR then 

E r • é-nf(El ~B ó-nf(r) 

7.4.4. For the rest, weak postponement is just what we get in the 

following situation: let D1 and D
2 

be disjoint sets of definitional 

constants, let :<:~ , resp. :<: 6 denote the reduction relation genera-
uDl D2 

ted by contracting constants from o
1 

(resp. o
2

J exclusively. If the 

defining axioms of the constants in D
1 

do nat contain constants in 

then we have weak ó ó -PP. 
D2 Dl 

II.8. An informal analysis of CR1 

B.l. In presence of SN, the weak CR-property CR1 is sufficient for CR 

(see sec. 6.1.5). Anyhow, for the beuristics of a CR-proef an analysis 

of CR
1 

is indispensable.Let i and j indicate kinds of elementary re

duction, such as S, n etc. Let E be an expression, with an i-reèex 

R c E and a j-redex Sc E. By contracting R toR' (resp. S toS') we 

get E >
1 

. r (resp. E > !:.). We want to find out whether rand 0 
1 l. 1, j 

have a common reduct E' and if so, by what kind of and by how many 

contractions, E' can be reached from r and 6. In the informal discussic 



below all possible cases are systematically treated,according to the 

relative positions of the redices R and S. 

8.2. The first point is of course, that either (a) Rand S are dis-

joint, (b) R = S, (c) R sub S or (d) S sub R In case (a), the con-

tractions just commute: 

::: = tI .l1. I,::;, I I >
1 

, r = I I •• ct' I I lel I I >
1 

, 
, ~ , J 

l:' = ... R' ... S' ... <
1 

. !::. = ... R ... S' ... < l: 
• ~ 1, j 

As for case (b), if we assume that 
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(*) for each definitional constant only one defining axiom is given, 

t:hen all elementary reductions are mutuaZ Zy excZusive. I.e. if Ri-con

tracts to R' and R j-contracts to S' then i and j refer to the same 

kind of reduction and R' = S'. So, under assumption (*), which is in

deed fulfilled in the Automath system of abbreviations, in case (b) 

fora common reduct we can takel:' = r(= !::.). 

Case (c) is discussed in sec. 8.4 and further. Case (d) can of 

course be reduced to case (c) by interchanging i and j, Rand S. 

8.3. About expression variables in schemes for reduction 

The elementary reductions are formulated in schematic form, i.e. 

~ith meta-variables for expressions in them. For instance, in the 

scherne of S-reduction "{A}[x:B]C elementary reduces to C[A]]" (in 

sec.3.2J), the meta-variables A,B,C are the expression variables of 

':he scheme. 

For each of the schemes, all of its expression variables occur 

(of course!) at least once intheleft-hand side (redex). Let X be an 

expression variable of a scheme for reductions. We distinguish three 

cases: 

(i) X disappears in the contracturn (such as B above) 

(ii) X occurs just once in the contractum, possibly there is sub

stituted in X (such as C above). 

(iii) X is possibly multipZied by substitution (such as A above). 

For all kinds of reductions, except a and s, the expression var

iables occur precisely once in the redex. To these two exceptional 

cases we refer as the twin reductions (because of the twin occurrences 
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of the meta-variable, e.g. of X in< X 
11

) ,X (Z)>). 

8.4. Case (c). Let R sub S, S j-contracts to 8 1
• Distinguish the fol

lowing cases: 

(cl) R c X for some instanee X of a meta-variable of the j-redex 

(c2) not {cl), so R forms an essentiat part of S (such as [x:B]C 

in {A}[x:B]C). 

Now, unless j refers to a twin reduction and R c X for some in

stance X of a twin occurrence, in case (cl) the j-redex is not spoilt 

by the i-contraction. For common reduct E1 we take the result of simPlY 

contracting the modified (by the internal i-contraction) j-redex in r. 
From 6 we can reach E' by i-contracting nothing (if X disappears, i.e. 

case (i), sec. 8.3), i-contracting one possibly modified (by sub

stitution) occurrence of R (if X occurs once, i.e. case (ii), sec. 8.3) 

or i-contracting possibly more disjoint occurrences of R (if X multi-

plies, ~ase (iii), sec. 8.3). So E >1,i f>l,j 

(where >l,i is disjoint one-step i-reduction). 

Examples: 

<'I < • A < <' "' 1 Ll 1 . ,.. , ~ , J 

(1) j is B, X "occurs once", use substitution property I, sec. 3.8: 

E s=. {A}[x:B]R >l,i r '= {A!x:B]R' >l,B 

E t - R. [A] < 1 , i & = sI R[A J < 1 , 6 E 

(2) j is S, X "multiplies", 

E =. S =. {R}[x:B] ••• x •• • x ••• >l,i r :: {R' }[x:B] •• • x ... x ..• >1, 13 

EI = ... R~ ••• R~ ••• <t . & = s~ 
.~ 

•• • R ••• R ••• <l,S E 

In contrast with this, if j refers to a twin case and R c X for 

some "twin variable" X, then the j-redex is spoilt by the i-contractior. 

indeed - but can be restored by i-contracting the other twin as well. 

So, since twin variables occur just once in the contracturn {case (ii), 

sec. 8.3), forsome r~, E1
, E >

1
. r >

1
. r~ >1 . El <1 1 t;, <1 . E. 

,~ .~ ,J , ,J 
Hence, in this case i and j do not aommute. An example (where j refers 

to cr-reductionl: E :: S <R(l l'R ( 2) > > 1 , i r <R (1) ,R' ( 2)> 

> r~ - <~~ R 1 > > E' :: R 1 < R :: 6 <
1 

E. 
l,i = · (1)' (2) l,cr l,i ,a 



8.5. Case (c2): R is an essential part of S. Notice that there are 

;:;•io possibili ties: 

(1) j is an I.E.-reduction, i is the corresponding ext-reduction. 

(2) i is an I.E.-reduction, is an ext-reduction. 

Case (c21). Here are three cases, n v. S, a v. rr and s v. +. In 

the first two casesthereis no problem, even if type-labelsare pre-

sent: r ~ 6, so we can take Z' ~ r too. 

{AjC <
1 
• I 

Hx:B]{x}C >
1

, }C , (X i FV (C)) 
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<Q,A,E>(p) <l,cr <P,<Q,A,B>(l)'<Q,A,B>( 2 )>(p) >l,'lr <Q,A 
(p) 

(p 1 or p = 2) . 

7~e case of s v. + is more complicated. First, there is an additional 

3-red~ction needed. Secondly 1 there are problems with the type-labels. 

R 

s {i (A D ) p I 3 S' {A}[x:B ]{i (x,D l 
p p p 

R• -

(p = 1 or p = 2, x i FV (C), 

< s 
1, Ë 

> S' > 1 "{i (A,D [A])}C 1,+ ,;::, p p 

So, in this case, r < Z > 6 > 6' with r = ~· but for the l,E 1,+ 1,6 
~dpe :abels. Hence, without type-labels, E' = r = ~~ can serve as a 

~omrr.on reduct. But with type-labels type-restrictions have to be im-

posed in order to guarantee that D [A] and 
p 

equal (and may have a common reduct). 

are definitionally 

:: .. Case (c22) covers 8 v. n, 1T v.cr, + v. s and 8 v. s. In the first 

t·h'o cases CR
1 

holds but for the type-labels. In the third case addi

tio:lal '1-contractionsareneeded (compare with 8.5, cv.+), but in the 

fourth case CR
1 

(so CR) simply does not hold at all. 

[x:A < [x:A]~x}[x:B]C >
1 

[x:B]C 
L 8 ,n 

x /. FV (B) • 

Sc bere, f 6 but for the type-labels. Regarding TI v. a, the situation 

cc~pares with the twincase in 8.4:an additional n-reduction is needed. 

('7::;) <P,A 1 B> <l,n <P,A,<Q,A,B>( 2 )> 

< 1 I TI s = <PI <Q ,A I B> ( 1) I <Q ,A I B> ( 2) > > s• 
1, J 

- <Q,A,B> • 
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So, f' < 1 r < 1 E >1 à with r• : à but for the type-labels. In 
,'!! ,'!! ,cr 

order to keep CR in this case, we must at least require that P and Q 

are definitionally equal. Then we come to+v.e:. Sincè e: is a twin

reduction, an additional +-contraction is needed, and two additional 

n-steps. But to our relief there are no problems with type-labels., 

(+e:) R - [x:A ){i (x,D )}(B1 e B2} >1 R' : [x:A J{x}B > B 
P P P P ,+ P P P n P 

(p = 1,2 and x t FV(B
1 

e B2>> 

Finally, we give a counterexample for (Se:), even without type-labels. 

(Se:) R 
p 

[x]{ i (X) }[y]y, 
p 

s = R
1 

e R
2 

> s• = [yJy , l,e: 

(p=1,2). 

The best we can get from Ri e R2 is·Ri e R2 = [xJi1 (X)$ [xJi 2 (x}. Then 

S' < S <!Ri e R2_, both are normal but S' $ Ri e R2_ contradicting CR. 

8.7. we resume our results in a table, writing i for >l,i' r for >l,i' 

For the notes *) and **) we refer to the next page. 

start with complete with 

cases a. redices disjoint i. .. j j ... i 

b. redices equal i ••• i 
*) 

c. i-redex sub j-redex 

cl. i-redex non-essential part 

cll. j not twin case i. .. j j ••• i 

cl2. j twin case i ... j i,j .•• i 

c2. i-redex essential part 

c21. i-redex in intro form n ••• s 
(J,,,lf 

**) 
e: ••• + ... s 

c22. i-redex in eli-form s ... 11 
**} 

1T ••• cr lf.,, 

+ ••• e: +,n,n ••• 

(i.e. +,n ••• l 

s ... e: XXX 

d. just like c, with i and j ipterchanged. 
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8.8. Alternatively, we can arrange our results in a table, according 
0 0 

~o ~he kinds of reduction i,j. We write i for >l,i' the reflexive 

closure of>, .. In the first column below one finds values of (i,j) . . , ~ 
In the secend column is indicated by what kind of reductions can be 

coffipleted (i.e. can be reached a camman reduct) if one starts with 

i. .. j. 

start with complete with 

0 

ij iif"\, r;rr, 7!'11, 11+, ++, +n j ... i 

13'11, on, on, B+, 6+ j ... i 
0 **) 

SB, 136, 66 j .. . i 

na, '110, +a, nt:, TIE 
0 **) 

i ,j .. . i 

0 - 0 
Scr, óa, ot: i ,j ... i 

0 0 0 

G'J, as, E:E j ,j ... j ,i 

+s 
0 0 0 ~*) 

+, Ë ••• + or ... 8 or +,n,n ... 

s~ XXX 

9. An informal analysis of postponement 

9.1. A discussion, similar to the analysis of CR
1 

in the preceding 

section, can be devoted to the question of postponement. Let ; contain 

a j-redex R; by contracting R toR' one gets E. Let E contain an i-redex 

S; by contracting S one arrives at t::.. 

Essential for ij-postponement is that the j-contraction does nat 

create the i-redex S. Of course, for most of the cases for i,j, essen

tially new i-redices are indeed created by the j-contractions. E.g., 

:-.cw a B-redex is created by a TI-contraction: 

Notes to 8.7 and 8.8: 

~; Provided there is one defining axiom for each defined constant. 

but for the type-labels 
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or by à +-contraction: 

{i
1

(A)}([x:B]CGI D) > {A}[x:B]C. 
1 ,+ 

Below we just consider the possibility of ij-PP where i is an I.E.-

and j is an ext-reduction, and the possibility of weak cj-PP in general 

9. 2. EXt -postponement 

9.2.1. Let i refer to an I.E.-reduetion and let j refer to an ext 

reduction. The schemes for ext-reduction have a single expression 

variable as contractum. So R' is an instanee of such an expression 

variable. If (a) R' and S are disjoint (in Z), or (b) S ~ R' and (bl) 

the expression variable of which R' is an instanee occurs once in the 

j-redex (so, in fact, j must be n-reduction), then the i- and the j

contraction can be interchanged, Example of (bl): 

[x:A]{x}B >
1 

8 > B' <
1 

[x:AJ{x} B • <
1 

. [x:A]{.:r}B ,n l,i ,n ,1 

(X i FV(B'), beeause x t FV(8)). 

If (b2) j refers to a twin reduetion (i.e. a or €) then two dis

joint 1-eontraetions are needed. E.g. 

9.2.2. If (e) R' ~ S and (cl) R' is part of an instanee of an expressie: 

variable of the i-redex, then one can start with >
1 

. and finish with 
,l. 

some disjoint j-eontraetions, compare case (cl) of the CR1-analysis. 

Example: 

{R}[.x:B] ••• .x ••• x ••• >1,j{R'}[x:B] ••• x ••• x ••• >1,
8 

••• R' ••• R' ••• <l,j ••• R ••• R ••• <1,
8
{R}[x:B] ••• x ••• .:r •••• 

9.2.3. Otherwise, (e2) R' is an essential part of S. Since i is an 

I.E.-reduction, R' is in introduetion form, i.e. inj, abstr, or pair, 

or it is a plus-expression. Now we assume that (*) such type restriet

ions are fulfilled, that (1) the result of a a-eontraction is never an 

inj-, an abstr- or a plus-expression, (2) the result of an E- or an 

n-contraction is never an inj-expression or a pair. Then (c2) can only 
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be realized as fellows (for brevity we omit type-labels): 

>l,o <41,Al(p) > A 
1,11 p 

(p = 1 or p 2) 

n creates S: {A}[x]{x}[x]C >
1

,
11 

{A}[x]C >
1

,
6

c[A] 

(p = 1,2} 

e; creates +: {ip(A)} (([x]{i
1 

(X)}(F
1 

<P F
2

))4l([x]{i
2

(x)}(F
1 

m F
2

)J) 

>
1 

{i (A)} (F e F
2

) > {A}F 
,e; p 1 1,+ p 

e; creates S: {A}(([x]{i
1

(x)}[y]C)!t([x]{i
2

(x)}[y]C)) 

>1 ,e {A}[y]C >
1

,S C[A] 

Indeed, in all but the last case, the i-redex is not essentially new: 

a, 11 (i.e. >
1 

>
1 

) can be simulated by 11, 11 (two disjoint 11-contrac-,cr ,'if 

tions), !j,f3 by S, f3, <:, + by +,8,+ and n, + by S, +. But St::-PP (so (13+)-t::-,PP) 

is false. 

9.2.4. We resume the results of this sections in a table 

> > simulate by case (a) {b1) (b2) (cl) {c2) in general 
1 t j l,i 

s,Ti 0 -n,S s,n S,n s,s 13,13 ,n 
0 0 0 

n,+ +1n +1n +,n 6,+ (+Sl , + ,n 

0 *) 0 

nrrr 11,11 11,11 11,11 - 11,11 

*) 0 -
cr,S S,a S,S,a 6,0' - 6,6 ,cr 

0 *) 0 0 

ç;,+ +,cr +,+,o +,cr - +,+ ,a 

0 0 0 

o,Tr 11,0 1T,11,0' 11,0' 'IT,rr 11,11 ,o 

0 0 0 

E,+ +,E +,+,e: +,E +, s,+ +, (+13) ,+ 

*) 0 0 

<:,11' rr,e: 11 1 11 1 E TI,E 11,11 ,E 

e:,i3 s,e: s,s,e: B,e x x 

*) assuming certain type restrictions. 

0 

,E 
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9.3. weak ê-advancement 

9.3.1. Since the presence of 6-redices is only dependent on the pre

senee of defined constants, apparently no essentially new 6-redices 

are created by the other reductions. However, we can only hope for 

weak ê-advancement (i.e. weak êj-PP for all kinds of reductions j, 

distinct from ê) in view of the Sö-example; 

where d(y) := D is the defining axiom of d. If we start with 
10 

here, 

then possibly too many ö-redices are contracted. Actually, the situa

tion compares very well with the situation with the twin reductions 

w.r.t. CR 1• 

9.3.2. Let r, E, 6, R, R', S be as in 9.1. Ris an arbitrary non-o

redex, Sis a ó-redex d(Ë) (defining axiom as above, say). If (a) R' 

and S are disjoint in E then the contractions can be interchanged: 

r :: ... R ... S ... >l,j ••• R' ... S ... >l,ê 

... R' • •• s· ... <1 ,j ... R ••• s• ... <
1

,
6 

r. 
If (b) R' sub S, then R' c E., for some i, so we can simulate 

~ 

> > by > > • 
l,j l,ó l,ö l,j 

Example; d(R) >l,jd(R'l >l,ê ... R' ... R' ... <l,j ••• R ••• R ••• \, 0d(R). 

If (c) S c R' then (cl) S is part of an instanee of an expressior: 

variable of the j-reduction scheme, or (c2) j is S, S c C[A] 

(::: R' where R {A}[x:B]C). 

Case (cl) is just like case (a). In case (c2) there are two pos

sibilities: 

(for some Ë ), or 
0 

(2) d(Ë) is part of one of the substituted occurrences of A. 

9.3.3. The contractionscan again be interchanged in case (cll). 

Example: 

{A}[x:B]d(F) > d(F[A]J > •• • F[AL • • F[AJ ••• 
l,S l,ê 

<1,
6
{A}[x:B] ••• F ••• F ••• <l,ê {A}[x:B]d(F) • 

Case (c12): As in the example above, forsome 6', E' 
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-r > E > 6 > 6' < E' < r 
1,8 l,o 1,o 1,8 l,ê 

9.3.4. Resuming: 

( 1) 

(2) r > > 6 ~ r > > h' < 6 1,s 1,o 1,o 1,8 1,o 

II.lO. Multiple substitution 

10.1. Let D be a set of expressions; Eis an expression, x is a 

variable. Then r is a multiple substitution result of E with D for x 

if r can be produced from E by substituting some 6 E D for each free 

occurrence of x in E {possibly different h's for different occurrences 

of;;;). 

The set of such multiple substitution results is denoted E(x/Di 

(here,locally, abbreviated to r*) or just E fDj and can be defined 

inductively, along the lines of ordinary substitution, as follows: 

(1)a. 

(i) b. 

(11) * * X; y, (\ióED y t, FV(ó)), r E E -:- )..y•f e (Ày•E) 

(if necessary rename y) 

(iii)a. I ti = o - r € r* 
(iii)b. r. E E~ for i= 1, ... , ifi,.f(f) E <f<l:))*, 

l. l. 

* By induct1on on the length of E it can be shown that E is decidabie 

* if Dis decidable; e.g., if Dis finite then E is finite. 

10.2. Multiple substitution satisfies much the same properties as 

ordinary substitution. E.g. corresponding to substitution property II, 

sec. 2.5: if x+ y, VÄED y I FV(ó) then 

* * * r ly/l: j = (f[ y jE]) , or, in full 

Here is ordinary set equality. The proof is by induction on r. 
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So, as· in 4.4, 

* * ~ ~ r, fi € ï: • 6 ~ 6', forsome 6' € r. 

10.3. If Disasetand fi € D• ï: 2: fi then, for all r• in fi.:riDj, 

r[.:r/E] 2: r• • 

Sc, if p(E) denotes thesetof reducts of ï: then 

r• E rf.:r/p{E)f ~ r[.:r/EJ 2: r• • 

The concept of multiple substitution will not be used before 

Chapter IV, and more essentially Chapter VII. 

II.ll. Reduction under substitution in Àe-calculus; Barendregt's lemma 

11.1, Introduetion 

The variable .:r and the expression r will be fixed throughout 

sectien 11. For all reduction relations we have 

~ .2: E ' , r 2: r • • E [.:r 1 r] 2: E ' [.:r 1 r • ] 

Now we consider the converse question: if ~[.:r/f] 2: fi , what can be said 

about fi in terms of reducts of E and f? 

we concentrata on free À-calculus bere: reduction is just B-re

duction. Expressions are variables, application expressions AB and 

À-expressions Ày·A. we write AË for ( ••• (AB1>B2 .•• )Bk. 

We write ï: + fi (relative to .:rand f), if A can be produced from 

E by replacing certain occurrences A1 = .:rM1 , A2 = .:rM2 , ••• ,Ak .:rMk 

(k 2: 0) of subexpressions of E by reducts Ai,Az'''''Ak of 

A
1
[.:r/r], A2[x/r], ••• ,Ak[.:rlr] respectively, not leaving any free 

occurrences of .:r unreplaced. Here we prove the reduction-under-sub

stitution-lemma: 

(*) if ï:[.:r/r] .2: 6 then, for some ~·, E 2: E' + 8 , 

Barendregt proved a restricted form of a similar fact for weak 

combinatory logic, using some underlining technique *). Elis proef 

was extended to À-calculus by de Boer, a student of de Vrijer [7]. 

Our proef here will be different: we show that the set of 6, such 

that for some l:', E 2: E' + D., is closedunder reduction. Since I: ..,.z: [.:r/ 

*) H.P. Barendregt, The undefinability of Church's o, unpubl. 1972 
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this proves {*).A corollary of {*) is the square braakets lemma, in 

sec. 11.5, which is applied in our proof of ~-SN in sec. IV. 2.4.4. How

ever, direct proofs of the square brackets lemma are also possible; 

first there is Levy's proof [42, p.134)using the standardization theorem 

and secondly, there is a proof using SN (IV, sec. 2.4.3). 

Further interesting applications of property (*) are the non-def

inability results in [5, 48]. 

11.2. The definition of~ 

11.2.1. Abbreviate [x/r] by * here. Informally speaking, E ~ 6 means 

and 

for 1 l, ... ,k. 

11.2.2. Formally, we can define ~ inductively, as follows: 

(la) (M possibly empty) 

(lb) x!joy•y~y 

(2) y +x, y t FV(r), E ~ ö • Ày•Z ~ Ày•ö (if necessary rename y) 

11.3. The following properties of~ are easily proved from 11.2.2. 

* E ~ E 

r _,. 6 ... z* ;;: e,. 

(3a E ~y ... ( 1) l: y, y "'x, or ( 2) l: - xM 

(2 ) l: -+ Ày •61 ... (1) l: - Ày•Z1,l:1 _,. 61, y ' x, or 

(2) l: - xM 

(3c) l:-+ ;).1 62 .. ( 1) l: - !:11:2, El_,. 61, 1.:
2 

-+ 62, or 

(2) l: - xM 
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11.4.L Substitution lemma for ..,.: if y t FV(r), y ;!;x then 

Proof: by induction on the definition of ~l..,. ~1 • E.g. let ~l - (xM), 

* 1.:
1 

~ ~ 1 • Then 

and 

because of 11 • 3. ( 2) above. So 

Or, let 

Th en 

and 

so 

11.4,2. Reduction lemma for ..,.: ~ + ~ >1 ~· • E ~ E' + ~· forsome E'. 

Proof: By induction on the lengthof ö. Or, informally, as follows: 

~must contain a redex1 ö ,,,(Ày·~ 1 lö2 ••• , A'= ••• A
1

[y/A
2

] •••• 

Now there are three cases: 

(1) ~ ••• (Ày•El )E2 ••• I El+ öll E2 .... A2 I 

or 

, • • (xM)E2,. • I - * (2) ~ (;cM) ~ Ày·A
1

, E2 + A2, 

or 

(3) E = • • ' (:t'Ï:f} • • • I <x~i> * ~ { • • • p,y • Al) A2 .. •) . 
We must indicate an appropriate ~·: in case {1) take~· = ... ï 1[y/E2] •• , 

and use 11.4.1 1 in case (2) and (3) simply take E E'. So, in fact, 
0 

even î >
1 

E'..,. A'. 



11.4.3. Theorem: E ~ 6 ~ 6' • E ~ E' ~A', forsome E'. 

Proof: by induction on 6 ~ 6', usinq 11.4.2. 

11.5. Corollaries 
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11.5.1. Reduction-under-substitution lemma (i.e. Property (*), sec. 11.1): 

11. 5. 2. Barendregt's lemma (De Boer [ 7 ] ) : 

(if X I. FV{l:)) 

Proof: (Ex}* :o: Er ~ /:; so Ex ~ l:' .... I:J.. 

11.5.3. Square brackets lemma: If * E <! Ày•I:J. then either 

(1) E <! 'Ay·I:J.o, * /:;0 ~ IJ. 

or 

xM, (xM) * (2) l: <: ~ Ày·t:. . 
Note about terminoloqy: the name square brackets lemma comes from the 

square brackets which represent abstr in Automath notation. Here the 

name À-lemma would be more appropriate. Slightly more general than 

11.5.3 is: 

11.5.4. "Outer shape lemma": if r* ~ 6 then l: ~ 60 , !:.~ ~ 6 witheither 

* (1) the latter reduction (I:J.
0 

~ 6) is non-main, or 

t2l t:.
0 

= xM. 

11.5.5. Note: the corollaries 11.5.1, 11.5.2 and 11.5.4 do not extend 

co Sn-reduction, but the square brackets lemma does (by Sn-postpone

ment) • 
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CHAPTER lil. THE THEORY OF ABBREVIATIONS; LSP 

III.l. Introduetion 

1.1. In mathematical practice one often introduces new names for pos

sibly long and complicated expressions, possibly with parameters. In

formally these defined aonstants are mere tools in the presentation 

and are considered to beleng to the meta-language. In a formal develop· 

ment however, every such abbreviation gives rise to an extension of 

the language and an additional defining axiom to give the new constant 

its meaning. 

1.2. In the Automath languages where theories are built up in the form 

of books, one can make abbreviations at every stage of the development 

by adding a definition line to the bock, thus introducing a new de~nec 

aonstant. In practice, most of the lines in an Automath-book are 

definition lines. We think that this abbreviation device is essential 

for the feasability of "mechanizing"mathematics, i.e. writing and 

mechanically verifying completely formalized mathematics. 

1. 3. Suppose we are given a system of "old" expressions and a string of 

defining axioms for "new" constants. We extend to a new system, whose expres5 

may also contain new constants. We treat the eliminatien of abbrevia

tions, i.e. the "evaluation" of new notions in terms of old ones, here 

as a reduction, viz. o-reduction. 

Then the problem of o-normal form, o-normalization and o-Church

Rosser respectively correspond with the questions: 

(i) is every new expression equal to an old one? 

(ii) is there some effective procedure, e.g. some specific order of 

eliminating new constants, leading from a new expression to an 

equal old one? 

(iii) is every new expression equal to at most one old one? 

-here the words at most one can be understood in the sen se of identi ty 

of expressions- • 

1,4. In, e.g., Kleene [39], curry [25] and Troelstra (69] such questicn: 

are discussed in the general context of definitional extensions, also 
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1ncluding descriptions and recursive definitions. Here we just study 

abbreviations, in the ferm of the abbreviation calculus LSP (de Bruijn, 

[11]}. This language isolates the abbreviation device of Automath 

from the ether "constituents" of Automath such as À-calculus and the 

typing of expressions. 

III.2. The definition of LSP 

2.1. Ourdefinitionof LSP will be slightly different from the one given 

in [ 11] • Here we consider LSP over some expression forming operations 

(:\-abstraction, some basic constants) and a string of primitive constants. 

Hence we do nat need primitive notion lines in our LSP-books. 

Sa, assume some expression formation operations given, and strings 

p, d of primitive and defined constants. We call E a d; x-expression if 

all its constants are basic, or in p or in d, and all its free variables 

are in :x. 

2.2. An LSP-book {also: a correct LSP-book) over p and the operations 

is a finitestring ofdefinition lines ar defining a:xioms d(x.) :=11,, 
l. ~ 

where the following requirements have to be observed: 

(i) all di in the bock and all variables :xij in :xi have to be mutually 

distinct; !dil = lxil and 

(ii) each of the /1i has to be a d
1

, ••• ,di-ll :x1-expression. 

2.3. So, as is usual in practice, definitions are made on top of other 

definitions. The kind of definitional extension introduced by an LSP

book is explicit in the sense that all definitions of new constants 

are given in terms of basic, primitive ar previously defined constants, 

and proper, in the sense that each new constant has just one defining 

axiom (property (*) of II. 8). Hence, we can define thedefiniens 

of a constant for short def (di) , to be the de fini tien part 11 i of 

the defining axiom of di, di {X) :=Ai. 

2.4. Let 8 be an LSP-book, with defining axioms for the constants in 

the string d. Now E is called oorreet w.r.t. B if, for some x, it is 

a d; :x-expression. 

So, each of the definition parts Ai is correct w.r.t. the preceding 
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book, and a fortiori, w.r.t B. 

2.5. Clearly, an alternativedefinitionof LSP-books can be given in

ductively: start with the empty bock, and say what kind of one-line 

extensions may be added. 

2.6. As in II. 3, wedefine o-reduction (w.r.t. 8). If d has a defini1 

axiom d(i) := ~ in B ~hen d(Ë) contracts to ~[Ë]. Since, in this chapt• 

we only consider ó-reduction, ê-equality etc., we omit o's, just W%itir 

>1 for ordinary one-step ê-reduction >l,ó' >1 for >l,ó etc. 

The relation of reduction andequality,relative toB, are defined 

on all the expressions, not just on the correct ones. 

111.3. Some properties 

3.1. Substitution and reduction 

From the previous chapter we reeall such properties as: 

(1) if d(i) := ~ is a defining axiom then (substituticn property I, 

sec. II. 2.5) 

~rx /1:Dlii /i'D = t.. [x/Ë[y ;ru 

(2) (i) ~ >1 ~· .. ~[Ë] >1 ~·[Ë] 

Ê' .. ~[Ê] - ~[Ë'] (ii} E >1 >1 

(iii) t.. ~ ~., Ë ~ Ë' .. à[Ë] ~ ~I [Ê I] 

(iv) t.. = /:;,I f E = i:• .. ~[Ë] = ~·[Ë'] 

3.2. The clcsure property 

Since reduct.icn is defined on all the expressicns, it makes sense 

te discuss closure: de correct expresstens remain correct under re

duction? As in sec. II. 5.2.3, correctness is preserved under substi

tution. And since the definition parts are correct, we have CL
1 

so CL. 

3.3. The Church-Rosser property 

Even without using ê-SN we can prove CR by taking >1 (or >
1

) as 
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a suitable compound reduction. In fact this works for all, not just 

for correct expressions, so we do not need CL in our proof. That >
1 

is 

indeed suitable, is proved by induction on the structure of expressions. 

Crucial cases are: 

where E.; E~ for i= l, ..• ,ldl. In this case take as a common one-step 
~ ~ 

reduct def(dJ [f•] (use 3.1. (2).(ii)). 

(2) 

By ind. hyp. Ei ; 1 E~ <1 Ei for some 

common one-step reduct f(Ë "'). 

III.4. Normalization 

L'." 
~ 

for i=l, ••• , if 1. 
for i=l, ••• , lfl. So take as 

4.1. Clearly, E is ó-normal if it does not contain defined constants, 

For each of the constants d . . (see 2.2) in the hook we define the number 
~ 

i to be the date of the constant. The date of an expression l: is defined to 

be the maximum of the dates of the constants in E. 

So, 

(1) date(def(d)) < date(d), 

and 

(2) r c E _. date{f) s date(E). 

4.2. Let E be given. We define two reduction procedures for l:, which 

provably terminate (the proof of this uses induction on date (E)), and 

hence are normalization procedures. So we have ö-N. 

4,3, The first procedure runs as fellows. Let m be the date of E. 

Define ~m to be the number of occurrences of d in E, Then the 
m 

first reduction step in the procedure is to contract an innermost (e,g. 

the leftroost innermost, to make it deterministiel occurrence of some 

(Zl c E (so d does net occur in ZJ, And so on. The terminatien 
m 

proef is by double induction, viz. on (I)m, (II) ~m. For by the in-

dicated contraction, ene occurrence of d disappears, and the contrac
m 

tum def<dl[Z] only contains constantsof date strictly smaller than m. 



100 

4.4. The secend procedure is provided by the followinq proof of nor

malziation, using double induction again, viz. on (I) date (E), 

(II) length (E). 

Distinguish two cases: 

(i) E:: d(f). By the second induction hypothesis the r i in f normalize, 

te rl say. By the first induction hypothesis def(d) normalizes, 

to à' say. So,by 3.1.(2).(iii), E ~ à'[f'] which is normal. 

(ii) Otherwise, simply normalize the direct subexpressions of E (use 

ind. hyp. II). 

Parallel te the proef we can, in view of CR, define the normal ferm of 

expressions, with the crucial case: 

111.5. Strong normalization 

5.1. As in II. 5, E is said te be ö-SN (for short: SN) if all its prop

er reduction sequences terminate, no matter in what order the reductior 

steps are chosen. Here fellow several proofs of ö-SN (net given in 

historica! order). 

5.2. Heuristics: SN-conditions, substitution theorem. 

(i) 

(ii) 

By II.5.3.3, E is ö-SN if: 

r sub E ~ r o-SN 
E = d<r> • def(d)[f] ö-SN 

(because the latter expression reduces to all the first main reducts 

of E). 

So if we can prove the substitution theorem for ö-SN: 

E ö-SN, à ö-SN ~ à[i] ö-SN 

Then we can preeeed by induction on (I) date(E), (II) length(E) and 

prove E te be ö-SN. For, the proper subexpressions of E are SN by 

ind. hyp. II (condition (i) above), and (if E = d(r)) def(d) is SN 

by ind. hyp. I, so def(d)[f] is SN by the substitution theerem (condi

tion (ii) above). 
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5.3. First SN-proef 

5.3.1. However, our first SN-proof of SN in fact proves the combination 

of the substitution theerem for SN and the SN-theorem itself, atrong 

normalization under aubatitution: If all r. in r are SN then E[x/f] SN 
~ 

(for arbitrary I:). 

Proef: By induction on (I) date (I:), (II) lenqth of E. Distinguish 

the cases: 

(i)a, E -x. for some x. in x. Then E[r] - r, is SN by hypothesis. 
~ ~ . 

(i)b. E - y, y not among x. Then E[r] = y which is normal. 

(ii) E d(6), E[f] = d<6[r]). By 5.2. we must prove that (i) all 

ó.[f] are SN (j = 1, ••• ,\d!J, which is the case by ind. hyp. II, 
J - -

and (ii) that def(d)[~(r]] is SN which holds by ind. hyp. I 

applied to def(d}. 

(iii) In the remaining case, apply ind. hyp. II to the direct subex

pressions of E. 

5.3.2. Corollary: ö-SN (take the empty substitution, \xl 0). 

5.4. second SN-proof 

5.4.1. The secend SN-proof actually uses the methad indicated in 5.2 

and first proves the substitution theerem for SN. The point of this 

proof is to combine it with a proof of 8-SN to a proof of ó8-SN. This 

combination works, because both proofs depend on compatible inductions. 

5.4.2. Substitution theorem for ó-SN: If I:, r 1 , ••• ,rk are ó-SN then 

] o-SN. 

Proof: By a double induction again, (I) on the ö-reduction tree of E 

(indeed, Eis SN), (II) on the lengthof E. The cases (i)a, (i)b are 

jt:.st as in 5.3.1. So, we start with 

(ii) E = dtZl, E[r] dt6[f]). The ~.[r] are SN by ind. hyp. II (notice 
~ 

that the condition of ind. hyp. I is not violated), Further we 

have to prove that deftdl[~[r]] <= deftdl[~][r]J is SN. This is 

the case by ind. hyp. I, since E properly reduces to def(d)[~]. 

(iii) In the remaining case, apply ind. hyp. II to the direct subex-

presslons of E. 
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5.4.3~ Corollary: 5-SN (as in 5.2). 

5.5. Third SN-proof. 

5.5.1. This proof of o-SN (actually the first proof given) is due to 

de Bruijn. For each E a non-negative integer L(E) is defined by in

duction on (I) date (I), (II) length (I), such that L(E) strictly 

decreases under proper reduction. So all proper reduction sequences 

terminate. In fact, L'(E) is ;>recisP.ly the maximum length of proper 
*) 

reduction sequences of E. 

5.5.2. Heuristics 

Let d<x1 , ••• ,xk) := ó be a defining axiom. We say that xi is 

aative (in d), if x. actually occurs as a free variablein ó. 
~ 

Now, let us try to construct a proper reduction sequence of maxi-

mal length, for an expression d<E 1, ••• ,Ek). If xi are active, such 

a reduction sequence can start with the main reduction d(Ë) > ófiÏ]. 

Sa possible contractionsof the Ei are postponed until perhaps the r
1 

will be multiplied by the main reduction and further reductions. In 

fact, until we arrive at an expression with a maximum number of multi

plied Eis in it. 

But, if certain xi is not active, a longest reduction sequence of 

dlr
1

, ••• ,Ek) has tostart with such contractions in Ei as correspond 

with a longest reduction sequence of r
1

• 

Suppose we have a function K such that, for all r with d(X) ~ r, 
K(x,n = max{# (X,f')lr ~ r•} (here #(x,f') is the number of free 

occur~ences of x in f'), and that L(E) is the maximumlengthof proper 

reduction sequences of I. 

Then the maximum contribution of Ei to the length of proper re

duction sequences of d<Ë> is precisely K(x.,d(x))•L(E.). 
~ ~ 

Clearly, if x
1 

is active, then K(xi,d(X)) K(xi,def(d)) and othe 

wise, K(x,,d(x)) 1. so, in general, K ,d(x)) max(l,K(x.,def(á))), 
~ ~ 

5. 5. 3. A restrietion of LSP has been suggested [ 11 J in which only 

defining axioms with all variables active are permitted. Let us call 

this language variant ÀI-LSP (by analogy with Church's ÀI-calculus [2~ 

For this language the definition of K and L below can be simplified. 

_*_) __ 

R.C. de Vrijer has used the same idea to prove the terminatien of 
socalled aomplete reductions (compare [71] ). 



103 

5.5.4. Definition of K and L 

5.5.4.1. Now we come to the formal inductive definitions of the func

tions K(.x,I:) and LO:). 

That bath functions are total, i.e. indeed defined for all r, 

fellows by induction on (I) date{!), (II) length(!}. 

K(x,I:) is a non-negative integer, defined inductively, by cases: 

1 1 

(i)b. K<x,y) Oifx$y, 
k 

(iil K(.x,d{E
1

, ••• ,Ek)} = L K(x,E.)•max{l,K(x.,def(d}}}, if d has 
i=l 1 1 

defining axiom d<x
1

, ••• ,xk) := def(d} , 

(iii) in the remaining case, K(x,E) is the sum of the K{x,r) over the 

direct subexpressions r of r. 

5.5.4.2. Some properties of K 

( 1) 

~ be the defining axiom of d. Then 

If 1 sis k and all the y. are mutually distinct then 
] 

K<y
1

,dCy
1

, ••• ,yk)J = max(l,K(xi,6)J 

k 
L K<z,E.J•K(y.,d(y1 , ••• ,yk)) 

i=l 1 1 

for every choice of mutually distinct y 1 , ••• ,yk. 

5.5.4.3. In analogy to K, wedefine L(!) by 

(i) L(x} = 0 , 

(ii) 

(iii) in the remaining case, L (l':) is the sum of the L (f) over the 

direct subexpressions r of r. 

Notice that, as above, the choice of the x 1 , ••• ,xk -as long as they 

are mutually distinct- is immaterial. 
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5.5.4.4. some further properties 

Of course, 

(1) L(E) = 0 iff Eis normaL 

Further L (d(x} > Lcdef<d>> + 1, so 

(2) L <d<~ll 
!dl 

L<d<xll + I Lcr.>·Kcx.,d<ill 
i=l l. l. 

This is an instanee of the subatitution propePty foP L which holds 

generally: 

k 
(3) L (f) + l 

i=l 
Ln:.J·K<x. ,n 

l. l. 

Proof: By induction on the lengthof r. E.g., if f: d(r
1

, ••• ,fm)' 

then by definition 

m 
L cr[~]l Lcdef(d)) +1 + l=

1
L<rj[Ë]J .. K<yj,d<y 1 , ... ,ym)) 

By inductive hypothesis the latter sum is 

m k m 
I L < r . > • K <y .,d <iï » + 

j=l J J 
l Lcr.>· l K(x.,r.>·K<y.,d(y)) 

i"'l l. j=l l. J J 

where the first sum together with L(def(d)) + 1 gives L(f), and the 

second sum equals 

k 
I L o:. ) ·K (X. I f) 

i=l l. l. 

5.5.5. Theorem: if r >1 r then L(E) > L(r). 

Proof: By induction on the length of r. 

(i) If E : X then E is normal, 

k 
L(def(d)l + 1 + L L(ll.) ·K (X. ,d(X)) 

i=l l. l. 

and 

q.e.d. 
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Lcdef(d)) + L {l1.) ·K<x. ,def (d)) 
~ ~ 

(by 5. 5. 4. 4. (3) 

above). so L(Z) > L(rJ since K(x.,d(x)) 2 K(x.,def(d)). 
~ ~ 

(ii)b. l: = , ••• ,l'.'J., ••• ,D.k) and l'.. >. r,;. By the 
J L J 

d 

induction hypothesis L(/',,) > L(/',~). So L(l:) > L(f) since 
J J 

(iii) In the remaining case, some proper subexpression of l: must 

have been contracted. So, for certain direct subexpressions 

:z
1

, r
1 

of Land r respectively, L=: ••• L
1 

•• ~, r:: ..... :- 1 ~ •• , 

zl >1 rl. So L(Zl) > L(fl) by the induction hypothesis and 

L(Z) > L(f) by definition. 

5.5.6. Corollary: o-SN. 

5.5.7. Actually, if Z is not normal, a Z' can be found such that >
1 

and L(î) = L(L') +1. This can be proved by induction on the lengthof 

~,as in 5.5.5. (notice that either K(x,,d(x)) = K(x.,def(d)) for all 
~ ~ 

i, and main reduction has to be applied orK(x.,d(x)) = 1 forsome i, 
~ 

in which case a proper subexpression has to be contracted). So, as we 

claimed in 5.5.1., L(E) is not just an upperbound for the lengthof 

proper reduction sequences of I, but (by 5.5.4.4. property (1)) pre

cisely the maximum value 80 (1:). 

5.6. Fourth SN-proof 

5.6.1. The fourth SN-proof gives ó-SN as a corollary of S-SN for typed 

71.-calculus. The latter re sult is proved in Chapter IV. 

Let B be an LSP-book. Wedefine a translation 4, from correct 

LSP-expressions w.r. t. BI into the typed x.-calculus expressions, This 

~ eliminates defined constants, such that ó-contraction of E corres

ponds with proper S-reduction of ~(l:). So, if we assume S-SN, we have 

8 -SN. 

This proof is funny rather than useful: the problem of S-SN is act

ually more complicated than the problem of ó-SN. 

One might think of reducing the problem of Sö-SN to the problem 

of s-SN by the translation 4. However, ~ induces some typing of the 
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transiated expressions, which may interfere with typinqs already presen1 

It seems hardly worthwile to try and adapt <!> in order to make the in

duced typing compatible with given typings. 

we just sketch the idea of this proof. 

5.6.2. Definition of <!> 

The translation of<!>{~) is defined by induction on (I) date (E), 

(II) length (E). Crucial clauseis the eliminatien of defined constant! 

•cdcr 1, •••• rkll :5 

{<t>(EkJ} ••• {<t>CElJ}{t} [yoJ[ylJ ••• [ykJ <t>Cë[rel, ••• ,rek/yl, ••• ,yk]l 

where dcx 1 ,.~.,rek) := é is the defining axiom of d, t is some new pri

mitive constant, and the yi are new variables net occurrinq in r
1

, ••• ,: 

If we just want o-SN, we can choose a trivial typing of the vari

ables and constants, such that the <!>(E) are correct expresslons of the 

typed À-calculus (in view of Chapter IV. 2, it is sufficient that the 

<!>(E) are normable, so we can simply give all variables and primitive 

constants the norm T, say). 

5.6.3. Substitution lemma for 1 

If ~.r are correct then 

Proof: By induction on the lengthof r. 

5.6.4. Homomorphism lemma: If l: >
1

,
6

r then \ll(E) properly S-reduces 

to <I> (f). 

Proef: By induction on the length of z:. Notice that the applicator {t} 

and the abstractor [y
0

J are just dummies inserted for the case of 0-ar: 

defined constants. 

5.6.5. Corollary: ó-SN (by a-SN) 

III.6. Oecidability 

6.1. Here we make some remarks on the verifieation of LSP-correctness 

(of expression and books) and the deeision probZem for ó-equality. The 
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provisiona in·2.2. and 2.4. are easily verified mechanically, so bath 

the notion of correct hook and correct expression(w.r.t. a book) are 

decidable. Hence the verification of LSP-correctness does not require 

the deciding of equalities (as in, e.g., AUT-QE). 

6.2. Now about the decision problem for equalities. Since o-N, ö-SN, 

and é-CR hold for all the expressions, E 

(in contrast with, e.g., 8-equality), 

r is decidable for any E,r 

Pormal decidability is already provided by ó-N and é-CR. For, 

1: =
0

r iff ó-nf(E): ö-nf(r)- and identity of expresslons is decid

able -. In practice however, ó-normal farms tend to be very long and 

their computation can require many reduction steps. So we rather avoid 

computing normal farms of E and r and look for a common reduct if 

there exists one - which can be reached by a small number of suitable 

reduction steps. 

6.3. We just discuss how some cases of the decision problem E ö r 

have to be handled by a sensible (for our specific situation) decision 

procedure. Induction on (I) 60 (E) + 60(r), (II) length (E) + length (f) 

shows that the procedure, whether sensible or not, anyhow terminates. 

The cases we discuss are: 

(i) ptËJ = q(r), both pand q primitive: this is true iff 

p q and E = r, i.e. r 1 ri for i= l, ... ,Jpj. So in this case 

we must decompose. 

(ii) d(~) r, r immune: this is true iff def(d)[f] r. So in this 

case we must main reduce. 

(iiil d(E) = e(f), bath d and e are defined constants: hereis a choice 

between main reduction on d and main reduction on e. Let us 

assume that selectors, i.e. defined constants d with axiom 

d(x) :=x. are exceptional (they are not very useful as abbrevi
~ 

ations). 

Then it seems sensible to contract the younger constant, i.e. 

the constant with the higher date of the two. 

(ivl d(~l dtfl: this is true iff def(d)[Ë] d(f) iff d(f) =def(d)[f]. 

So it is sufficient to apply main reduction, either on the left 

or.on the right hand side. But, in order to avoid computing 
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normal forms, decomposition must be preferred. However, whereas 

Ë = r ~ d<Ë> = d(f) holds for all constants d, the converse holds for 

').I-constants" d only. So decomposition is not sufficient: at first we 

try decomposition and verify the equalities Li ri. Only if one of 

these is not true, main reduction is applied. 

Presumably most of the actually instantiated variables, i.e. the vari

ables not suppressed by the shorthand facility of Automath [27], are 

active. So in most of the cases where decomposition fails to produce 

a common reduct the subsequent main reduction will not yield a common 

reduct either. 



109 

CHAPTER IV. STRONG NORMALIZATION FOR FIRST ORDER PURE TYPED À-CALCULUS 

WITH APPLICATION TO AUT-QE 

IV. 1. Introduetion 

~.1. Pure and extended systems 

A system of expressions is said to belang to pure ;\-calculus, if 

its reduction relation only includes 8-, n- and possibly ê-reduction. 

Systems, which besides abstraction and application (and, possibly, 

defined constants) have ether operations with their associated reduc

tions are said to be extended systems. In this thesis we do not study 

arithmeticaZ systems, which have a constant R for primitive recursion, 

with the associated recursion reduction. Nederpelt's A [51], de Vrijer's 

ÀÀ [70], AUT-'68 and AUT-QE are examples of pure systems. AUT-Pi and, 

e.g., Martin-Löf's systerns [45, 46] are extended systerns. Martin-Löf's 

systems, and e.g. the systems of Tait [68] and Sanchis [61] are arith

metical systems (the latter two are formulated in combinatory logic, 

though). 

1.2. Typed and pre-typed systerns 

A system is said to be pre-typed if there is a typing, a function 

from the expressions to the type-symboZs or types; the typing is in

ductively defined along the structure ofexpressions, starting from an 

assignment of types to variables (and primitive constants). Possi~ly 

some expressions can only occur as types, but do not have a type them

selves. 

we say that a pre-typed system is typed if either the formation 

of expressions or the reduction is restricted in some way, according 

to the typing of the expressions involved. 

E.g., Nederpelt's systern t, of "distinctly bound" expressionsis 

pre-typed. De Vrijer's ÀÀ [70] and Wadsworth's typed À-calculus (in 

Lévy [42]) are typed systems with a restricted reduction relation. 

Usually, it is rather the formation of expressions that is restricted 

subject to the typing rules. In this thesis, the systerns of correct 

expressions of the various Automath languages are defined along these 

lines; in particular, the formation of application expressions {A}B 



110 

will be subject to some app~iaabiZity aonditions: B has to be a functi 

with domain a (to be computed from the type of Bl where a is the type 

of A. 

1.3. Simple and generalized type structure 

In most cases, the type-struature(i.e. the set of type symbols) 

of typed systems is relatively simple and can be inductively given 

(from certain constants for "ground-types" by closure under certain 

type-forming operations) prior to the definition of tePms, i.e. the 

expressions which are nat types. Examples are: (1) the finite types 

of higher type arithmetic functionals: groundtype a (for the natural 

numbers), closed under .... , (2) the simple types of simple type-theory 

(Church [24]): groundtypes o and i (for truth-vaZues and individuals 

respectively), closedunder ..... 

Alternatively, we have a generalized type-structure, where the 

types are more complicated and are rather defined simultaneously with 

the typed expressions. In particular this is the case with the Auto

math-languages, where the types are just certain correct expressions 

themselves, In fact, in Nederpelt's A any expression can act as the 

type of other expressions. 

1.4. Formulae-as-types 

By the formulae-as-types-, derivations-as-terms-interpretation 

[34, 60], the derivations in natural deduction formulations of log

ical systems, with their proof theoretic reduction relations farm 

typed A-calculus systems. The type-structure is just the set of for

mulas of the logical system under considerations. It appears that, 

under this interpretation, implication ,... and universal quantification 

(and possibly a constant for falsum .i) just give rise to pure systems. 

By the introduetion of further connectives and the corresponding re

ductions of derivations, one can get extended systems. 

Finally, ir.duetion reduation of derivations corresponds to l>e

eursion 1•eduation of terms, in ar i thmetical systems. 

The À-calculus systems, produced by the interpretation above fron 

natural deduction systems, are not necessarily gene1t'a~ü:.ed in the 

sense of 1.3. They are so, however, if the formulae contain reducing 
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expressions and hence reduce themselves. This is, e.g., the case if 

the reduction of expressions induced by the interpretation (by reduction 

of derivations) is combined with a reduction relation on the terms 

("objects") of the logical sys·tem. 

Further, reduction of terms and formulae can arise from generalized 

logic (1.5.10) , where "partial" objects and formulae are construc

tively conceived of as depending on (and hence containing) expressions 

for derivations. 

1.5. First order and higher-order systems 

1.5.1. As suggested by the applicability condition in 1.3 a certain 

stratification of expressions, according to their level of functional 

complexity (as explained below), is imposed by the type-restrictions 

on the formation of expressions. 

In e.g., simple type-theory, the functional complexity of a term 

is determined by the length of its type-symbol. For derivations-as

terms, their functional complexity roughly depends on the number of 

quantifiers and connectives in their end-formula. 

After Nederpelt [51], we shall alsodefine a norm (a measure of 

functional complexity) for the correct expressions of Automath lan-

guages. 

In fact, the presence of a well-founded order of functional com

plexity (such as provided by the stratification} is essential for 

the property of (strong) normalization. 

E.g., by this stratification, non-normalizing expressions such 

as (ÀX•XXX) (ÀX•XXX) are ruled out. 

1.5.2. However, if a system allows À-abstraction over type-variables 

then the stratification of expressions cannot be defined as straight

forward as in the previous cases, viz. simply by induction on the 

structure of expressions, As an example consider the expression 

{a}[x:type][y:x]y, which under the formulae-as-types-interpretation 

represents a derivation of a~ a. Hence, its functional complexity de

pends on the complexity of the argument a, whereas in the previously 

mentioned systems, the functional complexity of {A}B just depends on 

the complexity of B. 
Analogous to the terminology about logical systems, type-variables 
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are called higher-order variables, and quantification {or À-abstrac

tion) over such variables is called higher-order quantification. So, 

e.g., secend order predicate calculus (as in Prawitz [60]), and intu-

itionistic type theory (in [52, SS]) under the formulae-as-types 

interpretation give rise to higher order À-calculus systems. Also, the 

strenger systems of Martin-Löf fall under this heading. 

1.5.3. In the system A of Nederpelt, quantification over all variables 

is permitted. We call this system nevertheless a first-order system 

since all variables have a fixed complexity (norm) and only expressier 

with the same norm are substituted for them. So the difficulty, pointe 

out in our example above, is avoided here. 

The ether Automath languages have a ~eak seaond order aspect: 

they have type-variables, but these are not quantified; there is only 

substituted for them. 

Higher order Automath languages have indeed been proposed (Aut-4) 

but they are not discussed in this thesis. 

1.6. Survey of normalization results 

1.6.1. There is a large number of normalization and strong normaliza

tien proofs for various systems in the proef theoretic literature. ThE 

first result in this direction is Gentzen's Hauptsatz on the cut

eliminatien in sequent systems for logic and arithmetic [28, 29]. 

Ndrmalization of natural deduction systems (and also cut-eliminatien 

in sequent systems) has important consequences, such as consistency 

and conservativity results. 

By streng normalization, induction on reduction trees can be 

introduced, which is helpful for proving ether properties (such as CR, 
II.6.1.1). And, in the language theory of Automath, strong normaliza

tien gives the terminatien of strategies for deciding definitional 

equality. 

1.6.2. We just give an (incomplete) survey of the recent proofs of 

(streng) normalization: 

(i) There is Prawitz' s*>proof of normalization for natural deductior 

systems for first order predicate logic [59] • Variants of this 

*)According toBarendregt (private communication) this proof actually 
must be attributed to Turing. 
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are the proof in Andrews [ 1) 1 for simple type theory 

(without recursor) and Seldin's proef [64] for certain systems 

of illative combinatory logic; 

(ii) There are sanchis's [61] proef of streng normalization 1 and Tait's 

proef of normalization [68] 1 for the primitive recursive tune

tionals of finite type. Variants of this are in Jervell [35], 

Prawitz (60], Martin-Löf [45] 1 Stenluna [67], Leivant [40] and 

de Vrijer [70] (for ÀÀ); 

(iii) There is the proef of Nederpelt and Jutting for the normaliza

tien of certain Automath languages [36] and a variant of this 

in Lévy [41]; 

(iv) There is Nederpelt's proof of streng normalization for his Auto

math system A [51] 

(v) Finally, there is Girard's proof of the strong normalization of 

higher order systems [30, 31] • Variants are in Pravtitz, 

Martin-Löf, Pohlers, Osswald [60, 44, 55 1 52]. 

1.6.3. Since the normalization results in (ii) and (v), tagether with 

CR for the corresponding systems, entail the consistency of primitive 

recursive arithmetic and intuistionistic analysis respectively and 

there are elementary Church-Rosser proofs (i.e. formalizable in prim

itive recursive arithmetic, see Traelstra [69]), we can say sernething 

about the proef theoretic strength needed in these (strong) normaliza

tien proofs. Thus the proofs in (ii) are "non-finitary" in the sense 

that they use an inductively defined notion (regularity (Sanchis), 

computability (Tait, de Vrijer), validity (Prawitz), stability (Leivant)) 

which a priori is not formally definable in arithmetic (Leivant [40] ) 

Besides 1 Girard uses "impredicatively" defined sets of expressions, 

so called "candidats de reductibilité". 

In contrast with this, the proofs in (i), (iii) and (iv) are 

evidently finitary. Only double (or perhaps threefold) w-induction 

over decidable well-orders is used. 

1.6.4. The new proef 

Here we present (sec. 2.4.4) a new proef of streng normalization 
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(and two variants of it) for pure typed À-calculus (hence a streng 

normalization result for first-order predicate logic over (~,V,i),by 

the preceding discussion), 

Like Nederpelt's proof, but in contrast with the proofs using 

computability, it is evidently finitary. Further the new proef is 

simpler than Nederpelt's proef. 

In Chapter VIII, our proof is extended to AUT-Pi (and hence to 

a streng normalization result for full first order predicate logic). 

IV 2. Normalization anà strong normalization for normable expressions 

2.1.1. Here we consider a system Mof normabLe expressions, in which 

the first order pure typed À-calculus systems, such as the systems of 

correct Automath expressions, can be embedded. Each nor~able expressic 

r has a norm~(!). 

Norms are defined inductively: 

(i) T is a norm 

(ii) if vl, v2 are norms then [v1]v2 is a norm. 

The length t(v) of a norm v can be defined to be the number of T's in 

v. Equality of norms is denoted by ~. 

2.1.2. The expressions in Mare formed from variables, À, abstr and 

appl (and possibly ether constants). Abstraction expressions are de

noted [x:A]B and applièation expressions {A}B. 

By writing ~(A) we implicitly intend that A ~ M. Here fellow the 

relevant properties of M and the .norm ~: 

(1) Mis closedunder taking subexpressions, i.e. L E M,r c E • r E M 

(2) E- [x:A]B E M • ~(El ~ [!J(Al]JJ(B), JJ(X) ~ JJ(A) 

{3) E {A}B E M • !J(B) ~ [I!(A)] ~(!) 

(4) M is closed {and IJ is preserved) under sub.stitution: 

!J(X} !J(A), BE M • lJ(B[x/A]) ~ !J(B) 

(5) M is closed (and 1J is preserved) under reduction: 

r E M, E ~ r • IJ (r) ~ ll (El • 
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2.1.3. The norm~ induces a well-founded order~ on the normable ex
~ 

pressions, as follows: 

l:~ r: .._. Q,(;.l(l:Jl < Q,(J.dfll 
)J 

Then by the properties'above, « induces an actual stratification, 
)J 

according to functional complexity: both argument and value of a func-

tion preeede the function w.r.t. « i.e. if {A}B E M then A ~ B and 
)J )J 

{A}B ~)J B. So, if {A}[x:B]C E M then C[A] ~ [x:B]C • And, if {Ä}x E M 
\.! 

then A. ~ x (i 
l. )J 

1 I ... , jÄ I) . 
Induction on « is 

)J 
just called induation on )J, 

Below we only deal with (strong) normalization for S-reduction. 

As in sec. II. 7.3.4, 7.3.5wecanextendtothe Sn-case. In sec. IV. 4.6. 

we extend with o-reductions. 

2.2. Normalization for S-reduction: first proof 

2.2.1. Reuristics 

Assume that E E M, E is not normal, E , S E'. So 

l: {A}[x:B]C ••• ,2:' ë: ••• C[A] ...• 

The redices in l:' are of several kinds (compare with II. 9): 

(1) "old" redices, already present in 2: (and there disjoint with 

{A}[x:B]C) 

(2) "modified" redices, i.e. redices R[:l!./A] c C[x/A] in l:' where 

R c C in 2:. 

(3) "multiplied" redices, i.e. redices inside substituted occurrences 

of A in C[A]. 

(4) "newly created" redices {D
1 
[A]}[y:D

2
JD

3
, where A 

and {D1}x cC or x C. 

(5) "newly created" redices {D1}[y:D2[A]JD
3

[A] where C = [y:D2JD3 . 

If A is normal, no redices are multiplied. If )J{Á) 

of type (4) are created. 

1", no redices 

2.2.2. First proof of S-normalization {Prawitz 1965): This proof is 

quite similar to the first proof of o-N in III.4.3. Define the order 
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of a redex {A}[x:B]C to be ~(~([x:B]C)}.Let t € M, let m(E) be the 

maximal order of redices in E, and let ~ (m,E) be the number of occur

rences of redices of order m in E. 

Our normalization procedure runs as fellows: if E is not normal 

then contract an innermost redex {A}[x:B]C of maximal order. And so 

on. That this procedure terminates, fellows by induction on {I) m(E), 

(II) ~ (m,E). For, one redex of order m(E) disappears and, since we 

chose an innermost redex of order m(E) all the redices of type (2)-(5) 

above are of order less than m(E}, 

FUrther, the "old" redices were already present in E, with the 

same order. so, either m(E} - if ~(m,E) = 1- or ~{m,E) - otherwise 

properly decreasas under the indicated contraction. 

2.3. Secend proof of 6-normalization {Lévy, Juttingl 

2.3.1. Substitution lemma for S-N (Jutting): 

BE M, ~(A) =~(x), A normal, B normal • B[x/A] S-normalizes. 

Proof: By induction on (I) p(A), {II) lengthof B. If B[A) is not nor

mal, then B contains subexpresslons of the form {B1}x and A = [y:A1JA 
our normalization procedure for B[A]] runs as fellows: for each of thes 

{B1}x take the maximal {Bk} •.• {B1}x ending in it. By ind. hyp. {II) 

({Bk-l} ••. {B1}x)[AB normalizes, to C, say. If C [y:C1Jc2 then by 

ind. hyp. (I) applied to Bk[AB, c2[y/Bk[A]B normalizes. By normaliza

tien of all these maximal subexpressions of the form ({B}x)[A], B[A] 

can be normalized. 

2.3.2. Corollary: E e M • E S-N 

Proef: By induction on the length of E. 

2.3.3. The reduction procedure intended above corresponds to the fol

lowing definition of normal form: 

Lévy speaks about "interieur d'abord"-reductions. In fact, Lévy's 
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proof of normalization by this procedure does not use a substitution 

lemma, but instead employs an induction up to ww (for an explanation, 

see sec. 2.6.1). 

2.4. Streng 6-normalizatión (6-SNI first proof 

2.4.1. Heuristics for SN 

We formulate 6-SN-conditions, in agreement with sec. 11.5.3.3: 

E is SN if 

(i) the direct subexpresslons of ~ are SN, and 

Cii) E = {A}B, B ~ [y:C]D ~ D[A] SN 

(because all first main reducts of Bare reducts of some D[A]). 

So, if we have the substitution theorem for 6-SN: if B E M, 

~(x) -~(A) then 

A SN, B SN ~ B[A] SN I 

then we can prove 6-SN by mere induction on the length of expressions. 

2.4.2. Heuristics for the substitution theerem 

Now let B E M, ~(x) ~(Al, B SN and A SN. Abbreviate E[x/A] 

* by • The question is how to prove the SN-conditionsforB. The cru-

cial case is when B- {B
1

}B2 • The SN-conditions.require: 

(il s; SN, B; SN , 

and 

In the case that the outside square brackets of [y:C]D do not ori~ 

ginate from the substitution *but show up as well in reduction se

quences of B
2

, i.e. if 

then 

which suggests to use induction on the reduction tree of B is SN) 
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* in order to establish that D[B1] is SN. 

Otherwise, the square-brackets lemma {sec. Il. 11, and sec. 4,3 

below) must provide the necessary information. 

2.4.3. Alternative proof of the square brackets lemma 

The proof in II. 11 works for free À-8-calculus. Here we give an 

* alternative proof for SN expressions. Abbreviate E[x/A] by E • 

Square brackets lemma: Let B* ~ 8 [y:C]D and let B be SN. Then either 

(i) B ~ [y:C0JD0, C~ ~ C, D~ ~ D, 

or 

{ii} B ~ {F}x, {F*}A ~ [y:C]D • 

Proof: By induction on (I} 6(B} (the lengthof the.reduction tree of 

B), (II) lengthof B. Distinguish the cases: 

(l) B x. Then (ii) holds. 

(2) B - [y:B
1

JB
2

• Since we have no ~-reduction, (i) holds. 

(3} B * * - {B
1 

}B
2

• Then B2 ~ [z:E]F, F[B
1

] ~ [y:C]D. By ind.hyp. (IIJ 

applied to e
2

, either 

* ~ [z:E0JF0, F0 ~ F or 

~ {G}x, {G*}A ~ [z:E]F. 

Hence, ind. hyp. (I) applies to F0 [B
1

] which gives the desired result 

for B. 

In case (b), 

so B satisfies (ii). 

(4) In the remaining case, s* does not reduce to [y:C]D. 
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2.4.4. First proof of s-SN 

2.4.4.1. In agreement with 2.4.1, we start with the substitution thee

rem for s-SN: 

BE M, ~(X) = u(A), A SN, B SN~ B[x/A] SN 

Proof: By a triple induction on (I) ~(A), (II) 8(8), (III) lengthof B. 

Abbreviate E(x/A] byE*. We prove the SN-condition fors*. The crucial 

* * case is when B = {B
1

}B
2

• The direct subexpressionsB
1

,B
2 

of are SN 

by ind. hyp. III (or * possibly II}. So, let B
2 

~ [y:C]D. We must prove 

* that D[B1] is SN. By the square-brackets lemma applied to B
2 

(whichis 

SN, hence we can use the alternative proof without any circularities) 

we have two cases: 

or 

(ii) B
2 

~ {Ë'}x, ({F}xl * ~ [y:C]D 

In case (i), B ~ {B1}Cy:C0JD0 >1 D
0

[B1] and (D0[B1]J* 

* so the ind. hyp. (II) applies to D
0

[B
1
], whence D[B

1
] 

* Do 
is SN. 

* In case (ii), we know that Dis SN (since B
2 

is SN and 

] 

2: [y:C]Dl. 

* Further, by the properties of~' ~(81 ) = ~<8 1 ) = u(yJ, B1 « x so 
* u * « A. 

j.; 

is SN. 

Hence, we can apply ind. hyp. {I) to B
1 

and get that D[B
1

] 

2.4.4.2. Corollary: E E M ~EB-SN (as indicated in 2.4.1). 

*) 
2.5. Second proof of s-SN 

2.5.1. Heuristics for the substitution theerem for SN 

Let A and B be SN. As in rr.5.3.3., B* (where *stands for [x/A]) 

is SN if all its reduction sequences contain an SN expression. Let 

>
1 

C > ••• be a reduction sequence of B*. First, if the redex is 

an old or a modified redex (terminology as in 2.2.1} then the con-

* traction and the substitution commute: for some c0 , B >1 C0, C0 C. 

So, if we use induction on 8(8), we can conclude that Cis SN. In 

fact, the proofs in 2.4.3 and 2.4.4.1 use the similar fact that, in 

some cases, substitution and main reduction commute. Secondly, re-

Actually, both the secend and the third proof of s-SN are incorrect: 
The substitution theorem is not sufficient here, we rather need a 
reptacement theorem. Since the idea of the proof can /turn over 
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duetion sequences of B* can start with contractions inside substituted 

A's (or insidereductsof such A's). There are only a finite number of 

such contractions, since A is SN. Finally, if the first redex con

tracted is a new redex then we have to use properties of the norm. 

Our alternative proof of the substitution theorem, below, is 

based on the above ideas and avoids the square brackets lemma. 

2.5.2. An additional assumption on ~1 and )J is needed, viz. that I~ is 

closed and )J is preservedunder "correctly normed" replacement: If l: E 

and L:' is formed from E by replacing an occurrence of r c E with some 

r• E M, such that )J(f') = )J(f) then )J(E') = )J(Î). 

2.5.3. Second proof of the substitution theorem for 8-SN 

Let BE M, )J(X) _ )J(A), A and Bare SN. We must prove that s* is 

SN . Again, we use a triple induction on (I) )J (Al, (II) 6 (8), (Ill) 

length of B. 

Lets*: B
0 

>1 B
1 

> 1 ••• >1 Bk >1 Bk+l > ••• (k ~ Ol be a re

duction sequence of s* and let the step from Bk to Bk+l be the first 

reduction step nat taking place inside (a reduct) of some substituted 

A. So s*: ... A ... A ... , Bk ... A' ... A" ... : ••• {C}[y:D]E ••• , 

Bk+l ••• E[y/C] ••• , where A<?: A', A 2 A". 

If p(A) is thesetof reducts of A (which is finitel then 

B
1

, ••• ,Bk belang to the multiple substitution result Bix/p(A)j (sec. 

II. 10) and Bk+l is the first reduct not in that set. Clearly, 

k :;;; e (Al. # (x,B), i.e. the length of reduction tree of A times the 

number of free occurrences of x in B. 

we show that Bk+l is SN. Put R 

following cases: 

{C}[y:D]E , and distinguish the 

(i) {C
0

Hy:D
0

JE
0 

:R
0 

c B and R ,;; R0 lx/p CAHI • 

Then the contraction of R commutes with the multiple substitution 

viz. 

and 

Bk+l .s B'(xjp(A)j • 

The ind. hyp. (II) applies to 8', and {B')* 2 Bk+l so Bk+l is SN. 

be maintained, and since the error will be repaired in VII.4.5 we 
have nat altered the present text. 
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We apply ind. hyp. (I) twice (in contrast with 2.4.4.1). First C r..: '" 
* 0 \1 ·-

so C«lJ A. By ind. hyp. (III) C
0 

(so Cl is SN, and A is SN, so Eis SN. 
Hence, by ind. hyp. (I) E[y/C] is SN. Secondly, E « A so E[C] o:: A 

jJ \l 
Now take a fresh variabie z, with \l(Z) = \l(E). Form the expression E' 

from B by replacing the specific occurrence of R
0 

by z, and form B" 

from Bk by replacing R with z. By our assumption 2.5.2. the norm of 

B and its subexpressions are not affected by this replacement. 

Clearly, since B B'[z!R0], B' is SN and 6(8') s 8(B). Further 

3' is shorter than B. So ind. hyp. (lil) or ind. hyp. (Il) can be 

* applied, giving that (8') is SN. And by ind. hyp. (I) - this is the 

* second application- (B') [z/E[y/C]] is SN. Resuming, in case (ii) we 

have: 

B ••• x ••. {C
0

}x ..• , B' ... x ... z ... , (B'>*- ... A ... z, 

s* _ ..• A ... {C~}A ••. , Bk .•• A' ••• {C}[y:D]E ••• , 

B'' ~ ••• A• •.• z ••• 
So 

(B'l*?: B", and (B'>*[z/E[y/CUD ... A ... E[y/C] ... ?: 

B" [z/E[y/CU :: •• • A' ••• E[y!C] ••• = Bk+l • 

whence Bk+l is SN, q.e.d. 

2.5.4. corollary: E ~ M • E S-SN (as indicated in 2.4.1). 

2.6. Third proof of s-SN 

2. 6 .1. This new proof is a mere variant of the previous one. Ho1vever, 

instead of an iterated substitution a simultaneous substitution is 

employed. consequently, we start with a simuZtaneous substitution 

cheorem for B-SN. The induction used is essentially induction up to 

ww, insteadof the previously used inductions on w, w2 and w3 . 

Explanation: The threefold w-induction (as used in the above proofs) 

can be considered as a single transfinite (up to w3
) ir4uation on tri

<m,n,k> of natural numbers, ordered lexicographically, i.e. 

according to their corresponding ordinal w 
2 

.m + w .n + k. 
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Similarly, the present proof uses a single transfinite induction 

on finite sequenaes <mk, mk_ 1 , ••• m0>, where mk ~ o, for arbitrary k, 

ordered (I) according to their length k, (II) lexicographically, i.e. 

according to their corresponding ordinal 

2.6.2. Simultaneous substitution theorem for SN: 
Let B E M, uCxi) = u(Ai) 

B[x/Ä) SN. 
vi for i: l, ••• ,k. Let Ä and B be SN. Then 

Proof: Abbreviate E[x/Ä] by r*. Let n. denote the number of occurrences 
l. 

of Xi (for i l, ••• ,k) in the whole reduction tree of B. Define aj to 

be 

l ni •SJAi) 

i,JI.(v
1 

l =j ,l::>isk 

Let m be the maximum of those !(vil with ni ~ 0. We use induction on (I) 

<am, ••• ,a.
0
> ( ordered as above), (II) e (B}, (III) length of B. 

Let B* >1 C. We shall prove that C is SN. The cases are: 

(1) If the redex contracted is old ar modified praeeed as in the proof 

2 • 5. 3 , case (i) • 

(2) If the redex contracted is a multiplied redex, i.e. 

B* A B ••• xi ... a:i ••• .xj ••• , :: •.• i''*Ai ..• Aj .•• , 

C _ ••• A1.,.Ai···Aj'''' Ai >1 Ai 

then take a fresh variable z with U(Z) = U(Xi), farm an expression 

B' from B by replacing the specific occurrence of x
1 

by z, and 

consider the new substitution [x,z/Ä,A:). Clearly, 
l. 

C = B'[X,z/Ä,A~l, and Cis SN by ind. hyp. (I). Notice that, in 
l. 

fact, only a.JI,'V ) is affected, viz. decreased by at least 1. 
. I i 

(3} If the redex contracted is new (compare proof 2.5.3, case (ii)) 
. * . * then B = ... x1 ... {D0}rei'''rej"'' B ::: ••• A1 ••• {D0}A1 ... Aj'"' 

* Ai: [y:E]F and C = ... Ai ••• F[D0] ••• Aj''' • Now form B' by re-

placing {D
0

}re
1 

with a new variable z, u(z) :·u({D0 }re
1

), and con-
- - * sider the new substitution [re,z/A,F[D0]]. Since B = B' h/{D0}re1 ], 

the replacement~removes at least one occurrence of re1 from the 

reduction tree, whereas possibly only occurrences of z Cwhich has 
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shorter norm) are added. So the component aj with t(vi) = j properly 

decreases when going from B toB'. Further, as in 5.3.2 case (ii), 

F[D~] is SN so C B'[x,z/Ä,F[D;]] is SN, by ind. hyp. (I). 

2.6.3. Corollary: Substitution theerem for SN (take k 1 above). 

2.6.4. Corollary; E E M • E B-SN 

IV. 3. The strictly normable expressions 

3.1. we show how a pretyped system can be generated by a book and a 

context and how various systems of admissible expressions can be for

mulated as restricted pretyped systems of this kind. In particular the 

system of s~riatly r~rmable expressions is introduced, which includes 

Nederpelt's A. 

3.2. A pretyped system 

3.2.1. A pretyped system consistsof a set of expressions with a partial 

typing funation typ. Our system contains T and is closed under ab

straction and application. The typing function will be defined on 

expressions, except the expressions of degree 1, also called the 

1-expressions (later, also higher degrees will be assigned to expres

sions) . 

The 1-expressions are given inductively: 

(1) ' is a 1-expression, 

(2) if B is a 1-expression then [x:A]B and {A}B are 1-expressions, 

(3) if d has defining axiom d(x) : ö and b is a ~-expression then 

d(L) is al-expression (in this case d will be called a 1-aonstant). 

rn other words, the 1-expressions are precisely the expressions which 

{possibly after some main o-reductions) end in t. Variables and primitiv€ 

book-constantexpressionsp(E) are non-1-expressions, i.e. they are not 

of degree 1. The 1-expressions are closedunder any substitution and 

under reduction. 

3.2.2. Book and context 

The expressions of our pretyped system will be generated by a 
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book and a context. The book assigns types to constants and the con

text assigns types to variables. We use B and ç; as syntactical varia

bles for books andcontexts respectively. We define: 

(i) An expression is a ä;~-expression if its book-constants are in 

a and its free variables are in~. 

(ii) A ä-context is a string of E-fo:mruZas :t"1 E a
1

, ••• ,:t'k E ak 

{abbreviated.Ï:E à), where a is a (Ö;:t"
1

, ••• ,:t" )-expression 
i i-1 

(1 s i $ k) and the :t'i are mutually distinct. 

(iii) A primitive ä-saheme <for the constant pJ consists of a Ö-con

text ~ E ä toqether wi. th an end-fo:mruZa p (X) E 13, where p is 

not in ä and 13 is a c;x-expression. 

(iv) A definitionaZ ë-saheme (for d> consists of a a-context~ E a, 

a defining a:t"iom d(~) := 8 and, if 8 is not of degree 1, an enè 

formula d(;.) E a. Againd is not in a, 8 (and, if present, 13) 

is a a•x-expression. 

(v) A book is a string À1, ••• ,Àm of schemes for a
1

, ••• ,am respec- · 

tively, where each Ài is a a 1, ••• ,ai_1-scheme. 

3.2.3. The typing function 

Let B be a book, consisting of schemes for the constants in a. 

The constants in a are mutually distinct, so with each of them we can 

uniquely associate its scheme, its context (viz. the context of the 

schemel, its defining axiom (if it is a defined constant) and its end

formula (if it is nota 1-constant). 

If d has defining axiom d(x) := 8 then 8 is called def(d) and, if 

a has end-formula ä (~) E a then a is called typ (a) • 

Let ç; ::: ~ E ä be a ë'-context (also called a B-aontext). The type of 

a non-1-{Ö;~}-expression r, with respect tor,;, forshort r,;-typ(E), is 

defined inductively as fellows: 

(i) ~-typ(:t"1 ) ::: ai. 

(ii) ç;-typ([y:a]B) = [y:a]((f,;,yEa)-typ (8)), if y is not in f,; (other

wise rename y) 

(iii) ç;-typ{{A}B) - {A}(ç;-typ(B)) 

(iv) ~-typ(c(Ê)) - typ(c)[y/ËD, if y E ä is the context of a. 

If y not in ç; and [y:a]B is a Ö;~-expression then (ç;,yEa) is a 
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a-context and B is a (Ö;z,y)-expression. So ~-typ is defined for all 

non-1-(c;x)-expressions, as follows by induction on the lengthof ex

pressions. Further, if r is a Ö;z-expression, ~-typ(i:) is a Ö;X-ex-

pression too. 

So, for B and ~ as above, the c;x-expressions (we also say 8;'

expressions), with the typing function as given above forma pretyped 

system. E.g. if bath B and ' are empty we just get Nederpelt's 6 (but 

for renaming of variables). 

3.2.4. If ~ is not relevant, or clear from the context, we simply 

write typ instead of ~-typ. For constauts c which are expressions (i.e. 

if 1cl = 0) the two definitions of typ coincide, so there is no danger 

of confusion. 

Let us define tail (l;) to be the smallest part of i: which can be 

produced from r by successively cutting off applicators {A}and ab

stractors [y:A] (to the left). So tail(l:) is <, or a variable, or a 

constant-expression c(f). 

If l: is a c;x-expression and tail(l:) ::: y then either y is in x 

or y is bound by an abstractor [y:a] in r. Writing E ••• ~, if tail(l:) 

= ~, we can rephrase the definition of typ as follows: 

(i) a. l: _ •• • xi =oo typ(l:) •.• ai , 

b. r - ... [y:a] •• . y '* typ(l:) ::: ... [y:a] ... a 

(ii) r _ ... c(Ë) '* typ(l:) ... (typ(c)[Ë]), if cis a non-1-constant 

(provided no confusion of variables arises from the replacement of 

tail (E)) • 

3.2.5. If B, B• are books, ~. ~· are contexts, all the schames of B 
arealso in B' and all the formulas of ~are also in~· then the 8;~

expressions arealso 8';~'-expressions, and the type of expressions 

w.r.t. Band~ is the same as the type w.r.t. B' and ''· 

The 8;~-expressions are closedunder substitution in the following 

sense: If E is a B; ~ -expression, !;. x E ä, a is a B -context, A1, ••• ,Ak 

are B;a-expressions then l:[x/Ä] is a B;a-expression. 

so our pretyped systems are closed under reduction. Further the 

systems hardly have nice properties: types are not preserved under re

duction, normalization and Sn-CR (sec. II.9) do not hold. To make it 

into a sensible system certain restrictions must be imposed. 
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3.3. How systems of admissible expressions are defined. 

3,3.1. Alternatively, we could have given an inductive definition of 

books B, B-contexts ' and B;,-expressions ~ simuttaneously. The sensib 

restrictions of pretyped system below will indeed be given this way, 

with certain conditions on the formation of schemes, contexts and ex

pressions incorporated in the definition. 

The symbol ~ stands for admissibility in general, e.g. for norma

bility, or for correctness in Automath languages. 

Thus B ~ means that B is an admissible book, B;;~ expresses that 

~ and that ~ is admissible w.r.t, B, B;~ ~~ expresses that 8;( ~ and 

that E is admissible w.r.t, Band ~. If B (or Band () are not relevan 

we just write ~ ~~ (or 1-~l for B; ~1-L 

3.3.2. For the more interesting systemsthat part of the definition 

which deals with the admissibility of expressions is the crucial part 

of the definition. The remainder, i.e. the book-and-context part of 

the definition can be split up in a "structural part" which all the 

restricted systems have in common, and some specific additional con

ditions for each of the systems. 

First we give the "structural" part of the definition of admissi

bility of books and contexts. 

(I) Admissibility of B-contexts 

If B !- then B; ; !- according to: 

(i) the empty context is admissible 

(iil if B;t;. ~. B;; f-A,~ =xEä, y not among x, then 

B,~,y E A I-

(II) Admissibility of books 

(1) Admissibility of B-schemes 

If B ~, B; E;. ~, B; E;. f-A, E;. X E ä then B-schemes are admissible 

according to: 

(i) If p is not in B then E;. * p(x) E A is an admissible 

primitive B-scheme 

(ii) If dis not in B, B;E;. ~A, A is not of degree 1, B;t;. ~S 

then I; * d (X) :: A * d (X) E 13 is an admissible def inition 
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B-scheme. 

(iii) If d is not in B, A is a 1-expression then t;; * d(x) :""! 

is an admissible definitional B -scheme 

(2) B is admissible according to: 

(i) the empty book is admissible 

(iil if B r, À is an admissible B-scheme then B,À r. 

3.3.3. The specific additional conditions for the restricted systems 

are of two kinds: 

(1) The inhabitable-degree-condition: it is required that the ai in a 

context ::c E a and the type a in an end-formula c (X) E a are of so

called inhabitab~e degree (degrees will be defined in sec. 4.2. 

This affects the clauses I (ii), II (1) (i) and II (1) (ii). 

(2) The compatibility condition (of def and typ) in a scheme 

t; * d (x) : = A * d (x) E B the expressions A and a have to be compa

tibleinsome way (clause II(l) (ii)). 

If we do not impose any additional condition at all and we donot 

restriet the expression formation we simply get our pretyped expres

sions again. 

3.4. The definition of strict normability 

3.4.1. Now we come to the definition of the strictly nor-mabZe books, 

contexts and expressions. So here r expresses strict normability. It 

is implicitly intended that E; ri: iff the !;-norm of E, ).11; (i:) is defined 

for I. The book-and-context part of the definition is as in 3.3.2 and 

3.3.3. There is no inhabitable degree condition; the compatibility 

condition requires that, fora non-1-constant d, ).ll;(def(d)) = ).IE;(typ(d))), 

where t; is the context of (the scheme of) d. 

3.4.2. Let Bi-, and let 8;1; r. Now wedefine j.tf;(E) inductively, thus 

implicitly defining B; l;r E, as fellows: 

(i) ).1~ (1:) : 1: , 

(ii) \.ll;(x
1

) ::: ).ll;(ai) , if E; x E a, 

(iii) \.lE;( :a:]B) ::: [uç:(a)]\l(t;;,yEa) (B), if y not among I;, 

(ivl \.lE;({A}Bl ·- v if llç:(B) [).IE;(Al]v 
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(v) if the scheme of a has context n y EB and llç; (Bi) = 11
11 

(yi) 

for i= l,, •• ,m, then: 

(a) if cis not of degree 1, llç;(a(B)) := 
(b) otherwise, llç;(c(Ë)) : 1.! 11 (def(a)). 

1.1 (typ(a)) 11 

3. 4. 3. In ether words, (1) a context x E à is strictly normable if all 

its types ai have. a norm, (2) a bock B is strictly normable if (i) 

all the contexts of its schenes are strictly normable, (ii) all its 

def's and typ's have a norm, and (iii) if both present in a scheme, 

def and typ have equal norms, (3) an expression has a norm if (i) all 

its subexpressiena have a norm, (ii) in instantiations a(È) of a(y), 

for all i, I.!{Bi) is l.!{y
1
), (iii) inapplications{A}C the norm of A is 

precisely the "first part" of the norm of B. 

3,4.4. The definition of llç; is similar to that of E;,-typ • Again, if 

llç; (a) is defined and y net among I;; then {!;,y E a) is a strictly normabl 

context, Sc, strict normability is decidable. Since just 8;1;;-expres

sions get a E;.-norm the strictly normable non-1-expressions have a typ 

Further we have strict noP~nability under strictly noP~nable sub

stitution: If B;ni-E, 11::yEii, 8;1',; 1- B1, ... ,8;E;. I-Bk and llç;<B1l = lln(Y 

then B;ç; f-E[Ë] and llE;.(E[ËJ> lln(E) • 

Proef: By induction on f-E. 

Corollaries: 

(1) B;E;. 1-E, E not of degree 1 ~ llç;(E) 

(2) 8;E;. f-E, E <! r • llç; (E) :: 1.!1:; (r) • 

I.e. a system of strictly normable expressions, generated by a 

book B and a context ç;, as above, is closed under typing and reductie 

and both typing and reduction are norm-preserving. So the strictly 

normable expressions ferm a normable system in the sense of IV. 2, 

By taking empty B and empty E;. we just get the normable fragment of 

Nederpelt's b.. 

3.5. Discussion 

The rather lengthy exposition given above combines features of 

the book-and-line Automath languages, such as AUT-68 and AUT-QE, and 
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of "single-line" versions, such as Nederpelt's /\. Clearly our concepts 

of book and context are, by easy transformations, identical with the 

corresponding concepts in, e.g., [27]. Thus primitive schemes corres

pond to PN-lines, definitional schemes correspond to definition lines, 

E-formulas x E c. in a context correspond with EB-lines. The definitional 

1-constants are a straightforward extension. The assignment of types 

corresponds with 1\ rather than with AUT-68, though it is compatible 

with AUT-QE+, a variant of AUT-QE (see V.2.7-8). 

Due to the weak secend-order aspect of AUT-QE (cf. sec, 1.5.3), 

AUT-QE cannot be embedded in the strictly normatle expressions. In the 

following section, however, we define the weakly normable expressions, 

which indeed include AUT-QE (and, hence, AUT-68). 

IV. 4. The normability of AUT-QE 

4.1. Call variables x with typ(x) of degree 1 type-variables. The weak 

second order aspect of AUT-QE (and AUT-68) just means that there are 

more liberal substitution rights for these type-variables then for the 

others (and than formulated in 3.4.2.(v) and 3.4.3. (3) (ii)). The 

restrietion for application however(3.4.2. (iv) and 3.4.3. (3) (iii)) 

is maintained. 

Below we first define the degree of pretyped expressions. Type

variables get degree 2 and are called 2-variables. Then we define 

c:o1m-inclusion and weak norm-correctness. Then we define weak norma-

of expressions (and books and contexts). 

We shall show (1) that the weakly normable expressions (as gen

erated by a book and a context) farm a normable system in the sense 

of 2. 1. 2, (2) that AUT-QE correctness implies weak norma-

bility. 

4.2. Degrees, weak degree correctness 

4.2.1. Let B be a book, let~ be a context. The ~-degree (ar just: 

ëegl'ee) of B;~-expressions is defined (cf, the secend definition of 

typ, 3.2.4) as fellows: 

(i) 

(ii) 

(iii) a. 

degree ( ..• Tl : = 

degree( ••• x) := degree(typ(x)) + 1 

degree( ••• e(B)) := degree(typ(c)) + 1 if c has a typ 
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(iii) b. degree( •.• d(Ë)) := 1 otherwise (i.e. if def(d) is of degree 

so all pretyped expressions get a degree, and the 1-expressions 

get degree 1. The degree of a(Ë) does notdepend on Ë so we can asso

ciate this degree with a, defining: degree(a) = degree(typ(a)) + 1, 

if c: has a typ, and degree (a) = 1, otherwise. 

Expressions, variables and constants of degree i are called i

expressions, i-variables and i-constants respectively. 

4.2.2. Let~: x E ä and n be contexts, lxl k, and let A1 , ••• ,Ak be 

n-expressions, The substitution [xjA] is said to be weakZy deg1'ee 

aorreat (w.d.a.) if {1) degree(A
1
.) rf 1, (2) degree(A.) =2 ~ degree(x.: 

1 1 

for i= l, ••• ,k. Clearly, if [xjÄ] is w.d.c. and Eis a ~-expression 

then l:[xjÄ] is an n-expression and (1) degree (E) = l•)degree(E[x;Ä]) 1. 

(2) degree{l:) 2 ~ degree(E[x;Ä]) = 2. 

So w.d.c. substitutions remain w.d.c. under substitution: if 

(x!Ä] and [y/B] are w.d.c. then [x/Ä[B]] is w.d.c. 

4.2.3. An expressionEis said to be weakZy degree-aorreat (w.d.a.) 

if (1) all its subexpressions are w.d.c, (2) l: : {A}B ~ degree(A) ~ 3 

(3) E = a(B) • [y/Ë] is w.d.c. (where y E B is the context of the 

scheme of a), (4) E = [y:a]B • degree(a) ~ 2. 

W.d.c. expressions remain w.d.c. under w,d.c substitution with 

w.d.c. expressions: if Eis w.d.c, A1, •.. ,Ak are w.d.c, fix!Ä] is w.è.: 

then E(x/ÄD is w.d.c. 

!''urther w.d.c.-ness is preserved under reduction (provided the 

def's of defined constants are w.d.c.): if E w.d.c, E ~ r then r w.d.: 

are (1) degree(E) 1 ~ degree(f) = 1, and (2) degree(E) = 2~>èegree( 

4.3. Norm-inclusion and weak norm correctness 

4.3.1. Norms (syntactical variables v, v1, v2) are as in IV. 2.1.1. 

wedefine incl.-usion of norms, denoted v
1 

c v2 , inductively, as fol:i.o1;: 

( 1) 

(2) 



131 

Clearly, c is transitive and reflexive and we have 

v c [ v 1 Jv 2 ' v c [ v 3 :v 4 => v 1 = v 3 

4.3.2. The expressionEis called weakZy norm-correct (w.n.c.) for ~. 

if (1) degree (~) = 2 => ~(E) c ~(f), and (2) degree (Z) # 2 => ~(~) ~(~) 

So, if Z w.n.c. for r then ~(~) c ~(f). 

Let t; =: xEä. The suhstitution [x/A] is called weakly norm-correct 

(w.n.o.) for I; if, for i= l, ... ,lx!, A, w.n.c. for 
~ 

4.4. Weak normability of expressions 

4.4.1. Now we come to the weak normabiZity of expressions. The defini

tion below might serve as the expressionpart of the defini ti on of weakly 

normable systems in gener al. However, in contrast wi th the discussion of 

strict norrnabil i ty, we do not define weak norrnabil i ty of books and contexts, 

but just apply the definition below to the specific system (an extension 

of AUT-QE) in 4.5. Let B be a book, let I; be a context. A 8; 1;-expres

sion is weakZy t;-normable (er just t;-normable) if ithas a norr.J ~I; t-for 

snort~ just ~), defined inductively, as follows: 

(i) ilr('r) 1 
<; 

(iil (x) llr;(typ(x)) 

(iii) "~;; ([y:a]B) [lll;(a)]l! (t;,,yEo.)(B), if y not in I; and degree (a) :0: 2 

(iv) ~E;({A}B) " if ll(B) [lJ(A)]v and degree(A) "2: 3 

\V) if the context of the scheme of a is y S and [y/ËJI is w.d.c. and 

w.n.c. for y E S then 

(a) ll, (a (Ë}) -

" (b) llr (a (B)) 
<; 

(typ(c)[y/Ë]) if pis primitive and 

llr;(def(a)[y/Ë]) if dis defined. 

4.4.2. The weakly normable expressions are w.d.c. By induction on 

the above definition of ~ we show that the weakly normable expressions 

form a normable system in the sense of IV.2. At first we verify the 

substitution theorem for normability: if I; and n are contexts, 

k, ~=x Eä., [x/A] is 1r1.d.c. and, for i 

t.hen 
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Proef: By induction on the definition of~~(~). Abbreviate [x/Ä] by * 

E.g. if ~ = [y:B]C, then ~ <B*) : ~~(B) by ind, hyp. and 
* n ~ 

~(n,yEE*) <C_) _~(~,yEBl (C) by ind. hyp. applied to the extended sub-

stitution [x,y/A,y]. 

And, if l: = o (Ë), c has y E Ë as context of its scheme, [y/Ë] is 
- - * w,d,c. and w.n.c. for y E a" then [y/Ë ] is w.d.c. as well. And, for 

j = l, ... ,!yl, u<B~) = ~(8.) (by ind. hyp.), ~(f:lj[.ä]*> ~(B.[Ë]l 
J J J 

(by ind. hyp.), so ~(B.[B*D> = u(f:l.[Ë]*] ~(f:lj[B]), whence [y;.B*] is 
-- J J -* -w.n.c. fory Es. If a is primitive then ~(typ(a)[B]) : u(typ(a)[B]), 

se ~(a(B*>> ~(typ(c)[B*]) ~(typ(a)[ËB*> =~(typ(a)[Ë]) =~(a(Ë)). 
Similar with def(a) if a is a defined constant. 

4.4.3. Then the reduation theorem for normability: let > be disjoint 

one-step 13n6-reduction. If A is ~-normable 1 and A > B 1 then 

u~<Bl ::~~(A). 

[ 

Proef: By induction on the definition of ~~(A). E.g. let A = [y:a]{y}E 
+ y I FV(B). Let~ be ~,yEa. Inspeetion of the definition of u learns 

that, if y I FV(C) and Cis ~+-normable, ~~+(C) f!~(C). Sc 

U~(Bl :: u~+(B) :: [~~+(y)]~~+({y}B) :: [u~(a)]u~+({y}B) :: U~(A) 

4.4.4. So, if A normable and A~ B, then u(A) :: u(B). If A is normable 

then the subexpressions of A are also normable (possibly with respect 

to extended context). The single substitution property 

(\.I(X) =~(Al ~ u(B) = u<B[x/A])) isa corollary of 4.4.2. Hence the 

weakly normable expressionforma normable system in the sense of IV. 

4.5. Application to AUT-QE 

4.5.1. For definiteness we give an outline of an extension of AUT-QE, 

along the lines of Chapter V, sec 2. In fact, we define AUT-QE*, whicl:: 

a form of AUT-QE extended with application expressions of degree 1, 

but extended further in such a way 1 that expressions of all degrees 

are permitted (as in Nederpelt's A). 

we simultaneously define aorreatneas of books, contexts, expres

sions and E-formulas ~Er. The bock and context part of the definition 

is precisely as in sec. 3 .3, wi th 1- standing for correctness. There is 

no inhabitable degree restriction. The compatibility of def and typ 

requires that, if ~ is the context of d, ~ 1- def{d)E typ(d). So the 
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E-formulas play an active role here, in contrast with the previous ad

missible systems. 

Though the definition below differs at some points from the de

finition in V.2, V.3.3 it should be clear that AUT-QE* (and hence 

AUT-QE+, AUT-QE and AUT-68) is included in the system given below. For 

camment see the sections V.2.12, V.3.3.10-12, V.4.4.2. 

4.5.2. Correctness of expressions and E-formulas 

Let B 1-, B ~~ 1-. We define B; ~1-E (Er) (notation as in V .2 .1) 

inductively as follows: 

(i) ~f-T 

(ii) ~1-x <E typ(x)) if x in~ 

(iii) ~~a, degree (a) ~ 2, (~,xEa)f-B(EC) • ~~[x:a]B(E[x:a]C) 

(iv) ~1-h.Ea, ~1-B, degree (A)~ 3, B ~ [x:a]C •t;HA}B 

(vl ~i-BE C, f; HA}C • ~ HA}B !E{A}C) 

(vi) ~1-ËES[ËD (i.e. E 1\[Ë], for i= l, ... ,!iil, where y E 8 is the 

context of the scheme of e) • f; 1-e (Ë) (E typ (e) [Ë], if e has a 

typ) 

(vii) ~1-B E C, Ct D, ~1-D ·~,_BED 

<viiil~I-B E cx:~JCy:i3JT •O-B E cx:ä:h 

(ix) ~~B, EJC E D, B ~ C • t;~B E D 

~.5.3. Normability of expressions 

In proving that the correct expressions (w.r.t. correct book and 

correct context) are normable, we need that w.n.c. substitutions re-

main w.n.c. under substitution. The following theerem proves these 

two facts simultaneously. 

First verify that all correct expressions are weakly degree 

correct. 

Theorem (normabiZity under substitution): Let f; o: x E a~ let 

B;ni-A. for i= l, ... ,!xl and let [x/Ä] be w.n.c. (for f;) and w.d.c. Then 
~ 

B ;t; 1-E • E[x/Ä] is n-normable, and 

Proof: By induction on the definition of correctness, of 1-E (E f). 
- - * Abbreviate [xjA] by This is probably the nastiest proof of the 

thesis. We just give some cases, corresponding to applications of the 
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rules {i) to (ix) above. Case (iv) : E {B}C, ~BES, degree (B) ~ 3, 

~C, C ~ [y:B]D. By inà. hyp. B* w.n.c. for e*. Since *is w.d.c., 

degree <B*) ~ 3 so ~{8*) ~ ~(8*), Further, by ind. hyp. c* is normable 

so by 4.4.3. [y:e*Jo* is normable and u<C*> [u<s*>Jv. Hence {B*}c* 

is normable. Case (vil: E = a(B), r typ(a)[ËJ, z:* c<B*), 

r* = typ(a)(BD*<= typ(a)[B*D>. By ind. hyp. B~ w.n.c. for B.[B]* (: K 
- -* J J '"j 

so [y/B] is w.n.c. (and also w.d.c, by 4.2.3, since Eis w.d.c.). 

Assume that a has def and typ. By applying the ind. hyp. with the sub

stitution [y/Ë*] to def(a)E typ(c) (which is correct relativa toa 

* shorter book, by the compatibility conditions), we get that E w.n.c. 

* for f , Similarly if dagree (a) 1 or a is primitive. Case (viii): 

This is the rule of type inalusion which eausas the second-erder aspec 

Here E - E, r : [z:ylr and E E r fellows from application of (viii) te 

E E ro- [Z:y][y:B]T. By ind. hyp. r* w.n.c. for r;. From the norm 

definition it is clear that r* has a norm too and that ~(r0 *> c u<:*). 
* * So E w.n.c. for r . 

4.5.4. Normability of books and contexts 

Corollaries of the theorem above are: 

(1) <;; f-E * E f;-normable 

(2) <;;!-E E r * E w.n.c. for r 
(3) <;; x E a,<;; correct * all a. are <;;-normable 

l. 

(4) a has schema with context ;~def(a) 1.;;-normable, typ(a) f;-normable 

and def(a) (ifpresent} w.n.c. for typ(a) (if present), with respe 

Proef: By induction on the definition of correctness, viz. by using 

the previous theerem with the identical substitution [i;i]. 

4.6. Extension to Snö-SN 

By the previous sectien we know that the correct expressions of 

AUT-QE-+ (and hence of AUT-QE and AUT-68) are 8-SN. The definitional 

axioms are just like in chapter III, so we also have ö-SN. Now we ex

tend to Bnó-SN. 

4.6.1. Lemma: If u(Al : u(x), B normable, then 

E Bó-SN • B[x/A] Bö-SN . 
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Proof: By induction on (I) ~(A), {II) e
60

(8), (III) length (B). Combine 

a single-substitution version of the second proof of é-SN (III. 5.4.) 

with the first proof of S-SN (IV. 2.4.4). 

4.6.2. Lemma: Let~ be correctness, as in 4.5.2. If ~ -iE~, [X/ÄD is 

w.n.c. and w.d.c., Ai is So-SN (i= 1, ••• ,1il> then 

E; ~B • E[x/Ä] so-SN 

Proof: By induction on f-B (as in 4.5.3.). Abbreviate [X/Ä]I by * Some 

cases are: 

(1) B :: {C}D. By ind. hyp. c*, D* are Sö-SN. Now let D* ~ [y:E]F. By 

(2) 

4.5.3, , * * C and D have a norm. By 4.4.3, F has a norm and 
* ~ (C ) ~ (y). so, by 4.6.1, F[c*J is Só-SN, q.e.d. 

B :: d (ê). the c~ Sli-SN. -* By ind. hyp. are As in 4.5.3, the C form 
J 

a w.n.c. and w.d.c, substitution. So by applying the ind. hyp. to 
-* def(d), with the new substitution, def(dl[C] is Só-SN, q.e.d. 

4.6.3. Theerem (Só-SN): ~h •A Sö-SN 

Proof: Take the identical substitution [x/xD above. 

4.6.4. corollary: ~A •A Snó-SN (by (8ól-n-postponement, as in rr.7.3.4, 

or 7. 3. 5) . 
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CHAPTER V. THE E-OEFINITION AND THE CLOSURE PROPERTY 
FOR PURE REGULAR AUTOMATH LANGUAGES 

Sectien 2 of this chapter introduces the E-definition, closely 

related to the definition (of AUT-QE) in [27) , as a framewerk for 

defining Automath languages. 

Sectien 3 proves the ciosure property (correct expressions remain 

correct under reduction) for several versions of the pure (i.e. only 

B-, D- and ö-reduction), regular (i.e. only expressionsof degree 1, 

2 and 3) languages AUT-68 and AUT-QE. 

Sectien 4 proves, using closure and CR (thus anticipating the 

61-CR-result of Chapter VI), the equivalence of the E-definition with 

an algorithmic definition, such as Nederpelt's definition of A. 

This gives the decidability of the various systems, and further allows 

certain simplifications in the E-definition, 

V.l. Introduetion 

1.1. E-definition versus algorithmic definition 

we distinguish some principally different methods of defining t~e 

correct expressions, with typing and equality relation (w.r.t. book an 

context}, of an Automath language, or of any other system with general 

ized type-structure, as discussed in IV.1.3. and IV.1.4. 

First, the E-definition, below, introduces E-formuZas A E B (ex

pressing the typing relation: A has type B) and Q-formulas A Q B (fcr 

expressing equality: A definitionally equal toB). Correctnessof ex

pressions (notation: ~ A) and both kinds of formulas is given by a 

simultaneous inductive definition, without giving a clue how the corre 

ness might be effectively verified. Essentially the same definition 

methad is used in [27], and by Martin-Lof in [45]. 

secondly, there is the algorithmic definition which characterizes 

the correct expressions by giving a verification algorithm for co,rect 

ness. In this case Q can be defined in terros of reduction (A QB: *A+ 

and E can be defined in terms of Q and the typing function typ 
(A E B : ~ typ(A) Q B, forgetting type-ioclusion for the moment). The 

main example of an algorithmic definition is Nederpelt's definition of 

A in [51]. 
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In the third place, we mention de Vrijer's definition method of 

ÀÀ in [70] . He starts with the simultaneous introduetion of the correct 

E- and Q-formulas, and after that defines correctness of expressions in 

terms of E, Q and typ. 

1. 2. Some general points on the language theory 

A priori it is not clear that the various definition methods gener

ate the same structure (of correct expressions, with typing and equality). 

So one might think that the language theory has two aims, viz. (1) 

proving the equivalence of the various formulations, and (2) proving 

that the generated structures satisfy some specific desirable properties 

(sec. 1.3). 

However these aims can hardly be separated: properties are first 

proved for one formulation, then the equivalence is established and 

finally the properties are transferred to the other formulation, via 

the equivalence. 

A simple example of this situation: for the system given by the 

algorithmic definition, decidability is just a matter of terminatien 

of the algorithm, i.e. normalization (as Nederpelt points out [Sl]). 

So, by the results in Chapter IV, if a system can be proved to be 

equivalent to the "algorithmic one", it is decidable. 

As a secend illustration, we sketch roughly how the development 

below is organized. For the terminology see II.4.7 and for the kind of 

reasoning see II.S.4, where for A we take ~ now. 

We work with three systems: I and II are given by an E-definition 

and III is the algorithmic definition. The three systems essentially 

just differ as regards their Q-rules. In system I, Q is defined to be 

the equivalence relation generated by >~ (but realize that Q and ~ 

are introduced simultaneously). This is the restricted "technica!" 

version of the E-definition, which we present in sectien 2, and take 

as the starting point for the development in sectien 3. In system II, 

Q is~~ i.e. the transitive closure of +~· This is the liberal form 

of the E-definition, which we think is most suitable for practical 

purposes, as a reference manual, say. 

In system III, the algorithmic definition, which we give in sectien 

4, Q is defined to be just +~. 
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We say that a system satisfies CL if its correct expresslons remain 

correct under reduction, and that it satisfies CR if its correct ex

pressions are CR. Clearly, both I and III are contained in II, since 

II has more liberal rules for Q. Further, if I satisfies CL then I and 

II are equivalent, as is proved by induction on the definition of 

correctnessin sys~em II (see sec. 2.11.2). Also by induction on 

II-correctness it is proved that II and III are equivalent, if III 

satisfies CR. Now, in section 3 we prove that I satisfies CL, and in 

Chapter VI we prove (rouqhly) CL • 6no-CR (for the 66-case we know CR 

already). This .;ives CR for II, so CR for III.,. so it shows that all the 

three systems are equivalent, and sa~isfy CL and CR. 

An approach, alternative to the one sketched above, is qiven in 

Chapter VII. There the algorithmic definition serves as a startinq 

point and CL and CR are proved simultaneously, using induction on 

socalled big trees. 

1.3. What are the desirable properties? 

As desirable properties for the structures of correct expresslons 

generated, we mention: 

(i) substitutivity: correctness of expresslons and formulas is pre

served under substitution with correct expresslons of the riqht 

types. 

(ii) cZosure (Cl) and preservation of types (PT): correctnessof 

expresslons and formulas is preserved under reduction. 

(iii) the Church-Rosser property CR, and the ~ak Church-Rosser theorem 
{see Chapter II.sec.5.4): A Q B • A i- B 

{iv) (strong)normaZisation {S)N and decidabiZity 
(v} properties for Q, which show that Q behaves as an equality, 

such as: 

- the Zefthand-equaZity ruZe LQ: A E B, A Q C • C E B 

(the riqhthand-equality rule is included in the definition) 

- monotonicity rul-es: A Q B, C Q D • {A}C Q {B}D, etc. 

(vi) uniqueness properties 

- uniqueness of types: A E B, A. E C • BQ C 
- uniqueness of domains UD: [~:A]B Q [~:C]D • A Q C (and B Q Dl 

- e:x:tended uniqueness of damains EUD: [~:A]B E [~:C]D • A Q C 

(and B E Dl. 
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Of course in the presence of type-inclusion (in AUT-QE) , only restricted 

forms of uniqueness of types and property LQ (see sec. 1.7) are valid. 

It depends on the choice of a definition metbod and on the 

language defined, which of the above properties are basic and which 

can be derived from these basic ones. Anyhow, SN, Sn-CR and 6S-CR we 

know already. The discussion below starts with substitutivity (sec. 2.9) 

and ends with Sn-CR (Chapter VI) and decidability {section 4, as sketched 

in 1.2). In betwee~ (ii) and (v) and (vi), which turn out to be connected, 

are considered more or less simultaneously. In fact, first PT, LQ and 

UD and the property of 

(vii) sound appliaability SA: {A}[x:B]C correct •A EB 
are proved simultaneously, by a careful induction on degree. Then fellows 

one-step closure CL 1 by induction on correctness, and finally CL, by 

~nduction on <::. 

1.4. Some points on closure 

Apart from the specific role which closure plays in our discussion, 

it is of course important as a technica! property, in view of II.S-6. 

Compare, e.g. IV.2: the point of the generalization from the correct 

expressions to the normable expressions, lies precisely in the fact 

':hat the normable system is "large enough" to prove closure for it in 

a relatively easy fashion (in contrast with closure for the correct 

expressions), and small enough to prove (streng) normalization for it, 

·,.;i th the help of closure. 

The normalization properties and CR are nicely preserved under 

certain forms of taking subsystems(II.5.2.2 and II.5.3.4). Soit is 

s'..::'ficient te prove these properties for some "large" systems: norma

lization for the normable expressions, So- and no-CR for all the ex

pressions, and Sno-CR under fairly general conditions in Chapter VI. 

The closure property however, in spite of II.S.2.2, poses a 

separate problem for each particular language, because correctness 

is defined in terms of reduction. 

Further we must stick to a particular definition, since in the 

proof of closure we aften apply induction on the definition of correct

ness. Only after closure has been proved, some important derived rules 

follov; and equivalence with the alternative definitions can be estab-
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lishe-.L 

Nevertheless, we try and give a uniform treatment of the various 

languages here, by splitting up the ciosure proef in the parts, common 

to all the languages (e.g. substitutivity, CL
1 

• CL, etc.), and the 

part specific for each particular language, i.e. the proef of SA, UD, 
PT anà LQ. 'rhe specific part is given quite elaborately for the "worst 

case", Sn-AUT-QE (and its extensions), in sec. 3.2 and 3.3, and just 

sketched for the simpler languages, such as So-AUT-QE, Sn-AUT-68 etc. 

(sec. 3.4). In fact, for the simpler languages the specific part 

simply vanishes, in which case the whole closure proef boils down to 

the simple ciosure proofs in Girard [31] and Martin-Löf [45]. 

1.5. Summary 

Sectien 2 starts with a list of inductive clauses for establishinç 

correctness of expressions, E- and Q-formulas, relative to correct 

book and context, as in the previous chapter. E-defini tions for particu: 

languages are speelfled by indicating (1) a reduction relation (5-re

duction withor without óand nl 1 (2) possible degree restrictions, 

(3) a particular set of rules from the list. In order to avoid con

fusion we restriet ourselves here to the regular languages (i.e. de

grees only 11 2 and 3) 1 from 8-AUT-68 to Bnó-AUT-QE+. Then we prove 

some simple properties (renaming of contexts, substitutivity 1 correct

ness of categories) and give a short discussion of some of the rules. 

Sectien 3 deals with the actual proef of closure and the connecteç 

properties (i.e. (ii) 1 (v), (vil and (vii) above) for the whc>= range 

of regular languages, as far as these properties are valid (in view of 

type-inclusion). First1 beuristic considerations (sec. 3.1) point 

out how the conneetlans can be 1 and how the proef might be organized 

in the more complicated cases (such as Sn-AUT-QE). Secondly, the proef 

is actually carried out for Bn-AUT-QE (sec. 3.2). After that, via 

an unessential e:x:tenaion result, all the properties are transferred 

to Bn6-AUT-QE+ (sec. 3.3), Finally 1 it is shown 1 that for all the 

simpler languages (Bn-AUT-68, 86-AUT-QE(+), etc.) easier proofs can 

be given, which use the more liberal E-definition II (see 1.2) in

stead of I as a starting point (sec. 3.4). 

We claim that the restrietion to degrees 1, 2 and 3 in the closur; 

proof of Bn-AUT-QE is not essential 1 and that this proef can be easily 
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adapted forA(+), using the results on norm-degree-correctness in 

VII. 2. 2. 

Sectien 4 contains the details of the equivalence proof sketched 

in 1.2 above. First it is shown how, in principle, the verification of 

correctness can be reduced to the verification of equality. Typ-functions 

for the various languages are discussed. Then we present the algorith

mic system (like system III above) and an "intermediate" system (like 

system II). However, the situation is more complicated than sketched 

above, because the equivalence proofs in 4.3.2 and 4.3.3 are also used 

for proving the socalled strengthening ruZe superfluous (see below). 

Finally some remarks on the actual verification are made (sec. 4.4}. 

1.6. Complication 1: the strengthening rule 

Of course, if an expression or a formula is correct relative to 

a book and a context, its constants are in the book and its free 

variables are in the context. The strengthening rule is connected with 

the converse question: In systems such as I, II above, which have rules 

for the transitivity of Q, it is a priori not clear that a correct 

equality A Q B can be established via expressions containing only 

variables and constants occurring in A or in B. So it might be possible 

that a proef of correctness of A, or of A E B needs correctness of 

expressions containing variables and constants outside A (and B) . 

Now for the sake of proving n- one-step-closure we have included 

a postulate, the strengthening rule, in our definition, which allows 

to skip "redundant" variables from the context. This appears to be a 

nasty rule because it might spoil the nice order on the correct ex

pressions induced by the definition of correctness. See, e.g., sec. 

2.10.3 and 2.14.1. 

The proof that the rule is superfluous, runs roughly as fellows: 

let ~I' ~II and ~III stand for the correctness predicate in system I 

(as in 1.2, with strengthening rule), system II (as in 1.2, without 

strengthening rule), and the algorithmic system III (without strengthe

ning rule), respectively. As in 1.2, ~III • ~II {sec. 4.3.2). By CL 
for system I (sec. 3), we have ~II • ~I' 

Since in the algorithmic definition strengthening is provabZe as 

in Nederpelt [51]), by CR (for I, so for II, so for III, in Chapter 

VI) we can conclude ~I • ~III' which closes the circle (sec. 4.3.3). 
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1.7. Complication 2: definitional 2-constants in the presence of type

inclusion. 

The rule of type-inclusion in AUT-QE allows us to infer A E r 
from A E [x:a]r. This shows how uniqueness of types gets lost in AUT~Ç 

(but only for 2-expressions A) • For the restricted form which we can 

prove instead we refer to sec. 3.2.6.1. 

A peculiarity, due to the combination of definitional 2-constants 

and type-inclusion, is that rule LQ is violated too in AUT-QE. 

Example: if a Er, A E [x:a]r (relativ~ to empty context, say), then 

the scheme 

d : A * d E T (also with empty context) 

is correct in AUT-QE. Now d Q A, h E [x:a]r but not dE [x:a]r. 

So,in AUT-QE, definitional 2-constants are not only used as abbrevia

tions but also for cutting down the type of the expression abbreviateë 

As a consequence of this,definitional 2-constants in AUT-QE can lead 

to unessentiaZ extensions, which are not definitionaZ extensions (sec. 

3.3.2). 

One might wonder why we do not take more liberal variants of 

AUT-QE, which allows dE [x:a]r as well. In fact, we mention such a 

variant AUT-QE* somewhere for technical reasens (sec.3.3.11), but we 

do not think that this way of ignoring the typ of a definitional con

stant is suitable for practical purposes. 

Part of our motivation runs as fellows: 

First, we do not want it for definitional 3-constants, where the defir 

tion part can stand for a long proof, and the typ represents a short 

theerem (I.5.2~ So, we do not like it for 2-constants, for the sake of 

uniformity. 

Notice, however, that the definition of ~ for the weakly normablE 

expressions (IV.4.4.1) actually ignores the typ of the defined con

stants and only takes the def into account (otherwise ~ could change 

by reduction). 

V. 2. On the E-definition 

2.1. The book-and-context part of the E-definition 

2.1.1. The correct expressions with respecttoa book and a context 
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forma system of admissible expressions, i.e. a restricted pretypeà 

system, in the sense of IV.3. The correctness of books, contexts and 

expressions is defined simultaneously with the correctness of 

E-formulas A E B and Q-formulas A Q B. 

The symbol ~ stands for correctness; the notatien for the correct

~ess of contexts (w.r.t. 8), expressions, E- and Q-formulas (w.r.t. 8 

ar.d i;) is respectively 8;E, ~. 8;E, f-A, 8;E, ~A EB anà 8;E, '-A Q B. 

The symbols E and Q are assumed to bind tighter than ~-

2.1.2. For brevity we sametimes write "8;E, ~A E/Q B" insteadof 

"B; i; f-A E B respectively 8; E, H Q B", and "8; E,~A (E/Q B)" insteaà of 

"B; ;r .4. respectively B; E, ~A EB resp. B; E, f-A Q B". So statements containing 

this kind of shorthand have to be read two or three times, each time 

with a different interpretation. 

2.1.3. As in IV.3, if 8;E,rA then A is a 8;E,-expression and hence has 

a degree. If 8; E, ~A E B or 8; E, f-A Q B then B is a 8; E, -expression and has 

a degree, too. The rules for the formation of books and contexts are 

precisely as in IV.3.3.2. The two additional restrictions (see IV.3.3.3) 

are as fellows: 

~1) (inhabitabZe degree condition) an expression a can only act as the 

typ of a constant in a scheme or as the typ of a variable in a 

context, if its degree is 1 or 2. 

(2) (compatibiZity of def and typ) in a scheme E, * d(x) := b. * d(x) E r 

it is required that 8;E, ~b. E r, where 8 is the preceding book. 

2.2. Some notational conventions 

2.2.1. We often assume implicitly a fixed correct book 8 and a fixed 

context E,, correct w.r.t. 8. I.e., if 8;E,,n~ then we write 

n ~A(E/Q B) for 8; E,, n f-A ( E/Q B) 

and just 

A E/Q B for 8; E, ~ A E/Q B 

(so for formulas we omit the ~ -symbol in this case). 

2.2.2. At some places in the definition the degree of expressions is 

explicitly displayed as a superscript; 
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i 
~ A(E/Q m ~ ~ A(E/Q B) and degree (A) i 

2.2.3. Formulas like A
1 

E A
2 

Q A
3 

E A4 are used as abbreviation for 

A1 E A
2 

and A
2 

Q A
3 

and A
3 

E A
4 

etc. 

2.3. The expression-and-formula part of the definition: expressions 

The rules for the correctness of expressions and formulas fall 

apart in six groups labeled I to VI. We start with group I (correct

ness of 1-expressions) and group II (correctness of non 1-expressions 

I. correctness of 1-expressions 

1 
r.l. T-rule: ~ T 

1.2. abstraction rule: 
2 1 1 

~ a, x E a ~ A ~ ~ [x:a]A 

I.3. application rule: A E a, ~ 1 B Q [x:a]C • ~ 1 {A}B 

I.4. instantiation rule: if the scheme of d is in B, with context l:i E 

and d is a 1-constant then Ë E S[y/ËJ ~ ~ 1 d(Ë) 

Notice, that the degree of A is indeed 1, if r 1A is derived by the 

above rules. 

rr. correctness of non-1-expressions 

I I. A E B ~ f-A 

2.4. The expression-and-formula part: E-formulas 

The rules of group III, below, in combination with rule II, also 

serve as the formation rules for the non-1-expressions. Group IV con

tains the type modification rules. 

III. Formation of non-1-expressions 

III.1. copy rule: ~ ... ,x E a, ••. ~x E a 

III.2. abstraction rules: if ~ 2 a then 

III.2.A. x E a, rB E T ~ ~[x:a]B E T 

III.2.Bi. x E a ~i+lB E C • f-i+ 1[x:a]B E [x:a]C 

So of the latter are two versions, III.2.B
1 

and III.2.B
2

. 



III.3. application rules: if A E a then 

III.3.A. B E [x:a]C ~ {A}B E C[x/A] 

III.3.B. B E C E [x:a]D ~ {A}B E {A}C 
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III.4. instantiation rule: if the scheme of eis in B, with context 

y E S, then 

Note: Below we shall prove A EB~~ B (correetness of eategories), 

which is not explicitly required here. 

IV. Type modification rules 

IV.l. type conversion: B E C, C Q D • B E D 

IV.2. type-inclusion: BE [x:äJ[y:8]1 • B E [x:äJ, 

{where [x:ä] stands for [x1 :a1J ••• [xk:ak]) 

2.5. The expression-and-formula part: Q-formulas 

The rules for the correctness of Q-formulas ferm group V. 

v. Correctness of Q-formulas 

V.l. reflexivity: ~A •A Q A 

v.2. Q-propagation: A Q B, ~C, !B > C or C > B) •A Q C 

Note: this is indeed the most restricted version of Q, see sec. 1.2. 

2.6. The strengthening rule 

This is a technica! rule, which we use in the proef of n-CL, but 

afterwards, i.e. after having proved CL and (with help of CL)CR, as in 

sec. 1.6, prove superfluous. It is called strengthening rule because 

it permits to remove assumptions from the context. We say that n is 

a subcontext of ~. for short n sub ~. if the sequence of E-formulas 

of n is a subsequence of the sequence of E-formulas of ~. So, 

n sub s • n sub (~,x E al and !n,x E a) sub (~,x E al 

VI. The strengthening rule 
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vr.1. B; 0-A =- B;r;
0 

1-A 

If, furthermore, V (y E FV(B) =<> y E x), then 
y 

VI.2. B; E;f-A E/Q B =~> 8;t;
0 

1-A E/Q B 

2.7. Degree considerations 

2.7.1. Degree restrictions play a minor role in the E-definition. It 

is rather intended that the degree specifications of the various langu< 

(see below) are satisfied automatically by a suitable choice of the 

rules of the E-definitions. 

Wedefine (the notion of being a domain degree, etc.): 

;..[.x:a]B =~> a has domain degree and B has value degree. 

1-{A}B =-A has argument degree and B has funation degree. 

2.7.2. The degree specifications for the regular languages AUT-68, 

AUT-QE and AUT-QE+ are: 

(1) degrees admitted 1, 2 and 3, inhabitable degrees 1 and 2, 

domain degree 2 and argument degree 3 

(2) value and function degree are as in the following scheme 

function degree 

value degree 

AUT-68 

3 

2,3 

AUT-QE 

2,3 

1,2,3 

AUT-QE+ 

1,2,3 

1,2,3 

Languages where all value degrees are also function degrees, are said 

to be +-languages: AUT-QE+ (and AUT-68+, AUT-QE*, to be defined later) 

Consequently AUT-68 and AUT-QE are non-+-languages. 

2.7.3. No matter what rules are chosen, by induction on 1- (i.e. on 

the definition of correctness) it fellows that 

A EB =<>A not of degree 

So no application expressions {C}D with degree (C) = 1 and no in

stantiation expressions a(C) where some C. has degree 1, are formed, 
J 

and the rules III.4 and III.3,A. do not give rise to substitution 

with 1-expressions (in the categories}. Hence, also by induction on 

(1) A Q B =<> (degree (A} •~ degree (B) 1) 

(2} A E B =~> (degree (A) 2 .,. degree (8) 1) 
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2.7.4. This shows, together with the explicit degree restrietion in 

the rules 1.2 and 111.2, that the expressions formed and the substitut

ions involved are weakly degree correct (cf. Ch. 1V.4.4.2). The inhabit

able degree restrietion guarantees that only expressions of degrees 1, 

2 and 3 are formed. So, the specifications of 2.7.2.(1) are fulfilled and 

A E B • degree (A) degree (B) + 1 

A Q B • degree (A) degree (B) 

and all the substitutions generated by the rules are degree correct: 

If Ä is substituted for x then, for all i, degree (Ai) 

2.8. Specificatien of the languages 

2.8.1. The rules 

The difference between the definitions of the various regular 

languages only concerns the rules of abstraction, application and type-
' 2 

inclusion. All the other rules, and also III.2.B (for abstraction 

expressions of degree 3) and 111.3.A (application) are present in each 

of the definitions. 

Por the rest the situation is as fellows 

AUT-68 AUT-QE AUT-QE+ 

abstraction 111.2.A 1 III.2.B I I.2 1 III.2.B , !,2 

application III.3.B II1.3.B, !.3 

type incl. rule no yes yes 

Note: Below it will turn out that 

(1) I1I.2.A is a derived rule of AUT-QE and AUT-QE+. 

(2) II1.3.B and IV.2 (type-inclusion) are derived rules of AUT-68, 

1 So, after all, in AUT-68 all the rules except III.2.B , 1.2 and 1.3 

are valid; AUT-QE and AUT-QE+ have additionally III.2 

and, besides, AUT-QE+ has 1,3. 

2.8.2. The reduction relation 

and 1.2 

For definiteness we agree that > in the Q-rule V.2 stands for 

disjoint one-step reduction >
1

• So it satisfies the monotonicity con

ditions, e.g. 

A> A', B > B' • {A}B > {A'}B' 
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with the important consequence that 

Ä > Ä' ~ B[Ä] > B[Ä'] 

In any case the reduction relation includes a-reduction, but we leave 

open the presence of n- and ö-reduction. Of course, if no definitional 

constants are in the hook then there is no ö-reduction. 

We assume that AUT-68 has no definitional 1-constants (because, 

module the eliminatien of abbreviations, the only 1-expression in AUT-

68 is<). 

The rules of strengthening will only be present in languages with 

!)-reduction. 

2.9. The substitution theorem 

2.9.1. For the E-definition {in contrast with the algorithmic definiti: 

it is easy to show the substitutivity: correctness of expressions and 

formulas is preserved under correct substitutions, i.e. substitution 

with correct expressions of the right types. 

For technical reasons we start with a weak form of substitution, 

compare a-reduction. 

2.9.2. Theorem (renaming of aontexts): If ~ 

all x! are mutually distinct, then (with ~· 
~ 

~ f-A {E/Q B) ~ ~' f-A' (E/Q B') 

x E a and r· - E[X/X'], 

;. E ä·> 

and the correctness proofs of both sides of the implication sign are 

equally long. 

Proof: induction on f-. 

2.9.3. An easy corollary of this is the weakening theorem, the converE 

of strengthening: if ~0 sub ~ then 

~ f-, ~o f-A<E!Q B)• ~ f-A(E/Q Bl 

Proof: induction on ~Of-A {E/Q B). 

As a corollary of this we can prove that in a derivation of 

correctness the application of strengthening can be postponed to the 

end of the derivation. 



2.9.4. Now we come to the simultaneous substitution theorem: if 

n y E B, then 

8 E s~y!Ë~, +c<E!Q Dl ... c[y!Ë~ <E!Q Dffy!Ëll l 

Proof~ By induction on n f-C(E/Q D). We treat just some of the cases, 

distinguished according to the last rule applied in the derivation. 
- - * Abbreviate E[y/B] to E 

Last rule is III.2.Bi: Assume nf- 2
C

1 
2 * 

i+l and n , z E C 
1 

f- C 2 E D 
2 

• By the 

ind. hyp.and by 2.7,4, ~ C
1

• By the * E "* copy rule z E c
1 

f- z ".,
1 

(if 

necessary, i.e. if zin C, rename the implicit context C to C'l. No~, 
by weakening, we can apply the ind. hyp. with the extended substitutior. 

[ - ;~ 1 E c 1 i+lc E D h' · E "* 1 i+1c* E n* y,z v,z~to n,z *l : 2 2: T 1.s g1.ves z ""l r 2 · 2 and, 

by III.2 , f-[z:C
1

JC
2 

E [z:C~JD2 , q.e.d. Possibly one must first re

n~~e ~' back to ~ again. 

Lastrulein v.2: AssumenrC
1 

Q c
2

, nf-

Q * *. *o l and • Since C2 > C3 , ;-Cl 

By the ind. hyp. 

1 q.e.d. 

2.9.5. Corollary (single substitution theorem): 

A E a, x E a~B(E/Q C) ,.. B(x/A] (E/Q Cffx/AD l 

2.10. Some easy properties 

2.10.1. On abstraction 

In actdition to the remark in 2.3, after rule I.4, we aan say that 
1 

the last inference in a proof of rA must be rule VI.l or one of the 

rules I. In particular, if c
0

f-
1[x:a]A, this can only fellow from 

;,x E a forsome ~ with sub~ (since sub is transitive). So 

application of VI.l gives ~O' x E af-
1

A. Similarly, if ri+lA, the last 

rule in proving this is VI.l or II. So in the proof of correctnessof 
i+1 E ;" :- A we can retrace some ~ f-A B, where ~O sub t;. Hence if 

~ . 1 "+1 
f-l.+ [x:a]A, in its derivation we can find ~. x E af-l. A E B for 

so~e B and ~. with sub ~. By application of II and VI.l we get 

;
0

, ::: E a !-A. Resuming we have 

~ f-[x:a]A,. C, x E al-A 

2.10.2. Correctness of categories 

In the rules of the definition, having A E B as their consequence, 
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it is nat explicitly required that f-B. For the copy rule this aorreat· 

ness a;' aatego1•ies fellows from weakening, for III. 2 .A from the T-rule, 

for III.3.A from the single substitution theerem (use induction on f-), 

for III.4 from the simultaneous substitution theerem etc. So, we have 

aorreatness of categories 

A E B.., f-B 

2.10.3. Abstraction again 

Assume that ~O' x E a riA, A of value degree, degree(a) a 2. If 

i 1 then from 1.2 we infer ~0~[x:a]A. If i > 1 then, as above, we 

can ratracesome ~ 1 , x E a, ~ 2r
1A EB with ~0 sub ~ 1 and the transitlor 

from ~ 1 , x E a, ~ 2f-A to ~0 , x E af-A fellows from applications af strengt 

ening. By the weakening theorem, we can extend the context to 

~ 1 , x E a, ~2,x• E a, with some new x•. By the substitution theerem we 

can infer ~ 1 , x E a, ~ 2 , x• E a f-A[x/x'] E B[x/x']. In case we can 

apply III.2.B (this depends on the language under consideration) we 

get ~ 1 , x E a, ~ 2f-[x:a]A E [x:a]B. Otherwise the language is AUT-68, 

i = 2, B T and application of III.2.A gives ~ 1 , x E a, ~ 2f-[x:a]A Et 
Anyhow, rule II and iterated use of strengthening give ~0t-[x:a]A. 
Resuming, 

(degree(a) = 2, A of value degree, x E a f-A) •f-[x:a]A. 

Note: the results in 2.9 and 2.10 are also valid, and simplar to prove, 

if n-reduction (and strengthening) is not present. 

2.11. On the Q-rules 

2.11.1. Clearly Q is the equivalence relation generated by >f-' i.e. 

the restrietion of > to the correct expressions. Sa A Q B means pre

cisely that 

rA and rB and there are correct c1, ••• ,Ck such that 

A > c1 
> . . . < ci-1 < ei > ci+l > . .. < c. 1 < c. > c. 1> ... < ck < 1 

)- J J+ 

(where possibly, in view of strengthening, the c. in between are eerree 
~ 

w.r.t. extended contexts) • 



2.11.2. An alternative rule of Q-propagation is 

V. 2 ' A Q B, f-C, B + C ,.. A Q C 

If the language definition has this rule, Q becomes -f-, i.e. (\) * 
(sec.1.2,II.4.7), i.e. the transitive closure of the restrietion of+ 

to the correct expressions. 

So, no matter what ether rules there are in the definition of 

correctness, 

v.2' ""'v.2 

and 

CL, V.2 ""'V.2' 

2.11.3. An even strenger rule for Q, also including reflexivity is 

V.2" rA, rB, A =- B .. A Q B 

Assuming the (full) CR-theorem, i.e. CR for all, not just the 
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correct expressions, which is the case if n-reduction is not present, 

we get: 

(V,1, V.2') => V.2" 

2.12. On type-conversion 

2.12.1. The Q-formulas (and the Q-rules, see below) can be avoided~ 

completely by reformulating IV.l, the type-conversion rule to 

IV.l': A EB, f-C, (B > C or C > B)""' A E C 

&~d, corresponding to V.2' rather than to V.2, 

IV.1": A EB, :..c, B + C • A E C 

As in 2.11.2, IV.1" ""'IV.l' and CL, IV.1' .. IV.1". 

Corresponding to v.2" is the alternative rule 

rv. 1"' , A E B, 's .. c, ~c ""' A E c 

2.12.2. The system with Q-formulas, Q-rules V.l and V.2, and rule IV.l 

is indeed a conservative extension of the system without Q but with 

the corresponding type-conversion rule instead. First we have 
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IV,l, V,l, V,2 • IV.l', 

respectively 

IV,l, V,l, V.2' • IV,l", 

respectively 

IV .1, V. 2" • IV .1"' , 

so the Q-system is an extension of the Q-less one. 

Secondly, the expressions and E-formulas, correct in a Q-system 

are also correct in the corresponding Q-less system. 

2,12,3, Notice, that in the presence of n, rule IV.l"' (so rule v.2" 

too!) is inconsistent in the sense that it gives rise to anomalies 

such as self-application. This fact is connected with the Sn-CR-probl~ 

solved in Chapter VI. 

Example: if a E ' then f-[:~::a]a and f-[y:[:~::a]a]a. Further 

[x:a]a = (by Sl [:~::a]{x}[y:[:~::a]a]a = (by nl [y:[:~::a]a]a. 

so, if f E [x:a]a then {f}f E a • 

2.13. On type-inclusion 

2.13.1. Iterated use of the rule of type-inclusion gives 

so 

This shows that AUT-68 is a sublanguage of AUT-QE: all the correct 

books, contexts,expressions and formulas of AUT-68 arealso correct 

in AUT-QE. 

Proof: Rule III.2.A, not in the defi~ition of AUT-QE, can be derived 

from III.2.B1 and IV.2. For, let x E a f-B E •· Then f-[:~::a]B E [x:a]! 

so f-[x:a]B E T, q.e.d. 

2,13.2. Conversely, rule IV.2 is (vacuously) a derived rule of AUT-66, 

because all the correct AUT-68 1-expressions 6-reduce to T. 
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2.14. The form of derivations 

2.14.1. We called the rules III the formation rules of non-1-expressions. 
i+l 

of ~O~ A, we can retrace some ~~A E B This is because, in a proef 

and ~ 1rA E C, such that (i) the last rule applied in proving ; 1 ~A E C 

is the formation rule of A, i.e. one of the rules III, (ii) the tran

sition from ~ 1 f-A E C to ~f-A EB is by iterated use of VI.2 and type 

conversion, (iii} the transition from ~f-A E B to ~0f-A is by using 

VI.2, II, and VI.l. So, in case there is no type-inclusion applied, 

e.g. if i > 1, we have (use weakening) ;
1

f-B Q C. Below we introduce 

a symbol covering the relation between B and C in case type-inclusion 

is involved. 

2.14.2. The new relation C can be defined as fellows 

(i..) r-Cx:a]A, x E at-AL B • [.x:a]A C [re:a]B 

(ii) A Q B ,.. A C B 

(iii) C is transitive 

(iv) 0 

Clearly, C is a reflexive and transitive relation on the correct 

·expressions, including Q and type-inclusion, which on the non-l-ex

presslons coincides with Q (use 2.10.3). The type modification rule 

can now be contracted to one rule 

IV.AEB,BCC=+AEC 

And, for ~ 1 , BandCasin 2.14.1 we have ~ 1 f-C C B now. 

2.14.3. So, in a proof of [x:a]B E D we can retrace 

x E ~B E C with [x:a]CC D. 

Similarly, in a proof of {A}B E D we can retrace either 

(il B E [x:a]C with C[A] C D, A E a , or 

Ziil B E C E [x:a]E with {A}C C D, A E a • 

And, in a proof of a(ë) CD we can retrace some 
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2.14.4. Above, we used already 

rCx:~]A, x E a ~ A Q B ~ [x:a]A Q [x:a]B 

The other monotonicity rule 

a Q S, r[x:~JA ~ [x:a]A Q [x: B]A 

follows by induction on Q, using the substitution theorem. 

However, we do not know yet 

A Q B , C Q D =+ {A}C Q {B}D 

and consequently, it is a priori not clear that (uniqueness of types 

for 3-expressions) 

3 1- A E a, A E B .,. a Q 8 • 

This (and its weaker counterpart for 2-expressions) will not be proved 

before the next sectien (3.2.4, 3.2.6). 

2.15. On the application rules 

2.15.1. In AUT-6~where no 1-abstraction expressions are formed, the 

rule III.3.B is vacuously a derived rule, viz. there are no B with 

B E C E [x:a]D, 

Since, in AUT-QE and AUT-QE+, 

~2 [x:a]C .,. [x:a]C E [x:a]D 

we can restriet the rule III.3.A 

A E a, B E [x:a]C .. {A}B E C[A] 

to the case where degree (C) = 1. 

2.15.2. As an alternative to III.3.B (and to III.3.A if !,3 is present) 

we mention 

III.3.B': ~ {A}C, BE C • {A}B E {A}C 

The following equivalences hold 

(!,3, III.3.A, III.3.B) # (~.3, III.3.B') 

(III.3.A, III.3.B) * (III,3,A, III.3.B') • 
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Proof: e.g. that III.3.A is a derived rule in presence of I,3 and 

III.3.B'. Let A E a, BE [x:a]C. By !.3 (and III.3.B', if degree(C) 2), 

HA}[x:a]C. By the single substitution theorem 1-C[A]. So by III.3.B' 

and type-conversion {A}B E C[A]. 

2.15.3. Notice that in the presence of n-reduction rule III,3.A by it

self is sufficient, because 

n,III.3.A ~ III.3.B 

Proef: assume A E a, B E C E [x:a]D. Then x E o. 1- x E a, so by I:II.3.A, 

x E a i- {x}C E D a.nd by abstraction '-[X:CJ.]{x}C E [.:c:a]D. By II and 

type-conversion BE [.:c:a]{.:c}C (x i FV(C)), so by III.3.A. {A}B E {A}C, 

q.e.d. 

2.16. An E-definition forA and A+ 

2.16.1. In order to adapt the E-definition toA and A+ we must first 

drop the inhabitable degree condition, and the restrietion to a of 

degree 2 in the abstraction rules I.2 and III.2. The rule of type

inclusion and rule III.2.A must be skipped but III.2.B1 is permitted 

for all i. A suitable combination of application rules is I.3 and 

III.3.B' forA+, and III.3.A and III.3.B' forA. An alternative for 

rrr.3.B' is an extended form of III.3.B 

A E a, BE c1 E ... E Ck E [x:a]D ~ {A}B E {A}C
1 

2.16.2. Degree considerations for A and A+ are indeed more involved 

than those in 2.7. Of course we can show weak degree correctness, as 

in 2.7, but we must know more in order to establish degree correct-

ness. See Ch. VII, sec. 2.2. 

The various properties proved above,such as substitutivity, correctness 

of categories, etc. etc. simply go through for the E-versions of A and 
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V.3. The actual closure proof 

3.1. Heuristics 

3.1.1. The first idea which comes to mindabout proving cZosure, CL 

CL: \-A , A <' B => \-B 

is simply to prove one-step closure, CL1 

CL1: \-A, A > B =:> \-B 

by induction on \-A and then use induction on :::::. 

Among the possible ways of one-step 'reduction we distinguish the main 

or "outside" reductions 

(SJ 

lnl 

(0) 

{A}[x:B]C > C[A] 

x i FV(Al • [x:a]{x}A > A 

d(Al > def(d}(A] 

and the "inside" reductions which follow by the monotonicity rules 

(appl) A > A I t B > B, • {A }B > {A, }BI 

(abstr) a >a', A > A' =:> [x:a]A > [x:a']A' 

(constl Ä > Ä ' .::> a (Ä) > C'(Ä 'l . 

So we assume that > stands for disjoint one-step reduction. Now 

consider, e.g., the appl-case where the correctness of {A}C fellows 

from A E a, B E [x:u]C. Here the induction hypothesis, CL1 applied to 

A and toB, just tells us that \-A' and \-B' (where A> A', B > B'), 

which is of course not enough to conclude \-{A'}B'. This suggests that 

we need preservation of types, PT 

PT: A E a, I- B, A ::::: B * B E a 

or at least one-step preservation of types, PT1 

PT1: A E a, \-B, A > B =:> B E a 

additionally. Similarly with the const-case of one-step reduction. 

3.1.2. So the next idea is to combine CL and PT to 

CLPT: 
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(as the conjunction of the version with and the version without paren

theses) and to use the same induction. I.e. first prove 

CLPT1: (E a), A> B *1-B<E a) 

by induction on correctness and then use induction on ;;:. 

This works finewithall the .inside reductions. E.g., consider once 

more the appl-case: E a, BE [x: A> A', > B'. Now the induc-

tion hypothesis gives us 1 E a, B' E [x:a]C and {A'}B' E C[A']. Since 

>is disjoint ene-step reduction, C[A] > C[A'D so C[A] Q C[A'] so 

'}B' E C[A], q.e.d. The other cases of inside reductions are treated 

similarly, using some faots from the previous sections. 

Then the outside reductions: 8 and ~ do not cause major difficulties 

either. For è use the simultaneous substitution theorem and the 

compatibility of dej' and , for Tl use the strengthening rule. But 

there is a problem with 6-outside reduction. For, in order to conclude 

] frorn f-{A we seem to need soundness , SA 

SA HA}[x:BJC *A E B 

which would allow us to use the single substitution theorem . 

. 1.3. Let us try to find out about SA. So consider the assumptions 

which can lead to the correctness o~ {A}[x:B]C. 

E.g. A E a, [x:B]C Q [x:a]D (resp. [x:B]C E [x:a]D). Then 

SA amounts to uniqueness domains, UD 

UD [x:BJC Q [x:a]D * B Q o. 

of domains 1 EUD 

EUD [x:B]C E [x:a]D * B Q a 

or: A E 1 [x:B]C E D E [x:a.]E (these are the assumptions of rule 

III.3.B). As in 2.14.3, forsome F, [x:BJC E [x:B]FCD ~nd in fact 

:B]F Q D). So, in this case SA seems to require the 

l"u Ze LQ 

LQ .4 E a, A Q B * B E a 

which would give [x:B]F E [x:a]E' and 1 by EUD 1 A E B. 

However 1 LQ "'> PT. So 1 i t appears that we cannot do SA separately 

beferehand (i.e. not if III.3.B is present) and then preeeed with 

CLPT as sketched above. 
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3.1.4. In order to simplify matters, we first forget about type-inélu

sion. Then we may hope to be able to prove uniqueness of types, UT 

UT: A E a, A E S => a Q S 

If we assume UT then UD =>EUD and, besides, LQ and PTturn out to be 

equivalent. This may suggest us to incorporate the proof of SA in the 

proof of CLPT 

But we do not have UT yet. If we try to prove UT by induction on the 

length of A, we come again in trouble with rule III.3.B. For, let 

A
1 

E a, A
2 

E B E [x:a]D, A
2 

E C E [x:a]E. The ind. hyp. just gives us 

B Q C here, but we need more, viz. something like 

1-{A}B, B Q C => {A}B Q {A}C. 

(this is one half of the third monotonicity formula of sec. 2.14.4). 

Since a proof of (*)requires LQ in turn, UT cannot be isolated either. 

We might try to combine SA, UT and CLPT, i.e. to prove the necessary 

in stances of SA and UT in the course of the proof of CLPT 
1 

• A proof 

along these lines is indeed possible even if type-!nclusion is presen4 

but it has a complicated structure and it cannot easily be extended 

to languages with higher function degrees, such as A and A+. 

3.1.5. Thus we prefer the alternative approach sketched belów, which 

essentially runs as fellows: first prove PT
1

, UT and LQ by induction 

on degree, then prove SA and UD, and afterwards prove CL as indicated 

in 3.1.1. To this end we distinguish degree-i-versions of the various 

properties 

ulf 

st 

1-i A E a, A > B, 1-1B ,. B E a 

1-1 
A E a, A Q B • B E a 

i-1 A E a, A E 13 => a Q 13 

I-i B Q C, 1-{A}B => {A}B Q {A}C 

1-1 
[x:a]A Q [x:13]B • a Q 13 

i-1 
{A}[x:BJC •A EB 

First notice that: P~, ui => LQ 1 

and that: Lef => <*i> 

hence: 
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We assume that the language under consiàeration is a non-+-language 

(see sec.2.7l. Then it is relatively easy to show UDk and UTk+l 

(ignoring type-inclusion), where k is the lewest value degree. Now let 
i+l 

us try to prove PT
1 

by induction on correctness, where we assume 
. '+1 

, LQJ and UTJ for j i. An instructive example is the appl-case 

inside reduction: A> A', B>B', 1-i+l }B, 1-i+l{A'}B'. It is no 

restrietion to assume that both {A and '~B' originate from the 

extended application rule of 2.16. 1: A E ct, A 1 E a', B E S E ••• 

E ... E Cf, E ~x:a~D 1 with degree (D) degree ID')= E , E [x:aJD, B' E c' ,_ 1 
k and '( = Q • Th en by the ind. hyp. we have 

, E c
1

1 so by 
., 

Q 
, 

and by 
1 

Finally we have 

I E {A '}C 
. 1 

Tl+l From P 
1 

LQi 

[x: 

E • Then fellows C
2 

Q , 
and 

, E etc. 

Q k 
Q a' I E [x:a~D' and by UD so He:1ce 

<{A t' so {A'}B' E {i1 , q.e.d. 

and UTl+l we get LQ1+ 1 , and UTi+ 2 . So by induction, 

we get PT
1

, LQ, (*) and UT . 
. 1.6. It is clear that SAi+l can be distilled from the proef of PT~+l,. 

b~t it can alternatively be given as fellows. First, we have 

•,;re have UD. Now let i:A:C[x:B]C. Then (see sec. 2.15.2) either 

E , =x:B]C E [x:a]D, or [x:B]C E E, ~{A}E. Further [x: E [x:B]F. 

by UT we have either [x:BJF Q [x:a]D, or [x:B]F Q E. Hence, either 

by UD we have a Q , or by I*) we have -{A}[x:B]F. So from , UD and 

UT we get 

SA1 
~ SAi+l 

a:1d by indu::tion SA. 

3 .. Closure for Bn-AUT-QE 

.. 1. For definiteness we present a rather detailed version of our 

ciosure proef here for Bn-AUT-QE, i.e. AUT-QE without definitional 

constants and without 8-reduction. So the admitted degrees are 1, 

and , the value degrees are 1, 2 and 3, the domain degree is and 

the argument degree is 3. 

The function degrees are just 2 and 3, so Sn-AUT-QE is a non-+

language. So the reasoning of sec. 3.1.5 is vali.d, but for additional 

problems due to the presence of type-inclusion (viz. that UT is not 
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true and that not immediately cPT1 ~ LQ> and <UD ~ EUD>>. These 

prob.Lems are overcome by the introduetion of a "canonical type" in 

sec. 3.2.4. below. 

This canonical type also plays a role inthen-case of PT1 • 

Later we include definitional constants and ó-reduction, and applica

tion expresslons of degree 1, thus extending our result to anó-A~QE+ 

(in section 3.3}. 

A closure proof of Bn-AUT-68 can easily be imitated from the p10of 

below and is in fact somewhat easier because there is no type-inclu-

sion. 

3.2.2. We specify a set of rules (in shorthand, omitting contexts) for 

Sn-A~QE, which according to the properties in 2.10-2.15 are equiva

lent to the rules indicated previously. 

(i) 

(ii) 

(111) 

(iv) 

(v) 

(vi) 

(vii) 

(viii} 

(ix) 

(x) 

(xi) 

(xii) 

(xiii) 

(xiv) 

1--r 

••• t x E a , • • • !-x < E a> 

x E a !-A <E B) ~Hx:a]A <E [x:a]B) 

A E a, !-
2 BE [x:aJC ~HA}B <E CIA]) 

A E a, B E C E [x:a]D ~ !-{A}B CE {A}C) 

A E äo:u, x E ä * p (x) E P is a scheme ~ 
1-p<Ä> <E P lÄD> 

AEBCC~ AEC 

!-A, A > B or B > A, 1-B ~ A Q B {where > is disjoint 
one step Sn-reductiorl 

AQBQC~ AQC 

x E a !-A C B • [x:a]A C [x:a]B 

ACBCC ~AC~ 

strengthening 

3.2.3. On 1- expresslons and type-inclusion 

3.2.3.1. Since there are no 1-application expresslons and no defifli

tionalconstants all 1-expressions are of the form [re:&J-r, with x 
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possibly empty. And, if !- 1
[x:Cl]A, !-1

[x:B]B, [x:a]A > ]B, then 

a > S, A > B so a Q S and x E a [-A Q • So, by induction on Q, we can 

show uo1 

[x:a]A Q [x: ~ a Q 8 (and x E [-A Q B). 

Then, by inductior. on C, we get 

[x:aJAC[x:s=B * a Q 8 (and x E al-A C B). 

3.2.3.2. We introduced UTi, uniqueness of types for expressionsof 

degree i (i > 1 ) , 

A E B, A E 

For i=3 this will be proved below, but for i=2 it is simply false 

in vie;v of type-inclusion. Now we define 

B 0 , - B C C or C B 

Below we shall prove that the new symbol covers the relationship 

and whenever A E and E C. 

Clearly on the non-1-expressions 0 is just Q. We have 

AD BJ 

Further D satisfies a strengtherring rule, and is substitutive: 

A E a, x E a ~B D [A] D c WAD 

3.2.3.3. We also want to show 

1 r 0 C - for some , A C B and A C 

Proof:,..,is trivial. So let :JAC C. Then A 

.o - h, C = [z:y
2

h (or simHar with B andC interchanged), 

with "y Q y
1 

Q y 2", "zE y 1-S Q i\"· So BCC (or C B). 

3.2.4. The canonical type 

3.2.4.1. It is possible, for each A with 1-i+lA to indicate an 

that 

such 

(1) is a minimal representative- ·,.r.r.t. C- of the categories 

of A, i.e. 

E and: (A E û ~ C a) 
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( 2) 

We call this a the cantyp of A (with respecttoa context). The 
0 

definition of cantypis like the definition of typ given previously 

(sec. IV .3 .2), but slightly modified in order to stay in the correct 

fragment, as fellows: 

(i) 

(i i) 

(iii) 

(iv) 

(v) 

cantyp!x) typ(xl 

cantyp (p (Ä l ) typ (p) UÄ ~ 

cantyp([x:a)B):: [:n:a]cantyp(Bl- w.r.t. to extended context-

cantyp({A}B) _ {A}cantyp(Bl if degree (8)=3 

cantyp({A}B) - C{All if degree (8)=2 and cantyp(B) -

[x:a]C 

3.2.4.2. Clearly, typ(Al ~ cantyp(A) so property (2) above is 

immediate. 

Now we prove a lemma corresponding to property (1). 

Lemma: 
i i+l 

if LQ and ~ A E a then A E cantyp(Al C a 

Proof: By induction on the length of A. The more interesting 

cases are 

(i) A= [x:a
1

JA
1
,x E a

1 
~A 1 E a

2
, [x:a

1
Ja

2 
Cu, By the ind. hyp., 

x E a
1 

~A 1 E cantypcA
1

J C a
2

, so [x:a
1

JA E [x:a
1

JcantypcA
1

) = 
cantyp(A) C [x:a

1
Ja

2 
Ca, q.e.d. 

(ii} A:: {A
1

JA
2

, A
1 

E a 1 , ~2A 2 E [x:a
1

JC, C[A
1

) Ca. By the ind. 

hyp., A2 E cantyp(A
2

> c [x:a
1
Jc so cantypcA

2
J: [x:a1JC'. Hence cant;yp(). 

is lndeed defined, a
1 

Q ai, x E a
1 

~C' CC, so {A
1 

}A
2 

E C1 UA
1 
J Ca, q.e., 

(ili) A :: {A
1 

}A 2 , A
1 

E a
1

, t-3 
A2 ~ B E [x:a

1 
]C, [A

1 
}B Q ~· By the 

ind. hyp. A2 E cantypcA
2

) Q B. By LQ~ we can use property (*~) of sec. 

3.1.5 and get cantyp(Al Q {A
1

}B Q a, q.e.d. 

3.2.4.3. Corollary: (i) 1-2 A EB, A E C ~ BOC (this is, forA of 

degree 2, the desired property of 0). 

2 includes EUO ) 

(ii) t-2 
[x:a]A E [x:S]B ~ a Q 8, x E a ~A E E (this 

. Ciiil SA2 

Proof: (i) LQ1 is·vacuously fulfilled, so B J cantyp(A) cC, so 

by 3.2.3.3. BOC. (ii) and (iii) are immediate. 
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3.2.5.1. Now that we have introduced cantyp we can use it in the proof 

of PT. Wedefine the property of cantyp. 

A' , ' * cantyp (;:;) Q cantyp (A 1
) 

Similarly PCT~; PCT is the conjunction of all the PCTi. 

We first prove some lemmas for PCT2 
. 

. 2.5.2. Lemma (substitution lemma for cantyp): let stand for 

n. Th en x E Ct, ij E B l- E ::x * cantyp (Cl* = cantyp 

where the cantyp's are taken w.r.t. (x E a, y E SJ and (y E resp. 

Proof: Induction on C. Note that C$x, because degree(x)=3. Some 

cases are: (i) C [z:C
1 

, cantyp(C) * [z:C;Jcantyp (w.r.t. 

x E a, y E G, z E 
1

J = (by ind. hyp.) [z:C7Jcantyp(C;) {w.r.t. 

E s*> z E _ cantyp cc*), q.e.d. 

cantyp 

cantyp 

{ii) * }C
2

, cantyp<Cl 

_ [z:y and, by ind. hyp., 

* - D [ 1D as well, q.e.d. 

where 

, so 

3.2.5.3. Corollary: x E a , f- 3 
A E a '* cantyp (Cl [A u ~ cantyp <CV] l. 

3.2.5.4. Corollary (S-PCT~): 
}[x:B]C-. cantyp({A}[x:B]CJ Q cantyp ) . 

2 Proof: By SA we have A EB, so even cantyp({A}[x:B]C) - cantyp(C) 

cantyp(CfiA) l • 

2 
3. 2. 5. 5. Lemma ( n-PCT 

1
) : 

1- :a]{x}A, x t. FV(Al '* cantyp([x:a]{x}AJ Q cantyp(Al 

Proef: Let cantyp(A) [ydl]D and let i-2
[x:a]{x}A be based upon 

.. rE::~', A E[y:a'JD'. By 3.2.4.2 [y:S]DC :a']D' and 

x i :S]D), soa Q a' Q S and cantyp 

- cantyp([x:a]{x}A). 

2 
3.2.5.6. Theorem: PCT1 

= [x: Q 

Proof: let 1- , f-A', A >A 1 • For a main reduction use 3. 2. 5. 4 or 

3.2.5.5. For inside reductions use induction on the lengthof A. 

Some cases are: 



164 

(i) A [x:A
1 

JA2 , A' [x:Al]A2, A
1 

> A{, A2 > A;2. By ind. hyp. 

cantyp([x:A
1 

JA 2> Q cantyp([x:A
1 

JAi> : [x:A
1 

]cantypCA2> Q [x:A{JcantypcA~ 

by the substitution property 3.2.5.3. 

(ii) A {A
1

}A2 , A': {A{lA2, A
1 

>Ai, A
2 

>A;. Since {A
1

}A
2 

is 

correct, A1 E a 1, A2 E cantypcA2) = [x:B]C C [x:a
1

JD. So a
1 

Q B. 

Similarly A{ E a;, A:2 E cantyp<A2> : [x:B']C' C [x:a{JD'. Soa; Q B'. 

By the ind. hyp. [x:!$]C Q [x:S•JC', so C[A
1

] Q C'(A
1
B Q C'(A;], q.e.d. 

3.2.6.1. By LQ2 we can apply 3.2.4.2 to expressionsof degree 3 now. 

We get: (i) I-3A E a =1> A E cantyp(A) Q a 

CU.l UT
3

: !- 3A E a, A EB=~> aD B (i.e. a Q 13) 

(this is the announced property of 0 forA of degree 3). 

(Di) SA3 (e.g. as in 3.1.6) 

Notice that by UT3 the properties PCT3 and PT3 are equivalent. 

3.2.6.2. We introduce CLPTi: 

~A' =I> I-iA' cE a) 

and similarly 

1- iA CE a), A 

i CLPT
1

• 
3 Here fellowsome lemmas for CLPT
1

• 

3 3 
3.2.6.3. Lemma CS-CLPT

1
J: I- {A}[x:BJC E D =~> C(A] E D 

Proof: Let A E a, (x:B]C E FE [x:a]G, {A}F Q D, and let x EB 1-C EH. 

[x:B] H Q F. By SA3 we have A E B and by (*
2

) {A}[x:B]B Q {A}F. By 'tiE 

substitution theerem for correctness CiA] E H(AD Q D. 

3 3 3.2.6.4. Lemma <n-CLPT1): 1- f.x:a]{x}A EB, x t FV(A) • A EB 

Proef: cantyp([x:a]{x}A) = [x:a]{x}cantyp(A) Q cantyp(A) (by n-reduc

tion), by strengthening I-A 1 so by 3.2.6.1 A EB. 

3.2.6.5. Now we are ready for CLPT. 

Theorem: (CLPT 1): 1-A (E a), A > A' .:> 1-A' (E a) 

Proef: If A> A' is a main reduction use SA, strengtheningl PT
2 

and 

the preceding two lemmas. Otherwise use induction on the length of A. 

(i) A = [x:a1 JA 1 , A'= [x:a;JAi 1 a 1 > a; 1 A1 > Ai, x E a 1 1-~<E a2), 

([x:a1 ]a
2 

Ca). By ind. hyp. l-a1• and x E af l-A{ (E a
2
). 
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Ca) - read this twice, one time 

with and one time without the symbols in parentheses-. 

(ii) A 
1

}A
2

, A' "' {A ' A > 'l ' A > - 1 1 j-1' 2 ', lE ,;:2E 

[x:e<
1

JC, CITADCa.By ind. 

~ffA 1 D. 
hyp. A { E a 1, A2 E [x: ]C. So A ' E C[!l {] Q 

(iii) As in (ii), but E E [x: JC, {A 1 c a. By ind. hyp. 

', E a 
, E B, so A' E fJl''>B Q {A 

1 
}B. .-1 1 , l 1 ' 

(iv) A (81, ... Bk), 
k ,, E 131 , E , ••• ,......-k,, 

[31J, ... , E f\[B1 , ... , n, P[s] - E p (yl E c a, where y * is 

a scheme. By ind. hyp. P r E 131, 
r E 13 2[B 1] Q B2 I D' ••• I B' E Q ~1 k 

.~ [Ë 'TI so p I , ••• ,B~) E r B''] Q P[B]. ''k f f ••• f k' 

.2.6.6. corollary: (iJ CLPT, (iil LQ, (iiil LID. 

3. 2. 6. 7. Corollary (Rule V. 2' , sec. 2 .11) : 1-A, f-B, A ·e E ~ .4 Q 

3.3. Extension to Snö-AUT-QE+ 

3.3.1. Now we consider i.e. Sn-AUT-QE extended with 1 

application expressions, with definitional constants and with defini

tional reduction. The additional rules are 

I. 3: 

(vi'): Ä E a[Ä], x E a * d(x) := D (*d(x) E El is a scheme ~ 

1-d (E 

(cf. sec. 3.2..2andsec. 2.3 respectively). 

If we try to repeat the previously given proof, we first come in 

trouble because not all the compound 1-expressions are abstraction 

expressions anymore. This makes the proof of U01 from sec. 3.2.3 fail

though the property itself remains valid. Furthermore there is the 

problem with definitional 2-constants and type-inclusion (mentioned 

in sec. 1.7) 1 which makes LQ 2 
fail. 

Below we give an indirect proof instead which runs as follovls: 

first we show (secs. 3.3.3 3.3.8) that the indicated extension is a 

so-called unessential extension. Then we use this fact to transfer the 

desired properties from Bn-AUT-QE to the new system (sec. 3.3.9). 

F~nally (in sec. 3.3.11) we briefly discuss an even larger system than 
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AUT-QE+, which we call AUT-QE*. 

3.3.2. Some terminology 

Consider two systems of correct expressions with typing and equa

lity relation, ( f-, E, Ql and ( f- +'. E+, Q+l respectively. 

(\-+, Q+) is an exten.aion of d-, E, Ql if f- >:> f-+' E >:> E+ and 

Q ,.. Q+, i.e.: B }-resp. B; r, ~resp. B; F, 1-A (E/Q B) ,.. 

B f- + resp. B; ~ 1- + resp. B; r, 1- + (E+/Q+ B). 

We further just write 1-+A E/Q B insteadof 1-+A E+/Q+ B. The "new" 

system 1-+ is said to be conaeY'Vative over the "old" system f- if all 

new facts about old objects are old facts, i.e. if 

UEO l-A I 1-B, 1-/· E/Q B >:> l-A E/Q B. 

An extension is uneaaentiaZ if no "essentially new" objects are 

formed, i.e. if all new objects are equal to old ones. This means 

that the new system can be transZated into the old one by a mapping-, 

werking on expressions, books and contexts, such that 

UE1 

UE2 

UE3 

1- A ~ 1- A Q [ and 1-A • A :: [ 
+ + 

13f-+resp. B; r,l-+resp. B; t;f-+A =1> 

B-1- resp. B-; t;-1- resp. B-; (,- l-A-

B; F,l-+A E/Q B >:> B-; r, f-A E/Q B-

Clearly unessential extensions are conservative. Property UE3 

means that new formulas imply their old counterparts. Unessential 

extensions also satisfying UE3', the converse of UE3, 

UE3' 

are called definitiona~ extensions. 

In a definitional extension new formulas are equivalent to old 

ones. All unessential extensions satisfy the Q-part of UE3~ but for 

the E-part we need property LQ for the larger system {at least if the 

smaller system satisfies lQl. For that matter, if the +-system 

satisfies LQ, we have 

UE1, UE2 >:> UE3' 

and: UEo, U El, UE2 => UE3 
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3,3.3. The translation 

Of course, we take Sn-AUT-QE for our smaller system ~ and we take 

Sno-AUT-QE+ as the extension ~+. We are going to prove that ~+is an 

unessential (but nat a definitional) extension. 

For an expression A we intend its translation A to be the normal 

farm w.r.t. a certain reduction relation ~-• In order to make well-

defined and in view of UE1, UE2 we reguire 

(0) ~- normalizes and satisfies CR 

(1) ~ just affects the new elements of expressions (1-application 

parts and .definitional constants) and removes them 

(2) sis part af the reductian relation of the new system and 

satisfies CLPT 

For contexts t x E a the context ~ is simply x E a (where the 

meaning af a is clear). Similarly schemes for primitive constants 

;*p(x) E s are translated into (*~x) E s-. But schemes for defini

tional constants have to be omitted in the translatian. 

Befare fixing ~we define ij-reduation ~I, i-reduction of degree 

j (where i is S, n, a or a combination of these). This is the reduc

tion relation generated from elementary ij-reduction, defined as 

fellows: 

A elementary 1j-reduces toA' if A elementary 1-reduces toA' 

and degree(A)=j •. The corresponding one-step reduction is denoted >~. 
l. 

Notice that for degree-correct A the degree of A' above is j as well 

(cf.sec. 2.7). 

Now, in view of requirement (1) above, we define ~ to be the re

>1 d > duetion relation generated from _
6 

an -a· 

3.3.4. Notice that S1
-reductions cannot be inside reductions. Strong 

normalization for s1 is easy to prove even without using normability. 

From Ch.III we reeall ö-SN and ö-CR. As in Ch.II, secs. 6, 7, 8, we can 

show that s1-CR holds, and that s1 camroutes with all other reductions 
2 2 1 

(such as S , a, n ) except n . 
1 

So ~_commutes with all kinds of reduction but n , and we have 

~..:-SN and ~-CR (whenoo requirement (0) above). 

Clearly ~-normal forms do not contain defined constants anymore; 

a simple normability argument shows that ~_removes the 1-application 
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parts as well. 

3.3.5. A further property we want ~_to satisfy is CLPT. Since c-CLPT1 

follows from the simultaneous substitution theerem (cf. 2.9.4} we just 

want to know SA1 

or, 

1-!(A}[x:B]C * 1-+ A EB 

equivalently, uo1 

f-
1
[.x:B]C Q [x:a]D * 1- a Q B. 

+ + 

Here turn up the problems with 1-expressions, announced in 3.3.1. 

To evereome these we seemingly modify our system: 

(1) we exclude n1-reduction 

(2) we change our 1-application rule into 

I.3' A E a, i- 1
B red [x:a]C •I-1

{A}B 
- + 

where red_ is ~ restricted to the correct expressions, i.e. generated 

by 

Clearly I. 3. * I. 3 •., so the modification is a restriction. 

However, af ter ha ving proved ?,-CLPT (whence U El , see sec. 3. 3. 6) , UE2 ar 

UE3 (sec. 3.3.7) for the modified version, we shall be able to show 

that both I.3 and n
1
-equality: 1- A, A >

1 
A', 1- A' • 1- A Q A' are 

+ n + + 
derived rules. Hence·the two versions off-+ are equivalent, and we 

have the desired properties for the original +-system. 

3.3.6.1. For the modified system the property SA1 is clear, so we have 

the theorem (~-CLPT): 1- A (E a), A ~ A 1 * 1- A 1 !E a) 
- + - + 

Proof: Since we know o-CLPT, and ~~ is just = on the non-1-expressions 

we only need to consider A of degree 1. Use, e.g., a double inductie~ 

viz. (1) on 6_(A) - i.e. the length qf the ~_-reduction tree of A, (2) 

on length(A). The only interesting case is when A = {A
1

}A2 , A
1 

E o., 

A2 red_ [x:a]C. If A1 ~A{ then A1 ~cA{ so by o-CLPT A{ E a. 

If A2 ~ A2 then by the ind. hyp. and by ?,.-CR: A2 re<!_[x:a']C', 

[x:a]C' red_ [x:A 1 ]C'. soA; E a' and 1-+{Ai lA;. If A
2 

E [x:A3 JA 4 then 

A
1 

E A 
3 

( this is SA 
1 

) and 1- +A4 [A 1 ]. 

Since a reduction A ~A' starts with an inside or with an out

side reduction, we are finished by the first ind. hypothesis. 
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3.3.6.2. Corollary (UEll: ~/ '"" f- /~ Q 

1 
3.3.7. Theorem (UE2 and UE3): Consider the systemwithout n and with 

r~le I.3'. Then Bt , resp. B; , resp. B;~ (E/Q B) '"" 
+ 

Proof: By induction on f- +' using 2;:-CLPT. The interesting rules are 

(i) appl. rule I.3': let f-+A E a, f-+B red [x:a]C. By ind. hyp. 

1-:~ E a-. Clearly B- = [x:a -]C- and by ind. hyp. , so x E a-f-

so f- ((A} B) = C-G A-], q.e.d. 

(ii) instantiation rule (vi'): let 13 contain a scheme E * 
(possibly followed by *a(y) E ~). Let f.

1 
be the book preceding this 

scheme. By ind. hyp. B~; y E S- f-D- (E C-}. Now if B;i; ~Ë E , then 

by inct. hyp B- ;i;- !-B- E (B[ËDJ - 6-[i=;;-], so f- (d 

(E (C[B]J- :::: Cffr~), q.e.d. 

() (iii) Q-rule: let f-- +A Q B, f.- +C, B > C. By ind. hyp. 
1 

commutes with all other reductions, except possibly n which Since ~ 

we have forbidden, we find B- ~ c- so by CL for Bn-AUT-QE 0 
and!-.4 Q C-, q.e.d. The case that C ~ B insteadis cornpletely si~ilar . 

. 3.8.1. Now we prove that I.3. is a derived rule in the modified 
1 1 -

systern. So assume f- +A E a, f- +BQ [x:a.]C. By 3.3.71- B Q [x:a 

whence B- must be [x:BJB
1 

with f-a Q S and j- +a Q B. Further, by 

3.3 •. 1., 1- B red B-and by I.3' !-+{A}B, q.e.d. 
+ -

. 3.8.2. Similarly, n1
-equality is a derived rule. Let 1- +A' 1-

~ 1
• We 2an assume that degree(A) = 1. By induction on length(A) 

we prove that f- Q A'. The interesting case is when A = [x: a
1 

]{x }A 1
, 

.:::i FV ').As in 3.3.8.1., x E ~l f-+.4' red_ [x:a
2

JA
1 

with x i FV 
1 

By SA x E a
1

1- +al Q a. 2 and by strengthening t +al Q a
2

• So 1- +A Q 

[x:a
1

JA
1 

Q [x:a
2

JA
1 

Q A', q.e.d. 

3.3.8.3. Hence the system with I.3 and n
1
-equality is equivalent to 

the system with I.3' and without n
1
-equality. So we have SA1

, ~_-CLPT, 
and for the original system of Bn6-AUT-QE+ now. 
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3.3.9. The proof of CLPT 

3.3.9.1. As in 3.2.6.5, we can prove CLPT1 from outside-CLPT
1

, by 

induction on correctness. Clearly o-CLPT (and a fortiorio-outside

CLPT 1) is included in '2 -CLPT, so we just need 13- and n-outside-CLPT 
1

• 

In the next sectien we infer PT3 and SA from our UE-result, which 

leaves us to prove the 2 2 . 13 - and n -case of outs:~.de-PT 1 only. These two 

cases are dealt with in 3.3.9.3. 

3.3.9.2. Consider the properties mentioned in 3.1.5. In this sectien 

we distinguish the two verslons of a property (viz. for the smaller 

and the larger system) by providing the latter with a + below. It 

is clear that 

UTi • UTi and 

whencè UT3 
+' 

uri 
+' 

3 
!'T+ and 

The property UD is also preserved in passing to the larger system, anê 

in fact, as in 3.2.3.1, 

f- +[x:a]A Q [x:B]B,.. 1- +a Q 8, (X E a 1- +A Q B) 

3 3 1 i . 
Byi LQ+ we have t*+). SA+ we knew alr:ady. _:'OW w: s~ow SA+ for :~.#1: 

f- +{A }[x:B]C. Since i#1, ({A }[x:B]C) :::: {A }[x:B ]C , so by UE
2

, 
·- -- -- 3 1-J.{A }[x:B ]C and by SA, f-A E B • Hence by LQ again, we have 

+ 

let 

SA! for i#l as well. 

3.3.9.3. In sec. 3.2.5 we used cantyp in proving s- and n-outside-PT~· 
The sameprocedure applies in the +-system, but with typ (defined as 

in IV.3.~ insteadof Cantyp now. In particular we have 

!ii'l typ<d<Ä>> = typ<d>UÄU 

for defined constants of degree 2 and 3 now 

and (iv) typ({A}B) {A }typ (8) 

for both B of degree 2 and 3, 

As in 3.2.4,2 we get 

f- : A E a * f- +A E typ (A 1 ç:: a 

and, 



as in 3.2.5.2., 

E a, (x E at- 2
CJ ~typ(CGA]} typ(7) ITA] 

Sc, as in 3.2.5.4 and 3.2.5.5, we get 

!- }[x:BJC ~ typ({A}[x:B]C) Q typ(CUAOl 

whence B-outside-PT
2 

1
, and 

+, 

1- ~[x:a]{x}h., x i FV (A) ~ typ ([x:a](x}A) Q typ (Al 

whence n-outside-PT
2 

1
• 

+, 

3.3.10,1. In 3"3,9.2 we have carefully avoided the properties which 

do not hold in the larger system,in particular LQ2 
and (*

2). Fora 

counterexample let d(x) be defined by x E T * d(x) [y :X ]x, with 
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typ(d) ~ T. If a E T, then d(a) Q [y:a]a E :a]T, but certainly not 

d ) E [y:ah, so not LQ2. If, furthermore, A E a, then 1-{A}[y:a 

but: not HA (a) , whence not 
2 

(* ) • Consequently, the 

a definitional extension of the old system. 

3.3.10.2. Besides, if we stick to our counterexample, 

.. E i(u.) 1-z E [y:a]a, so z E d(a) .f-·{A }z E a, but not 

+-system is 

_, E (a) HA}d(a) (:= typ({A}z)). This shows that typ applied to 3-

not 

expressions can lead us out of the correct expressions (in contrast 

with the situation in the smaller system), and that not: 

2 
3.3.10.3 In the next section we restare {*) and LQ by a further ex-

t:ension of the language. But first we give a theorem stating some very 

weak versionsof LQ2 
to hold in Bno-AUT-QE+ insteadof LQ2

• Reeall 

the symbol 0 from sec. 3.2.3 and the result (sec. 3.2.4.3, 3.2.6.1) 

for Sn-AUT-QE: 

Theorem: Let 

1-AEB, 1-AEC'*' I-BOC. 

E B, 1- + C E D, 1- A Q C. Th en 

E D or I- c E B 
+ 
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Proof: By UE we get 1-A- E 

;3!1-AUT-QE we get 1- c- E B-

, 1-C- E D-, j-[ Q C- By LQ for 

so 1- B- 0 D- , so 1- B Q B- 0 D- Q DI 
+ 

i.e. !- +'0 0 D, i.e. B CD or D C B, q.e.d. 

3.3.11.1. The aforementioned ancmaliescan partially be removed by 

properly extending Snö-AUT-QE+ to a language S!lÖ-AUT-QE*. In this 

new system we first replace the application rules by 

( 1 l B Q [x: u ]C, A E u * 1- {A }B 

(2lBEC, 1-{A}C*HA}BE{A}C 

Rule (1) is simply !.3 without the restrietion to degree 1. Rule 

(2) is III.3.B' (sec. 2,15). So, indeed, AU'I-:QE* extends AUT-QE+. 

3.3.11.2. By this modification we gain the property 

1- 3A * 1- typ(Al 1 so it is a proper extension. 

Furthermore, by n-reduction we get 

BE [x:u]C ~ BQ [x:u]{x}B, which yields property (*) 

for the new system. 

Our counterexample, however, shows that there are still problems: 

LQ2 does not hold, so we do not yet have a definitional extension of 

AUT-QE. Besides, now the new 2-expressions (e.g. {A ~(u) in the 

example, which is correct now) do not have a correct typ, and not 

even an E-formula. 

3.3.11.3. The following theorem shows that the difference between AUT-' 

and AUT-QE* just lies in the particular role of the definitional 2-

constants, and that AUT-QE* is an unessential extension of AUT-QE+' 

(though it is no definitional extension). 

Theerem: Let 1- * stand for correctness in AUT-QE*, and let A ' be the 

6
2
-normal form of A. Then 1-*A<E!q B),.. 1-+A'(E/Q B1 )(so 1-[(E/Q ). 

Proof: Induction on 1- *. 

3.3.11.4. A drastic way of combining 2-constants with type-inclusion 

and still preserve LQ, is to add LQ explicitly to the language defini

tion1 or at least something like 

]-
2
A,CEB 1 A~~C* AEB 
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Adding this rule to Sno-AUT-QE+ produces the smallest defini

tional extension of AUT-QE which includes Sno-AUT-QE+, and it gives 

us AUT-QE* plus all the missing E-formulas. 

An alternative way of defining this new system (We still calZ it 

AUT-QE*) is by ignoring the type-assignment part of definitonal 2-

schemes, and by defining the typ of a definitional 2-constant to be 

the typofits definiens (compare the definition of u in IV.4.4). 

From the latter definition of this new system it will be clear 
2 

that our desirable properties (except UT , of course) can be proved 

for it by the same methods as used in the closure proef of AUT-QE+. 

3.3.12.1. Up till now we have, for definiteness, just compared 

Sr:-AUT-QE with Sno-AUT-QE+ (and Sno-AUT-QE*), i.e. we made the exten

sion in one step and added the definitional constants and the 1-appl

expressions simultaneously. One can as well, of course, consider 

intermediate languages like Sn-AUT-QE+ and Snè-AUT-QE. 
2 

Then one notices that the problems with (*), LQ and typ are ex-

clusively due to the ó(in particular and nat to the + in 

3~6-AUT-QE+. Thus Sn-AUT-QE+ satisfies LQ and (*), and is a neat de

finitional extension of Bn-AUT-QE, .whereas Snó-AUT-QE has all the un

pleasant features of Bnö-AUT-QE+. In fact, Bno-AUT-QE+ is a definitionru 

extension ofSnó-AUT-QE, and Bno-AUT-QE can only be made into a 

definitional extension of Sn-AUT-QE (call this new system from now 

on AUT-QE') by adding a rule like in sec. 3.3.11.4. 

3.3.12.2. If one takes AUT-68 instead and adds an application rule: 

A E a, [x:a]C Q B E T ~ {A }B E T 

(compare 3.3.11.1, rule (1)) one gets the corresponding +-language. 

(i.e. smallest value degree smallest function degree), AUT-68+. 

These systems are easier to handle than AUT-QE: bath AUT-68 and 

AUT-68+ satisfy UT, LQ and (*),even in the presence of definitional 

constants, and AUT-68+ is a definitional extension of AUT-68. 

Without definitional constants, AUT-68+ is already contained in 

AUT-QE, but Bno-AUT-68+ is not contained in Bnó-AUT-QE. rt is 

contained, though, in the system AUT-QE' of 3.3.12.1. 

Closure for AUT-68+ can, e.g., be proved by the methods of the 

next sectien (see 3.4.5). 
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3.4. Same easier closure proofs 

(for simpler languages) 

3.4.1. There are various ways of proving closure for simpler languages, 

such as Sn-AUT-68 or So-AUT-QE. First, .one can take the closure proef 

of the previous sections and adapt it to the language under considera

tion. Since n-reduction, type-inclusion and liberal degree specifica

tien (in particular for function degree) are responsible for many 

technical details in the proof, the simpler languages allow some 

obvious simplifications. E.g. if a language lacks n-reduction we can 

clearly skip the n-closure part and, besides, we can freely use CR. 
Or, if a language has more restricted function degrees (AUT-68 vs. 

AUT-QE, non-+-languages vs. +-languages), we have to push SA, LQ, UD 
etc. through less degree levels. And, if a language lacks type-inclu

sion (AUT-68 and Nederpelt's A), we simply have PT * LQ, and do not 

need to introduce sarnething like cantyp for this purpose. 

A second approach is suggested by the fact that our language de

finition contains some technicalities which are only introduced to 

make the closure proef (i.e. this kind of closure proof, for a 

complicated language like Sn-AUT-QE) possible. In particular, I intend 

the use of the restricted Q-rule V.2 insteadof the more liberal V.2', 

i.e. the use of the restricted system type I, instead of the liberal 

system type II (see sec. 1.2.). Reeall that after having proved 

closure for I, I and II can be proved to be equivalent, and that, 

after all, we are more interested in system II than in system I. 

Now it turns out that, for the simpler languages, the modifica

tions in the language definition .{and the detour via system I) are 

superfluous, and that we can give a direct closure proof for a type II 

language definition. 

Such direct closure proofs are presented below for all theregulal 

languages which either lack n-reduction, or have just function degree 

3: S(o)-AUT-68{+), S(o)-AUT-QE{+) and Sn(o)-AUT-68. A mere sketch is 

given for Sn(o)-AUT-68+ {for the definition of AUT-68+ see sec. 3.3.12 

3.4.2. So we give these languages by an E-definition with Q-rule 

V.2': A Q B, B + C, ~C * A Q C 
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which a priori is stronger than V.2 but later turns out to be 

equivalent. The properties in secs. 2.9, .10 such as the 

coPrectness categories, and the property: of domain 

degree, t. of value degree, x E a f-A • f- [x: a A simply go through. 

As in sec. 3.1., we essentially just need SA for proving closure. 

So below we confine ourselves to SA and, in conneetion with this, 

UD for the various languages. We start with the n-less languages. 

3.4.3.1. Theorem: UD for n-less languages 

Proof: Let [x:a]B Q [x:a]C. Then by CR, [x:a]B + [x:a]C so a + and 

~ ~ whence a Q S and x E a 1- B Q C. 

3.4.3.2. Corollary: SA1 
for S{o)-AUT-QE+, SA

2 
for S(è)-AUT-68+. 

Proof: Let A E a, [x:B]C Q [x:a]D. Then B Q 50 E B. 

3.4.3.3. Let C bedefinedas in sec. 2.14. We need a lemma: 

c:r, 

1 
~ .:;

1
, a

2 
rS

2
, etc.) 

Proof: Induction on C. 

with lal = 181 and a + B (i.e. 

3.4.3.4. Corollary: SA2 
for S(o)-AUT-QE(+), SA3 

for 13(8)-AUT-68(+) 

Proof: Let A E a., [x:BjC E [x:a]D. Then [x:B]C E [x:B]F C ~x:alD. So 

by the previous lemma B Q a and A E B. 

3.4.3.5. Now in order to get SA 3 for S-AUT-QE(+) weneed a lemma 

again. Notice that the proof of this lemma fails when there are 

definitional constants. 

Lemrr;a: f- 2
A E B, B c;;, , A lal = 181 ~ a + S 

Proof: Induction on the length of A. The interesting cases are: 

{ ) ;!_ -

with s2 i32· 
+(S1,i32>-

By 

s, 

E 

the ind. 

q.e.d. 

(2) A , A1 E y, E [z: 

By 3.4.3.3 again, B
1 1

] 2: 

degree 1 and bas degree 3, 

hyp. 

E ]B1 

C(l + s 1 
and B 

1 

[12 "' ' so ~ 

S 1 • Because 

with i3
0

WA
1

] 2: S'. 

c 

anà 

has 
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Similarly, since A
2 

has degree 2, if {A
1

} A
2 

2: [x:ëi]C then A
2 

~ 

[z:y'][x,;:;
0

Jc
0 

with ;:;:
0

(A
1
D ~ ä:, c

0
[A

1
) 2: c. By the ind. hyp. ä

0 
-t s

0 
so ; s ä

0
UA

1 
0 -1- ~ 0 UA 1 1 ;:: ä and by CR ä + ë, q.e.d. 

3.4.3.6. Corollary: SA3 for 8-AUT-QE(+} 

Proof: Let A E a, [x:B]C E D E [x:a]F. Then [x:B]C E [x:B]G Q D whence 

D 2: [x:B'JG' with B 2: B'. By the lemma B i- a, so BQ a and A EB. 

3 .4. 3. 7. So we have SA for 8 (o) -AUT-68 (+} and 8-AUT-QE (+). In order 

to tackle the Bó-case of AUT-QE we first prove ó-CLPT, which give us 

an unessential extension result. Then we can either extend SA directl) 

or first extend the lemma 3.4.3.5 to Bo-AUT-QE+ and praeeed as before. 

3.4.4.1 Now consider Bn-AUT-68. we cannot useCRanymore. 

Theorem: UD2 
for 8n-AUT-68. 

Proof: All 2-expressions are of the form [x:ëi:Jy or [x:äJp(ëJ. Sa if 

1- 2: [x:S]B, then A = [x:aJA
1 

with a 2: B. By ind. on Q we can prove: 

if f- 2
A Q [x: SJB then A := [x:aJA

1 
with a Q B • This gives UD2

. 

3.4.4.2. Corollary:SA for Sn-AUT-68 

Proof: Immediate. 

3.4.4.3. The same proof works as well for Bnö-AUT-68, as fellows. 

Lemma: j- 2
A 2:

0 
[x:aJA

1
, 1- 2

B, A + B "~> B [x:BJB
1

, a + B. 

Proof: Since 2:
0 

commutes wi th ?. , [x: a JA1 :?: [x: a' JA{ E s B. By 

ó-advancement (sec. II.9.3), B ?.
0 

C 2: [x:o."JAi' sofx:a'JAi. Here the re

duction C 2: [x:a"JA~ does not contain ö-reductions so C::: Jx: wit:t 

B 2: a" s ei .Sa, q.e.d. 

3.4.4.4. By the simultaneous substitution theerem we have ö-CLPT 

again. Then by induction on Q we can prove: 

2 1- F Q [x:B]B "~> F [x:a]A, o. Q S. 

2 This gives us UD whence SA, as before. 

3.4.5. It is possible to extend these results (for Bn(ö)-AUT-68) to 

the corresponding +-language Sn(ö)-AUT-68+, but it is rather 

complicated. We can use a mixture of the methods in 3.4.4.3 and 
2 

3.4.4.4 and the methods in sec. 3.3. Thus we start with leaving n -
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reduction out of consideration, and restricting the appl-rule of 

degree 2 to: A E a, \-
2
B ~ [x:S]C, a ~ S ~ ]-{A }B. 

Later on these two restrictions prove to be immaterial. For the 

restricted system SA2 
is immediate and s2

-closure is guaranteed. Then 

we neEdê-S
2
-advancement and the fact that oS

2
-reduction commutes 

with ~, and get: 

)-
2
F Q [x:S]B ~F ~862 [x:a]A, a Q S. 

This yields UD
2 

I and SA
3 

and we are finished. 
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V.4. The equivalence of the E-definition with the algorithmic 

definition 

4.1. Introduetion 

4.1.1. Since in the E-definition the correctnessof expresslons and 

formulas (relative to a correct hook and a correct context) was 

given by an ordinary inductive definition, the correctness relation 

is a priori just recursively enumerable and not necessarily recursive 

i.e. effectively decidable. 

In this section V.4, though, we prove the decidability and 

discuss some related topics. First we give some introductory considerë 

ti ons leading to a sketch of a decision procedure ( secs. 4. 1 • 3-4. 1 • 6) • 

The whole verification process is, in principle, reduced to the 

verification of Q-formulas, for which the decidahility follows from 

the normalization property N and the Church-Rosser property 

( cernpare sec. I I. 5. 4). 'Yle can u se normalization freely because we 

proved N for a very large system in IV.4.5, but Sn-CR we do not know 

yet. Therefore we assume throughout V. 4 propePty CR foP the eorl'e::Jt 

expPessions, foP the proof of which we refer to Ch. VI. 

4.1.2. Then (sec. 4.2.2) we present the actual algorithmic definition, 

to he adapted for the various languages hy a suitable choice of a re-
• 

duetion relation, of a typing function cantyp and of a domain tunetion 

dom for the computation of domains (sec. 4.2.3., 4.2.4). 

The equivalence proof in sec. 4.3 is organized as sketched in 

sec. 1.2 and 1.6, with the following effects: 

(1) the strengthening rule can he skipped from the E-definition 

(2) the E-systems are decidabie 

(3) the algorithmic system satisfies the nice properties of the E

system: closure etc. 

The final sections concern the verification of Automath languag~ 

in praetice, This is a matter completely different from the 

theoretieal decision procedure discussed hefore. Particularly some 

remarks are maàeon suitable reduction strategies for deciding Q

formulas. 
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4.1.3. Deciding Q and C 

No matter whether a systern has Q-rule V.2 or Q-rule V.2', there holds 

A Q B ~ f-A, ~B, A + B 

Proof: ~. By induçtion on Q, using CR. 
<'. This is precisely rule V. 2' so ei ther i t holds by def in i tion 

or it follows frorn CL. 0 
So, by N (as in II.5A), for correct A and B, Q B is decidable. 

In i3 (",) -AUT-QE all 1-expressions are of the forrn [x:(:;h. 

We have 

and (sec. 3 • 2. 3 . 1 ) • 

~ 1
A C [x:BJB

1 
'-'*A 

So, for correct 1-expressions A and B, AC B is decidable (use induc

tion on the length of B). Since on non-1-expressions C is just 0, 

this is true for A and B of other degrees as well. 

Let f- stand for correctness in i3 (n) -AUT-QE, 

system, like Snö-AUT-QE+ or Sno-AUT-QE* and let 

normal forrn. By UE (secs. 3,,3.2, 3.3.3) we have. 

1- for sorne larger 
+ 1 

denote the 13 o-

So, in the larger systerns, too, AC B is decidable, for correct A and 

B. 

4.1.4. Deciding E~formulas 

In principle, E-formulas A E B, for correct A and B are going to be 

decided by the equivalence 

A E B ~ typ (Al C B 

which reduces the E-formula to a C-forrnula. 

However, there is some trouble with typ. First, typ can lead us 

out of the correct expressions of the language we consider. There 

are two ways to solve this problern: first one can introduce for each 

language a specific modified type-function cantyp (for: canonicaZ 

type) which does not suffer from this defect. Then we get what we 

want (as in 3.2.4 for AUT-QE) 
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A E B <:=:> i-A, f-.B, cantyp(A) C B 

Alternatively, one can use the fact that the new, possibly in

correct expressions created by typ in general are correct in some 

larger system (e.g. the corresponding +-system) • Then one can dec i de 

the E-formula in the larger system: 

A EB ..,.. i-A, l-8, 1- +typ(A) C S 

where f-. + stands for correctness in the larger system. 

If we make sure that 1- +cantyp(A) Q typ(A) then 1 by conservativi

ty, the two approaches are clearly equivalent. 

A second difficulty with typ occurs exclusively in AUT-QE' anà 

AUT-QE*. These languages have the rule: f-. 2
B, f- C E D 1 B C * 

f-.B E D1 and for the new category Dof 8 the property typ(B) CD (even 

if typ(8) is correct) is not necessarily true anymore. 

This problem can be solved by taking a type-function which first 

eliminatas all the o2-constants. For a o2-constant d we have then 

cantyp(d(Ä)) cantyp<o2-nf(d(A))). 

4.1.5. Deciding correctnessof expressions 

All correct expressions relative to a correct B and a correct ~ have 

to be B; ~-expressions 1 i.e. the constants have to be in B and the 

free variables have to be in ~· The verification of compound 

expressions can roughly be described as: verify the subexpressions, 

plus their possible type- and degree-restrictions. E.g. for abstr

expressions use the equivalence 

1- [x: et ]A ~ 1- et 1 a of domain degree, x E ex 1-A , A of value degree. 

For the subexpressions Ë in a;Ël there are type-restrictions 

prescribed in the scheme of a, viz. if the context of the scheme is 

y E 8 then 

f-.e(Bl <:=:> Ë E S[ËJ (i.e. B1 E s1, 8
2 

E s2[b1] etc.) 

To verify the right hand-side first verify f-. B 1 • Since 1- S 1 
(it occurs in B), we can decide a1 E 81 as indicated above. Then 

check l-82. Since 81 E 81 and y 1 E st l-132 we know f- 132[8 1 n so we can 

tackle the next E-formula etc. 



4.1.6. Verification of application expressions 

Now we discuss the type-restriction implied in the correctness 

of {A W. We restriet ourselves to AUT-68 and AUT-QE here. 

Define a to be a domain of B if 

(i) B E [x:a]C for some C, or (ii) B E E [x:a]D for some C, D. 

Then, in view of the formation rules for appl-expressions, we 

have the equivalence: 

]-{A}B- 1-B, B has a domain a, A E a. 

The arbitrariness w.r.t. the domain can be somewhat reduced by 

another property of uniqueness of domains, viz. 

if a
1 

and a
2 

are domains of B then Q a 2 

(which will be proved below, 4.2.4.2). This allows us to modify the 

equivalence: 
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f- {A }B - 1- B, B has a domain, and 11 (B has a domain a ~~ A E C'Q 
Ct 

i.e. we need just one domain to check the type-restriction. 

If one fixes a particular procedure for the computation of some 

domain of an expression, one can define a domain funct1:on dom 

(specific for each language). E.g. for AUT-68 one might inductively 

de fine 

ó 2-nf(cantyp(B)) =: [x:a]C ~ dom(B) =:a. 

Now define an extended reduotion relation 4, as fellows: 

(i) 

(ii) A+typ(AJ 

(iii) + is transitive. 

Then, an alternative way to compute a domain of an expression 

is to perfarm a more or less specified search through the +-reduction 

tree of B until one possibly encounters an abstraction expression, 

say [x ::>:]C; if so, this a is some domain of B. Certain restrictions 

(specific for each language) have to be imposed upon the search in 

order to guarantee that not too many expressions get a domain in this 

way. 

Just like property N (at least o2-N) is crucial in the definition 

of dom above, the well-foundedness (i.e. property SN) of+ is needed 
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for the terminatien of the second procedure. This will indeed be 

proved below (4.4.11). 

As a whole, the situation with the two possible ways of finding 

a domain can be very well compared with the two ways of deciding a 

Q-formula: either one can compare normal forms (use Nl or one can 

search for a common reduct in the respective reduction trees (use SN). 

4.2. The algorithmic definition 

4.2.1. Now we give, guided by the considerations in the preceding 

sections, the algorithmic definition of correctness. Apart from the 

compatibility condition of def and typ (see below), the book-and

context part of the definition is as usual (see IV.3) and will be 

omitted. So we just define the correctness of expresslons and 

formulas (new notations ~ , E , Q and C , with the subscript for 
a a a a 

"algorithmic") in termsof reduction, dom and cantyp (sec. 4.2). Later 

we discuss the choice of cantyp and dom for the various regular 

languages (4.2.3, 4.2.4). 

4.2.2.1. Let B;~ ~ • The conventions for omitting B and ~ in 
a 

B; ~ ~ A are as in V. 2.1 • • Degrees are indicated as superscripts and 
a 

defined as usual. The compatibility condition reads: def(d) E typ(d). 
a 

4.2.2.2. Formula part of the definition 

Let A and B be B; ~-expressions (so not necessarily correct). We 

define: (i) AQ B:.-A+B 
a 

with the straight forward extension to strings: Ä Q B. 
a 

{i i) A C B, if degree (8) =· 1 :-

13 161-nf(Al 
a 

1316
1

-nf<Bl = [x,äJA 1, [x:13h, ä Qa 1L 
(iii) AC B, if degree{B) # 1 - A Q B a a 
(iv) A E B : - cantyp (Al ca B a 

with a straightforward extension to strings A E B. a 

4.2.2,3. Expression part of the definition 

{i) 



(ii) f- X : - x occurs in é; a 
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(iii) 1- a;B1 • ••• 1 B l : - 1- B1 , ... , l-a m a B , c occurs in B and, 
m 

if the scheme of a has context y E then B E S [ËD. 
a 

(iv) A E B : = cantyp(AJ C B 
a a 

with a straightforward extension to strings Ä E B 
a 

4.2.2.3. Expression part of the definition 

(i) 

(ii) 

(iii) 

}- 1 T 
a 

f- x: - x occurs in t; a 
1- c (BI I ••• ,B ) ;ÇO 1- El I .. • I l-a m a 
the scheme of c has context y E 
t; 1-- [x:a]A 

a 
• 2 E :*+ t; r a and é;, x a 

, c occurs in 
m 

then B E s~ËD. 
a 

and A has value 

B and, if 

degree. (iv) 

(v) f- {A }B :*+ 
a 

3 a 
f- A , 1-- B, B has function degree 1 A [a dom (B) 

a a 

4.2.3. The chóice of cantyp 

4.2.3.1. For our purposes (see 4.1.4) we require that, for correct A, 

cantyp(A) is as well correct, is a category of A, i.e. A E cantyp(A), 
and is minimal with respect to C: A E B ~ cantyp(A) C B. 

This leaves us still a lot of freedom for our choice of cantyp: 
e.g., as long as different definitions of cantyp yield definitionally 

equal results, they are equally good to us. In some languages typ 
itself roeets the requirements mentioned above, viz. Bn-AUT-QE+ and 

Nederpelt's A. In most languages, however, typ causes some problems, 

e.g. there are correct expresslons with incorrect typ; then we choose 

cantyp to be some suitable modification of typ. 
Below we give a survey of the difficulties with typ, and how 

these can be solved by cantyp. 

4.2.3.2. We start with the languages where the trouble with typ is 

due to mere degree restrictions. 

(1) Bn-AUT-68: if 1- 2[x:cdB then its typ is not correct in AUT-68, but 

is a typièal AUT-QE-expression. Then cantyp of this ex?ression has to 

be T. ?urther, typ({A}BJ where degree(B) = 3, is incorrect in AUT-68 
~ 

but correct in AUT-68+ (so, tiee 3.3.11.2, in AUT-QE). In cantyp ({A }B) 

we have to remave the a;;>9licator {A}, so we can define cantyp ({A} B) 

COAL where cantyp(B) ~ [x:a]C. This is the same idea as in 3.2.4, but 
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now for 3 of degree 3. 

(2) .~n-AUT-QE and Sn-AUT-68+: Application of typ to {A }B of degree 2 

yields AUT-QE+ expressions. For AUT-68+ cantyp of these expressions 

has to be 1. For AUT-QE .we. remove {A} from cantyp, by 6-reduction as 

in 3.2.4 (and in (1)). 

4.2.3.3 Now we add definitional constants. This gives rise to the 
2 interference of o -constants and type-inclusion, discussed befare in 

3.3.10-3.3.12. 

(3) Bnó-AUT-68: Consider the example of 3.3.10 which is also correct 

in AUT-68. There occurs an {A }B of· degree 3 such that typ ({A }B) does 

not belong to AUT-68 (of course not, as in {1)), doesnoteven belong 

to AUT-QE and AUT-QE+, but does belong to AUT-68+, AUT-QE' (3.3.12.1) 

and AUT-QE* (3.3.11). Again, we must remove the applicator in cantyp, 

but we cannot be certain anymore that cantypCBl is an abstr-expressio~ 

Therefore we define cantyp ({A }B) C[A J, where ö2 -nf (cantyp (8)) 

[x:a]C. 

(4) Snö-AUT-QE(+}: The same expression typ({A}B) of (3) is again in

correct here. Now the applicator is allowed in cantyp, but we need the 

ö2-reduction in order to remove the effect of the type-inclusion: 

cantyp ({A )BJ : {A }(ö2 -nf ccantyp (8) J J. 

(5) Bnö-AUT-68+: This language has 2-expressions {A }B (see 3.3.11.2), 

the typ of which is incorrect in all the languages, and even not 

normable, e.g. {A}r. The cantyp of such {A}B must beT. 

(6) Bnö-QUT-QE' and Bnö-AUT-QE*: Here we have the same {A }B of degree 

2 of AUT-68+. Besides, the typ of a degree 2 definitional const-ex

pression (even if typ is correct) need not be a minimal category 

anymore, Therefore wedefine cantyp(d(Ä)) ::cantypcö2-nf(d(Ä))). Then 

for the cantyp of {A}B of degree 2 we can simply take {Akantyp(B) in 

AUT-QE*, whereas in AUT-QE' we must take CijA) where ö
1

-nfccantypCBJJ = 
[x:a]C. 

4.2.3,4. Resuming: we have three types of difficulties, viz. 

(i) In AUT-68(+) the only 2-expression is T, so the typ of 2-ex

pressions can be incorrect. Remedy: define cantyp to beT. 

(ii) In non-+-languages (AUT-68, AUT-QE and AUT-QE') the typ of {A}P, 

of minimal function degree (say: i) is incorrect. Remedy: create 
i-1 

an abstr. expression by taking the (Sol -normal form of 
i-1 cantyp (B} and remove {A} by another 6 -reduction. 
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(iii) In languages with -constants and type-inclusion typ produces 

incorrect appl-2-expressions (AUT-QE(+)) or appl-1-expressions 

(AUT-QE' and AUT-QE*). Besides, in AUT-QE' and AUT-QE* the 

typ of a -const-expression is not necessarily a minimal 

category. Remedy: remave the o2
-constants after (AUT-QE(+)) or 

befare (AUT-QE' and AUT-QE*) taking cantyp. 

4.2.3.5. In view of the arbitrariness of cantyp (4.2.3.1) weneed 

only three different definitions of cantyp, one for the AUT-68-

family, one for the restricted AUT-QE languages AUT-QE and AUT-QE+, 

and one for the liberal AUT-QE branch {AUT-QE' and AUT-QE*). Since 

the above list of difficulties is exhaustive, for the rest (e.g. for 

variables and const-expressions) the definition of cantyp differs 

only as regards the following clauses: 

(1) for AUT-68 and AUT-68+ 

(i) 

(ii) 

(2) 

(i) 

~ . . \ 
. ~l; 

degree(B) 2 ~ cantyp(B) T 

2 2 
degree(B) = 3, S ó -nf(cantyp(Bll [x:a]Co=>cantyp({tl}B) 

C[A 

for AUT-QE and AUT-QE+ 

degree(Bl 2, s1o1-nf(cantyp(B)) - [x:aJC ~ cantyp({A}BJ :~ 
C(.-".D 

degree (8) 3, ~ cantyp({A}BJ .- {A}(ó
2-nf{cantyp(Blll 

(3) for AUT-QE' and AUT-QE* 

(i) 

(ii} 

- 2 -
degree(dl 2 ~ cantyp(d(A)) cantyp(6 -nf(d(Alll 

degree(B) ·= 2, S
1

ó
1-nf(cantyp(BJl = [x:c.]C ~ cantyp( }B) 

CGA] 

4.2.3.6. That the proposed definitions of cantyp actually satisfy the 

requirements of 4.2.3.1 can be proved directly for the E-systems using 

the results (CLPT, LQ, UE etc.) from sect~on 3, but will become clear 

as well in the course of the equivalence proof, below. 

4. 2. 4. ·The choice of dom 

4.2.4.1. We start with a recapitulation of the appl-rules for the 
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various languages. First, the appl-rules of AUT-68 ({1) A E a, 

BE [x:a]C • 1-{A}B) and of AUT-QE ((2) A E a, BE CE [x:a]D • 

1-{A}B) are simply valid in all the languages (though rule (2} is 

vacuouslyso in AUT-68(+}}. Then, additionally, rule (31 ) 

(A E a, 1- 1
B Q [x:a]C • 1-{A }B}; this rule is with i ., minimal value 

degree necessary for defining the +-languages AUT-68+ {1:=2}, AUT-QE+ 

and AUT-QE* (i=l}, For languages satisfying LQi, where i is not the 

minimal value degree, rule (3i) is a derived rule. Indeed, for such i 

is 1- 1Cx:a]C E [x:.a]D so by LQ1 
B E [x:a]D. Hence, rule (33) is 

anyhow valid, rule (3
2

} is valid in the AUT-QE languages without ö2
-

1 
constants, further in AUT-68+, AUT-QE' and AUT-QE*, and rule (3 ) is 

valid in AUT-68(+)(vacuously), AUT-QE+ and AUT-QE*. Alternatively 

formulated, rule (3i} is always valid but for: rule (32} in AUT-68 

and AUT-QE(+) with ö2-constants, and: rule (3 1) in AUT-QE and AUT-QE'. 

4.2.4.2. So, for certain languages we must extend the definition of 

domain from 4.1.6 with the clause: (iii) BQ [x:a]C • a is a domain 

of B. The set of domains of an expression is clearly closed under Q: 

a
1 

a domain of B, a
1 

Q a 2 • a 2 a domain of B. 

The converse of this is the announced uniqueness property, which we 

prove bere for the enlarged notion of domain: 

a
1 

and a
2 

both domains of B • a
1 

Q a
2

. 

Proof: From 3.2.3.2, 3.2.4.3, 3.2.5. 7 we reeall the properties of e.r;-
AUT-QE 

i- 1[x:a
1 

]C 0 [x:a
2
JD,. a

1 
Q a

2 
(this includes UD

1
J 

1- 2
[x:a

1 
]C E [x:a

2
JD • a.

1 
Q a

2 
(EUD

2
J 

!- 2
[x:a

1
JC Q [x:a

2
JD • a 1 Q a 2 <UD2

J 

3 3 Now let 1- [x:a
1 

]C E (x:a
2

JD. Then also 1- [x:a.
1 

]C E [x:a.1 ]P. By 
2 ? < UT we get [x:a)D Q [x:a

1
JF and by UO .. : a

1 
Q a.

2
• So we have EUD- as 

3 3 
well. Further 1- [x:a.

1 
]C Q [x:a

2
]D. Then also 1- [x:a

1 
]C E [x:a 1 ]F 

and by LQ3 [x:a
2

JD E [x:a
1

JF. So by EUD3 
: a

1 
Q a

2
• This amounts to 

UD3• These results can all be extended to the extensions of Bn

AUT-QE by translation (e.g. 816-reduction) into Bn-AUT-QE, as follows: 

let 1- +[x:ci
1

1C E/0 [x: ]Li, where 1- + stands for correctness in the 

larger system. By UE, ~[x:a~]C- E/0 [x:a.;]D-, correct in Bn-AUT-QE, 
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so by one of our (EJUD results: ~l Q a
1 

Q a
2 

Q ~2 • Of course, in AUT-

68(+) these (EJUD results are also valid. 

Now we treat the various possibilities for a
1 

and ~2 to be a 

domain of B. 

(1) =x: ]C Q BQ [x:a
2 

Use UO. 

(2) [x:o. 1JC QBE [X:C1.2]D. If necessary, translate (e.g. by 02-

reduction) into a language satisfying LQ: [X:Cl
1 

Q E 

[x:o:;JD- Then by LQ we get [x:o:1 E [x:a;JD-, and can use EUD. 

(3) [x:a1JC Q BEDE [x:a2JF. Use LQ: [x:a1JC EDE [x:a
2

JF. 

But also [x:~ 1 Jc E [x:a
1

JG and by UT3 : [x:a
1

JG Q D we arrive in 

case (2) again. 

(4) B E [x:a
1 

]C, B E [x:~2 JD. Then [x:o:
1 

]C 0 [x so a
1 

Q o: 2 . 

(SJ BE [x:a
1

JC, BEDE [x:~ 2 JF. By UT3 : [x: JC Q D we are again 

in case (2). 

(6) BE E [x:a
1

JD, BEF E [x:a
2

JG. By UT3 
we get C Q F. Translate 

into a language satisfying LQ. This gives C- Q E [x: ]G 

and by LQ C- E [x:a;Jc-. It also gives 

(4) applies. 

E [x: ]D-, and case 

4.2.4.3. It would be nice if the notatien of domain of an exrression 

was preserved under Q: B Q C, a a domain of B ~a a domain of C. This 

is indeed true for languages satisfying LQ, but not for the others, 

viz. Sno-AUT-QE and Sno-AUT-QE+. By CLPT, there holds 

B C, a a domain of B ~a a domain of C 

i.e. the notion of domain is preserved under So the converse direc-

ti on (C :::: B, in particular with o2-reduction), fails in 8;Jê-AUT-QE(+). 

For all the languages we have 

B Q C, a a domain of B ~a a domain of C

where C is the o2-normal form of B. 

Proof: By the translation wearrive in a language satisfying LQ, so 

we get the desired result. from Q , a a domain of 

As a corollary of this, we get 

B Q C, a a domain of B, has a domain ~ a domain of C. 
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4.2.4.4. In view of the above remarks we still have a lot of freedom 

in defining a domain function dom which picks some expression from 

the set of domains. Dom is going to be defined in terms of cantyp and, 

just like cantyp, in termsof ö2-reduction and (8ö) 1-reduction, where 

i is the minimal value degree. I.e. by application of cantyp and these 

reductions we arrive at an expression which we call the domain normal 

JOl~, dnf. If the dnf is an abstr-expression then we read off the 

domain dom from it: 

dnf(B) ~ [x:aJC • domeBI .- a. 

Otherwise, dom is simply not defined. 

The rules for computing dnf are for the non-+-languages: 

(1) AUT-68: dnf(Bl :~ a2a2-cantyp(Bl 

(2) AUT-QE('): (i) degree(B) = 3 .... dnf(B) ·-

81ö1-nf(cantyp(ó2-nf(cantyp(B)))). 

(ii) degree(B) = 2 .... dnf(B) == s1ö1-nf(cantyp(B)l 

2 1 The 8 of AUT-68 and the 8 of AUT-QE(') were only added in order 

to cover the corresponding +-languages too. Now, we can deal with the 

+-languages by simply adding a rule for B of minimal value degree: 

degree(B) i, i is minimal value dagree .... dnf(B) :: (8ó)i-nf(B). 

This rule gives us AUT-68+ from AUT-68, AUT-QE+ from AUT-QE and 

AUT-QE* from AUT-QE'. 

4.2.4.5. That dorn(B), as defined above, gives us a domain if B has 

one, and gives us nothing otherwise, can be proved directly, but will 

also become clear in the course of the equiva~nce proef. 

4.3. The equivalence proef 

4.3.1. As announced before, the equivalence of the algorithmic defini

tion with the E-definition will also prove the superfluity of the 

strengthening rule. To this end we use, along with the algorithmic 

definition system III, two distinct versions of the E-definition, 

system I and system II. Here, system I is the system of sec. 2: it 

bas the strengthening rule and it has Q-rule V.2. System II, however, 

lacks the strengthening rule and has Q-rule v.2' instead. 

By CL for system I, we have: str., v.2 -<str.,V.2') =~> V.2', so 
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system II is clearly included in system I. 

Below we denote correctness in I, II and III respectively by l- , 

!-
0 

and ~; hence the inclusion of II in I becomes: 1-
0 

=<> 1-. 
Now the equivalence of. the three systems is shown by additionally 

proving 1-a • 1-
0 

(sec. 4.3.2) and 1- =<> 1-a (sec. 4.3.3). 

4. 3. 2. The 1- a =<> 1-
0 

-part. 

4.3.2.1. We first formulate the theorem, which we want to prove. 
i+1 

resp. B; ~ 1- a A then B 1-
0 

Theorem: If B 1- resp. 8;1; }- resp. 8;~ l-
a '+la 

resp. B; E; )- resp. BiE;}-~ A E cantyp (A). So the theerem implies 

that cantyp is well-defined on the non-1-expressions of the al gor i thmic 

definition. The proof of the theerem is by induction on !- and 
a 

depends of course on dom and cantyp, i.e. qn the language '-'16 consider. 

However, large parts of the proof can be done for all or some of the 

languagestogether. 

4.3.2.2. Some properties 

(1) f-
0
A, 1-

0
B, A Qa B =<> }-

0
A Q B 

Proof: this is simply rule V.2'. 

< 2 l 1- .. 1-
0
s 1 

ó 
1
-nf <Al Q A 

Proof: By the simultaneous subst. theerem o-CLPT holds. Further SA 1 

1 
can be provedas in 3.3.6.1-3.3.8.2, or holdsvacuously so S -CL. By 

So-CR and Só-N the S1
ó

1
-nf is well-defined. 

( 3) Let f- f-
0
B, A Ca B. Th en )-

0
A C B 

!?roof: For Bof degree 1, by (2) l- Q s1o1
-nf(A) -[x: 

1
c 

} [x: s1o1
-nf(B) Q Bso l-

0
A C B. If degree(BJ;ó 1 this is dl 

again. 

(4) ]-
0
A E cantyp (A), )-

0
B ""' )-

0
A E 

Proef: apply (3). 

(5) The 1-
0
-system satisfies CR 

!?roof: 1-
0 

=1> 1- and we assumed CR for 1- • 
(6) Strengthening for 0: 

E; r Q B, t; 1sub E;, t; 1 f- er' s1 1- =<> s1 1- Q B 

Proof: By ind. on Q we get A + B so 1;
1 

)- Q B. 
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4.3.2.3. Proof of the theorem, part 1 

We only need to give the inductionstep for those clauses 1 in the 

definition of 1- which differ from the corresponding clauses in the 
a 

definition of 1-
0

• We start with the easy cases. 

(1) the compatibility condition 

let 1;*d(x) :=A * d(x) E B be a correct scheme according to the 

algorithmic definition, i.e. 1; 1- A, t;; 1- B and A t: B. By the ind. 
a a a 

hyp. t;; 1-
0
A E cantyp(A), 1-

0
B, so by (4) above t;; 1-

0
A E B, q.e.d. 

(2) expresslons (easy cases) 

(i) 

(i i) 

(iii) 

(iv) 

t; trivial 

variables: let 1; 1- a then by the ind. hyp. 1; 1-
0 

I so for x 

in i;, 1; 1-
0
x E typ (x) = cantyp (x) • 

const~expressions, except o2-const-expressions in AUT-QE' 

and AUT-QE*: let the scheme of c be in B with context 

y E 8. Let 1- Bil ... I 1- B and B E snsn. By the ind. hyp. 
a a m a 

I-
0
B1 E cantyp<B1 J~ I-

0
B

2 
E cantyp<B2> etc. Further y EBI-a 

so y E 81-
0 

so f-
0

8
1

, y
1 

E f\ !-
0

82 etc. so)-
0

B
1 

E 8
1 

and 

by the subst. theorem 1-
0

B
2

[B
1
JI so I-

0
B2 E 8

2
UB

1
D etc. up 

to 1- 0E~ E Sm {BD. The conclusion is 1-
0
a (B) tE typ.(e) [B] :: 

cantyp(e(B))). 

abstr-expressions: let 1; 1- 2 a and 1;, x E a 1- A, A of value 
a 

2 
a 

degree. By the ind. hyp. s 1-
0
a and 1;, x E a 1-

0
A (E cantyp(A)) 

For A of degree 2 in AUT-68 (+) this is 1; I x E a 1-
0
A E t 

which yields 1; 1-
0
[x:a]A E t :: cantyp([x:a]A). Otherwise, 

we get 1; J-
0
[x:aJA (E [x:a]cantyp(A} = cantyp([.r:a]A)l. 

4.3.2.4. Some more properties 

Before discussing the remaining clauses we prove some 

properties of 1-
0

• First something about C. Of course, the 

of 1-expressions are of the form [x:ä]t. As in 3.3.6-3.3.8 

more 

s1o1-nf•s 
1 (leave n 

out of consideration, restriet the appl-1-rule) we can prove, even 

without using CR 

and, by induction on C, 
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1 11 ---- 11 !--
0
A C B .. s :5 -nf(AJ [x:aJ[y:y]T, s :5 -nf(BJ [x: , J-

0
a Q iL 

so we get: 1-~A C [x:S]B~ .. s 1 c 1 -nf(~) = [x:aJA 1 , J- 0a Q , x E a h4 E1 
Now we prove a lemma: ]-

0
A (E E) .. 1-

0
A E cantyp (A) (C B). 

Proof: E.g. in AUT-68(T) there is nothing to prove. Anyhow, the cases 

A T, A a variable or A an easy const-expression (i.e. nota :5
2
-const

expression in AUT-QE' or AUT-QE*) are immediate. For the rest we 

praeeed by induction on ( 1) the length of c1
2 -reduction tree of A , ( 2) 

the length of A. 

Abstraction expressions are easy. If A is a o2-const-expression 

in AUT-QE' or AUT-QE*, by o-CLPT and the first ind. hyp. J-~o 2-nf(A}[ 
cantyp(o 2-nf(A)) cantyp(A) (C B). Then by the extra type modification 

2 
rule of these languages we get l-

0
A E cantyp(A) (C B), q.e.d. Now let 

A ::: {A
1 

M
2

. We have i-
0
A

1 
E a, 

0
A

2 
E cantyp C [x:et]C. So s1o1-nf 

(Cantyp(A 2)) [x:a1 JC1 
with a

1 
Q a, x E a

1 
J-c

1 
CC. We want 

]- E cantyp(A) = c1(A 10<C B). If the formula A EB in the assumption 

comes directly from COA
1

] C B we get c
1

[A
1

] C ] C B q.e.d •• Other-

wise A ~~ D, ]- 0D EB {i.e. the extra rule of AUT-OE' and AUT-OE* has 
u 2 2 - -

been used). This D {D
1 

}D
2 

with A
1 

~ö Di, A
2 

, so J-
0

D
1 

E a, 

and )-
0
D

2 
E cantyp(D2)Q B1ol-nf(cantyp(D2)) =o [x:a2Jc

2 
C [x: JC

1 
(apply one of the ind. hypotheses to D

2
), and by the first ind. hyp. 

i- E cantyp(D):::: C2UD1D Q c2QA 1] C [A
1
0. so, by the type mod. rule, 

f- 0A E c
1 

UA
1
), q.e.d. 

4.3.2.5. Proof of the theorem, part 2 

Now we prove the induction step for the two remaining cases. 

(1) 5
2
-const-expressions in AUT-QE' or AUT-QE* 

2 -As in 4.3.2.3. (iii) we can get )-
0
d(B) from )- (B). Then by the 

lemma ]- (B) E cantyp (d äh) . 

(2) appl-expressions 

Let 1- , Bof function degree, A E dom(E). By the ind. 
a 

hyp. 1- E cantyp (A) + dom (B), l- B
0 

(E cantyp (Bl). For the 

computation of cantyp and dom in the various languages see 

4.2.3.5 and 4.2.4.4 respectively. 
2 2 

(i) AUT-68(+), ]- f3 o -nf(cantyp(B)) = [x:aJC, dom(B) a. 

By o-CLPT 1-
0
B E [x:a]C and J-

0
a, so )-

0
A E a and 
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f- 0 {A }B E CDA D : cantyp ({A }B) 

(ii) AUT-68+, f-2B:t3
2o2

-nf(B) = [re:a.]C. we have SA2 (see e.g. 

3.4.5) so t3 -CL so f.-
0

B Q [re:a.JC and f-
0

{A}B ET: 

cantyp ({A }B) 

(iiil AUT-QE (+) , 1- ~B: a1 o1-nf (cantyp ( ö2 -nf (cantyp (B))) l _ 

[re:a]C, dom(B) a. By o-Cl and the lemma in 4.3.2.4 
2 f-

0
B E ö -nf(cantyp(B}) E [re:a]C so f-

0
{A}B E 

{A}(o2
-nf(cantyp<Blll cantyp({A}Bl. 

(iv) AUT-QE' and AUT-QE*, f-;B: As (iii), but from 
2 l- 06 -nf(cantyp(Bll E [re:a]C we infer now f-o'antyp(B) E 

[re: a JC so 1- 0 {A }B E {A Jeantyp (B) = cantyp ({A }B) 

{v) AUT-QE, 1- ~B: Like (i) but decrease the degrees by 

(vi) AUT-QE+ and AUT-QE*, f- ~: like (ii), but decrease the 

degrees by 1. 

This f~nishes the proof of the theerem in 4.3.2.1. 

4 • 3 • 3 • The l- =~> f- -part 
a 

4.3.3.1. We formulate our theorem. 

Theorem: If 8 f- resp. 8;E; f- resp. 8;1;; f-A then B f- resp. 8;<;; 1- resp. 
a a 

8;1;; f- A. Further, if B;E; f-A E B then A E B. 
a a 
The proef will be by induction on f-. We just discuss AUT-QE, 

because with AUT-68 everything is completely similar or somewhat 

easier. 

4.3.3.2. First, we need some properties 

(1) Strengthening holds in the 1- -system 
a 

Proof: notice that the definition of cantyp only refers to the 

relevant parts of the context, i.e. to assumptions concerning a~ 

occurring free variables, and that the ether notions in the 

definition of correctness do not refer to the context at all. 

Hence, strengthening can be proved by a simple induction on f-
a 

(2) on PCT2 (preservation of cantyp): In 3.2.5, we proved 13n-outside-
2 2 

PCT1 for an-AUT-QE. However o-outside-PCTl is wrong, so for AUT-
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QE(+) with o2
-constants we can only get PeetPicted PCT

2
: 

if i-2 A, A :::: B not using -reduction then cantyp (Ä l Q cantyp (B) 

In order to prove this, start with 1- E a'* '-;IE cantyp(A)Ca 

(e.g. as in 4.3.2.4). Then, as in 3.2.5, one can prove: 

1- 1 A:::: B nat by -reduction '* cantyp(A) Q cantyp(B). 

Restricted PCT
2 

gives us restricted LQ 2 for AUT-QE(+): 

if 1- 1 B E C, A Q B without using 6
2 
-reduction then A E C 

(3) However, in AUT-QE' and AUT-QE*, full PCT2 is still valid and 
2 

hence LQ holds (this was already implicitly claimed in 

(4) 

3.3.11.4). 

Proof: In AUT-QE' and AUT-QE* we have 

o2
-nf(cantyp(Al l s ~ cantyp(o

2
-nf<All 

So, let A ::o: B. Then -nf(A)2 6
2
-nf,B) without using o2

-reduction 1 

so by restricted PCT
2 

we have cantyp{o
2
-nf(B)). 

By CRue have )-A Q B *A Q B. As in 4.3.2.4 we have 
1 11 -~- 11 1- A B * s o -nf(Al = [x:a.J[y 1 s ó -nf(B) T1 i-ä Q S 

So )-A C B '*A C B 
a 

4.3.3.3. Proof of the theorem 

Note that the E B * A E B part of the theorem, for of 
a 

degree 2 follows from )- EB'* )-A E cantyp(ll) C B (in 4.3.3.2(2) 

and 4. 3. 3. 2. ( 4 )) • The proof is by induction on 1- • We first discuss 

some of the clauses for the formation of expressions: 

(i) abstr-expressions: let 1- 2 
a., 

2 1- a a , x E a 1- 1 , (A 1 E a B 1 1 

x E a)-A
1 

(E B
1

J. By 

i.e. cantyp(A
1

J Ca 

the ind. hyp. 

) , so 

1- a[x:alA
1

, (cantyp([x:aJA
1

l = [x:a.Jcantyp<A
1

l c [x: , so 

[x:a [x:aJB
1
), q.e.d. 

(ii) const-expressions: let y E B be the context of the scheme of C 1 

1-B E S[Ë]. By the ind. hyp. 1- Ë E S[ËL so l-
a 

not a o2-constant in AUT-QE' or AUT-QE* then cantyp(c 

(B) • If c is 

typ:clûB] so certainly cantypic(B)) typ(c![ËD~ q.e.d. Other-

wise use the remark above. 

(iii) 2-appl-expressions: let 1- 3 
A E a., 1- B E • By ind. hyp. 
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1-\, 1- B, cantyp(AJ .J. ex, cantyp(BJ [re:aJC. 
1 1 a a 

So :3 ö -nfccantyp!B)) :: (re:cx'JC', dom(BJ ::a' .J. a. By CR, 

cantyp(A) f dom{Bl so 1- {A lB. Further, by the remark above, 
a 

{A )B E CUAD, q.e.d. 
a 

(iv) 3-appl-expressions: let !- 3
A E a, 1-C E [x:cx]D. By the ind. hyp. 

1- , cantypcAJ + a, 1- B, cantyp<BJ -1- c. By ö
2
-CLPT, l-o2

-nf(Cl 
a 

E [x:a]D. By the 1-a,. 1- o-part, 2 1- OB E cantyp{B) so 1-B E 

cantyp (B) , so 1- cantyp (Bl so 1- ó -nf (cantyp (Bl l • Further 

ó
2 -nf (Cantyp (B)) + o2 -nf(C) without using o2 -reduction, so by 

restricted LQ, l-o2-nfccantyp(B)l E [x:aJD and cantyp 

(ö 2-nfccantypcBJ)~ c [x:uJD. I.e. e1o1-nf(cantyo(o7 -nf(cantyp(B)))J: 
a 

[x:a' ]D', a +a' = dom{B). Hence 1- {A }B. Further {A }cantyp{B) + 
2 a . 

{A ]C and {A } ( ó -nf ( cantyp (Bl l -1- {A }C so anyhow cantyp ({A }B) + 
{A]C, q.e.d. Finally we discuss the type modification rules and 

the strengthening rule. 

(v) Type modification: let 1-A EB, BC C. By the ind. hyp. 1- A, 
a 

A E B, i.e. cantyp!Al C Band by 4.3.3.2. (4) BC C. Use CR 
a a a 

to get A E C q.e.d. 
a 

(vi) Strengthening: Use 4.3.3.2.(1). 

This finishes the proef of the theerem 1- ,. 1- and the proof 
a 

of the equivalence of the three systems 1-, 1- o• 1- a. So we do 

net distinguish between !- , 1-
0 

and 1- a any more and have 

1-A<E a) ,. 1-A<E cantyp(AJ Cal 

· and l- {A )B ... cantyp (Al "' dom !Bl • 

4.4. The actual verification 

4.4.1. Befare discussing the aetuál verification we make some con

cluding remarks on the fo~mal decidability of the Automath languages. 

First, on the well-definedness of the decision algorithm suggested 

by the definition of !- in sec. 4. 2, in particular the well-definednes 
a 

of cantyp and dom. Cantyp and dom are partial functions, so by well-

definedness we understand: (1) it is decidable whether an expression 

has a cantyp (or a dom) (2) if it has one, this is effectively 

computable. All this is already implicitly included in the equivalence 

proof. E.g. the 1- a • 1- 0 -part states that cantyp on the correct non-
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1-expressions delivers a correct expression again. In the course of 

the decision process cantyp and dom are required of correct expressiors 

only. E.g. before settling cantyp (A) Q B (in the verification of E we 

first check ~A, and before settling A E dom(B) (in the verification 

of {A }B) we first check j-B. The definitions of cantyp and dom just 

computation of degrees, and computation of Bic-normal forms where i 

is the minimal value degree. Notice that -·N in this case, and in 

fa ct for all i < 3, can even be proved without using normabili ty. 

4.4.2. Our second remark concerns the normability. Below we make sure 

the normability result of sec. IV.4.4., as we claimed already several 

times, actually covers the regular languages, viz. by proving that 

the system of sec. IV.4.5 contains our most liberal language AUT-QE*. 

Let us abbreviate the system of sec. IV.4.5 by system IV. Theorem: 

System IV contains AUT-QE*. 

Proof: This system avoids Q-formulas as indicated in 2.12. For the 

rest it is like our system J-
0

, with type-modification rule V.2' 

{sec. 2.11) and without strengthening, but of course with much weaker 

degree restrictions. The expression formation rules are the familiar 

rules of AUT-68 and AUT-QE, except perhaps for the appl-rules which 

are most similar to the rules in 3.3.11 for the first version of AUT-

QE*. We only consider the 1-appl-expressions. Let (in AUT-QE*) 

E a, )- 1
B Q [x:a]C. By s1

o-reduction we get B ~ [x:a']C' which 

Q a'. The substitution theerem and SA 1 
(and hence s1o-CL) are as 

usual valid in system IV, so using induction on AUT-Q~-correctness 

we get (in system IV) A E a' , l-B 2 l:x:a']C' so HA} B, q.e.d. 

4.4 .• From our axiomatic introduetion in sec. II.1.3 the actual 

nature of expressions does not become very clear, viz. that they are 

just some well-structured symbol-strir~s. In view of this fact, a 

verification process for the correctness of expressions must be able 

to perferm the following task: given a correct book and a correct 

context (mere symbolstrings as well), each symbol-string must, in a 

finite amount of time, either be recognized as a correct expression 

(relative to book and context) or be rejected. 

The verification of such a string can be analy?.ed in several 

stages, e.g.: (1) bracket structure has to be correct, (2) the free 
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variables have to occur in the context and the constants have to occur 

in the book (after this stage the constants in the string can be 

assigned an arity,variables and constants get a degree and possibly 

a typ and a def), (3) the arity of each constant has to fit the arity 

of the argument string going with it (only after this stage we can 

speak of expresslons in the sense of sec. II.l), (4) degree restric

tions (and possibly norm restrictions) must be satisfied, (5) the 

type restrictions have to be fulfilled (i.e. of the argument A in {AW 

and of the argument string ë in c(ë). 
Here it is just stage (1) which represents the context-free part 

of the verification. The stages (2)- (4) are literally context-dependert;, 

but still trivially recursive. After passing stage (3) an expression 

is pretyped. ,From our point of view stage (5) is the interesting part 

of the verification. 

The actually running verification program for Automath languages 

at Eindhoven Univarsity has indeed been organized along this lines 

(see Zandleven [ 75], Jutting [ 37 ]) • There is a first pass with a 

"synta:I:-che:Jker" covering stages (1) and (2). This pass is optional 

since there is a next pass with a "translator" covering stages (1)- (4) 

(but without checking norm-restrictions). And finally there is the 

"processor'', eperating on the re sult of the translater, which covers 

stage (5). 

4.4.4. First we discuss the verification of definitional equalities 

A + B. As in the case of o-equality (sec. III.6.2) we do nat want to 

compute normal farms but rather design a atrategy which after a few 

reduction steps in A or B either results in common reduct of A and B 

(if this exists), or enables one to conclude that it does not exist. 

As explained in sec. III.6.3, when confronted with certain A and 

B during the decision process, we have to answer the following ques

tions: (1) shall we do an outside reduction, (2) if so, on which of 

the expressions? The form (or: ahape) of A and B (i.e. whether they 

are abstr-, or appl-expressions etc.) plays a crucial role here. E.g. 

if A and B are bath in immwte form (see II.4.9) then there is no choice 

there is simply no outside reduction possible. So either we can 

immediately decide our definitional equality (if A and B are of 

different shape, or if A and Bare atomie), or we have to spZit up 
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(or: deaompose) the equality into the equalities of the corresponding 

subexpressions of A and B. But if A and B have different farm, not 

both immune, then an outside reduction is required. 

The basic construction aim for a decision strategy is of course 

to minimize in most of the cases the total number of reduction steps 

required for a conclusion: A is equal to or nat. There is of course 

uncertainty about what happens in most of the cases, but the intuitive 

{and possibly questionable) ideas on this subject, underlying the 

algorithm in the next sections, can be summarized as fellows: 

generally, the definitional equalities arising in the course of the 

verification and affered to the decision process, are ~~e, and a 

common reduct can be reached in relatively few steps. 

4.4.5. We define new, restricted relations >h, ~h (h for head redue

tion) and >h, ~h which precisely cover: (1) outside reduction steps, 

(2) the reduction steps needed in order to make new outside steps 

possible. The relations are given by a simultaneous inductive defini-

tion: 

(i) B [x:a]C '* (A }B C[AD 

(ii) d(ël > def <dJ oën 
h 

(iii) A ~ {B }D, B > x, D 
h -h ~ c I Xjl Fv(C) .". [x:a]A > c 

h 

(ivl l~ > B=;oA >h B h 

(v) (resp. ~h) is the reflexive and transitive closure of >h 

(resp. >h) 

I.e. >h and ~h are just n-less versions of >h and ~h. Clearly 

A B • A ~ B, and if A >h B (or A >h B) then B is a first main 

reduct (see sec. n;.4.9) of A. 

Remark: This reduction does correspond to the head reduction common 

in the literature [ 4 ] , i.e. to thé "first half of" the so-called 

r~1~al reduction [ 25 ]. A reduction A ~~ B consists of mere simple 

head aontraations, i.e. }: .. {Ak }B > {A 1_} ... {..\} C where B > C is 

an elementary So-reduction, and even only such of these that their 

reduct eventually becomes a new simple head redex. 

The unrestricted reduction D ~ C in clause (iii) is put there 

on purpose: it is of course possible that internaZ eontrac:tions are 
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neededin order to remove free variables from an expression. 

The main property of ~h (or ~~, depending on whether n-reduction 

is present) is: if A ~ B then A ~h C ~ B wnere the reduction from C 

to B consists solely of internal reductions. so if A ~ B and A, B 

have different shapes, then A >hA' ~ B. 

4.4.6. The intuition formulated in 4.4.4. leads us to the idea that a 

sensible decision process for definitional equalities must search for 

a common reduct (i.e. an affirmative answer) rather than normalize, by 

means of ~h (in order to get a negative answer), and that during the 

reduction process the definitional constants must be saved, i.e. left 

intact, as much as possible. 

The strategy presented below (corresponding to what is actually 

implemented in Eindhoven [ 75 ]) can indeed be characterized by the 

following principles: 

(1) decomposition is preferred above. main reduction 

(2) 8-reduction is preferred above o-reduction (is preferred above n

reduction) 

(3) reduction of a "younger" definitional constant is preferred above 

reduction of the "older" one (see sec. III.6.3). 

For example, if there is to be decided whether {A }B + { C} D, the 

process first tries decomposition: B + D and A + C. If thi.s succeeds, 

i.e. B ~ F $ D, A ~ G ~ C then we have a common reduct {G }F. Only 

after this has failed, an outside reduction is attempted on one of the 

expressions: e.g. {A}B >hE, i.e. B ~ [x:a]F, E = F[A], and the new 

question to be decided is E + {C }D. Was no outside reduction possible, 

then the other expression is tackled: {C}D >hE is tried, possibly 

resulting in a new question {A}B + E. And, when confronted with the 

question {A }B .J. d (ë) , tbe process tries to main reduce the appl-ex

pression rather than the other one. 

4.4.7. The inductive definition of >hand ~h can be readas a 

recursive algorithm for deciding questions of the form A ~h B, 38 (A >h j 

3
8 

38 (A ~h [x:B1JB
2

) etc. We give our algorithm for deciding + also 

in1the2form of an inductive definition. Here are the rules: 

(0) Exchange: B +A •:A i- B 

(i) Variable, r: A ~h x* : A +x, and A ~h t +t:A + t 
(ii) Prim: (A ;:-:h p(ë) , ë + ih +t:A + p(Ë) 



(iii) Appl-appl, decompose: B + D, A { C =>: {A }B + }D 

(iv) 

(v) 

(vi) 

Appl, S-red: {A}B > C => (C + D **:{A }B + D) 
h 

Def-def r decompose: B + ë =>:d + d (ë) 

Def, 5-red: d + D) 

(vii) Abstr-abstr, decompose: a + S, A + B 4*:[x:aJA + [x:S]B 

(viii) Abstr, n-red: [x:a]A >h B => (B + C *": [x:a]A + C) 

The nota ti on B + ë is used in the ordinary sen se, i.e. 

+ etc. The clauses (i)-(viii) are given intheir order of 
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priority, they have to be tried successively until a clause applies. 

Clause (0) must only be applied, and of course only once: (1) if 

none of the rules (i) (viii) applies, (2) if by the exchange a rule of 

higher priority among (i)-(viii) can be made to apply, (3) in case 

the question d(Ä) + e(B) is presented, where e is a "younger" 

definitional constant than d. The clauses containing a bi-implication 

((i), {ii), (vii)) are terminal: if application of one of these ruies 

does not lead to an affirmative answer 1 a negative conclusion about 

the presented definitional equality can be drawn. In contrast with 

the other clauses 1 e.g. clause ( iii) : if not (A + C) 1 so not (A + C 

and B + D) then it is of course very well possible that rule (iv) 

produces a common result of {A}B and {C}D. Further, a negative con

clusion can be drawn if after exchanging still no clause applies at 

all. If n-reduction is not allowed then one has to read >h and 

instead of >h and ?h 1 and rule (viii) has to be skipped. 

4.4.8. lt should be clear that the algorithm above on the correct 

expressions indeed corresponds with +. The only interesting point is 

the bi-implication in clause (vii) , which makes that clause (viii) 

never has to be applied to a pair of abstr-expressions. This is 

justified by our property UD (for correct expressions only) from the 

previous sections. 

We also have to show the terminatien of the algorithm (this 

shows the decidibility of + once more). First, the questions con-

cerning >h and (e.g. whether A [x:B
1 

for certain are 

decidable on behalf of SN. Secondly, the procedure sketched above 

( for deciding A + B) is easily shown to ter:ninate by induction on 

(1) (A) ._ (B), (2) ~(A) + ~ (BJ - where 8 stands for length of 

reduction tree and ~ stand for length of expression -
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Clearly the n-rule (viii) is equivalent to: 

A -1- {:dB, B <! C, x~ FV(C) .. [x:a]A -1- B 

By a careful implementation of the handling of bound variables - this 

falls outside the scope of my thesis - there can be guaranteed that 

whenever during actual verification an equality [x:a]A .j. B is affered 

to the decision procedure, B does not contain free occurrences of the 

same free variable X: This enables us to modify (viii) into the 

simpler rule (viii') : A i- {x }B .. [x: a ]A -1- B, which avoids the nasty 

internal reductions in the course of an outside n-reduction completely. 

The terminatien of the algorithm is still guaranteed with this new 

rule; we can even use the same induction as before, because it can be 

shown that r~le (viii') never will be applied with a B such that 

B "'h [y:S]C. 

4.4.9. In accordance with our views on the actual verification process 

it may be sensible to provide the decision procedure with a device 

which gives a warning in the following cases: (1) if the decision 

process requires toa much time, or rather: too many reduction steps 

(2) if a question d -1 d (ë) or {A }D -1- {F }G is posed and not 

(B + ë), resp. (D + G and not (A -1- Fll has been concluded. 

The warnings in case (2) can be partly motivated by the idea 

that most defined constants in an Automath-book are "ÄI-constants" 

(see III.5.5.3, III.6.3) and that most functions in an Automath-book 

are ÄI-funetions, where D is a ÀI-function if: D -1- [x:a]F • x € FV(F). 

The following example shows however that this motivation is not quite 

satisfactory: D G '= [x:a]{V}l::, A'= [y:S]p(y,V), F [y: SJ p<y ,y). 

4.4.10. Now we discuss the verification of E-formulas. Since the 

definitions of cantyp in 4.2.3, with their computation of normal farms, 

are very unpractical, we prefer the alternative approach sketched in 

4.1.4. Beside~the latter approach avoids the different definitions of 

cantyp and is by uniformity easier to implement for several languages 

simultaneously. 

As our "universe", the large language which we use to decide our 

E-formulas, we take AUT-QE*. Let ~ denote correctness in AUT-68, A~ 

68+, AUT-QE or AUT-QE+ and let ~*stand for correctnessin AUT-QE*. 

One easily proves by induction on A, using LQ, CLPT etc. for ]- *' the 



important properties: (1) 

expression in AUT-68(+) -

=> 1- *typ (A) , and - unless A is a 2-

(2) 1-A => typ(Al :2: cantyp(A). 

This justifies the equivalence mentioned in 4.1.4. 

f-A EB.,. f-A, 1- *typ (A) C B 

except, trivially, the degree 2 case of AUT-68{+) 

f- 2A EB.,. I- 2A, B T 

201 

The i-procedure of sec. 4.4.7 can be adapted in order to decide 

f and simultaneously by making some obvious modifications, e.g.: 

- clause (0) becomes: B A ,.,. A f(.J/C B 

(where "B +/[/:::1 A" reads "B + A resp. B CA resp. B :::JA", etc.) 

- to clause (i) there is added: degree (A) = 1 =>A C T 

- clause (vii) becomes: Cl. + i3, A +!CI:::J B .,.,[x a]A +/C/:::1 [x:S]B 

etc. 

We do not bother to give a practical algorithm for deelding E in 

AUT-QE' and AUT-QE*, because we think that these languages are of 

mere theoretica! purpose. 

4.4.11. Rather than computing domains via the domain normal farms 

(dnf's) of sec, 4.2.4.4. we use the alternative approach of 4.1.6 of 

searching through the+-reduction tree of an expression. Reeall that 

~ is generated by (1) ordinary reduction, (2) taking typ. We promised 

the following theorem. 

Theorem: + is well-founded on the correct expresslons 

Proof: As long as we stay inside the correct expresslons we can use a 

double induction, viz. (1) on degree, (2) on 8(=length of reduction 

tree). For, reduction preserves degree and decreases 8, and taking 

typ decreases degree. We must be a bit careful with applying typ to a 

degree 2 AUT-QE* expression such as, e.g., can originate by taking 

typ of a degree 3 AUT-QE expression - because an incorrect and even 

not normable 1-expression might arise. A typical example is {Ah. 

However, this does no harm to the well-foundedness, because i3
1-SN can 

be proved, without using norms at all, for all degree correct ex

pressions. 

Also, we have another uniqueness result (compare 4.2.4.2). 

Theorem: A correct, A+ [x:a]C, A+ [x:S]D =>a f i3 
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Proof: For 3-expressions A we even have a kind of CR-result A <: A' "" 

typ (A) .J. typ(A'). Now let degree (A) = 2, and let A <: A 1 • In AUT-68 (-I 

and AUT-QE ( +) this gi ves ~*typ <A) .::J typ (A') , but in AUT-QE* this is 

nat generally true, because typ(A} and typ<A'l need not be correct. 

Luckily such incorrect 1-expressions (see the proof of the previous 

theorem) never reduce to an abstr-expression. So by UD we still get 

the desired result. 

4.4.12. The internal n-reductions included in~ are of course useless 

during domain computation where one only wants to reach an abstr-ex

pression. So in an algorithm for domain computation we rather employ 

a restrietion of ~ which we name +h and is generated by head reductie 

~h and taking typ. 

In general unrestricted search through the +h-reduction tree car 

be permitted - provided the degree restrictions are respected. HowevE 

the 2-expressiorsof AUT-QE and AUT-QE+ form an exception. Here the 

search for an abstr-expression haa to start with taking typ. Otherwis 

too many expresslons would get a domain, which would give rise to 

typical AUT-QE* appl-expressions. 

Besides, unrestricted search can be very unpractical. E.g. in 

AUT-68(+) one never needs to inspeet 1-expressions: if the 2-ex

pressions in the ~h-reduction tree fail to produce a domain, going te 

the 1-expression by taking typ will nat help. In general it is no goc 

strategy to start the domain computation with reduction, unless we ax 

obliged to because the expression under consideration is already of 

minimal value degree. 

So, a simple and probably rather practical strategy for AUT-68(-t 

and AUT-QE(+) may run as fellows. Let A be the expression we start 

with. Take typ until one arrives at an expression of minimal value 

degree. Then reduce (with ~~) until one possibly finds a domain. If 

this does not succeed, A can still have a domain if it is a 3-ex

pression of AUT-QE(+), otherwise A has no domain. In the indicated 

case unrestricted search of the +h-reduction tree of typ(A} is 

required, to be executed as fellows: one-step reduce (typ(A) >~ B), 

then take typ, then reduce (with ~~). If this does not yield a domair 

one-step reduce B once more etc. The well-foundedness of + guarantees 

the terminatien of this procedure. 



CHAPTER VI. THE Sn-CHURCH-ROSSER PROSLEM OF 

GENERALllED TYPED À-CALCULUS 

VI.l. Introduetion 
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1.1. The problem with Sn-CR in Automath-like languages was first pointed 

out by Nederpelt ([51], p.71). Let x~ FV(S), then 

(x:a]C <S [x:a]{x}[x:S]C >n (x:S]C 

and the question is whether (x:a]C and (x:S]C have a common reduct, i.e. 

whether 8n-CR1 holds. In untyped À-calculus this case of CR
1 

is particu

larly trivial, because without the type-labels there just remains 

Nx:.C < ÀX. (ÎIX,C)x > s n 
ÎIX.C 

and for the common reduct we can simply take ÀX.C itself. If 

[x:a]{x}[x:S]C is not necessarily correct, a common reduct does not need 

to exist, for a and S can be any expressions. 

Nederpelt conjectured already that for correct expressions Sn-CR 

(so Bn-CR
1

) does hold. This we shall prove below, making free use of the 

results of the previous chapter, in particular sec. 3. So, if 

t[x:a]{x}[x:S]C then by SA we know a Q S so [x:a]C Q [x:S]C; but we know 

nothing about a common reduct, 

It is possible that certain versions of the algorithmic definition 

allow a proef of Sn-CR
1

• But then it is not so easy to infer CR, because 

we do not yet know CL for the algorithmic system. An alternative to the 

approach below is presented in the next chapter. There CR and CL are 

proved simultaneously for an algorithmic system, by induction on so

called big trees. 

1.2. Below we concentrate on Bn-reduction and leave o-reduction out of 

consideration, It is easy to extend our result to Bno-CR, since 6 corn

mutes with Sn-reduction: 

B c 

and, of course, o-CR holds. 
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We start (in sec. 2) with a partial solution of the Sn-problem, 

for n-reduction of degree 2, which works for reqular langages only. 

Then (sec. 3) we prove full Sn-CR. 

VI.2. A first result concerning sn-CR for regular languages 

2.1. We prove the Church-Rosser property for regular languages with a 

reduction relation ~.generated by s-reduction and n2-reduction, i.e. 

n-reduction of degree 2: degree(A) = 2, xf!FV(A),. [x:a]{x}A >2 A. 
n 

The motivation for studying this restricted Bn-reduction lies in 

the fact that the actual verification of matbematics in AUT-QE (in 

particular, of Jutting's Landau-translation, see [37]) just required 

this specific type of n-reduction. I.e. the Automath texts effered to 

the verification program appeared to be correct Bön2-AUT-QE. 

2.2. Beuristics 

The idea is to proceed in two stages. First we consider a seemin 

weaker form of n2-reduction which is tailor-made to avoid the critica 

Sn-case mentioned in the introduction. For this restricted Bn 2-reduct 

we prove CR. Afterwards (sec.2.5) it is shown that full Sn2-equality 

equivalent to the restricted form. This can be compared with the situ 

ation in sec. v.3.3.8 - where n1-equality turned out to be provable. 

How to define the restricted form of n-reduction? I.e. under whi 

conditions do we permit the reduction of [x:a]{x}A toA? Clearly, we 

require: 

(1) x f! FV(A) 

Further, that A is not of the form [y:S]C - to avoid the critical cas 

But this is not enough. Consider, e.q., [x:a]{x}F, where F ~ [y:F1lFz 

x f! FV(F). So we require: 

(2) A ~ [y:S]C 

i.e. A does not reduce to an expression of the form [y:B]C. 

Thirdly we want to preserve the substitution lemma 

B <: B' ,. Bf[DJ <: B'[Dj 



at least for D of degree 3, so we further require 

(3) degree (A) 2 

This shows why the metbod works for regular languages only. 

Condition {2) can now be weakened to 

(2') A~~ [y:B]C 

ar, in the presence of ê-reduction, to: A ~~ê [y:B]C. 

2.3. The definition of the restricted reduction relation 

For definiteness we give a formal definition: 
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(1) > is the disjoint one-step reduction generated by the ele

mentary reductions: 

(i) {A}[x:B)C > C[AD 

(ii) x~ FV(A), A~~ [y:B]C, degree(A) 2 ~ [x:a]{x}A >A 

(2) ~ is the transitive closure of > 

2.4. The proof of CR for the restricted reduction 

2.4.1. Substitution lemma I: (i) A> A'~ BffA] > B[A'D 

(ii) A~ A'~ B[A] <: B[A'] 

Proof: As usual, by induction on B and ~ respectively. 

2.4.2. Weak s1-Bj-postponement: if if3 and A is degree correct then 

A 

Proof: If a Sj-contraction produces an essentially new 8i-redex 

then i=3 or i=j. If i=j there is nothing to prove, so unless i=3 

we have A >i,s {, 8 ~~A >Î,s <:~ C ~~ B. so, using Bi-SN, Bi-CR 
and the fact that 8~ and sj commute we get the desired property, 

as in II.7.4. 
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2. 4. 3. Something about 62 (for deqree correct expressions) 

(i) Degree(B) = 2, B ~ [y:C]D • B ~~ [y:C']D' 

(ii) If degree(Bl = 2, deqree(A) = degree(x) = 3 then 

B(x/A] ~~ [y:C]D • B ~~ [y:C']D' 

Proof: (i) Let B ~ [y:C]D, degree(B) = 2. By Bn-postponement ~ 

weak a2-a3-postponement we get B ~~ F ~~ G s~ H ~n [y:C]D. Then 

H, G, F are abstractions expressions, q.e.d. 

(ii) Use the square brackets lemma (II.11.5,-IV.2.4) and the 

previous property. 

2.4.4. Substitution lemma II: if degree(A) = degree(X) 

degree correct then 

(i) B > B' • B[re/A] > B'(re/Aj 

(ii) B ~ B' ,. B(re/A] ~ B' [re/A) 

3 and A, B a 

Proof: (i) By induction on B. The crucial case is when 

B: [y:B1]{y}B2, y ~ FV(B2), B2 ~~ [y:C]D, degree(B) = 
= degree(B2l = 2. Of course, y ~ FV(B2(A]), degree(B2(A)) = 2 ar 

by 2.4.3.(ii) B2[A] ~~ [y:C]D. So B(A] : [y:Bl(A]]{y}B2(A) > B4 

=1.e.d. 

(ii) By induction on ~. 

2.4.5. Theerem <CR
1 

for the restricted reduction): if A degree correc 

then 

A > B, A > C • B 4- C 

Proof: Let A > B, A > C. By induction on A we define a common rE 

duetDof Band C. The crucial cases are 

(i) A = {Al }[x:Az]A3, B = A3[Ad (by a-red.) I c = {A{}[x:A~lA3 
(by monotonicity). Take D: A~[A{i and use the substitution lemm 

(ii) A : {A 1}[re:A2]{x}A3, B: {A{}A3 (by n-red. and monotonicit~ 

C: {A1}A3 (by B-red.). Simply take D: B. 

(iii) A: [x:A 1]{x}A 2, B: A2 (by n-red.), C: [re:A{]{re}A~ (by 

monotonicity). Clearly degree(A~) = degree(A 2) = 2, re t FV(A~). 
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[y:C1 ]C2 so by 2.4.3.(il ~~ [y:C1]C2 then A2 ~ 

[y:C{]Cz. Hence Az ~~ [y:Cl]Cz so D ~ A2 can serve as the 

common reduct. 

2.4.6. Corollary: If A degree correct and normable then CR(A). 

Proof: By induction on the reduction tree of A. 

2.5. The extension to full Sn2-reduction 

2.5.1. From now on we label the notions referring to the restricted 

reduction relation with a subscript o. Thus we write >
0

, ~0 and +
0

, and 

by ~ we denote correctness in AUT-QE(+) with an equality relation Q 
0 . 0 

generated, e.g., by 

By 2.4.6. we have 

On the ether hand the notations without a subscript have to be 

interpreted in terms of "full" i3n 2-reduction. Thus, we write ~ for 

correctness in AUT-QE(+) with equality Q, generated by 

f-A., f-B, A > B or B > A • A Q B. 

Below we sketch the equivalence of the two systems. The implications 

>0 • > so ~0 • ~ and Q0 • Q are immediate. 

2.5.2. First we go through some theory of the o-language (i.e. with ~0 
and Q0 ). The theorems about renaming of eontexts and weakening (see 

V.2.9 ) are still valid. We have a restricted substitution theorem: 

Ifn (n 1, y E SJ, all y, in y have degree 3, and Ë E B[Ë) then 
~ 

So we have the sing~e substitution theorem: if degree(y) 3 then 
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Hence, from SAi we can infer 2.4 Bi-CLPT, as usual. Now SA2 works pre

cisely as in the previous chapter (V.3.2.4) so we may assume 62 -CL. 

2.5.3. The proof that r- ~0 and Q. Oo goes by induction on ~. The 

only interesting case is when ~2[x:a]{x}A, x~ FV(A), A~~ [x:A 1]A 2• 

Then n2-reduction is possible, but restricted reduction is not. So from 

~A one gets ~[x:a]{x}A Q A and we like to show that ~0[x:a]{x}A Q0 A 

holds as well. By the ind. hyp. ~0 [x:a]{x}A and ~oA, and by 62-CL 

A Go [x:Ar)Az and [x:a]{x}A Go [x:a]{x}[x:AdA2 Q0 [x:a]A 2• By SA2 

a Go A1 so by the substitution theerem [x:a]A 2 Q0 [x:Al]A 2, whence 

[x:a]{x}A Q0 A. 

2.5.4. So the o-language is equivalent with the 6n2-language, for which 

the properties CL, PT, SA etc. can be proved as in the previous chapter 

Now let A G B. By the equivalence A G0 B and by CR A +0 B, so a fortior: 

we have CR for all full Bn2-reduction. 

Extension to the corresponding ó-language is possible as in sec. 

V.3.3. 

VI.3. A proof of CR for full an-reduction from closure and strong 

normali zation 

3.1. The assumptions 

3.1.1. In contrast with the proof in the previous section, the sequel 

does not presuppose regularity of the language. so, after having proved 

CL for, e.g., Nederpelt's A, the present proof applies to this language 

We assume that correctness of expressions and equality formulas is 

defined relative to a correct book B and a context ~. The book is fixed 

throughout this section and omitted in the notation. 

Below we introduce an extended reduction relation and a corres

pondingly extended equality. Since we want to reserve our usual nota

tions ~. Q for these new relations, we write ~0 and G0 for the ordinary 

Bn-reduction and the corresponding equality relation, generated e.g., b: 
by 
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We use our ordinary shorthand notation, writing 

for ~.n ~A and 

A Q0 B for ~ ~A Q0 B etc. 

3.1.2. Fordefinitenesswe give a list of the properties which we assume 

through this section and use in the proof. 

(1) Strengthening, and in particular the following consequence: 

if n = <no,nll then 

(2) Soundness of equality w.r.t. abstraction, 

a Q0 S, x E a ~A Q0 B ~ [x:a]A Q0 [x:S]B 

(3) w.r.t. application, 

A Q0 B, C 00 D ~ {A}C Q0 {B}D 

(a consequence of LQ, see below) 

(4) and w.r.t. substitution 

(also a consequence of LQ) 

(5) closure: ~A, A ~0 B • ~B 

(6) SA, so (this concerns directly the critical Sn-case) 

~[x:a]{x}[y:S]C • x E a ~a Q0 S 

(7) strong normalization (with respect to ~0 ): ~A • SN(A). 

Remark: the properties (3) and (4) depend on LQ. As we know (see V.3.3.10) 

LQ fails in AUT-QE(+) with ë-reduction, but CR forthese languages can 

be proved in two ways: 



210 

(1) From CR for AUT-QE(*) 

(2) By firstproving CR for a 6-less version, anà then extend the 

result by using UE. 

3.2.1 Beuristics 

We saw that in the critical case of Bn-reduction the two direct 

reducts of [x:a]{x}[x:B]C are syntactiaaZZy equaZ (:) but foP the domai1 

a and B ~hiah ape just definitionaZZy equaZ <Q0 ). Below wedefine the 

relation ~ which precisely covers this kinà of syntaatia simiZapity 

intermediate between : and Q0 • 

It would be straightforward to try and prove a modified CR-proper· 

by proving ~postponement, i.e. 

aowever there is a problem with the latter property if A : [x:a]{x}A 1 , 

B: [x:a]{x}C, x~ FV(C), A1 ~ C. For it is possible that x E FV(A 1). 

So we take a different approach, We define an extended reduction rela

tion > which is disjoint Bn-one-step reduction, enriched by the clause 

( e Zemental'y ~ - reduction) • 

This means that internal contractions in the domains for the bookkeepin1 

ofteduetion steps are ignored. For the new reduction relation we can 

simply prove CR1 • Further there holds a certain version of ~-SN, which 

gives us CR. 

3.2.2. Structure of the proof 

We point out the difference with the approach in sec. VI.2. There 

we first restricted our reduction relation, proved CR for the restriotel 

reduction and then extended the result to the original reduction. On th< 

other hand, bere we start with proving CR for the extended reduction 

relation 2, and afterwards we still must prove CR for 20 • In fact we 

first prove modified uniqueness of 2-normal form, i.e. uniqueness with 
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respect to ~:A Q B, A and B ~-normal *A~ B. And then, using the 

equivalence of Q0 and Q, uniqueness of ~0-normal form. So we have ~0-CR. 
Fora comparison of ~0- and ~-normalisation see sec. 3.7.1 below. 

3.3. Definition of the extended reduction relation 

3.3.1. By simultaneous inductive definition we introduce the syntaotic 

similarity ~1 the extended reduction relation ~ 1 with one-step reduction 

>,and the extended definitional equality Q, between correct expressions 1 

as follows. 

I. Elementary reductions 

(1) {A}[x:B]C > C[AE (S-reduction) 

(2) [x:B]{x}C > C if x IZ FV(C) (n-reduction) 

(3) A R> B *A > B (~- reduction) 

II, Monotonicity rul es 

( 1) A > A I 1 B > B' * {A } B > {A I } BI 

(2) x E et ~A >A' * [x:a]A > [x:a]A' 

(3) Al > Ai, .•• , Ak >A~* C(Ä) > C(Ä' l 

III. (1) ~ is the transitive closure of > 

(2) Q is the equivalence generated by > 

IV. (1) A~A 

{2) a Q a', x E a ~B ~ B' • [x:a]B ~ [x:et']B' 

( 3 ) A ~ A I 1 B ~ BI ... {A} B ,::,; {A I } B I 

3.2.2. Some remarks concerning the definition 

3.3.2.1. It is not necessary to define the above notions simultaneously. 
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For in view of 3.4.3. below, we might as well have taken insteadof IV.(2 

IV.(2') a Q0 a•, :s: E a rB""' B',. [:s::a]B""' [:s::a'}B' 

3.3.2.2, Except for the rules I.3 and II.2, the rules of I and II are 

the ordinary rules for ; 1,BD' disjoint one-step Bn-reduction. Rule I.3 

can be considered a stronq form of the reflexivity rule A > A. Rule II.2 

is one half of the usual monotonicity rule for abstr. expressions. The 

other half can be derived using IV.l, IV.2 and I.3: if a > a' then 

a Q a ' , further A ""' A so 

[:s::a]A ""' [:s::a• ]A so [:s::a)A > [:s::a' ]A • 

3.3.2.3. If we had defined > to be the corresponding "nested" one-step 

reduction we might have been able to prove the diamond property for >. 

Then we could have avoided the appeal to SN when derivinq CR fram CR1. 

3.4. Some easy properties 

3.4.1. By simultaneous induction on definition 3.3.1., using the sound

ness of Q
0 

w.r.t, expression formation, we qet 

if A > A ' or A 2: A' or A Q A' or A ""' A' then A Q0 A ' 

3.4.2. From 3.3.2.2. it is clear that 2: satisfies all the monotonicity 

rules and that 

A >0 B .. A 2: B, 

so A 2:
0 

B ,. A 2: B, 

3.4.3. So combininq this we have Q0 ~ Q. 
As a corollary we have the monotonicity rules 3.1.2.(2)-(4) now also 

for Q. The monotonicity of ""' is immediate. Further ""' is an equivalence 

relation. 
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3. 5. On F~:J-reduction and normali zation 

3.5.1. In certain À-calculus systems (see, e.g.[25]) renaming of bound 

variables is not ignored - like we do here - but formalized in the form 

of o.-reduction: 

y ~ FV(B) ~ [x:B]B > [y:(3]BI[x/y~ 
0. 

Then (see our definition of substitution, sec.II.2.4) it is possible 

that o.-reductions are needed befare some 8-reduction can be carried out. 

In such systems, a suitable definition of proper reduction sequence is: 

a sequence in which only a finite number of o.-reductions occur. I.e. 

a reduction sequence E1 > Ez > ••• is proper if from a certain En on, 

only o.-reductions are applied. Similarly E is norma~ if only o.-reduc

tions of r are possible. 

3.5.2. Here we treat the Fl:l-reductions analogously, as extended o.-re

duction, and call them impraper reductions. Proper reduetion sequences 

are reduction sequences in which only a finite number of such impraper 

reductions occur. An expression is now SN if all its proper reduction 

sequences terminate and norma~ if only impraper reductions are possible. 

So 

.4. is normal, A <'! A ' ~ A F~:J A ' • 

3.5.3. In 3.5.1. we mentioned the possibility that o.-reductions created 

new 8-redices. For F~:J-reductions this is nat the case. Let > S (resp. > n) 

denote the disjoint one-step reduction generated by the rules I.(l) 

(resp. I.(2)) and II of 3.3.1. So, e.g., A >
8 

A' if some 6-redices nat 

lying inside a "domain" are contracted. Then we have,- indeed, i3 I';:! -

postponement 

A RI B > s c ~A > i3 B' ~ c 

However n I';:! -postponement fails because ~ -reductions can create new 

n-redices (see 3.2.1.). Fortunately we have~ n-postponement instead 

A > B RI c ~ A Fl:l B' > c 
n n 

3.5.4. Now we can prove SN (in the sense of 3.5.2 ). Let a proper 
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reduction sequence E1 > E2 > ••• be given. If no 8-step turns up then 

the sequence terminates because from some En on only n-steps are applied, 

which decrease the length of the expression. Otherwise, for some n, by 

$0;1 n-PP 

By o-SN, i.e. SN with respect to <=o•. es (E) is defined for correct E and 

e6cE1l > e6cr'). So by induction on e
8 

we can prove SN. 

3.6. CR for 2: 

3.6.1. Substitution lemma I: If ~B[A), ~B(A'] then 

(i) A >A' ""'B(A) > B[A'] 

(ii) A 2: A' ""'B(A] ;;: BI[A '] 

(iii) A Q A'""' B(A) Q B[A'] 

(iv) A~~::~ A' ""'B(A) ~~::~ B(A'] 

Proof: All parts can be proved separately by ind. on B using the 

monotoni ei ty rules for >, 2:, Q and ~~::~ • 

3.6.2. Substitution lemma II: If f-B(A) and f-B'(A) then 

(i) B > B' ""'B(A] > B'[AJ 

(ii) B 2: B' ""' BI[AB 2: B'[A] 

(iii) B Q B' ""'B[A] Q B'(A] 

(ivl B ~~::~ B' ""'B(A) FIS B'[A] 

Proof: By simultaneous induction on the definition of >, 2:, Q and 
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3.6.3. Main lemma (CR1): If A correct, B <A> C then B ~ C. 

Proof: By ind. on A. If A ~ B then for the common reduct D we can 

take D = C. Similarly if A~ C. In case A {A
1 

, B = }B
2

, 

< A
2 

> C
2 

then by the ind. hyp. and by 

monotonecity of ~we find a common reduct {D1}D2 with B1 ~ D1 
~ D

2 
s . Similarly if A C(A

1
, ••• ,Ak). 

Further distinguish: 

(i) A : {A
1 

}[x:A
2

]A
3

, B: {B
1

}[x:E
2

JE
3

, C A3[Al], Al > Bi' 

A2 Q B2, A3 > B3' By the substitution lemmas above 

B > B
3

[ D s A3[A1] so take D = B3[B1]. 

(ii) A- {A
1

Hx:A
2

]{x}A
3

, B: {B
1

}A
3 

(by n-red.), C: {A
1

}A
3 

(by 

8-red.), x~ FV(A
3
), A

1 
> B1. Then C Band take D B. 

(iii) A [x:A
1

]A
2

, B [x: ]B2, c - [x:C
1
]c

2
, A

1 Q Bl, Al 

B2 < A2 > c2. By ind. hyp. ~ < r - v2 so take e.g. 

D - [x:B
1

]D
2

• 

(iv) A- [x:A
1

]{x}A
2

, B: [x:B
1

]{x}B
2

, C: A2 (by n-red.), 

x~ FV(A
2
), A

1 
Q B

1
, A

2 
> B

2
• It is easy to see that 

A ~ . D
2 
~ Clearly x i FV(D

2
) so 

2 Sn 
B ~ [x:B

1
]{x}D

2 
> D <A - C. so take D _ 2 - 2 

Q cl 

(v) A [x:A
1 
]{x}[x:A

2
]A

3
, B - [x:A

1 
]A

3
, C : [x:A)A

3
, x~ FV(A 2J. 

This is the critica! case. By assumption (6) from 3.1.2 A1 Q A2 
so we can take D = B ~ C. 

3.6.4. Theorem (CR): If A correct then CR(A) 
Proof: By SN we can define 8(A) the maximal number of proper re

duction steps in reduction sequences of A. Use induction on 6(A). 

Let B sA ~ C. The cases A~ Band A~ Care trivia!. Otherwise, 

for certain proper reducts and c
1

, A > Bl ~ B, A > cl ~ c. First 

apply 3.6.3. to get ~ Dl $ cl. Then apply the ind. hyp. to Bi, 

cl and D1 • 

3.6.5. Corollaries: I. A Q B ~A~ B 

II. similarity of normal forms: 

A Q B, A and B normal ~ l'd B 
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3.7. CR for ~0 

3.7.1. Call an expression o-normal if it is normal with respect to ~0 , 

i.e. if it does not contain B- or n-redices. so, if A o-normal then 

there are no reduction steps A >
6 

B or A >n B posaible. But it might 

be possible - as long as we do not have CR - that after some l'l:$ -re

ductions new n-redices are created. So a priori we do not know whether 

A is normaL 

But, if A is o-normal and A does not have abstraction form and 

A ~ B then this reduction is an internal, and not a main reduction. 

E.g. A E {A 1}A
2 

• BE {B
1

}B
2

, and: 

3.7.2. Theerem {uniqueness of o-normal form): Let A and B be o-normal, 

then 

Proof: By induction on the sum of the lengths of A and B. Let 

A Q
0 

B, so A Q B, so A ~ C s B. Distinguish the following cases: 

(1) Both A and Bare abstr-expressions, [~:A 1 1A2 resp. [~:B1 ]B2 • 

By prop. 3.1.2.(2), A
1 

Q0 B
1

, ~ E A 1 ~A2 Q0 B
2

• By the ind. 

hyp. A
1 

: B
1

, A2 : B2 soA : B. 

(2) Neither A nor B are abstr-expressions. Then A and B and C 

have the same form. E.g. if A : {A1}A2, then C: {C1}C2, so 

B: {B1}B2 with A1 ~ C1 ~ B1 and A
2 

~ C
2 

s B
2

• So A1 Q B1, 

A2 Q B2 and A1 Q0 B, A2 Q0 B and by the ind. hyp. 

Al : Bl, A2 : B2. 

(3) A has abstr. form and B has not. Then A: [~:A 1 ]A 2 , 

A
2 

~ {~}D2 , ~ t FV(D
2
), A

1 
Q D

1
, and 

A ~ [~:D1 J{~}D2 > D
2 

~ C s B. By CL, ~ E D1 f- {~}D2 and by 

3.1.2. (3), ~ E D
1 
~ {.r}D

2 
Q {.r}B. So .r E A1 ~A2 Q {~}B and 

both A
2 

and {~}B are o-normal. By the ind. hyp. A
2 

: {.r}B. 

Clearly .r ~ FV(B), soA is not o-normal, contradiction. So 

this case does not occur. 
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3.7.3. Corollary (CR4 

(i) A correct, A ~0 B, A <:
0 

C =~> B ~0 D S
0 

C 

(ii) A Q0 B • A 

3.7.4. Now we can conclude 

A o-normal •A normal 

For, if A o-normal, A ~ B > C (i.e. A is not normall then 
n 

A :: ••• [x:A
1
]{x}A

2 
... , x € FV(A

2
), B :: ... [x:B

1
]{x}B

2 
... , 

x~ FV(B
2
), A

1 
Q B

1
, x E A

1
1-A

2 
Q B

2
• By CR, <:0 A

2
, so 

FV(A
2

J c FV(B
2
), impossible. 
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CHAPTER VI I. THE ALGORITHMIC DEFINITION AND THE THEORY OF 

NEDERPELT'S A: THE BIG TREE THEOREM, 

GLOSURE AND CHURCH-ROSSER 

VII.l. Introduetion and summary 

1.1. The history of A 

A further unification of the concept;s underlying AUT-68 and AUT-Ql 

led Nederpeltand the Bruijn [4~ 50, .9 ], after the construction of an 

intermediate version À-AUT, to the introduetion of the language A or, 

as de Bruijn narnes it, AUT-SL, for: single line Automath. 

First Nederpelt noticed that via a suitable translation instant

iation, i.e. substitution in constant-expressions c(x
1

, ••• ,xn), could 

be replaced by application and that, by this translation, o-reduction 

reduced to S-reduction. We used this fact for one of our proofs of ó-SI 

in III.S.4. However, in order to cover substitution with 2-èxpressioni 

as is allowed in Automath languages, the restrietion to argument degrej 

3 and domain degree 2 had to be dropped. This would in combination witl 

type-inclusion have given a higher order system, so to avoid normabili· 

and normalization problems, one had to skip type-inclusion. Then, a 

further streamlining of the definition was attained by dropping the 

restrietion as to inhabitable degree as well, thus allowing expression1 

of any degree. 

By the aforementioned translation and the relaxation of the degret 

restrictions it became possible to dispe~se completely with constants 

and schemes: constants could be translated into variables, schemes cou: 

be turned into assumptions and a hook could be transformed into a con

text. Besides, quantification over all free variables was allowed now, 

so all assumptions x E a from a context could be converted into ab

stractors [.x:a]. 

Thus, a statement B;t,;f-A expressing the correctnessof A w.r.t. 

book B and context ~ could be translated into the correctness of a 

single expression [p:S)[x:ä]A•, where the abstractor strings (p:S] and 

[x:ä] and the expression A' are intended to symbolize the translations 

of B, ~ and A respectively. I.e. a whole bock reduces to a single line. 

For details of the translation see 6.2.1, 6.3.3 and 6.4.6. 
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Resuming, Nederpelt's A - as defined in his dissertation - is 

characterized by the following three features: no degree restrietion at 

all, no type-inclusion, and single-line presentation. His definition is 

a typical algorithmic definition- for the terminology see v.1.1. 

which, due to these simplifications, is remarkably short and elegant. 

Nederpelt introduced bis norm as a measure of functional complexity and 

proved normability, normalization and streng normalization for his 

system. He just conjectured, in the introduetion to this thesis, that 

the system satisfied closure and Sn-Church-Rosser. 

1.2. The present treatment 

The discussion in the previous chapters: starting from the E-defi

nition (V.2), first proving closure (V.3) and Bn-Church-Rosser (VI), 

and finally proving the equivalence with the algorithmic definition 

(V.4), though concentrating on the socalled regular languages AUT-QE and 

AUT-68, applies to Nederpelt's language as well, which shows that this 

conjectures were justified. 

Here we choose an altogether different approach. Below we start with 

the algorithmic definition of correctness (VII.2). We follow Nederpelt 

but for his single-line presentation: we fit the system into the book

and-context framewerk of the previous chapters. Whereas the definition 

of the constant-lesspart of the language (sec. 2.1) simply can take 

place in the pretyped expressions(see IV.3), it turns out that adding 

constant-expresslons (sec. 2.2) requires the introduetion of degree

norm aorreat expresslons (2.2.4). 

Then both Nederpelt's conjectures are proved directly from the 

algorithmic definition, using the socalled big-tree theorem (BT). This 

theerem states that, on the correct expressions - and, in fact, on the 

much larger domain of normable expressions - the partial order ! gene

rated by sub (i.e. taking proper sub-expressions), by ~ and by taking 

typ is well-founded. So BT is an SN-result for an extended reduction 

relation and, hence, implies ordinary SN. The big tree theerem was first 

formulated and proved by de Vrijer [70] for his regular language ÀÀ. 

Sectien 3 below contains the closure proof of A without constants, 

serving as a motivation for BT. Sectien 4 contains two different proofs 

of BT, and in sec. 5 we prove closure and CR for the constant-lesspart 

of An. In sec. 6 we give some equivalence proofs: of the systems with 
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and without (definitional) constants, and of the single-line version 

with the book-and-context presentation. As a result we get the various 

nice properties for all these systems. 

VII.2 The definition of AandAn 

2.1 The part without constant expressions 

2.1.1 BothAandAn are systems of admieeibZe expressionsin the sense 

of IV •• The correctnessof books and contextsis standard (see 

so we just present the part of the definition concerning the correct

ness of expressions. A simplification compared with e.g. AUT-QE is that 

no degree restrictions are imposed. If in the definition below > (resp. 

~. resp. ~) is interpreted in terms of Sn-reduction then we get An 

otherwise just A. 

The function typ is defined as in IV.3.2, degrees are as in IV.4.4. 

Throughout sec. 2.1 we fellow Nederpelt and do not admit constant

expressions. Later on (secs. 2.2, 2.3) we show how the language can be 

extended with the formation of constant expressions. 

2.1.2 By taking typ of a non-aonstant-expression A the degree is de

creased by one (see IV.3 and IV.4 ), so by successively taking typ one 

arrives at a 1-expression. This 1-expression is called typ*(A). so, 

typ*(A) :: A if degree(A) 1 

typ*(A) ·- typ*(typ(A)) otherwise. 

Now let B be correct and let s be correct w.r.t. B. We use the con

ventional shorthand: nf-A insteadof B;E;;,nf-A I typ insteadof s-typ etc. 

Of course, as long as we do not form constant-expressions, the pre

senee of the book B is completely irrelevant. Now correctness of non

constant-expressions is defined as fellows: 

(i) f-T 
(ii) f-x if x among the variables in s 

(iii) f-[x:~]B if 1-~ and x E af-B 
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(iv) ~{A}B if ~A, ~B, typ(A) 2 a, typ*(B) 2 [x:a)C for some 

Cl., c. 

2.1.3 So correct expressions are pretyped expressions satisfying the 

socalled appLioation oondition: in appl. expressions {A}B the expression 

B has a domain (to compute from typ*(B)) corresponding with the typ of 

A. In the next sectien where we also introduce constant-expressions, an 

additional condition concerning instantlation will be imposed. 

There are various alternative, equivalent, formulations of the 

application condition possible. E.g. one can replace "typ(A) 2 a" by 

"typ(A) +a". In A (i.e. without n-reduction) we have CR, soit is even 

sufficient to require typ(A) = a and typ*(B) = [x:a]C, in other words: 

typ*(B) = [x:typ(A)]C- where =is full definitional equality (see 

II.4.6-7, V.2.11) -or, anticipating certain results of sec.6.2.6,we might 

restriet the computation of the domain of B by requiring 
. 1 

typ*(BJ 2S [x:o.]C (compare v.3.3). 

2.1.4 Since norms are preserved under taking typ and under reduction 

(see IV.3.4) the correct expressions are striotLy normable. This can be 

shown by induction on the definition of ~. E.g. that {A}B is strictly 

normable if it is correct: By ind. hyp. A and B are normable, so 

~(A) ~(typ(A)) ~(a) and ~(B) = ~(typ*(B)) = ~([x:a]C) = [~(a)]~(C), 

so {A}B is normable, with ~({A}B) = ~(C). 
Hence the correct expressions are SN and the system is decidable. 

2.2 Introducing constant-expressions; degree-norm correctness 

2.2.1 We allowed the presence of a book containing schames for the 

constants. Now we can simply introduce constant-expressions by adding 

the instantiation rule: 

(v) If yES* o(y) E y is a scheme of B, k lyj,~B1 , •.. ,rBk 

and typ(B1J + s1 , ••• ,typ<Bkl + Sk[B] then rc(B). 

That is, in a constant-expression o(Ë), the arguments B. have to 
l. 

satisfy the instantiation condition typ(Bi) + s1[ËD. 
However, we have to make sure that typ* is still well-defined, 

particularly that taking typ still decreases the degree by one. E.g. 

typ{o(Ë)) (:: typ(o)[Ë] y[ËD) and typ(o) <= y) must have the same degree. 
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2.2.2 Call a aubatitution [y/ËD degree aorreat if 

degree{yi) = degree(Bi) for i=l, ••• ,lyl. Degree correct substitutions 

preserve the degree: 

If y is a y-expression and [y/BD is degree correct then y[B] and y 

have the same degree. So, if we would add the requirement of degree 

correct substitution to the instantiation condition, then we might be 

satisfied. But this is not what we want: we rather would like to show 

that the instantiation condition impties the degree correctness of the 

substitution involved. This amounts to showing tbat degrees are pre

served under reduction as well. To this end we introduce the concept of 

degree-norm aorreatneaa. 

2.2.3 Degree-norms are defined by: 

(i) positive integers are degree-norms 

(ii) if vl, v2 are degree-norms then [v1]v2 is a degree-norm. 

so, just like ordinary norms {IV.2.1) are built up from Tand square 

brackets, degree-norms are constructed from 1,2, ••• and square brackets. 

For degree-norms v we define the degree-norm v+l as follows: 

(i) if v is an integer then v+l is as usual 

(ii} if v- [v1]v2 then v+1 := [vl](v2+1). 

So ([(2]3]2) + 1 [[2]3]3. 

2.2.4 Now we define degree-norm aorreatneaa of books, contexts (w.r.t. 

a book) and expressions (w.r.t. book and context}. It is implicitly in

tended that an expression is degree-norm correct (dnc), if its dagree

norm (dn), w.r.t. book and context, is defined. 

The definition of the latter runs as fellows: 

(i) dn<•> := 1 

(ii) dn(ro) ,_ dn(typ(roJ J + 1 

(iii) dnt[x:a)BJ := [dn(a) + t)dn(BJ 

(iv) dn({A}BJ ·- if dn(B) - [dn(A)]v then v 

(v) dn(a<Îhl ·- dn<typ(a)) + 1, if dn<B
1
J.: dnty1 J for i=l, ... ,!y 

where y E ä * a{y} E y is the scheme of a. 
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Here the notational conventions are just like those w.r.t. ordinary 

norms: we write dn insteadof Ç-dn and e.g., clause (iii) would in full 

re ad like this: 

(iii) ç-dn([x:a]B) [(Ç-dn(a))+l](Ç,x E a)-dn(B). 

Further a context is dnc if all its type parts are so, and a book is 

dnc, if all the contexts and typ•s of it are dnc. 

2.2.5 A degree-norm v can be translated into an ordinary norm v* by 

replacing all occurrences of numbers by '· Notice that (v+l)* v*, so 

dn(A)* =~(A). This shows that dnc-ness implies strict normability. 

Further, degree(A) can also be constructed from dn(A), for dn(A) 

ends precisely in the degree of A. 

We call a substitution ~y/ËD dnc if dn(Bi) = dn(yi), for 

i= 1, •.• , I y / • Clear ly dnc substi tutions are degree correct. 

Degree-norm correctness is preserved under dnc substitutions: 

if y E S~y, k=/y/,~B1 , ... ,~Bk, y dnc and [y/Ë] dnc then 

dn(y) _ dn(y[Ë]) 

Proof: By induction on the definition of dn(y). 

This gives us the following corollaries: 

(1) ~ dnc, degree(C)+l ~ typ(C)dnc, dn(typ(C))+l _ dn(C) 

(2) C dnc, C :2: D =<> D dnc, dn(D) dn (C) 

(3) C dnc, degree(C)+l =<> degree(typ(C))+l degree(C) 

(4) C dnc, C ~ D =<> degree(D) = degree(C). 

So typ* is total on the dnc expressions and, since dnc-ness is clearly 

decidable, typ* is weZZ-defined on all the expressions, in the sense of 

V .4.4.1. 

2.2.6 Now we are able to show that correctness implies degree-norm 

correctness. 

Proof: By induction on ~· E.g. let ~A, ~B, typ(A) :2: a, 

typ*(B) ~ [x:a]C. By ind. hyp. A and Bare dnc (so typ (B) is 

indeed defined), so typ(A), a, typ(B), typ(typ(B)l , ••• ,typ*(B) and 
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[x:a]C are dnc as well. Now dnctyp*(B)) : dn([x:a]C) : [dn(a)+l]dn(C) 

[dnctyp(A}}+l]dn!C) : [dn(A}]dn(C), while dn(typ*(B)) and dn(B) just 

differ as to their "end number" so dn(B) : [dn(A) ]v for some v. Hence 

{A}B is dnc. 

or, letyES * ~(y) E y be a scheme, let ~B1 , ••• ,~Bk (with k=IYI 
and let the B. satisfy the instantiation condition: typ(B.) ~ S.[Ë]. ~ 

l. l. l. 

ind. hyp. the Bi and the Si are dnc. Now dn(Bl) : dn(typ(B
1

))+1 -

dncs1J+l dn(y1), so [y1;B1D is a dnc substitution. So 

dncB2) : dn(typ(B2))+1: dncs
2
[B

1
]J+1: dncs

2
)+1 = dncy

2
). so 

[y1 ,y2/B1,B2] is dnc, etc. Hence ~(Ë) is dnc. D 
So typ* is also total on the correct expressions, and correctness 

is well-defined. Further, the ahove proof shows that the system with 

constants is strictly normahle as well, so (using SN) it is decidable 

2.3 Introducing definitional èonstants 

2.3.1 After the formulation of instantiation and application conditi~ 

it will also he clear how the compatibiZity condition of def and typ 

for the formation of definitional constant schemes has to read: 

typ(def(d}) ~ typ(d), for definitional constants d. 

2.3.2 The scheme of a definitional constant d is defined to he dnc, i: 

dn(def(d)) = dnctyp(d))+l, and for the corresponding d!ËJ wedefine 

dncd!B)) ::=: dn(typ(d))+l 

provided [y/ËD is dnc, where y E ii is the context of the scheme. 

so, still dn(d!Bll ::: dnctypcdl ::: dn(typ!dl[Ë]l+l = dnctyp!d!Ëlll+ 

and degree-norms remain preserved under reduction: dn(d(Ë)) = 
dn(typ(d))+l = dncdef(d)) = dn(def(d)[Ë]Il. And, by induction on correc· 

ness, we can prove that correctness implies degree-norm correctness. 

E.g. let the scheme of d be correct, then ~def(d), so def!d) dnc, and 

dncdef(d)) dnctypcdef(d)))+l, and 1-typcdl so typ(d) dnc, 

dnctypcd>) = dnctypcdef(d))) and dncdefcd) l = dnctyp(d)}+l, q.e.d. 
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VII.3 The c1osure proof forA 

3.1 What to prove 

The decidability of the Automath languages is one of the major 

aims of the language theory. By using an algorithmic definition we got 

the decidability of A and An, both with and without constants, directly 

from normalization (see 2.1.4 and 2.2.6). So one might wonder what else 

there is to prove. 

First there are both Nederpelt's conjectures, the Church-Rosse~ 

property (CR) for An, and the cZosu~e property (CL). Wedefine 

CR(A) 

CL<Al ~A, A ~ B => ~B 

A main lemma for s-CL (and 6-CL) is the substitutivity of co~~ect

ness: substitution with correct expressions of the right types preserves 

correctness. Formally: 

:x E o:tB, tA, typ(A) + o: '* ~B[::c/AB 

Other properties which play an important role in the proof of CL, 
are sound appZiaabitity (SA), p~ese~vation of typ(PT), of typ*(P*T) and 

af domain (PD). We write 

SA(A): A {B}[::c:C]D '* typ(B) + C 

PT(A): A ~ B => typ(A) + typ(B) (degree(A)fl, degree(B)fll 

P*T {A): A ~ B => typ* (A) + typ* (B) 

PD(A): A _ [::c:B]C, A ~ [::c:D]E • B + D 

The properties PT
1

, CL
1

, P*T
1 

and PD1 are the respective one-step 

variantsof PT, CL, P*T and PD. 

The above properties are not mere technicalities from the closure 

proof, but are also meaningful from the point of view of interpretation. 

E.g. SA is characteristic for the fact that the Aut-languages do not 

allow "proper inclusion" of type, and PT (resp. P*T) expresses the nice 

behaviour of typ (resp. typ*) w.r.t. definitional equivalence. 

Further, these properties serve to establish the correspondence 
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between the present, algorithmic systems and the E-systems, and betweel 

the verslonswithand without constants {see 6.2, 6.3). 

3.2 Some simple facts 

3.2.1 Throughout this section VII.3 we just discuss A without constan1 

So we may assume CR, and PD{A) (for all A) and SA(A) (for correct A) 

are immediate. 

By induction on ~A one also proves easily that ~A implies ~typ(A) 

(so ~typ(typ(A)), ..• ,rtyp*(A)). This is not easy any morefora system 

with constants, This proparty is called aoPPeatness of types. 

3.2.2 As with the E-systems (see V.3.1), we prove CL from CL
1 

by ind. 

on ~. For the a-outside case of CL
1 

we need substitutivity and SA. Pre· 

viously substitutivity (i.e. the substitution theorem, V.2.9} was eas~ 

and SA was rather involved, but here SA is easy and substitutivity is 

quite complicated. 

First some properties of substitution, which are valid already fol 

pretyped expressions. Let A be a ~-expression, let B be a (~,x E a,nl
expression. Let C* denote C[x/AD. Then 

(1) typ(A) ~ typ(x) ~ typ(B*l l typ(B)* , i.e., 

written out in full, 

~-typ(Al i- a~ (~,n*J-typ(B*l + ((~,x E a,nJ-typ(B))* 

(2) typ*(A) l typ*{x) ~ typ*(B*l i- typ*{Bl* 

Both facts are proved by ind. on the length of B. Notice that (1) and 

(2) are valid for each right monotonie, reflexive relation instead of 

+, so e.g. for ~. 

3.2.3 The problem with substitutivity is that the condition typ(A} ~ 

is clearly not sufficient. We would also like to know something about 

typ*. In fact we have the following theerem (modified subst., for short 

Let x E a, n~B, let ~A, typ(A) + typ(x} and typ*{A) + typ*(x). Let C* 

denote C[x/AD again. Then n~B*. 
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Proef: By inductienon ~B. E.g. the applicatien case. Let ~B 1 , ~B2 , 

typ(B1) 2 S, typ*(B
2

) :2: [y:i3]C. By ind. hyp. ~Eland j-s;. By (1), 

(2) and CR typ(Bl) + 13* and typ*(B~) + [y:S*]C*. Se by CR again 

typ(Bl) :2: y, typ*(B~) ;;:: [y:y]D fer some y, D. So ~{B; 

3.2.4 Cerollary: 

x E arB, rA, typ(A) + typ(x), typ*(A) + typ*(x) ~ rB[A]. 

Another consequence of (1) is PT
1 

(A) for correct A, i.e. 

rA, A > B ~ typ(A) + typ(B) 

Proof: Assume for definiteness that > is disjoint one step 

reduction >
1

• 

The proef is by induction on the length of A. For example: 

(i) A {A 1}[x:aJA
2

, B: A
2
[A

1
]. By SA typ<A

1
) +aso by (1) above 

typ(A) : {A 1}[x:aJtyp(A2l > typ<A
2

l[A 1] + typ{A
2
[A 1]l =: typ(Bl. 

so by CR we are done. 

3.3 Reuristic considerations 

3.3.1 At first sight SA, PT1 and correctnessof types seem to give a 

good starting position for proving CL. In a way this is true: we only 

have to find the right induction and the right induction hypothesis. 

Let us first try to prove CL
1 

(A) by induction on the length of A, 

or rather by induction on the relation "being a Subexpression of", for 

short: by induction on subexpressions. We interpret CL
1 

in terms of 

disjoint one step reduction. For the appl. case of inside reduction the 

ind. hyp. is nat streng enough, we additionally need P*T
1

. So instead 

we try to prove CL
1 

and P*T
1 

together, again by induction on subexpress

ions. Now everything is allright with the inside reductions, but with 

outside s
1 

we still come in trouble: A: {A
1

}[x:aJA
2

, SA gives 

typ(A
1

l + a but in view of the previous sectien we also want 

typ*<A 1) + typ*(a). 
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3.3.2 So let_us see under what conditions we might prove this typ*

requirement. First notice: if we knew CL already, then we could use PT 

to prove PT {for correct expressions), e.g. by induction on~. The in

duction step runs as fellows: let ~A, A ~ B ~ C. By CL we get ~Band 

by ind. hyp. typ(A) + typ(Bl + typ(C) whence by CR: typ(Al + typ(Cl, 

q.e.d. An alternative proof of PT(A) fram CL works by induction on the 

reduction tree of A (by virtue of SN(A)), for short: by induction on 

reducta. Viz. let ~A, A~ C. If A: C then typ(A): typ(C). Otherwise 

for same B, A >1 B ~ C. By PT1 typ(A) + typ(B), by CL ~Band by ind. 

hyp. typ(B) + typ{C), so by CR typtAl t typ(C). 

3.3.3 Further from PT we can prove P*T, or rather: 

~A, ~B, A + B • typ*(A) + typ*(B) 

by induction on degree(A) + degree(B), as fellows. If degree(A) = l 
then degree(B) = 1 too so typ*{A): A+ B: typ*(B). Otherwise, 

degree(B) f 1 either, so we can apply PT toA and B. By CR we get 

typ(A) + typ(B), by correctnessof types ~typ(A), ~typ(B) so by the 

ind. hyp. typ*(A) + typ*(B), q.e.d. An alternative proef of P*T fram 

CL and PT is by induction on -+, the order generated by (1) "being a 

proper reduct of", (2) "being the typ of" (as in V. ) • So the in-

duetion on + includes the induction on reducts mentioned before. That 

-+ is indeed well-founded will become clear in the sequel. 

The proof looks like this. Let ~A, let A ~ B. By CL ~B and by PT 

typ(A) ~ F ~ typ(B). By correctnessof types ~typ(A), rtyp{B) and by 

the ind. hyp. typ*(A) + typ*(Fl + typ*(B), and by CR typ*(A) + typ*<B 

3.3.4 In sectien 3.2.2 we announced to prove CL from CL 1 by induction 

on ~. However, this can be interpreted in two ways: 

{1) to prove ~A, A ~ B • ~B, by induction on A ~ B, i.e. on the 

number of reduction steps between A and B, 

(2) to prove CL(A) by induction on the reduction tree of A, i.e. 

by induction on reducts. Both inductions work, but the secend one has 

an advantage: we just need CL1 (A), but can freely use CL(B) in the 

course of the proof, for each proper reduct A of B! 
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3.3.5 Now it becomes probably plausible to try and prove CL(A) directly 

* by an induction on+, the order generated by + (3.3.3) and by sub. In 

this way we combine the induction on subexpressions (3.3.1, for the 

"inside" cases of CL
1
), on reducts (3.3.2, to prove PT), and on+ (3.3.3, 

to prove P*T). 

In order to make the induction work we need the well-foundedness 

of! on the correct expressions, i.e. the socalled big tree theorem BT. 
Section 3.4 contains the proof of CL as sketched above, assuming 

BT, section 4 is devoted to the proof of BT. 

3.4 The actual closure proof 

3.4.1 Definition of+ 

+ is the reflexive and transitive relation generated by 

(1) A + typ(A) 

(2) A ~ B • A + B 

* 3.4.2 Definition of+ 

* ~ is the reflexive and transitive relation generated by 

( 1) B sub A • A ! B 

(2) A+B,.A!B 

3.4.3 The big tree of an expression A is the reduction tree of A w.r.t. 

the extended reduction relation We assume the big tree theorem BT, 
* which states that + is well-founded on the correct expressions (and, 

hence, that their big trees are finite). 

3.4.4 Lemma: Let ~A, Cl(A). Then PT(A) (degree(A) + 1) 

Proof: As in 3.3.2, e.g. by ind. on reducts, using PT1 and CR. 

3.4.5.1 Define: 

CL+ (A) : # A + B • ~B 
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3.4.6 Lemma: Let rA, CL+(A). Then P*T<A). 

Proof: By BT we can use induction on ~. Let A ~ B. If degree(A) = 

then degree(B) = 1 too and there is nothing to prove. Otherwise, 

degree(B} + 1 either, so by the previous lemma PT(A), i.e. 

typ(A) ~ F s typ(B). By CL and correctnessof types ~typ(A), 

rtyp(B} and by the ind. hyp. typ*(A)' ~ typ*(F) ~ typ*(B). Now use 

CR. 

3.4.7 Theorem: rA* CL(A) 

Proof: By BT we can use induction on!. Let rA, A ~ B. If A = B 
then there is nothing to prove. Otherwise A > C ~ B with C a prop 

reduct of A. We want rC. The interesting cases are: 

(1) A: {A1}A2, C: {C
1

}C
2

, rA
1

, typcA
1
l ~a, rA

2
, 

typ*(A2> ~ [x:a]D, A1 > c1, A
2 

> C
2

• By ind. hyp. rC
1

, rC
2

• 

By PT
1 

typcA1) ~ typcC
1
), so by CR typ(C

1
> ~a. Now by the 

ind. hyp. we can assume CL+(A
2
), so P*T(A

2
) and 

typ*<A2> ~ typ*<C2), and by CR typ*(C2) ~ [x:a]D, q.e.d. 

(2) A = {Al }[x:a]A2, rAl, Hx:a]A2, typ(A1) + a. By ind. hyp. we 

+ + can assume CL (A 1), CL (a), so typ* cA 1) + typ*(a), and by 

substitutivity (3.2.4) rA 2[A1] : C, q.e.d. 

VII.4 The Big Tree Theorem 

4 .1 Introduetion 

* For the definition of the extended reduction relations + and ~ we 

* refer to sec. 3.4. Both definitions make use of typ, so + and +are 

only defined on pretyped expressions, i.e. expresslons with a context. 

Notice: taking subexpresslons often requires extension of the context. 

* The big tree of an expression A is its reduction tree w.r.t. ~, 

* i.e. the branches of the tree are the proper +-reduction sequences of, 
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We define: 

* BT(A): ~A has no infinite proper ~-reduction sequences 

The big tree is infinitary so: 

BT(A) ~ the big tree of A is finite 

In this sectien VII.4 we prove the big tree theorem BT: 

(BTJ A normable • BT(A). 

So BT states that on the normable expressions ! is well-founded, 

i.e. that !-SN holds. 

De Vrijer [70] introduced ! and big trees, and proved BT for a 

system of normable expressions containing his language ÀÀ. 

Below we give two different proofs of BT. The first (sec. 4,5) 

is modelled after the secend proof of 8-SN (Iv.2.5 ), theseeend one 

(sec. 4.6 J uses an idea from de Vrijer's proof (the "bookkeeping pairs") 

but further fellows the first 8-SN proef (IV.2.4.4). Actually both 

* proofs deal with a modification ~ST of ~ which is somewhat easier to 

handle and gives rise toeven bigger trees (sec. 4.4.2). 

For simplicity we start with a system without constants, and take 

* just 8-reduction for the ordinary reduction ~ involved in ~ and +. Later 

(5.2, 6.2, 6.3) BT will be extended to cover the remaining cases. 

4.2 Beuristics 1 

After de Vrijer we also call + and ! rt-reduation and rst-reduation 

respectively, with r for ordinary reduotion, s for subexpression, t for 

type. Similarly we speak about r-reduction (i.e. ordinary ~), s-reduct

ion (A s-reduces to its subexpression), t-reduction (A t-reduces to 

typ(AJ etc.) and their combinations. The meaning of rs-SN, st-SN etc. 

and 6 - the length of rs-reduction tree of an rs-SN expression etc. 
rs 

will be clear. 

We want BT, i.e. rst-SN for the normable expressions. Let us 

s;.unmarize what SN-results we know already: 

(1) r-SN. This is ordinary 8-SN as proved in IV.2.4 for the 

normable expressions. 

(2) s-SN and t-SN. s-reduction decreases length of expressions, 

t-reduction decreases degree of (pre-typed) expressions. 
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(3) rt-SN. This was proved for correct expressions in V.4.4. The 

same induction (1) on degree, (2) on 6 , applies to all 
r 

degree-norm correct expressions: taking typ decreasas the 

degree, r-reduction preserves degree. 

(4) rs-SN. Provable for the normable expressions by induction on 

(1) er, (2) length of expression. In fact the induction used 

in the proof of the square brackets lemma SQBR (IV.2.4,3), 

and in several a-SN proofs as a subordinate induction (IV.2. 

IV.2.5.3) is just induction on the rs-reduction tree. 

(5) st-SN. Can be proved by induction on the definition of pre

typed expressions (IV.3.2). 

Clearly these inductions fail for full rst-SN: s-reduction can in 

crease the degree, r-reduction generally increases length of expressi 

and taking typ can increase both length of expression and length of r

reduction tree. Besides, on the normable expressions r-reduction does 

not preserve the degree. 

4.3.1 Norm properties 

From IV.2.1 we reeall some properties of the norm ~ and of the 

normable expressions. We write A < 
~ 

B for: ~(A) is shorter than ~(8). 

(1) {A}B normable ~ {A}B < B and A < B 
~ ~ 

(2) A normable • ~(typ(A)) :~(A) 

(3) ~(x) :~(A), B normable ~ ~(B[x/A)) - ~(B) 

(4) A ~ B, A normable ~ ~(B) : ~(Al 

(5) B c A, A normable • B normable 

Properties (2}, (4), (5) make that the normable expressions are 

* closed under ~ and that ~ preserves the norm. 

4.3.2 BT-conditions 

Similarly to the SN-conditions in IV.2.4.1 we can formulate 

necessary and sufficient BT-conditions: 
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(1) BT<xl .. BT<typ(::c)) 

(2) BT([y:B
1

JE
2

l # BT<B
1
J, BT(B

2
) 

(3) BT({B
1

}B
2

) .. BT(B
1
), BT<B2) and (B 2+ [y:S]C =<> C[B

1
JBT) 

Proof: We just give the .,.-part of (3). Let BT(B
1
), BT(B

2
) and 

B
2 

+ [y:S]C =<> BT(C[B
1
)). is rst-SN so rt-SN so we can use 

ert(B2). E1 is rst-SN so r-SN so we can use 8r(B1). Using induction 

on 8r(B1) + 8rt(B2l we prove that all one-step rst-reducts of 

}B
2 

are BT. Distinguish: 

(i) D sub {B
1

}E
2

, so D c E
1 

or D c E
2

, so BT(D). 

(iil >l,fl Dor D typ(B2). We have BTcE1), BT(D) and 

D + [y:S]C =<> BT(C[E
1
]). Apply the ind. hyp. to {B

1
}D, this 

gives BT({B
1

}D). 

{iii) B1 >1 ,S D. Apply the ind. hyp. to {D}B
2

. 

[y:S]C. Then by assumption BT(C[B
1
J). 

4.3.3 Beuristics 2 

+ [y:B]C then clearly BT(C). So BT-condition (3) 

above suggests as a main step in proving BT the substitution theorem 

for BT: BTCA), ~(::c) ~(A), BT(Bl =<> BT(B[::c/A]l. 

Indeed, if we knew this theorem, we could simply praeeed by in

duction on pretyped expressions and get BT. The similarity with the 

situation around B-SN suggests us to use SQBR (IV.2.4.3), for + 

insteadof ~: If B* + [y:S]C then either (1) B + [y:S
0

Jc0 with S~ ~ S, 

c* + c, or (2) B + {F}::c, ({F}xl* + [y:BJC, where *stands for [x/A]. 
0 

However the following counter example shows that this lemma is 

wrong: Take B {B
1

}[z:y][y:S]{z}x, A ~ [u:~]·•u••u. Then 

B* + [y:S*[B~]]··B!··y*, but B + [y:B[B1]J{B1}::c, and ( }x)*+· 

4.4 ST-reduction 

4.4.1 One point which makes SQBR break down for + is that nót: 

B + C =<> B[::c/A] + C[x/A] 
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Example: B = ~~ C = typ{~) and the only conneetion between ~ and A 

concerns their norms (not their typ's). 

Theether substitution property: A~ A' • BlAD ~ E(A') does not 

hold either, due to the lack of monotonicity clauses in the definition 

of ~. Example: A ~ typ(A) but not • .. A• •• ~ • ••typ(A} •• • • 

4.4.2 Now we introduce Bt-reduction by adding these monotonicity rules 

to the definition of ~. What we get is a reduction in the usual sense, 

that a one step reduction consists of replacing a Subexpression (redex) 

by another expression (contractum). The redices are here of two kinds: 

(1) 8-redices which contract as usual 

(2) t-redices: variables ~ which contract according to ~ > 
1 

typ(~) 

we use the same terminology as before, (II.7.1.2 ): ;;\_, >
1

, 1, >
81 

etc., 

t-SN, Bt-SN, e
8

, etc. 

Now ~8, satisfies the secend substitution proparty (above) indeed 

but the first one is still not valid (same counter example). 

* Just like ~ and +, ~8 , is only defined for pretyped expressions. 

Formally, we ought to speak about "~Bt w.r.t. context t;;'', and the 

monotonicity for abstr. expressions then would read: 

If El >8T cl w.r.t. ~ and E2 >8T c2 w.r.t. (~, y E El) 

then [y:B1JE2 >
81 

[y:C1JC2 w.r.t. ~ 

4.4.3 we are going to prove 8t-SN and then conclude BT from the 

Theorem: 8t-SN(A) • BT(A) 

Proef: Let 8t-SN(A). Using induction on (1) e
81

(A), (2) lengthof A we 

show that all one-step rst-reducts of A are BT. SoA itseld is BT. 

4.4.4 8t-SN conditions 

These are quite similar to the BT-conditions. The only non-trivial 

modification concerns the appl. case. 

(3) Bt-SNt{B
1

}E
2

J • 8t-SN<B
1
J, 8t-SN<E2 > and 

B2 ~St y:B C • ~11'-SN<C(E1 )J 

Proef: As in 4.2.3 but now we use induction on e
8

,<E1J + e8T<B2). 
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4.4.5 Sernething on ~, 

Just like st-SN (see 4.2(5)) we can prove r-SN. Further we verify 

r-CR: Let E contain subexpressions 6: [x:a]••x••, r [y:B]· ·y· • • 

Then 6 > 6' = [x:cr]••a••, r > r• - [y:S]••S•· and we want a common 
1 t 

t-reduct of •••6'••f••• and •••6••r'··· • As in II.8.2 we consider 

all the possible cases. Generally the reductions simply commute: 

···ó'··f··· >t ••·6'••f'··· <
1
···6••f'·•· • In case the specific x 

occurs in B or the specific y occurs in a then two t-steps are needed, 

e.g. [y:"X"]••y•• > [y, .. a .. J .. y•• [y:"a"]"("CL'')" < < 
t T T 

:••x••]••(••x••)•· • Anyhow the weak diamond property holds for >T, 

so by t-SN we get t-CR, and uniqueness of t-normal form. 

4.4.6 This gives an easy way of reaching a Bt-normal form: first T

normalize then S-normalize. Notice: the norm properties guarantee that 

preserves the norm of normable expressions. 

<os and do not commute, but we still can get St-CR for the 

normable expressions, as fellows. For norms v we define a St-normal 

expression v*: (1) t* [x:v?Jv; . Now we can prove 

A norrnabie •A ~St (~{A))* 

by ind. on the definition of ~. This gives St-CR and uniqueness of St-

normal form. The procedure above assures the existence, so for normable 

A we can speak of ST-nf{A). 

In fact v* is Nederpelt's original representation of the norm v. 

4.5 First proof of St-SN; a correction to IV.2.5.3 

4.5.1 In view of 4.4.4 it seems reasonable to concentrate on the sub-

stitu~ion theorem for St-SN: A St-SN, B Sr-SN, ~(x) = ~{Al • B[A]Bt-SN. 

Just like with ~, SQBR fails for , so we rather let us inspire by 

the secend proef of 8-SN (IV.2.5.3). 

In fact we also take the occasion to indicate (and repair) a flaw 

in that proof, concerning the distinction between replacement and sub

stitution. 
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4.5.2 Replacement vs.substitution 

When defining substitution (11.2.4) we have assumed the concept 

ofliteraryreplaaement to be understood. Substitution amounts to re

placement with precautiona, viz. that no clash of variables takes place 

and substitution can also be considered a special case of replacement. 

Now let us see what went wrong in IV.2.5.3 (and also in {IV.2.6.2) 

Essentially we wanted to replace a specific subexpression 1::. in I: by an

other expression !::.', thus producing I:'. We had the idea that this replal 

ment of D. with 1::.' could be performed via substitution for a new "fresh" 

variable y, such that 1.:0 = ••y• •, E = I:0[y/D.), I:' = t
0
[y/l::.']l. However 

this is wrong: possible bound variables of E, which become free in 1::., 

can never get the appropriate bindinga in E0[y/t:.D. 

What we- need here is_literary replacement CLR) of y with D. and 1::.' 

resp. We introduce a new notati:on: BU:z/A)LR is the result of literary 

replacing all free occurrences of z in B by A. 

4.5.3 Below we follow the general idea of IV.2.5.3, but instead of 

using a substitution theorem for SN, we use the - stronger~ - replace

ment theorem- as we ought to have done there {and in IV.2.6.2) too. 

The easiest way is to use replacement with a set of expressions. 

Notation: Bfiz/a}LR' where a is a set of expressions, is the set of ex

pressions which result from B by (literary) replacing all free z in B 

by an expression A E a, but possibly different A's for different 

occurrences of z {compare multiple substitution, in 1!.10). 

4.5.4 The monotonicity of ~ST makes the replaasment property work: 

provided A has been put in the appropriate extended context. 

We make this slightly more explicit. Let A be an occurrence of a sub

expression in E. The aontezt of A in E can be defined by induction on 

the length of E. Intuitively speaking, it consists of all the assumpt

ions x E a, which one encounters (in the form of abstractors [x:a]) 

when scanning r from "left to right" until one arrives at 1::.. The crucia 

clause in the definition is of course: if ~ is the context of D. in E2 
then (x E E 1 ,~) is the context of~ in [x:E1JE2 • 
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Now the context of A in the replacement property must provide all free 

variables of A with the same typing as they get when A is inserted in 

B. E.g. we can take (~,n0 ) where s is the context of B and is the 

intersectien (in the sense of context inclusion sub, cf.V.2.6) of all 

the n's which are the context of a free occurrence of x in B. 

We define p(A) to be the set of ST-reducts of A. Then, again if A 

has been put in the right context, 

4.5.5 The other replacement property B C =~> B* c*, where * 

stands for [x/A]LR is still not generally valid, but we have a restricted 

version. Lemma: If A ~ST typ(x) and B ~ST C then B* C*. 

Proof: Ind, on ~ST' E.g. if B >l,T C, B: "'X'"X"', 

'~ ···typ(x) .. ·x·•·, thenB*: ... A .. •A· .. ~ST ... typ(x)• .. A•·•- c*. 

Corollary: ST-SN, A ~ST typ(x) • B ST-SN. 

Proof: Use ind. on (1) 6ST(B*), (2) lengthof 

3:-SN conditions. 

4.5.6 Now we are ready for the ST-SN proof. 

. E.g. inspeet the 

Replacement theerem for ST-SN: Let* denote {x/p(A)}LR' 

Let B normable, ~(x) =~(A), A, B ST-SN. Then 

c E B* - c ST-SN 

provided A has the right context. 

Proof: Byinductionon (I) IJ(A), (II) 8BT(B), (III) the "aapaaity" of 

the transition from B to C, i.e. the sum of the e
6

T•s of the reducts of 

A inserted in B. Now consicter a single reduction step C >
1

,ST D. We 

distinguish: (1) this reduction step concerns an old redex, i.e. a redex 

already present in B, (2) this step concerns a new redex. The latter 

are of two kinds: (2a) multiplied redices, i.e. redices inside an in

serted reduct of A, (2b) newly composed redices. All T-redices fall 

under case (1) or (2a) and the S-redices are classified as before, so 

the only possibility of case (2b) is as fellows: B: ···x···{B
1
}x•••, 

c = ••• A 1 ••• { c 1 }[y : y ]E • •• I D = ••• A 1 ... E[ c 1] ••• , where c 1 E sr' 
Al, A ~ST [y:y]E. 
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In case (1) and {2a) the replacement and the reduction commute, 

i.e. B > D0, DE D~. To be precise, let {C
1

}[y:y]C
2 

be an "old" redex, 

i.e. {B1}[y:6JB2 c 8, C
1 

€ 87, c2 € s;. Then DE ••·C
2
(c

1
]••• € 

(••·B21B1]•••){x/p{A(B
1
J>}LR, and not simply D € D0. Then we get 

6;-SN(D) by ind. hyp, II {case (1)) or III (case (2a)). 

Now we tackle case (2b): create a new variable zand form B
0 

by 

replacing the intended {B
1

}x by z. So BE B
0
(z/{B

1
}x)LR' For simplicity 

we put typ(z) : St-nf({B
1
}x), so ~(z) E ~({B1 }x) and 6t-SN(B

0
> -by 4.5. 

Then we form B0 € B~ by replacing the remaining free x•s of s
0 

with the appropriate reducts of A, i.e. the same as used in the formati 

of C, and finally replace the z of s0 by E(C
1
). This gives us 

D = B0lz/EIC
1
HLR back. Informally: B

0
: •··x• .. z•••, s0: •••A

1 
... z .. • 

D •••A 1 •••E(C
1
]••• • Either by ind. hyp. II or III we get S;-SN(C

1
). 

Further 6t-SN(A) so S;-SN([y:y]E) so 6;-SN(E). By normability B
1 
<~x 

so C1 <~x. Substitution is a special case of replacement, and replace

ment [ ]LR is a special case of i }LR so by the first ind. hyp. 

6t-SN(E(Cl]). Bo is St-SN by ind. hyp. II or III, E(Cl) <~x so by ind. 

hyp. I again S;-SN(D) q.e.d. 

4.5.7 Corollary 1: B normable, ~(x) :~(A), A, B S;-SN • B(A]B;-SN 

(substitution theorem for St-SN) 

Corollary 2: B normable • B B;-SN (see 4.4.4) 

Corollary 3: B normable • BT(B) (as in 4.4.3) 

4.6 Second proof of ST-SN 

4.6.1 Bookkeeping pairs, t-expansion and w-reduction 

4.6.1.1 Assume that A ~tB , i.e. B results from A by successively 

replacing variables x by their type typ{x). Alternatively we can work 

backwards from t-nf(A), by successively replacing newly created sub

expresslons by the original variable. 

In general it is of course not possible to retrace which subex

pressions are newly created, and from which variable they stem, unless 

we store this information somewhere inside the expression! 

Following de Vrijer [70] we use a new pairing opePation r,,.,, •• , 

for this kind of bookkeeping. 
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Definitions: (1) If A, Bare expressions then rA,B 1 is an expression. 

(2) If A, Bare ~-expressions then rA,B 1 is a ~-expression. 

(3) If A, B are normable, ~(A) 

For the rest the definitions of pretyped and normable expressions are 

unaltered. The notions of subexpression and substitution are extended 

in a straightforward way. As a new monotonicity rule, for each kind of 

reduction, we can have, e.g. A> A', B > B' => rA,B 1 > rA',B' 1
• 

4.6.1.2 Now the alternative way of producing B from A (above) can be 

described as fellows: (1) first provide all variables x successively 

with a copy of their type, i.e. replace x by rx,typ(x) and sa on, 

(2) then for some of these pairs simple restare the lefthand part, and 

for the rest piek the righthand part. 

In the process (1) the T-expaneion of A, T-exp(A), is constructed, 

i.e. each x of A is replaced by rx,r-exp(typ(x))'. The process (2) we 

describe in termsof a projection reduotion (~-reduction ~~). 

Definitions: (1) The T-exp of pretyped expressions is defined 

inductively: 

(i) T-exp(x) = rx,r-exp(typ(x)l 1 

(ii) T-eXp({A}B) : {T-eXp(A)}T-eXp(B) 

(iii) T-exp([x:a]Bl = [x:T-eXp(a)]T-eXp(B) 

(2) (i) 

(ii) 

one-step ~-reduction >
1 

is generated from ~-contraction: 
.~ 

r A~,B, > A, rA, B, > 
1 

B by the monotonicity rules 
1,rr ,rr 

rr-reduction ~ is the transitive and reflexive closure of 
~ 

4.6.1.3 Remark: Formally we should have defined the T-expansion of 

expressions w.r. t. their context, notatien ~-T-exp (B) • The abstr. case 

of the definition then becomes: 

~-T-eXp([x:a]B) = [x:(~-T-eXp(a))]((~,x E a)-T-eXp(B)) 
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4.6.1,4 The point of this alternative approach of ~t' making use of 

A ~ B ~ t-exp(A) ~ B tsee 6.2.21 T . 1T 

is that ~1T is definitely easier to handle than ~t' roughly because ~T 

does not depend on the context, and that ~8,-reductions of an expressier 

can be simulated by ~aw-reductions of its t-expansion. 

our proef below consiste of two parts: first we show that an~SN 

implies St-SN, then we prove the SQBR lemma for ~S1T and Sn-SN. 

4.6.2 aw-SN implies St-SN 

4.6.2.1 Lemma: A >
1 

B.~ t-exp(A) ~ t-exp(B)(in fact > ) 
,t 1f 1,11 

Proef: Ind. on >
1 ,t 

(i) t-contraction, A= x, B = typ(x). Then t-exp(A) -

rX,t-eXp(typ(x)), >
1 

t-exp(typ(x)) E t-eXp(B) ,n 

(ii) Monotonicity, e.g. A E [x:A
1

Jx, BE [x:B
1

Jx, A
1 

>
1
,t B1: 

By ind.hyp. t-exptA
1

l ~n t-exptB
1
l, so t-exp(A) -

[xa-exp tA
1 

l Jr x ,r-exp <A
1

) 1 ~ n [x :T-exp(B 
1

) ]r x ,r-exp (B 
1
), -

t-exptBl 

4.6.2.2 Corollary 1: A ~ B • t-exp(A) ~ t-exp(B) 
t 1T 

corollary 2: A ~ B • t-exp(Al ~ B (because t-exp(B) ~ El 
T 1T 1T 

4.6.2.3 Lemma: Let A be a ~-expression, let B be a (~,x E a,n)-express

ion. Let I and II stand for [x/A] and [x/r-eXp(A)) resp. Then 

I I with t-exp(B ) taken w.r.t. ~. n • 

Proef: ind. on .the definition of t-exp(B): 

(i) 
II r ,II r 1 t-exp(x) : x,r-exp(al = r-exp<Al ,r-exp(al > '![ 

I r-exptAl : r-exptx ). 

(ii) 
II r t II, r I , -r-exp(y) _ y,-r-expt yp(y)) ~11 y,r-expttyp(yl l -

I r-exp ty l • 
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(iii) (t-eXp({B
1

}B
2
))II ({t-eXp(B

1
)}t-eXp(B

2
))II 

I I I 
{r-exp(B

1
)}r-exp(B

2
) E r-exp(({B

1
}B

2
) ) etc. 

4.6.2.4 Corollary: Let A be a ~-expression, Bis a (~,xE a)-expression. 

Then r-exp(B)[x/r-exp(A)] ~ r-exp(B[x/Alll 
11 

4.6.2.5 corollary: A >1,
8 

B • r-exp(A) >
1

,
8 

~ 11 t-exp(B) 

Proof: Ind. on >1,
8

: 

(i) 8-contraction, A 

t-exp(A) >
1

,
8 

r-exp(A
3

l[x/1-exptA
1

lll r-exptA
3
[A

1
lll 

r-exp(Bl, by 4.6.2.4. 

(ii) monotonicity, e.g. A= 'A 1,A2,, B rB
1

,B
2

1
, A

1 
>

1
,

8 
B

1
, 

A
2 

>
1

,
8 

B
2

• By ind. hyp. •-exp(A) = rr-exp(A
1

),<-exp(A
2

) 1 

•-exp(Bl. 

4.6.2.6 Theorem: r-exp(A)St-SN •A St-SN 

Proof: Let r-exp(A) be S11-SN, use ind. on es11 (t-exp(A)). If A >
1

,
8 

B 

then t-exp(A) >l,S ~ 11 r-exp(B) (by 4.6.2.5), so by ind. hyp. 

Bt-SN(B). 

Similarly, if A> B then St-SN(B). SoA is s11-SN. l,t 

4.6.3 The proof of 811-SN 

4.6.3.1 The normable expressions are closed (and norms are preserved) 

under ~S 11 • Further satisfies both substitution properties (see4.4.1). 

Notice that does not satisfy CR but that 8 and 11 commute (use nested 

one step reduction 

~ B"*A~ C 
Brr 11 

, 
,11 

B 

4.6.3.2 811-SN conditions 

see II.3.4) and that weak liS-postponement holds: 

These are again quite similar to the 8-SN conditions. The interest

ing clauses are: 

{1) A Sn-SN, B 811-SN "* [x:A]B and 'A,B 1 811-SN 
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Cil A aw-SN, B Bw-SN and <B ~Bw [~:a]D ~ DIAIBw-SNl ~ {A}B Bw-SN 

So, again, we want the substitution theorem for BT-SN. 

* 4.6.3.3 Square brackets lemma for ~Sw: Let B be 8~-SN. Let stand for 

[~/AB. Let B* ~Bw [y:S]C. Then either (1) B ~Bn [y:a0Jc0 with 

B~ ~Sw B, C~ ~Bw C, or (2) B ~Bw {Bk}•••{B1 }~, ({Ë}~)* ~ [y:B]C. 

Proof: As in IV.2.4.3, by induotion on (I) eSn{B), (II) the lengthof 
B h · rB B , B* - rB* B*, • Te new case 1s 

1
, 

2 
, = 

1
, 2 • Then either 

Br ~Sn [y:S]C or B~ ~aw [y:S]C, and we can apply ind. hyp. I to B1 
or B

2
• 

Remark: An alternative proof is provided by Barendregt's lemma, which 

is still valid for ~Sw (see II.11.3.5), 

4.6.3.4 SUbstitution for Sw-SN: Let B be normable, ~(~) -~(A), A and 

Bare Sn-SN. Let* stand for [~/A]. Then B* Sw-SN. 

Proof: As in IV.2.4.4, by ind. on (I) ~(A}, (II) e 8~(B}, (III) length 

f B Th . B - rB B , B* - rB* B*, Both B* o • e new case concerns = 1 , 2 ' = 1 , 2 • 1 

and B; are Bw-SN by ind. hyp. II so B* is Bw-SN. 

4.6.3.5 corollary: B normable • B Sn-SN 

4,6.3.6 Notice that the T-expansion of normable A is again normable, 

soA normable ~ T-exp(A) normable. 

Corollary: A normable ~ABT-SN (by 6.2.6) 

corollary: BT 

VII.5 Closure and Church-Rosser for An 

5.1 Introduetion 

5.1.1 Here we consider the constant-leas part of An, defined as in sec 

2.12, but with ~ standing for Sn-reduction. It is easy to derive a 

strengthening rule (sec. V.1.6) for such an algorithmic system, so n-CL 

does not cause major difficulties. The problems with closure for An, as 

compared to A, are rather due to the fact that CL and CR appear to be 
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heavily interwoven. Namely, a proof of CL (see, e.g., VII.3) seems to 

make quite essential use of CR, while in turn we seem to need CL in the 

course of the CR-proof - because Sn-CR holds for correct expressions 

only. 

The salution is of course to prove CR and CL (and a number of other 

properties) simultaneously, by induction on big trees. In sec. 5.2, 

below we prove indeed that BT extends to the present situation. 

5.1.2 We introducesome notation that enables us to make the structure 

* of the proof more explicit. Here +is as in VII.3.4. 

Definition: If P is a property of expresslons then p* and Prr are 

given by 

(1) p*(A):..,. A.! B "* P(B) _ 

* (2) P5(A): ..,. (A properly +-reduces toB) "* P(B) 

Using this notation, we can express our induction step by 

~A, CR~(A), CL~<Al "*CR<AJ, CL(A) 

for which, of course, it is sufficient to prove 

The properties SA, PO, PT and P*T from 3.1 play again a role 

in the proof, and further property SC, substitutivity of correctness, 

here defined by SC(B): ..,. 

(x E o.I-B, ~A, typ (A} + typ (ól::) , typ* (A) + typ* (x) "* ~B[ A~ J • 

5.1.3 Now the proof below is organized as fellows. First we present 

some preliminary facts, among which Sn-BT (sec. 5.2), strengthening and 

n-PT (sec. 5 .3). 

Sectien 5.4 contains the actual closure proof. First we assume ~A, 

CR0CAJ, cL;(A), and prove SA(Al and PD(Al (in sec. 5.4.1), PT 1 cAJ, SC(Al 

and CR
1 

(A) (in sec. 5.4.2-5.4.4) respectively by a separate induction 

on big trees, and by simple induction on length. Then we complete the 

proof by proving PT(A), P*T(A) and CL 1 (A) simultaneously, by induction 

on the big tree of A again. 
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5.2 Extension of BT to the Sn-case. 

5.2.1 A postponement result 

Let ~ and ~a be the straightforward extensions of ~ and ~ot' 
tl) pTI) T p 

as defined in 4.4.2. Mere verification shows that 

A pretyped, A > >1 B • A > > B l,n ,t l,t l,n 

whence- as in II.7.3.2- tn-postponement: 

A pretyped, A ~ B • A ~ ~ B. 
nt t. n 

Combining this with Bn-PP we get 

5.2.2 Snt-SN and Sn-BT 

In 4.6.3 we proved St-SN, which- as in II.7.3.5- tagether with 

(St)-n-PP and n-SN gives us Snt-SN, for normable expressions. Then 

Sn-BT follows, as in 4.4.3. 

5.3 Some simple facts 

5.3.1 Strengthening 

If Bis a{~,~ E a,y E B)-expression, but~~ FV{B) and ~ ~ FV(B), 

then B is a (~,y E B)-expression as well, and the typ (if degree(B) + 1 

and typ* of B w.r.t. both contexts are syntactically equal (:). 

So,by induction on the definition of correctness, we get 

strengthening: if ~ E a, y E S~(B), ~ ~ FV(S) (and ~ ~ FV(B}) then 

y E St(B) - read this twice, with and without the parts concerninq B -
As a corollary we have: ~ E a~A, ~ ~ FV(A) ,. ~A 

whence n-outside-CL1 : ~~:a {~}A,~~ FV(A) • ~A. 

5.3.2 n-PT and n-P*T 

For pretyped A there holds 

A> B typ(A) > typ(B} (if degree(A) f 1), typ*(Al > typ*(B) 
n n n 



Proof: Induction on the length of A. 

So, induction on ~ gives 
T) 
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A B*typ(A) ~ typ(B) (ifdegree(A) + 1), typ*<Al 
T) 

typ* (B) 

and, a fortiori, we have n-PT and n-P*T 

A<?: B,. typ(A) + typ(B) {if degree(A) f 1), typ*(A) + typ*(B) 
n 

5.3.3 From 3.2.1 we reeall the proparty of correctnessof types 

~A =+ ~typ(A) 

and the substitution properties from 3.2.2 

(1) typ(A) + typ(x) =+ typ(BI!A]) + typ(B)[A] 

( 2) typ* (A) + typ* (X) ,. typ* (B[A]) + typ* (B) [A] 

5.3.4 Property: Let degree(A) 

A z =x1 :a1J···[xk:ak]C. 

Proof: Induction on the lengthof A. E.g. let A = {A
1

}A
2

, then 

~<A 2 ) = [~(A1l][v1]···[~]8, so by ind. hyp. 

A
2 

<?: [x:S][x1 :a1J···[xk:ak]C and A z [x1 :ai]•••[xk:ak]C', q.e.d. 

Corollary: Degree(A) = 1, v(A) [v1Jv2 ,.A<?: [x:a]C. 

corollary: ~ 1A, A= [x:a]C, A 2 p,. F 2 [x:S]D 

Proof: If A correct, then A normable, so F normable, with 

Corollary: ~ 1A, A [x:a]C, A + F =+ F 2 [x:S]D. 

5.4 The actual closure proof 

5.4.1 Lemma: Let ~A, CR0 (A), CL 0 {A). Then PD{A) and SA(A) 

Proof: By induction on the big tree of A. 

CPDl. Let A= [x ]A
2

, A<?: [x:B1 . If A1 2 B1 , A2 <?: B2 then 

certainly A
1 

+ B
1

. Otherwise A
2 

2 {x}[x:B
1 

• The latter expression is 

correct, satisfies CR* and CL*, so we can use SA and get A1 + , q.e.d. 

(SA). Let A {A
1

}[x:A
2

JA
3

• Then ~A 1 , typcA
1

J 2 ~~ ~[x:A 2 JA 3 , 
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typ*([i:A 2JA 3l ~ [re:A 2Jtyp*(A3) ~ [re:~]C. By correctnessof types 

r[x:A2Jtyp*<A 3l, which also satisfies CR* and CL* so we can apply PO 
and get A

2 
+ ~~ whence typ<A1J + A2, q.e.d. 

5.4.2 Lemma: Let rA, CR~(A), CL~(A). Then PT1 (A) 

Proof: Induction on length(A). n-PT1 we knowalready (sec. 5.3.2). For 

S-outside-PT1 let A~ {A1}[x:A2JA 3• By 5.4.1 typ(A 1) + A
2 

and by the 

substitution proparty 5.3.3.(1) typ(A) E {A1}[re:A2Jtyp(A3) > 

typ<A3J[A 1ll + typ(A3(A 1D), q.e.d. The other cases are immediate. 

5.4.3 Lemma: Let x E a, y E S~B, cR;(B), CL~(B), ~A, typ(Al +a, 

typ*(A) + typ*(a). We write * for [re/A). Then ($C(B)) y E s*~B*. 

Proof: Induction on length(B). The crucial case is: B ~ {B1}B2, 

typ(B1J ~ ~~ typ*{B2J ~ [u:~]~. By ind. hyp. ~B1 , ~B2 • We do not know 

CR or CL for the substitution results, so we use a trick. Distinguish: 

(1) B1 doesnotend in x, then typ(B
1

l E typ(B1>* ~ $*. 

(2) Otherwise, let B1 E •••x•••re and form C1 from B1 by just re

placing the final x, c E •••re•••typ(A). Then cl+ typ(Bl) 

and by CR, cl + ~- So typ(B~) E c~ + +*· 

Anyhow, in both cases typ(B~J ~ +'*, with +' + +• 

Further distinguish: 

(1) B
2 

doesnotend in x, then typ*<B2J E typ*<B2>* ~ [u:cp*Jw*. 

(2) Otherwise form C
2 

from B
2 

by replacing its final x, 
B2 E ···x···x, c2 ~ ···x···typ*(A) + typ*<B2). Then, by 

CR(typ*<B2JJ, c2 + [u:+Jw and, by 5.3.4 c 2 ~ [u:cp"]w" with, 

by PO, • + ljl". Now typ*<B;) E c; ~ [u:+"*]~"*. 
so in both cases typ*(B;l ;:: [u:cp"*]w"*, with + + +"· 

Now use CR(cp), this gives ~· + ~", whence +'* + +"* and 

typ<B~> + +"*. so Hsr}s;, q.e.d. 

5.4.4. Lemma: Let ~A, CR~(AJ, CLt<A). Then CR1 <Al 

Proof: Again by induction on length. The crucial case is the critica! 

Sn-case: A E [x:A
1 

]{x}[x:A2JA 3, x 4 FV(A2l. By 5.4.1 SA({x}[x:A2JA3J 

so A
1 

+ A
2

, [x:A1JA3 + [x:A2JA3, q.e.d. 
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5.4.5 Lemma: Let tA, CR0(AJ, CL~(A). Then CL
1 

(Al, PT(A) and P*T(A). 

Proof: Induction on the big tree of A. 

(1) \CL 1J. Let A> B, we must prove ~B. The n-outside case we know al

ready. Consider, e.g.: A {A
1

}[x:A
2

JA
3

, B A
3
[A

1
]. By 5.4.1 

typ(A
1

J ~ A
2

• By P*T- ind. hypothesis -we get typ*(A
1

) ~ typ*(x) 

as well, so by 5.4.3 we are done. This is S-outside CL
1

• 

or consider: A: {A
1

}A
2

, A
1 

> B
1

, A
2 

> B
2

, B =: {B
1

}B
2

, typ<A
1

J ~Ijl, 

typ*(A 2) <:: [u:~]tjl. By (e.g.) the ind. hyp. we get ~B1 , I-B
2

, 

typ<A
1

J i- typ(B
1

J and typ*(A 2) +typ*cB
2
). Now use CR, this gives 

typ(B1J + ~ and typ*(B
2

) ~ [u:$]tjl. 

So, by 5.3.4, typ*(B2) <:: [u:~']tjl' and by 5.4.1 ~ t ~·. Finally 

CR(~) yields typ(B
1

) + ~·, so ~{B1 }B2 , q.e.d. The remaining case 

of CL
1 

is trivial. 

(2) (PT). PT
1 

we know already. Now let A >1 B ~ C. By CL 1 ~Band by 

ind. hyp. PT(B), so by CR(typ(B)) 1 typCAl + typ(C), q.e.d. 

(3) cP*T). Let degree (A) = 1. Then by PT I if A ;::; B, 

typ(A) <: F :> typ(Bl. By CL
1

<Al (this implies CL(A)) ~B, so by 

correctnessof types, ~typ(A) and ~typ(B). Now apply the ind. hyp.: 

typ*(A) + typ*(F) + typ*(B) and use CR: typ*(A) + typ*(B), q.e.d. 

5.4.6 Theorem: If ~A then CR(A) 1 CL(A) 

Proof: By induction on the big tree of A. The ind. hyp. reads CR~(A), 

CL~(A), and the preceding lemmas produce CR1 (A) and CL
1 

(A). As we 

noticed before, this yields CR(A) and CL(A). 

5.4.7 Corollary: If ~A then SA(A), PD(A), PT(A), P*T(A) and SC(A). 

5.4.8 Note: The separate inductions on big trees in 5.4.1, 5.4.5 and 

5.4.6 can of course be compressed into a single induction on big trees. 
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VII.6 Various equivalence results 

6.1 Introduetion 

In VII.2 we introduced A(n) with and without (definitional) con

stants. The results in VII.3-5 are derived for the constant-less system 

In this section we extend these results in an indirect way to the re

maining systems, by showing that, in a certain sense, they can be em

bedded in the constant-less version. 

Sec. 6.2 is devoted to primitive constants only. First we givé a 

translation which eliminatas the constant-expression. Then we explain 

the relations between (a) the system with constants, (b) its image unde 

the translation, and (c) the constant-less system. Afterwards we easily 

extend our nice properties (CL, CR, BT) to the system with constants. 

Sec. 6.3 covers the additional extension with definitional con

stants. In 6.4 we prove another equivalence: between Nederpelt's single 

line presentation with abstraatorstrings Q and our presentation, with 

contexts ~. In this case too, the correspondence is close enough to 

show that Nederpelesoriginal system satisfies the required properties. 

6.2 Eliminating primitive constants 

6.2.1 The translation ' 

For the system with constants (for short: c-system) we use the 

notations A(n)C and ~c· Now wedefine a translation of the C-system int 

the system without constants. The translation (notation '} is characte

rized by: 

(1) it transforma constants pintovariables p•, 

(2) it converts constant-expressions p(A 1 ,•••,Ak} into appl. express

ions {Ak}•••{Ai}p', 

(3) it eliminatas sahemes yES* p(y) E y one by one from the book by 

including an additional assumption p• E [y:B']y' in the context, 

(4) it commutes with the other formation rules (for expressions, strin 

and contexts). 
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Thus a statement 8; ~CA is translated into 8', ~·~A' where B' is 

understood to be a context consisting of the additional assumptions for 

the new variables p'. 

6.2.2 Why the indirect approach? 

Below we use the properties of the constant-less system in our 

proef of the desired correspondence. Afterwards we can extend these 

properties to the C-system. 

The point is that the constant-less system is definitely easier to 

handle. In particular: the fact that the typ of a constant-expression 

is constructed by substitution is a complicating factor, because cor

rectness of types is not immediate any more. 

E.g. by using this indirect approach we would have been able to 

introduce constants without using degree-norms. 

6.2.3 The nature of the correspondence 

For terminology about extensions we refer te V.3.3.2. However, 

because we study an algorithmic system now, we replace A E B by 

typ (Al i- B and A Q B by A + B. 

Clearly the C-system is an extension of the system without con

stants. Because typ and ~ remain the same, it is a conservative extens

ion too. Of course it is not an unessentiat ene: primitive constant

expressions do not main reduce at all, so they can never be definition

ally equivalent to an expression without constants. 

Contrarily, the translation 'maps expression (and contexts), 

correct w.r.t. B in the c-system, property into the expressions (and 

contexts), correct w.r.t. B•: expressions {Ä}p' that do nothave enough 

arguments in front, i.e. where IÄI is smaller than the arity of p have 

no counterpart in the c-system. 

For the image of the C-system (w.r.t. a fixed book 8) under ',we 

introduce the notatien • I.e. 

n~_, resp. n~_B: ~ n- ~·. B 

Then below it will appear that the expressions (and contexts) correct 

w.r.t. B' in the constant-less system, farm a conservative extension of 
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the system ~-· In the presence of n..:reduction, it will be definitional 

(so unessential) too. See sec. 6.2.9. 

6.2.4 Facta about 1 

Notice that 1 is a purely "syntactical" matter, which has nothing 

te do with correctness: pretyped-ness is sufficient. 

As a map from statements 8; t;;f-A to statements 8 1
1 f;, 1 1-A 1 the trans-

lation in not one-one, but as a map from B-expressions and - contexts 

into 8 1 -expressions and - contexts it is one-one indeed. For the (part

ia!) inverse we use the notatien 0 : 

(A I) 0 := A 

Clearly 1 A[ BB 1 = A 1[B'D so A ~ B ""A' ;;: B', soA + B • A 1 + B'. 

t A t A head-Qi Further YP< ') ;;: yp( ) 1 
- there are only ~ contractions involveà 

where degree(A) i+l (for the definition of head- and of i-reduction 

see V.3.3.3 and V.4.3.3,5). And typ{A') - <PI for some <Jl. 

If there is no n-reduction then we have 

( l) A' > B .. A > B0 , BI 
0 - B 

so (2) A' <! B' .. A ~ B 

and (3) A' + B' •A + B 

6.2.5 ' and n-reduction 

With n-reduction, (1) above does not hold any more: 

([x:a]p(Ak, • • •,A
1
,xl) 1 

Lemma: A' ~ B' • A <! B n n 

[x:a']{x}{Ä'}p' may reduce to {Ä'}p'. 

Proef: Ind. on the lengthof A. E.g. let A = [x:a]C, soA' = [x:a']C'. 

If B' [x:6']D' with a'~ 8 1
, C' ~ D' use the ind. hyp. Otherwise 

n n 
C' <! {x}B'. The latter expression is ({x}B)' so by ind. hyp. C ~ n n 
and A ~ B, q.e.d. 

n 

{x}B 

0 

Now let A' ~ B' then by sn-pp: A' ~B C ~n B 1
• This C = C0, so C0 ~n B 

by the lemma, and A ~ B. This is property (2) above. Proparty (3) can 

be proved in the same fashion. 
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6.2.6 Something about typ* 

Lemma: rB' * <rtyp*(B) •, typ*(B) I + typ*<B')) 

Proof: The translation ' preserves the degree, of course. We use induct

ion on degree(B'). The degree 1 case is immediate. Otherwise 

typ*(B') = typ*{typ(B')) and typ*(B)' = typ*(typ(Bl)'. By correct

nessof types rtyp{B'), reducing to typ(B)' and by P*T 

typ*(B') + typ*(typ(B)'). By CL rtyp(B)' so by ind. hyp. rtyp*(B) ', 

q.e.d., and typ*(B)' + typ*(typ(B) '). By correctnessof types 

rtyp*(typ(B)') so by CR typ*(B) 1 + typ*(B'), q.e.d. 0 

Now that we know CL, CR, PD and SA for A(n) we can extend property 

5.3.4 to: ~ 1A, r
1
[x:a]C, A + [x:a]C • A ~S [x:S]D, a + S. So, as alter

native application condition, equivalent to the one used originally: 

rA, rB, typ(A) ~a, typ*(B) ~ [x:a]C * r{A}B 

we can as well use, e.g. 

typ(AJ +a, typ*(B) [x:a]C 

or 

typ(A) + a., typ*(B) + [x:a]C, Hx:a]C 

6.2.7 The proef of the correspondence 

Theorem: B; çJ cA ** B', ç; 'rA • 

Proef: *· By induction on correctness. The formation of the context B' 

is allowed, due to the liberal degree conventionsof A(n). Consider, 

e.g. the appl.rule: let rcA, reE, typ(A) ~a, typ*(B) ~ [x:a]C. By 

ind. hyp. rA I, rB 1
, further typ (A I l ~ typ (A) I 2 a I and by the 

lemma in 6.2.6 rtyp*(B) 1
, typ*(B 1

) +typ (B)' ~ [X:a 1 ]C 1
• By CR, 

typ*(B 1
) + [X:a.']C 1

, By CL, r[X:a']C• so, by the alternative appl. 

rule r{A•}B 1
• Or consider the instantiation rule: rcB1,•••, 

y E s*p(yl E y is a scheme in B, lul k and typ l + Ë] for 

i=l, •• • ,k. The translated scheme reads p 1 E [(y: S 1)]y 1 
• By ind. hyp. 

1-Bi,•••,f-Bk. Now typ(Bil ~ typ(B1)'.} BJ., typ*(p 1
) [y 1:Si]"•T, 

so r{Bi}P'· Further typ<B2l 2 typ(B2) I + S2[B1B' = s;[Bi] and 

typ*<{ }p'J = {Bl_}typ*(p'J > Cy2:s;ffs;_n"·T, so Hs;Hspp•. 
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Etc. up to HBkJ•••{Bi}P' ::: p(B) ', q.e.d. 

~ Also by induction on correctness. E.g. consider an appl. express

ion. Either it is ({A)B)' or it is p(B)'. First case: if ~{A'}B' 

then ~A' (so ~é>• ~B' (sol-eB), typ(A)' s typ(A'l::?: et (so 

typ(A)' -l-et), typ*(B)' + typ*(B') ~ [.x:et.]C (so typ*(Bl + [.x:a]C). 

Hence typ*(B)' ::?:
8 

[.x:B]D [.x:a0JD0 = ([.x:a 0JD0) • withet + B. By 

CR typ(A) I + 13o' so typ(A) + 13o' and typ*(B) ::?: [.x:So]Do' so 

rc{A}B. Second case: r{Bk}•••{Bl}p' so l-cBk,•••,rcB1• Let 

y E ä * p(y) E y be the scheme of p. Typ(Bil ~ ~ 1 , 

typ*<p'l ::: [yl :f3iJ•••• ~ [yl:~l]•••• so typ(Bll' +Bi, 

typ(B1) + s1• Further typ<Bil::?: ~2 , and [y
2

:B2ffBiBJ•••• < 

{Bptyp*(p') typ*({BiJp') ~ [y2 :~2 J ... ,, so typ<B
2

l -1- s
2

ffB
1
). 

Etc. up to typ(Bk) f Bk[ÊD and 1-cv<Bl q.e.d. 0 

6.2.8 The required properties 

Theorem: The strictly normable constant-expressions (see IV.3,4) 

satisfy BT 

Proof: Strictly normable C-expressions transferm into strictly normable 

expressions without constants under the translation ' , And all .! 
sequences of C-expressions A transferm into subsequences of .!-
sequences of A': (1) typ(A')::?: typ(A)', (2) A >

1 
B•A• >

1 
B', 

(3) Ac B •A' c B'. So by BT for the constant-leas version we 

are done. 

Theorem: A(nlc satisfies CR 

0 

Proof: Let 1-cA, A ~ B, A ~ C. By the ==- -part of the correspondence ~A • 

and by CR for A(nl B' + c•, so B + C, q.e.d. 0 

Theorem: A(nlc satisfies CL 

Proof: Let I-cA, A> B. Then rA', A', B' so by CL rB'. So rcB. 

Theorem: A(nlc satisfies SA, PO, PT, P*T, SC etc • 

. Proof: Either from CL and CR, or using the correspondence 

6.2.9 An unessential extension result 

Now we explain the conneetion between the 1-_-system and the 

ordinary r-system of A(n) without constants, Reeall 

0 
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The first half of the correspondence result shows ~- ~ ~~ i.e. a 

simple extension result. Now we define a translation from the larger 

into the smaller system, as follows: if x E ä * p(x) E y is a scheme 

in B, lxl = k, i < k then 

({A i} .•• {A 1 }pI ) -

{A~}p', i.e.wen-expand until p' gets enough argumentsin front. For 

the rest acts as identity. 

Clearly A <:nA, A :: (A-0)•. Viz. ({Ai}•••{A
1
}p') o" 

[x Hl: CJ.i+ 1[Ä-JI ] • • • [xk: c\[ÄöDP (Ä-O'x i+l' .. • ,xk) • 

The translation is a bit intricate, because ({A}B)- is not necessarily 

{A-}B-. In general {[}B- <:S ({A}B)- and B-[A-]1 <:S (B[A] J • Further 

typ(A-l typ(A)-, and also typ(A-l +s typ(A)-. Without proof we 

state that A<: B •A <: B, and that typ*(A-) + typ*(A) • From these 

facts, it can be proved that: ~A ~1-A-, so by the second part of the 

correspondence ~A- ~-A-. 

In case of Sn-reduction, this is a typical unessential extension 

result. 

6.3 The case of definitional constants 

6.3.1 We have three main possibilities to incorporate definitional 

constants in our theory. The first one studies the new system (we call 

it A(n)d, with correctness predicate ~d' and also speak about the 

·d-system etc.) independently, as a separate subject, the second one 

considers it as an extension of A(nlc, and the third one embeds it into 

A(n), by extending the translation' from the previous sections in 

order to cover definitional constants. 

Here we actually use the second method, and just mention some 

points on the third one. 

But we start by proving the big tree theorem for A(n)d, for 

reasans of completeness and as an indispensable prerequisite for the 

separate study of the system (method one above). 



254 

6.3.2 The big tree theerem for A(nld 

In 6.2.8 we proved BT for A(nlc by means of the embedding ' into 

A(n}. It is indeed possible to extend' to the case of definitional 

constants, but (see 6.3.3) the translation does net reflect the type

structure sufficiently, which makes this method fail here. 

So instead we revise the BT-proof of 5.2 (for A(n)) and adapt in to 

the A(nld-case, which is relatively easy. First we mention the BT-con

dition (see 4.3.2): 

( 5) BT (p (Ä) ) 4* BT (A 1 ) I 

(6) BT(d(Ä)) • BT<A 1>, 

BT<Ak), BT<typ(pl[ÄD> 

BT!Akl' BT<typ<d>[Ä]), BT<def(dl[Ä]). 

The Sot-SN conditions are quite analogous, and, as in 4.4.3, we have: 

Theorem: Bot-SN(A) • BT{A) 

This suggests that, in this case as well, the substitution proparty 

of Bot-SN is crucial. We choose to adapt the first BT-proof (sec. 4.5) 

so need the replacement theerem (see 4,5.6) instead: Let * denote 

fx/p(A)}LR' let B be normable, ~(x) :~(A), A, B Bot-SN. Then: 

C E B* • C Sot-SN 

Proef: As in 4.5.6. We consider a single reduction step C >l,Bot D. For 

all S-steps and all t-steps concerning variables (net constants), 

Bot-SN(D) can be proved as in 4.5.6. The remaining steps, i.e. 

o-steps and t-steps of constants, can only fall into the categories 

(1) and (2a) so we get Sot-SN(D) by ind. hyp. II or ind. hyp. III. 

So we have a list of corollaries: 

(1) B normable, ~(X) ]J <A> , A, B SoT-SN .. B[A] BoT-SN 

{2) B normable, ~<x1 l = JJ!A1l, 

A. (1=1, • • • ,k) and B SóT-SN • B[Ä] Bö-r-SN 
l. 

Proef: The simultaneous substitution can be simulated by iterated single 

substitution. 

(3) B normable • B Bot-SN 

Proef: Induction on pretyped expressions. For the new cases use the pre

vious corollary. 

(4) B normable .. B Snot-SN 
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Proef: tn-PP extends to the present case (see 5.2.1), ón-PP we knew 

already (see II.7.4). This gives (Bot)-n-PP and, by n-SN, 

Snot-SN. 

(5) B normable ~ Bno-BT(B) 

6.3.3 The translation into A(n) 

Here we show how the translation ' can be extended to the d-case. 

Viz. an expression d(Ä) transfarms into {Ak}••·{Al}[x:~']D', where 

x E ä * d(x) : D * d(x) E y is the scheme of d. 

This translation behaves nicely w.r.t. to reduction: A> B ~ A• 2 B'. 

But of course it is possible that an expression A' S-reduces to an 

expression which is not some B'. This is in contrast with the situation 

with primitive constants where this could only occur by n-reduction. 

The best we can get is: A' >l,S B ~ B ~S C, A >l,Bo C. So, e.g. by ind, 

on 66 (A'), we getA' B'*B c•, A~ C. Fortherest the translation 

seems to be not too useful, because properties like A' tB' ~A+ B (at 

least where n-reduction is allowed) and typ(A') + typ(A)' are only valid 

in the correct fragment. Note that typ(A') ~ typ(A)' is simply wrong 

here. 

6.3.4 Same properties of A(n)c 

Translation of A(n)d into A(nlc just requires the eliminatien of 

abbreviations, which can be done by o-normalization. In the next 

sections we show that this actually constitutes a tran~lation, i.e. 

that it preserves correctness. Here we first give some properties of 

i\('îlc which weneed in the rather complicated - proef below. 

The single substitution result (of A(n), and of /dnlc too) 

f-A, typ(A) +a, (x E a,nf-Bl '* nHA]f-B[A] 

can, by induction on lxl, be extendedtoa simultaneous substitution 

result 

typ(A.l + a.[A] for i l,···,IAI, tx E ~f-B> ""f-B[A] . 
~ ~ 

The properties of sec. 3.2.2 concerning the typ of substitution 

results can be generalized to (1) the simultaneous substitution case, 
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(2) suècessive applications of typ, resulting in: 

typj(A.l;. typj(x.J[ÄD, for i= l,··•,jÄI ""typj{B)~ÄB + typj(B(Ä)J, for 
l. l. . 

all relevant j, where typJ stands for j successive applications of typ. 

This holds for A(n) but also for A(nlc and A(nld· Notice, that in case, 

does not end in one of the xi we even have 

6.3.5 The translation into A(nlc 

our notation for the translation is For expressions amounts 

just to taking ö-normal farm. It is clear how acts on strings and 

contexts. It is intended that the hook B- is formed from B by ê-normal

izing and by skipping the abbreviational schemes. The translation is 

of course not 1-1. 

We reeall that B(Ä]- = B-[Ä-B, that d(Ä)- def(d}-(Ä-], and that 

ö-reduction commutes with Bn-reduction. The latter implies 

6.3.6 The translation preserves correctness 

Theorem: 8; S~dA• B-; s-~ctypi(A)-, typi(A)- + typi(A-) for i=O,•••, 

degree(A)-1 (this concludes ~cA- itself). 

Proof: By induction on ~d • Crucial cases are: { 1) the application case: 

A:: {A 1}A2 , j-dA1, ~dA 2 , typ(A 1l ~a., typ (A 2 J~[x:a]C. By the ind. 

hyp. ~cA~, ~ctypcA 1 )-, typ(A1)- + typ(A~), j-ctypi(A2)-, 

i- i- -- -typ (A
2

} +typ (A 2J. Clearly typ<A 1J ~a so by CR typ(A1J +a. 

Similarly, typ*<A
2
)- ~ [x:a.-Jë,and typ*(typi<A2l-) + 

typ*ctypi<A;>> = typ*<A;> + typ*cA2J- (by P*TJ, so by CR, 

typ*(typi(A
2
J-) + [x:a.-]C-. Hence ~Ctypi({A 1 }A 2 l-(= {A;}typi(A

2
l-l 

See 6.2.6 for the alternative appl. condition. The property 

i - i -typ ({A
1

}A
2

l + typ (({A 1}A2J ) is trivial. (2) the definitional 

constant case: A= d(ih, rdBj' typCBjl + sj[Ë] for j=l,•••,jyj, 

where y E a * d(y) := D * d<y> E y is the scheme of d. By ind. 
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hyp. ~eB~ and typ(B~) 4- typ(B.) + S.[.Ïn. Also by ind. hyp. 
J J J J 

y E ÏÏ-~cD-, y E S-~cy-, y E S-~ctyp(D) and typ(DJ + typ{D-). 

So, by the simultaneous subst. property, ~CD-[Ë-D<= A-), 

tcY-[Ë-B<= typ(A)-]. We know that y i typ(D), so y- + typ(D)- so 

by CR typ(D-) + y-, whence typ(D-)[lq + yTEn and, again by CR, 

typ(A-} i typ(A) • Now there is left to prove: 

(1) ~ctypi(AJ-(= typi-l(y[B])-), and (2) typi(A)- f typi(A-), i.e. 

typi-l(y[Ë]l- + typ1 (D-[Ë-]), for i~2,•••,degree(A)-1. The ind. 

i-1 -+ typ (y l I 

i - i -
typ (D) + typ (D ) for these i, and 

k~O,•••,degree(B.}-1, for j=l,•·•,\y\. Now (2) is simple: 
J 

typi-1 (y[Ë] > + typi-1 <y>[Ë] so typi-1 (y[ËD >- + typi-1 <Y> -ff.in -~-

typi-l,y->[Ë-D t typ1 (.Ö-)[Ë-] + typi(D-[ÏnJ). Here weusePT and the 

substitution property of types. By CR we get (2). Property (1) we 

formulate in the form of a lemma. 

Lemma: Let y E S~dy, ~dBj, for j=l,•··,\y\ with y and Ë as above. 

Th en I i - -rctyp (y[B]) I for i=O,···,degree(y)-1. 

i - -Proof: If y doesnotend insome of the y, then typ (y[B]l 
J 

i - --typ (y) [B ] which is correct by the simultaneous subst. property. 

This also covers the case i=O (which we knew already) . For the 

rest we use induction on the lengthof y. The case y yj is true 

by assumption. Further consider the application case: y {y 1}y2 , 

~dyl' ~dy2 , typ(y1l è! cp, typ*(y2J [z:tj>]E. By ind. hyp. ~Cy 1[Ë]-, 
f-ctyp(y

1
[Ë])-, tctypi(y

2
[B])- for all i. We have typ(y;[Ë-]1) + 

typ<y~>[Ë-D "' tYP<r
1
>-nn ;;;: ~-[rD, so by cR typ<y 1[ii]-> + ~[ËD-. 

i - . i - -- i - --Similarly typ <'!}BliJ + typ (y2J [B] f typ (y2l[B]. So by CR 

and P*T typ*<typi<y
2
[Ë]l-l + typ*<typi<y;l[Ë-]J + typ*<y;l[Ë-] + 

typ*<y
2

J-[ir];;;: [z:cp[Ë]-JE[B]-. Again by CR, typ*<typi(y
2
[Ë]l-l + 
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The abstr. case is straightforward. This finishes the proof of 

the lemma. This finishes the definitional constant case of the 

theorem. Now the remaining cases of the theerem are straight

forward. This finishes the proof of the theorem. 

Corollary: B; ~~dA • B-;1;-~c[, B-; ;-~c typ(A)-, B-; 1;-~c typ*(A)

and typ(A-) + typ(A)-, typ*([)+ typ*{A)-. 

6.3.7 Is A(nld a definitional extension of A(n)C? 

0 

The above corollary amounts to the unessential extension properties 

UE2 and UE3 (see V.3.3.2). Of course we also have ~CA • A ::A- and it 

is tempting .to conclude theether half of UEl: 

from the corollary. This is however not immediate as yet: we can concluè 

and we know 

but we hardly know anything about 

Instead, we first prove the substitution theerem for A(n)d; this 

gives correctness of types, as well as ó-CL. The latter implies UE1, 
which completes our definitional extension result. 

6.3.8 Some niceproperties of A(n)d 

The corollary in 6.3.6 gives us already some nice results. 

Theorem: A(n)d satisfies (1) CR, (2) SA and (3) PD 

Proof: (1} Let rdA' B s; A :2: C. Then f-cA-, B- s: A :! C-. By CRB- + C-, 

so B + c. 

(2) Let rd{A}[a::B]C~ Then rc{[}[a::B-]C- so typ([}+ B-. 

Further typ(A) + typ(A-) and by CR, typ(A) + B. 
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(3) Let ~d[x:aJA, [x:a]A 2: [x:S]B. Then ~c[x:a-JA-, 

[x:a-]A- 2: [x:S-]B-. By PD a-+ 13- soa+ S. 

Remark: We also prove some form of PT and P*T. 

Let ~dA, ~dB, A 2: B. Then typ(A) + typ(B) and typ* (A) + typ* (B). 

Proof: ~CA-, ~c , A <: B-, so typ(A)- + typ(A-) + typ(B-) + typ(B) 

0 

and by CR typ(A) + typ(B). Similar for typ*. 0 

6.3.9 The substitution theorem for A(n)d 

Proof: typ(B
1

) 2: typ(B
1
)- + typ(B~) 2: ~, typ*<B

2
) 2: typ*(B

2
) ~ 

typ*(B;) + [u:~]lji. By CR, typ(B
1

) + ~. typ*(B
2

J t [u:<j>]l/J. 

So ~d{B1 }B2 • 0 

Lemma: Let ~dB, i=l,•••,k. Let y ES* o(y) E y be the scheme of a, 

with lifl = k. Let ~co<Ë-). Then ~dc(B). 

Proof: typ(B.J 2: typ(B.) t typ(B~) + S~[Ë-~ ~ S.[B~. By CR, 
L L L L L 

typ(Bil + Si[Ë]. so ~da<ËJ. 

Theorem: Let x E äf-dB. Let * stand for [x/Äll. Let ~dAi and 

typ(Ail + o.~ for i=l,•••,lx!. Then ~dB". 

0 

Proof: We use induction on ~dB. So, by ind. hyp. ~do.~ for i=l,· .. ,!x!. 

Now typ(A
1

J + o.
1

• So typ{A~) t typ(A
1

) + o.
1 

and by CR 

typ(A~) + o.~. Similarly typ(A;) + o.; ~ a;[Ä-]. Etc., and for all 

i typ(Ai) + o.~[Ä-]J. Now consider, e.g., the application case: 

xEèi~éB1 . By 6.3.6, XE ;:;-~C{B~}B; and by the subst. theorern 

in A<n>c' ~c{B~[T]J}B;[TD <~ {Br}B;->. By ind. hyp. f-ctB~, f-ctB~, 

so by the first lemma, ~d{B~}B;. Similarly use the second lemma for 

the constant-expression case. The other cases are irnmediate. 0 
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6.3.10 The remaining nice propertie~ for A(n)d 

Corollaries of the preceding theorem are (1) correctness of types, 

(2) ö-outside-CL 1 , (3) S-outside-CL
1 

<use SA). 

Lemma: A(n)d satisfies CL
1 

Proof: The n-outside case is mere strengthening. We use the lemmas in 

6.3.9 for the inside cases. Let ~d{B1 }B2 , B
1 

> c
1

, B
2 

> C
2

• By inc 

hyp. ~é1 , ~dc2 • By 6.3.6 ~c{B;}B;, and B; > c~, B; > c;, so 

~c{C~}c; so ~d{C1 }C2 • Similarly for const. expressions. 0 

Theorem: A(n)d satisfies CL 

Proof: As usual, by ind. on ~. 0 

Further we get the remaining UE-result: 

6.4 Nederpelt's original formulation 

6.4.1 Nederpelt's original definition of A [51 ] used single-line 

presentation. I.e. instead of defining correctness of expression rela

tiva to a context, he defined correctness of expressions having an ab

stracter string [x:äJ (notation Q) in front. 

For definiteness we give his rules. We write rN for correctness 

in his system. But for certain provisions making sure that no confusior 

of variables occurs, the rules read: 

(1) f-Nt 

(2) ~NQa • ~NQ[~:alx 

(3) ~NQa, f-NQy • f-NQ[~:a]y 

(4) ~NQA, f-NQB, typ(QA) ~ Qa, typ*(QB) ~ Q[~:a]C • f-NQ{A}B 

6.4.2 Apart from the use of abstractor strings instead of contexts, 

there are two other points that make the two approaches not completely 

parallel. The first point concerns abstraction; our abstraction rule 

has no counterpart in Nederpelt's system. Nederpelt rather follows a 
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combinatory (in the sense of combinatory logic) way of building ex

pressions. In the language of combinatory logic, rule (2) above is the 

rule for Ia' the identity in a, and rule (3) is the rule for Kay' the 

constant function on a with outcome y. Alternatively, rule (3) might 

be called a rule of weakening (see V.2.9.3). 

6.4.3 The secend point that requires attention is that an abstractor 

string can get involved in a reduction (notably an n-step), whereas 

contexts are of course immume to reduction. First some notation. we 

write IQ! for the number of abstractors in Q. We write Q ~ Q' if 

Q= [x:&J, Q' = [x:a'] and a~ a' in the obvious sense. 

Now we have the following lemma: QA ~ Q'A', IQI A'. 

Proof: If there are no n-steps involving the border line between Q and 

A, then clearly Q ~ Q', A~ A'. Otherwise Q = Q
1
[x:a], a 2 o.', 

Q
1 

<: QÎ, A<: {x}B withx 4 FV(B) and QlB ~ Ql[x:B]A'. I.e. 

QA = Q
1

[x:aJA <: Ql[x:a']{x}B >n QiB 2 QÏ[x:SJA'. Now we can, e.g., 

use ind. on O(QA) and conclude that B ~ [x:B]A'. But then A A', 

q.e.d. 

6.4.4 The equivalence proof 

Now we are ready for the equivalence proof. 

Theorem: Let 

Q ex, , ~; x E a. 

Th en 

Proof: The -<=-part is immediate. We use induction on ~· E.g. consider 

our variable rule: from x E ä~ we conclude x E ä~x .• If is the 
1 

most "recent" variable then we must use rule (2). Viz. x E is 

itself aresult from x 1 E a 1,···,xi-l E ai-l~ai. By ind. hyp. we 

get ~N[x 1 :a 1 J•••[xi-l: ]ai. Otherwise we must insert the 

abstractors inbetween~i:ai] and the end of Q by successive 

applications of rule ( 3) • Now consider the '*-part. The crucial 

case is the application clause. So let ~NQA, ~NQB, 

typ(QA) ~ Qa, typ*(QB) ~ Q[x:a]C. By ind. hyp <;~A, i;~B. Now 

typ(QA) _ Q typ(A) <: Qa so by the lemma typ(A) <: a. Similarly 

typ*(B) ~ [x:a]C. So we conclude <;~{A}B, q.e.d. 
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6.4.5 The nice properties for Nederpelt's system 

One of the consequences of the theerem is: 

so the N-system can be considered a part of our system. This gives us 

CR and CL immediately. From this one can get the other properties SA, 
PO, PT etc. as usual. 

6.4.6 Alternative way of embedding Ad into AN 

Resuming the results of the preceding sections: we have constructe 

an embedding of A<nld (via A(n)c and A} into AN. 

Here we introduce an alternative way (due to Nederpelt [49]} of 

embedding A(n)d directly into AN. our notatien for the translation is, 

again, '.Let a statement 8; ~~dA be given. Primitive schemes 

x E ä * p(x) E y are, as is to be expected, turned into abstractors 

[p' E [x:ä•]y']. The context~ is of course transformed into an ab

stractorstring ~· Q. Essential is the translation of definitional 

constant schemes. A scheme x E ä * d(x) :• D * d(x) E y is translated 

into an expression "segment" {[x: ii' ]D • }[d' : [x: ä' ]y • ] • All constant 

expressions a(Ä) are now translated into {Ak}•••{Ai}a'. So B; ~~dA is 

translated into a single expression B'~'A', where B' is a string of 

abstractors and apptiaators, and ~· consists solely of abstractors. 

For expressions the translation is quite similar to the translatie 

'in 6.2.1. In particular we have (as in 6.2.4) typ(A') ~a typ(A)'. 

However, w.r.t. to ö-reduction the correspondence is not too close: it 

is not possible to eliminate occurrences of d' one at a time. So in 

order to establish At B •A' tB' weneed a partial ö-normal form 

again. 

Anyhow, it is indeed possible to prove 8; ~rdA *~NB'~'A'. 
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VIII SOME RESULTS ON AUT-Pi 

VIII.l Introduetion and summary 

1.1 There are two languages of the Automath family that have been 

developed for practical (in contrast with, say, language theoretica!) 

purposes and have actually been applied in extensive formalization pro

jects. On the one hand there is AOT-QE, used by L.S. Jutting in his 

Landau translation [37). The latter reference also contains an informal 

introduetion to the language [27). The theory of AUT-QE is to be found 

in Chs. IV to VI of this thesis. On the other hand there is AUT-Pi, 

invented by J. Zucker, and employed by Zucker and A. Kornaat for the 

formalization of classica! analysis and some related topics. In [77] 

one finds a short account of both the language and the formalization 

project. This chapter is devoted to the theory of AUT-Pi, which is not 

quite as complete as the theory of AUT-QE. Some work remains to be 

done, notably on the extensional version of the language (see sec. 6). 

1.2 What AUT-QE and AUT-Pi have in common 

In IV.l we described AUT-QE as a first-order pure, reguZar, gene

ralized typed À-calculus system. Using the same terminology, AUT-Pi is 

a first-order extended, regular, generalized typed À-calculus system. 

So boL~ languages have much in common and, in some sense, AUT-QE can 

be considered a sublanguage of AUT-Pi. 

We resume: both languages are regular, i.e. they have just ex

pressions of degree 1 (supertypes), 2 (types and typevaZued yûnations) 

and 3 (terms). They are first-order, i.e.there is only quantification 

and ;i, -abstraction over term variables, not over type-variables. Further, 

they have generalized type structure, i.e. the types are constructed 

along with the terms. Besides, AUT-Pi and AUT-QE have the hook-and

:Jontext structure in common. Books to introduce primitive and defined 

~onstants, depending on variables, for which substitution (instanti

ation) is permitted. Contexts for the introduetion of variables. 

Here we want to emphasize that, just like AUT-QE, AUT-Pi is a non

arithmetical system, i.e. it has no recursion constant with the eer

responding reduction. 
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1.3 The additional operations of AUT-Pi 

But, where AUT-QE belengs to pure typed À-calculus (abstraction, 

application and instantiation as the only term-forming operations), 

AUT-Pi is a typical extended system, with the additional kinds of terms 

paiva <P,A,B>, pvojeations A{l) and A( 2), injections i 1 (A,S) and 

i 2 (B,a} and $-functions (or: $-terms) A • B. Here the Pof the pair, 

and the S and a of the injections are mere type-labels to guarantee 

uniqueness of types. 

Corresponding with these new terms there are new type-constructs: 

first the sum-type rP containing the pairs <P,A,B> as elements, where 

P is a type-valued function with domain a, A belengs to a and B is of 

. type {A}P. In case P {as a type-valued function) is constant, i.e. {A}l 

does not depend on A, the pair and the sum type can he considered to 

degenerata to <A,B> and a & B respectively, where 0 is the ordinary 

cartesian product and B is the type of B. Secondly, there is the dis

joint union or •-type a eS, containing the injections i 1{A,S) and 

i 2 (B,a), where A and Bare of types a and B respectively. 

The pairs get their meaning by the presence of the projections anë 

the associated reductions: if A is a pair, i.e. element of a sum-type, 

say rP, then A(l) is an element of the domain of Pand A(2) is element 

of {A(l)}P. Now <P,A,B>(l) n-reduces toA and <P,A,B>(2) n-reduces toE 

In the extensional version of AUT-Pi, <P,A(l)'A(2)> a-reduces toA, 

provided A belengs to IP (otherwise the type would vary under reductior. 

Similarly, the injections get their meaning by the e-terms and the 

associated reduction. Let us first explain what a e-term is. Roughly 

speaking, when fis a function on a and g is a function on B, then -

under certain conditions - f e g is a function defined on a $ B, acting 

on (injections of terms of type) a as f and on (injections of terms of 

type) B like g. So the reductions are as follows: {i1{A,S)}(f eg) 

+-reduces to {A}f and {i2 (B,a)}(f eg) +-reduces to {B}g. The eerras

ponding extensional reduction is E-reduction: [~:a]{i 1 t~J}f e 

[x:B]{i2 (x)}f &-reduaes tof, provided f does not contain x as a free 

variable (i.e. does notdepend on x). 

Please note the use of parentheses: $ is supposed to bind more 

loosely than the ether term forming operations. 

A more precise definition of AUT-Pi fellows in sec. 2, 
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1.4 The conneetion with natural deduction systems 

By the well-known formulae-as-types, derivations-as-terms inter

pretation, systems of typed À-calculus can be brought into close corres

pondence with certain natural deduction systems for intuitionistic 

logic (including the usualproof theoretic reduction relations). Thus, 

pure systems correspond to logical systems with + and V only, and ex

tended systems correspond to systems with more connectives. In particu

lar, the r, the pairs and the projectionsof AUT-Pi may provide the 

interpretation of "strong" existential quantification with its intro

duetion and eliminatien rules (though this has not been exploited in 

Zucker's book, see [77]). And ®, the degenerate form of r, corresponds 

precisely to conjunction. 

As for the interpretation of v (disjunction) by $-types, the in

troduction rules of v do correspond to injection, but the eliminatien 

rule of v differs slightly from its counterpart in AUT-Pi. The usual 

eliminatien rule of v (see, e.g., Prawitz [59]) operates on three argu

ments: from (1) a derivation of a v 8, (2) a derivation of y under the 

assumption a, (3) a derivation from y under the assumption B, one can 

form a derivation with conclusion y. The assumptions a and S of the 

derivations (2) and (3) are discharged. 

The AUT-Pi eperation representing this rule must be constructed 

in several steps: first (2) and (3) are transformed into derivations 

of a+ y and B + y respectively. These two derivations are combined into 

a derivation of (a v Sl + y (by using $). Then the conclusion y follows 

from modus ponens (by (1)). 

Here we stick to the AUT-Pi variant of the rule. For a discussion 

of the alternatives see Pottinger [56, 57]. 

Because AUT-Pi is still non-arithmetical, it cannot represent 

natural-deduction systems for arithmetic (in the sense intended above). 

1.5 Product formation versus type inclusion 

Now we discuss a specific difference between AUT-QE and AUT-Pi, 

that prevents AUT-QE from being an actual sublanguage of AUT-Pi. In 

AUT-QE there is no difference in notation between type-valued functions 

and function types. I.e. the expression [x:a]S, with B an expression 

of degree 2, stands for the function that to arguments A in a assigns 
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types S[A], but also for the type of the functions which, when applied 

toA in a, produce a value in S[A]. And, to make things even more com

plicated, it is possible that S allows such multiple interpretations 

as well. 

In AUT-Pi there is reserved a special symbol for referring to the 

function type, viz. n (for cartesian product formation): by prefixing 

with n the type-valued function [x:a]B is turned into the corresponding 

function type n(x:a]S. More general, if P is a type-valued function, 

then nF is the corresponding product type, containing those functions 

as elements which, when applied to arguments A of the right type, 

produce values in {A}P. 

The language AUT-Pi is named after the n of product formation. 

In AUT-QE the expression [x:a]S can get (at least) two possible 

types, viz. '[x:a]T and 1, according to which interpretation is intended. 

This is implemented by the rule of type inclusion, As a consequence, 

uniqueness of types is valid for terms only. Some problems arise from 

this in conneetion with defined constante (see V.1.9 and V.3.3.10). In 

AUT-Pi uniqueness of types is valid for types as well: e.g. if S is a 

type, then [x:a]S has type n[x:a]1 and n[x:~]B has type 1. 

Not~ here the use of n again which makes the (constant) "super-type 

valued tunetion" [x: aJ1 into a super-type n[.x: a}r. 

At first sight it seems that the here-indicated difference is a 

trifle, and that AUT-QE can be made into a subsystem of AUT-Pi by simply 

inserting n•s at the right places. However, as noted by the Bruijn, the 

correspondence is not that close: the rule of type-inclusion (of AUT-QE) 

is somewhat strenger than the product formation rule (of AUT-Pi), See 

sec. 6.1, [15] and [17). 

1.6 Some features of AUT-Pi notdiscuseed here 

For completeness we mention two important, more or less syntac

tical, features that enrich the language used by Zucker and Kornaat in 

their AUT-Pi book. First, there is the use of AUT-synt, a kind~f Auto

math shorthand, as documented in Jutting [37]. Secondly, there is the usE 

of strings-and-telesaopes (see [77]). 

However, these features do notbelang specifically to AUT-Pi; they 

rather can be attached to any Automath language, but were not yet avail

able when Jutting started his Landau translation. On the contrary, the 



267 

strings-and telescapes generalize (and, hence, duplicate) in some sense 

the pairs-and-sums of AUT-Pi. These two features are not discussed in 

this thesis. 

In [77] Zucker describes how the whole language is divided into a 

t-part (for terros and types) and a p-part (for proofs and propositions}. 

This division originates with the distinction between the two degree 

basic constants, r (or type) and rr (or prop). Connected with this is 

the principle of equality of proofs (two proofs of the same proposition 

are considered to be definitionally equal; only consistent with classical 

logic). Here we just use ras our basic constant. As a consequence we 

do not discuss equality of proofs. 

1.7 Sectien 2 below contains a more precise definition of AUT-Pi. In 

sectien 3 we prove the closure property; Correctness is preserved under 

reduction. In section 4 we first define two systems of normable ex

pressions, AUT-Pi
0 

and AUT-Pi
1

, which have the same "connectives" and 

reductions as AUT-Pi but a simplified type structure. We study SN for 

these two systems. First we show that the methods of proving e-SN 
directly apply to the situation with Srr-reduction. In sec. 5 we give 

some different proof methods for SN in presence of +-reduction. Then 

we extend the AUT-Pi
1 

results to AUT-Pi. Section 6 just contains some 

remarks on the conneetion between AUT-Pi and AUT-QE (type-inclusion vs. 

product formation), and on the particular problems posed by the 

addition of e-reduction. 

VIII.2 A short definition of AUT-Pi 

2.1.1 We give an E-definition of AUT-Pi, along the lines of the AUT-QE 

definition in V.2. For the formation of books and contexts we refer to 

IV.3, and for their correctness to the requirements in V.2.1.3. However, 

the inhahitable degree condition, to the effect that correct expressions 

can be of degree 1, 2 and 3 only, has to be restricted further, to an 

inhabitability aondition: Expressions acting as the typ of a variable 

or a constant have to be inhabitable. Where we define a to be inhabi~able 

when degree(a) 1, or: degree(a) = 2 and a ET ~ra E rr). 
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2.1.2 But first we must define the degree (and, implicitly, the notion 

of degree correctness) of the typical AUT-Pi expressions: 

degree(A) 

degree(A) 

degree(A) 

degree(A) 

degree(A) 

degree(A) 

1 or 2 ~ degree(n(A)) = degree(A) 

2 • degree(L(A)) 2 

degree(B) = 2 or 3 ~ degree(A eB) 

3, degree(B) = 2- degree(i
1 

(A,B)) 

degree(i
2

(A,B)) 

3 

degree(A) 

3 

2, degree(B) degree(C) = 3 ~ degree(<A,B,C>) 3 

2.1.3 Corractness of expressions, E-formulas (for typing) and Q-formulas 

(for equality) is defined simultaneously. For the notational conventions 

and abbreviations we refer to V.2.1 and V.2.2. E.g., we display degrees 

as superscripts to the correctness symbol r· we freely omit books and 

contexts (or parts of contexts) not relevant to the rule under con

sideration, and we sometimes omit r as well (viz. in front of a formula 

when context and degree are not shown). 

2.2 The general rules 

2.2.1 We start with the rules, which AUT-Pi has in common with AUT-QE. 

We assume a correct book B and a correct context ~. First the general 

rules for correctness of expressions and E-formulas. 

(i) type and prop: r1
t and ~ 1 u 

(iil variables: ···,x E ~,···rx<E~l 

{iii) instantiation: if c is introduced in B, with context y E S, 
then Ë E B[Ë] • c(Ë) (E typ(c)[ËDJ 

For our language theoretica! purposes we need not distinguish between 

t and u. So in the sequel we just use t, intending to cover u as well. 

2.2.2 Then the remaining general rules: for Q, for type-modification 

and strengthening. 
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(iv) Q-reflexivity: f-A • A Q A 

(v) Q-propagation: A QB,rC, (B > C or C > B) =~>A Q C 

(vi) type-conversion: A EB Q C =~>A E C 

(vii) strengthening: if (x E a,nlrB (E/Q C), x does not occur free 

in n(,C) and B then nr-B (E/Q C) 

The Q-propagation rule still depends on an assumed reduction relation, 

e.g. either withor without the extensional reductions n, €, cr. The rule 

of strengthening is only included for technical reasens associated with n 

and €, so can be omitted in the non-extensional case. 

Notice that the rule of type-inclusion of AUT-QE has been left out 

here. Its role, viz. of transforming (type-valued) functions into types, 

is to be played here by the product rule for 2-expressions of the next 

section. 

2.3 The specific rules I 

Now we come to the rules specifie for AUT-Pi. They are divided 

into three groups. Each eonsists of one (or more) introduetion rule(s) 

one (or more) eliminatien rule(s) and a type formation rule to provide 

the introduetion expression(s) with a type. With eaeh group an IE-re

duction rule (i.e. introduction-elimination reduction rule) and its 

extensional counter part ean be associated. 

I Abstraction, applieation and produets 

2. Product rule 2: B E TI([x:a]t) =~> TI(B) E t 

3. Abstr. rule: 
2 i+l i+l f-a, x E af- B(E C) =~> ~ [x:a]B(E TI([x:a]Cll 

4. Appl. rule 1: A E a, f- 2
B E TI([x:a]Sl"* r2{A}B(E 

5. Appl. rule 2: A E a, B E TI(C), C E TI([x:ah) =~> {A}B(E {A}C) 

The associated reduction relations areBand n: 

{A }[x: a]B > S BI! A], [x:a]{x}A > A if x ~ FV(A) 
n 
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It is in the above group of rules that the difference between AUT-QE 

and AUT-Pi becomes explicit. Foradiscussion of the rule of n see 1.5, 

and 6.1. 

Notation: In case ~ * FV(B) we abbreviate O([~:a]B) by a + B. 

Using this convention, product rule 2 and appl rule 2 become 

B E a + t • O(B) E t 
and 

A E a, BE O(C), CE a+ r • {A}B E {A}C 

2.4 A possible extension concerning 1-expressions 

Notice .that all compound correct 1-expressions have a n in front, 

or possibly (when 1-abbreviation constants are present) o-reduce to an 

expression starting with n. In fact, each correct 1-expression o-reduces 

to an expression like 0([~ 1 :a1 Jn<C~2 :a2 Jn(••••••O([~n:an]t)•••))). 
As a consequence all 1-expressions are inhabitable (see 2.1), just 

like in AUT-QE, but they generally contain parts which are not coPrect, 

e.g. the part [~:a]t in O([~:a]t). If we do not like this we can easily 

extend the language by 

(1) restricting the notion of inhabitable 1-expressions: 1-expressions 

are said to be inhabitable according to: (i) t inhabitable, (ii) 

(ii) if B inhabitable then O([~:a]B) inhabitable, (iii) if B in

habitable, B Q C then C inhabitable. 

(2) restricting product rule 1: 

~ E ar1B, B inhabitable • rn([~:a]B) 

(3) dropping the restrietion to degree i+1 in the abstr rule. Then, 

we can further extend AUT-Pi to a +-language (i.e. all value 

degrees are also function degrees, see V.2.7) by 

(4) adding a new appl rule: 

A E a, B Q [~:a]C • ~{A}B 

These changes are relatively unimportant, of course. 
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2.5 The specific rules II 

2.5.1 The rules of group I can be considered as just rephrasing the 

corresponding rules of AUT-QE. Now, however, we come to rules which 

have no counterpart in AUT-QE. 

II Pairs, projections, sums 

Let ~ E a -+ T. Then 

1. Sum rule: ~!:(~) <E T) 

2. Pair rule: A E a, BE {A}~~ ~<~,A,B>(E !:(~)) 

3. Projection rules: CE l:(lf>J =~>~C(l)(E cd, ~c( 2 )<E {C(l)}~l 

The reduction rules associated with group II are~ and o: 

<lj>,A,B> (1) > 1f A, <~,A,B> (2 ) > 
11 

B 

A E !: (Ijl) ~ <~ ,A ( 1 J ,A ( 2 ) > > cr A 

2.5.2 Notice that here, for the first time, reduction ceases to be a 

purely syntactical matter. The condition A E !:(~) is inserted here 

because we want to maintain preservation of types 

A E a, A > B • B E a 

Otherwise, we come in trouble with ~ E a-+ T, A E a, ~ [x:a]{A}~, 

B E {A}~, where C 

+ Q 'j!. 
As a consequence we must modify one of the monotonicity rules into: 

if x E a • A > B then [x:a]A > [x:a]B. 

2.5.3 Notation: in case x ~ FV(S) we abbreviate !:([x:a]6) by a ® S. 

For pairs <~,A,B> in such a degenerate sum we can omit the type label 

~ and just write <A,B> (because it is intended that Ijl can be constructed 

from A and B in this case). 

The degenerate versions of pair rule and projection rules are: 

A E a, B E S • <A,B> E a @ S 

c E a® s • C< 1l E a, C(ZJ E s 
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For degenerata pairs the typing condition for o-reduction can be omitted 

Notice that, in contrast with products, only degree 2 sums are 

formed, and consequently only degree 3 pairs. Besides,the two components 

of a pair are 3-expressions too. 

2.6 The specific rules III 

See the discussion in 1.4. The rules concern 

III Binary unions, injections and plus-terms 

Let a E T, 6 E 1. Then 

1. Binary union: ~a e acE T) 

2. Injection 1: A E a* ~i 1 (A,6) (E a e 6) 

3. Injection 2: BES~ ~i 2 (B,a)(E a eS) 

4. Plus rule: y Er, BE a .... y, CES+ y.,. ~Be; C(E(aeS) + y) 

The associate reductions are + and e: 

{i
1 

(S,A)}(C e; D) >+ {A}C, {i
2

(B,a)}(C e D) >+ {A}D 

[x:a]{i1Cxl}F e [x:S]{i2 (x)}F >e F if x~ FV(F). 

Notation: e is supposed to bind more loosely than the other connectives. 

This is why the function parts of the +-radices are, and the left- and 

right part of the e-redex are notput inside parentheses. 

We mention also the alternative form of +, +' (which is in fact + 

followed by al: 

and an alternative form of e, ealt: 

We clearly have>+'~>+ >a (see II.7.1.2 for the notation). Further 

etc. i.e.> => < > ,. So, as far as equality Q is concerned, we have 
+ n + 

(in the sense of rr.0.4.3) <a,+.,.+') and (n,+' => +). Since we always 

include a, and n is optional, we prefer the rule + in our definition. 
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Similarly we have >8 ~ >8alt >n and >8alt * >
6 

>
6 

<8 , so (w.r.t. Ql 

(n,8alt ~ 8) and (S,s ~ salt). Thus we prefer rule t. 

Binary unions always have degree 2, injections always have degree 

3. Only e-functions of degree 3 are formed. 

2.7 A possible extension concerning e-functions 

We can, however, define an extension of the language by also ad

mitting degree 2 e-functions, i.e. glueing type-valued functions together 

into a single type-valued function. To this end we put: Let a E 1, 

S E 1. Let ~ E a + 1, ~ E S + 1. Then 

4'. Plus rule 1: ~~ e ~(E(a e Bl + 1) 

5. Plus rule 2: BEn(~), CE n(wl ~~Be C(E n(~ e ~)) 

The old plus can be considered as a special case of rule 5, by using s 

or Ealt: 

[x:a]y e [x:S]y > 
1 

[x:a e S]y 
ta t 

We do not diseuss this extension here, because it really complicates 

the normability problem (see 4.6). 

2.8 Elementary properties 

As in V.2.7- V.2.9 we can infer some nice properties. First, con

cerning the degrees: 

~A * A degree correct 

A Q B • degree(A) degree(E) 

A E B * degree(A) degree(B) + 1 

Then, concerning contexts, renaming (see V.2.9.2) and weakening 

(V.2.9.3). Further, the simultaneous and thesingle substitution theorem 

(V.2.9.4-5), and oorreetness of eategories (V.2.10): A EB • ~B. 

Analogously to the abstr and appl properties in V.2.10 and V.2.1 

(which m.m. hold as well in AUT-Pi) we have properties like 

~<~,A,B> • (A E a, ~ E a+ 1, B E {A}~) etc. 
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i.e. the "inversion of the correctness rules". 

An important additional property (to be proved in the next section) 

is uniqueness of types: 

A E B, A E C • B Q C 

which in AUT-QE did not hold for A of degree 2, because of type in

clusion. 

VII.3 A short proof of closure for AUT~Pi 

3.1 Proving closure forAUT-Pi is,not very different from proving it fol 

AUT-QE. So we just sketch how to modify the proof in V.3.2. 

We start with a version without the extensions mentioned in 2.4 

and 2.7, but we include all reductions (also o1-reduction). 

3.2 For the terminology see V.3.1. Let > denote disjoint more step 

reduction. By the properties in II.7.4.3 we have 

By the substitution theerem we have ó-CLPT. The ö-nf•s of 1-expressions 

are of the form fl([re:a1A) or t. Reductions of these expressions can only 

be internal, so by induction on Q we get (including what might be called 

uo1 bere): 

~ 1 n([re:a.]A) Q n([x:S]B) ... a Q S and (x E a.~A Q B) 

3,3 From this fellows SA2 (whence S-outside-Cl~) and S-outside-PT~. 
Viz. let A E a, r2[x:B]C E fl([x:a]D}, with conclusion ~{A}[x:B]C. Then, 

forsome E, x E ~CE E and ~n([re:B]E) Q fl([x:a.]D). Soa Q Band 

x E ~E Q D whence A E B (i.e. SA2J and x E B~C E D. So 

C[A] E D[AD (i.e. S-outside-CLPT~J. 

The proofs of ur2 and the inside cases of PT~ are by ind. on r· 
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3.4 The strengthening rule gives n-outside-CL
1

. Here follows a proof 

of n-outside-PT~ different from the proof in V.3.2.5. Viz. let 

r- 2
Cx:o:]{x}A E y, x~ FV(A). Then, for some c, [x:a]{x}A E 

IT([x:a]C[y/x]) Q y, where x E a~A E IT([y:a']C), a' Q a. So, as well, 

x E a~A E IT([y:a]C). By weakening x E a, y E aH E IT([y:a]C) and 

x E a, y E a~{y}A E C so x E at[y:a]{y}A E IT([y:a]C}. Again by 

weakening x E at[x:a]{x}A E y, so by UT
2 x E atY Q IT( :a]C). Hence 

x E a~A E y and by strengtheningA E y, q.e.d. 

3.5 This completes the proof of PT~. Then PT
2 

and LQ
2 

follow by ind. 

on~ and Q respectively. Now we come to PTCL3 • For properties like SA3 

we need 

[(~) Q [(~} ~ ~ Q ~ 

IT(~) Q IT(~) ~ ~ Q 'iJ 

(a$ 8) Q (y $ 6) • a Q y, 8 Q 6 

3.6 To this end we study 8
2
-reduction and, in particular, -head

reduction, forshort S~ (for the definitions see V.3.3.3 and V.4.4.5). 

We knowalready s 2-outside-CLPT1 (this is S-outside-CLPT~). From this 

follows s2
-CLPT

1 
by ind. on~, and s2

-CLPT by ind. on ~. Now we use the 

fact that 3 is the only argument degree and that, hence, 82-reduction 

does not create new 82-redices. Campare V.3.3.4, VI.2.4. 

As a consequence, 8
2-SN is quite easily provable (for degree 

correct expressions) even without using norms: namely, if A 6
2-SN, B 

s2-SN then A[B] 82-SN, by ind. on (1) e~(B), (2) length (BJ. So, as 

usual, 62-SN by ind. on length (see IV.2.4.1). A fortiori, ~-SN. 
Besides s~ satisfies CR, so we can speak about s~-nf•s. E.g., 

degree (B) C[A]I 

Clearly B~ and 6 commute, so S~o-CR and 8~6-nf's are defined too. 

3.7 

Sketch of proof: Ind. on Q. For the induction step we need the following 

property: ~2A, S~ê-nf(A) =[(~),A> C or C >A, ~ S~o-nf(C) = [(~), 
~ Q W· If C >A it is eacy, (8~ )-i-pp holds here for all kinds of 
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2 
reduction i (see II.7.3), so Shó-nf(C) : t(~), ~ > $· Otherwise, A> C. 

Now S~ó commutes with all other kinds of reduction, except n~ (see 

II.7.2). And it even commutes with the latter, except for "outside" 

domains. Where wedefine the latter to be the ai' Bj' etc. in 

{Ä}[x:äJ{Ë}[y:ÏÏJ• • •, with {Ä} possibly empty. But there are no "outside" 

domains leftin t($). So, in any case, B~ö-nf(C) = t(~), $ > w. In fact, 

if A >
2

h C then $ = ~. 
n 2 

By Bhö-CL we know that both t(~) and t(wl are correct so from 

($ > lj! or lj! > $) we can conclude $ Q 1/1. This proves the wanted property. 0 

Corollary: t($) Q t(ljl) • $ Q lj! 

3.8 BOth the theerem and the corollary can be proved in precisely the 

same manner.for n and e, yielding the properties in 3.5. 

Remark: The theorem above is a kind of minimal result for the desired 

properties. E.g., we can, alternatively, prove a kind of weak CR2-

result as in VI.2.4, or prove a similar but strenger theerem in the 

spirit of V.3.3, v.3.4. 

3 3.9 Now we are able to prove the outside cases of CLPT1• E.g. for +-

reduction. Let {i1 (A,Sl}(F eG) E y. Then i 1 (A,Sl E ó, Fe GE n(1f>), 

$ E ó ~ T, {i1 (A,S)}$ Q y. And A E a, a e 6 Q ó, FE a'~ y', 

G E S 1 
..... y ' , (a ' e B ' ) ..... y 1 Q n ( ~ ) • so (x: a 1 e 6 • ]y ' Q <P , and 

Lx:a' e S']y' E ö ..... T. So (a' eS') Q ó Q(a e 8), whence a Q a', 

S Q 6'. so {A}F E y 1
, Further y' Q {i1(A,Sl}[x:a 1 e 8 1 ]y' Q {i 1 (A,Sl}$ 

Q y, whence {A}F E y too, Similarly for the other variant of +. 

3.10 Then follows full CLPT1 by ind. on~ and CLPT by ind. on~. 

Besides, we have of course UT and LQ. And we can freely make the 

language definition somewhat more liberal, as fellows. 

First we can change the Q-propagation rule into 

A Q B, B ~ C, ~C • A Q C 

secondly we can add the appl rule, with i ~ 

'+1 A E a, ~~ B Q [x:a]C • ~{A}B 

and drop the degree restrietion in the appl rule 1 (i.e. rule I.4). 
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3.11 Now we shall say sarnething about proving CL forAUT-Pi with the 

extension of sec. 2.4, Just adding abstr expressions of degree 1 does 

notmatter at all, we still can get UD1 
without any difficulty. 

Making the language into a +-language (i.e. adding appl-1-express

ions too) causes some trouble with the domains in case n reduction is 

present. Which can however be circumvented as in V.3.3: First leave n
1 

1 1 
out, then prove S -CL and add n again. 

3.12 Finally the extension of sec. 2.7, i.e. where e-2-expressions are 

present. If there is also ~2-reduction the situation is essentially more 
2 complicated, because S and € interfere nastily. But without € the 

proofs of 3.3-3.8 just need some modification: (8+)
2-SN can be proved 

as easy as s2-SN, +
2-CLPT is not difficult either. Then theorem 3.7 can 

2 . 
be proved for (S+) -6-head-nf's ~nstead. 

3.13 Requirements for the pp-results in II.9 were: 

(1) The result of outside-6-reduction is never a $-, an inj- or on 

abstr-expression 

(2) The result of outside n or ~ is never an inj-expression or a pair. 

Now we can easily verify them for AUT-Pi using the results of this 

section. First let <~,A(l) ,A(
2

)> >
0 

A. I.e. degree(A) = 3, A EI(~). If 

A were an abstr-term then A E n(~) for some w. UT states that 

IT(~l Q I(~). Theorem 3.7 states that IT(~) z I(X) forsome X· This is 

impossible, Similarly for inj- or E&-expressions. Or let [x:o.]{x}A > A. 
n 

By PT E n(~) for some ~. If A were an inj-expression then degree(A) =3, 

A E (Bey) forsome S, y. By UT IT(~) Q (Bey). Use the suitable variant 

of theerem 3.7 again (sec. 3.8), this gives a oontradiction. 

VIII.4 A first SN-result for an extended system 

4.1 Introduetion 

The word "extended" in the title of this section refers to the 

presence of other formation rules than just abstr and appl (and possibly 

instantiation) and other reduction rules than just B and n (and possibly 
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ó). In the case of AUT-Pi we are concerned with the additional presence 

of: 

(1) pairs and projections, with reductions n and a 

(2) injections and $-terms, with reductions + and e 

In IV.2.4 we gave some versions of a "simple" (as compared to a proef 

using computability) proef of e-SN. Then we extended it to en using 

Sn-pp. Afterwards we included ó as well, 

Here we stick to the separation of ó from the ether reduction 

rules. Below we first show (4,6) that addition (1) mentioned above does 

not cause any trouble: the first version of the "simple" proof of a-SN 

immediately covers the Sn-case. And afterwards, we can include ó and n 

by a postponement result again. 

However the secend addition essentially complicates matters. The 

presence of + makes the first a-SN proef fail here, because the impor

tant induction on functional complexity (norm) goes wrong.(see sec. 

5,1,2), We add new, socalled permutative Peduations (sec, 4.3.1, III) 

in ordertosave the idea of the proef (5.1.3). These permutative re

ductions, in turn, complicate the SN-condition, and a way to keep them 

manageable consists of adding {in 5.1.5) still another kind of reduct

ion, viz. impPopeP reductions (sec. 4.3.1, IV). 

Our second 8-SN proef of Ch. IV can fairly easy be adapted for the 

present situation however. We just have to add impraper reductions to 

make the proofwork (see sec. 5.2). For completeness we also include a 

proefbasedon the computability methad (sec. 5.3). 

However, these three proefs just cover the situation with B• n

reduction and can, by ext-pp be extended to B + nón. Alas, we have not 

been able to handle e toe, We cannot use pp anymore, so we have to in

clude e from the start of the proof on. And none of our methods can 

cope with this situation. 

The problems with $ (or v) are well-known from proef theory. E.g. 

Prawitz in [59] first proves normalization for classical propositional 

logic, where he avoids the problem with v, by defining v in terros of 

"negative" connectives. Then, when studying intuitionistic propositional 

logic, he also needs permutative reductions for proving normalization. 

By the way, our impraper reductions turn out to be identical with the 

semi-proper .reduction used in the SN proef for arithmetic by Leivant in 

[40]. 
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4.2 The system AUT-Pio 

4.2.1 For brevity and clarity we study a system of terros with the same 

"connectives" and reductions as AUT-Pi (so the essential problems with 

SN become clear) but with a.simplified type-structure. It can be oom

pared with the norroable expressionsof Ch. IV. Later (sec. 5.4) we ex

tend our results to AUT-Pi. 

4.2.2 Reduced type structure 

The reduced types or norros (syntactical variables a, S, y, v) are 

inductively given by: 

(1) T is a norm 

(2) if a and S are norros then also a ® S, a + S and a $ S 

Note: If we write [a]S insteadof a+ B it is clear that the norms of 

Ch. IV form a subset of the present norm system. We write a + S with 

the purpose to show that our norros form a simple type structure over a 

single fixed type, t. This is also true of the norros inCh. IV. Hence 

normability results (as in Ch. IV, or as given earlier by Jutting and 

NederpeltD6,51] for certain Automath variants) can alternatively be 

proved as follows: the generalized systems under consideration are not 

essentially rioher than simple, non-generalized type theory, in the 

sense that they do provide the same set of terms of free À-calculus 

with a type as does a simple, non-generalized system. Compare Ben

Yelles [6]. 

4.2.3 Terros of AUT-Pio 

All terros (syntactical variables A, B, C,•••) have a norm. The 

norm of A is denoted ~(A). We also write A E a for ~(A) a. Terros are 

constructed according to: 

(i) variables x, y, z,••• of any norm 

(ii) x E a, A E a, B E S "* [x:A]B E a + t3 

(iii) C E a + S, A E a, B E t3 • <C,A,B> E a ® S 

(iv) A E a, BE t3 • i 1 <A,B) E a e S, i 2<A,B) E Se a 
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(v} B € a ->- B, A € a • {A}B E B 

(vil BE a & B ~ B(l) E a, B( 2) € B 

(vii') [x:A]C E a ->- y, [y:B]D E B ->- y • ([x:A]C e [y:B]D) € (ae 6) ->-y 

These terms can be compared with the 3-expressions of AUT-Pi. However 

there are no constante, no instantiation (and no ö}, it has simpler 

type structure and it has only e-terms of the form [x:A]C e [y:B]D. 

Below we also consider a variant AUT-Pi 1 which has general e-terms. In

stead of rule (vii') it has rule 

(vii) BE a->- y, C € B->- y • Be C E (a e Bl ->- y 

Below, we often omit type-labels in [x:A]B, i
1 

(A,B), i 2cA,B) and 

<C,A,B>, just writing [x]B, i 1 (A), i 2 (A) and <A,B>. 

4.3 The reduction rules 

4.3.1 we consider four groups of reduction rules 

I The introduction-elimination rules (IE-reductions) B, n and +' 

(see 2.6). 

Rule +' is particularly appropriate for AUT-Pio, i.e. in conneetion 

with rule (vii'). ForAUT-Pil we rather use rule +. 

II The ext-reductions D• a and e 

Here we use the simple unrestricted version of a: <C,A(l)'A(2)> >A. 

III Permutative reductions (p-reductions) 

(->-) {A}{B}([x]C e [y)D) > {B}([x]{A}C e [y]{A}D) 

(&} ({A}([x]C e [y]D)) (l) > {A}([x]C(l) e [y]D(l)) - similarly for 

(2)-projection 

(e) D : E e F .,. {{A} ([x)B e [x]C) }D > {A} ([x]{B}D e [x]{C}D) 

The general pattarn of these rules looks like 

0({A}([x]B e [y]C)) > {A}([x]O(B) e [y]O(C)) 

where 0 is an operatien on expressions, given in one of the following 
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ways: O(B) = {A}B, Q(B) = {B} (E e F), Q(B) or Q(B) - B(2). 

The normsof these B's are respectively a+ S, a e S and a®$. That is 

why the rules are coded (+), (e) and (®). 

In case the argument of 0 allows outside (i.e. e-reduction), the 

p-step does notproduce a new equality: 0({i
1 

{A)}[x]B e [y]C) > 0(B[A]) 

0(B)[A~ < {i1 (A)}([xJO{B) e [y]O(C)). Below (6.2), it turns out that, 

generally, p-equality is generated by Sn+E-reduction. 

The above mentioned rules are the standard ones from proof theory. 

There it is formulated like this: if the conclusion of an V-elimination 

rule forms the major premise of an eliminatien rule, then the latter 

rule can be pushed upward through the V-elimination rule. E.g. our +-

rule can be compared with the following proef theoretic reduction: 

[cl] [13] [a] [SJ 

B c D A ç A D 

a v s y .... 0 y .... 0 y y .... 6 y y + 0 
A V E > B 
y y -+ 0 a v s 0 /) 

-+E 
0 ó 

Both here and in proof theory the p-reductions are primarily intro

duced for technical reasons. However, as Pottinger [56] points out there 

is some intuitive justification for them too. Part of it, that in some 

cases they do not extend the equality relation is stated above. 

It has been suggested to allow ether permutative reductions as 

well (Pottinger [56], Leivant [40]). However, Zucker [76] has shown 

that this spoils SN. 

IV Impraper reductions (im-reductions) 

(im) {A}{[x:B]C e [y,D]E) > C, 

{A}([x:B]C e [y:D]E) > E 

Notice that the set of free variables of the expression can be enlarged 

by performing an im-reduction. If an inside im-reduction takes place 

inside the scope of some bound variable, the latter variables have to 

be renamed in order to avoid any confusion. 

These reductions can be compared with Leivant's [40] semi-proper 
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reductions. They degenerate to what Prawitz calls.immediate simplifi

aations, when x~ FV(C), resp. y ~ FV(E). 

4.3.2 One step and many-step reduction 

One-step reduction >1 is, as well, generated from the main or out

side reductions given above, by the monotonicity rules. Then fellows 

many-step reduction ~ from reflexivity and transitivity. 

4.3.3 The usual substitution properties are valid, e.g.' 

B > B' • B[A] >
1 

B'[A] and 
1 

A >1 A' • B[A] ~ B[A '] etc. 

4.4 Closure for AUT-Pio 

4.4.1 First notice that AUT-Pio is certainly not closedunder n, 

because of the restrictive rule (vii'). So the proef below is intended 

for the n-less aase. 

4.4.2 Due to the simple type structure it is quite easy to show that 

norms are preserved under substitution and reduction and hence that 

AUT-Pio is closed under reduction. 

4.4.3 Substitution lemma for the norms: XE a, A E a, BE 8 • B[x/A] E 

(and B[x/A] a term). 

Proef: Ind. on length of B. 0 

4.4.4 Reduction lemma for norms: A E a, A> A' •A' E a (this includes 

Proef: Ind. on the definition of >. For 8 and +' use the substitution 

lemma. E.g.+': let A:: {i
1

<A
1

)}([xJA
2 

E9 [yJA
3
), A E a, 

A':: A
2

[A
1
]. Then, forsome a 1, a 2 , A1 E a 1 , ([xJA 2 E9 [yJA

3
> E 

(a
1 

E9 a
2

) + a, so [xJA
2 

E a
1 

+ a, x E a
1

, A
2 

E a. So A
2
[A

1
] E a, 

q.e.d. Or a permutative reduction: A = ({A 1} ([xJA 2 E9 [yJA 3>) (l), 
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A E a, A':: {A
1

}([xJA2(1) e [yJA3(l)). Then forsome 13, a
1

, 

{A
1 

}([xJA
2 

E& [yJA
3

) E a ® a, x € a
1

, y E a
2

, A
1 

€ a
1 

® a
2

, 

A
2 

E a® 13, A
3 

€ a® a. SoA' E a. 

4,4.5 Theorem: (closure) A E a, A<: A• (without nl ""'A' E a 

Proof: Ind. on z. 

4.5 The system AUT-Pil 

4.5.1 Insteadof rule (vii') it has the rule 

BE a+ y, C € 13 + y""' B e C E (a e 13) + y 

and it has + insteadof +'. 

Of course (vii')""' (vii), so indeed AUT-Pil contains AUT-Pio. We 

0 

can define a translation ~ from AUT-Pio toAUT-Pil such that ~(A) A 

and which shows that AUT-Pil is not a very essential extension of 

AUT-Pi 0 • 

The translation is given by ind. on length. The only nontrivial 

clauseis ~(C 1 e C
2

) _ [x:Ma]{x}~(C1 ) e [x:M13 J{x}~(C2 l, where 

C
1 

e C2 € (a e 13) + y and Ma, M
13 

are suitable fixed expressions of 

norros a, 13 and x, y are chosen of norm a, a such that x~ FV(C
1
), 

y ~ FV(C
2
), respectively, Á, On variables, ~acts like identity. For 

the rest, t just oomroutes with the formation rules. Clearly, ~ leaves 

the norm invariant and is indeed a translation into AUT-Pio. 

4.5.2 We have the following properties 

(1) <jl(B[X/A]):: ~(B)([x/<j>(A)]), if )J(x) J.l(A) 

(2) For IE-reduction: A >
1 

B =:> <j>(A) >
1 

~(B) 

(3) For (IE-ext)-reduction: A >
1 

B ~ <j>(A) properly reduces to <j>(B). 

Proofs: By induction on length. The a-case of (2) uses (1): 

<jl({A
1

}[y {<t><A
1

l}[y]<j>(A) >
1 

<j>(A 2 l[<P(A 1l]:: q,(A 2[A 1]l, q.e.d. 

The +-case of (2): <j>({i 1 <A 1l}<A 2 <llA 3ll = 
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{i1 ($(A 1))}([x:Ma]{x}$(A 2) 5 [x:Ma]{x}~(A 3 )) >l,+' {~(A 1 )}~(A2 ) -

~({A 1 }A 2 >. Thee-case of (3): $([x:A]{i
1 

(x}}B 5 [x:C]{i
2

(x}}B) _ 

[x:MaJ{x}[x:~(A)]{i 1 (x}}~(B} 5 [x:Ma]{x}[x:~(C)]{i2 (x)}~(B) ~a 

[x:Ma]{i
1 
(x)}~(B) $ ([x:Ma]{i

2
(x)}$(B) >E ~(B). We particularly 

investigate the case of n which is notallowed in AUT-Pio: 

~([x:A]{x}B 5 C) 

$(B $ C) - if x f FV(B) -

4.5.3 In the sequel we prove SN for some versions (i.e. with and 

without p-red. etc.) of AUT-Pio. By the above properties we can easily 

extend the p-and im-less case to AUT-Pit: 

AUT-Pi 0 SN (with +') ~ AUT-Pi 1 SN (with +). 

Proef: Let A be an AUT-Pil term. Use ind. on 6($(A)). D 

But, from SN with + follows SN with + and +', because each +'-step can 

be simulated by a + a a-step, so e+ decreases under +'-reduction. And, 

because AUT-Pi 1 contains AOT-Pio we also get SN for AUT-Pio with + 

and +'. 

4.5.4 The postponement requirements 

For AUT-Pio- and AUT-Pit-expressions it is quite straightforward 

to show the requirements (1), (2) of 3.13. E.g. let <A(l)'A( 2)>A. 

Then A E a 0 a. So A is not an inj-term, a 5-term, or an abstr-term. 

Etc. 

4.6 The first-order character of the systems 

4,6,1 In IV.l.S we emphasized the importance of the property 

i.e. the functional complexity of {A}B does not depend on the argument 

A, Alternatively stated: it is of course possible that the different 

values of Bhave different type~ but apparently there is astrong uni

formity in thesetypes, for the functional complexity of all the values. 
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property was present. 
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4.6.2 Generally, the introduetion of e-types and e-terms might spoil 

this uniformity: we might be able to define functions completely 

different on both parts of their domain. Sa, by "general" e-functions 

the first-order property above gets lost. However, in AUT-Pio, AUT-Pi 1 

and in AUT-Pi the domain of e-functions is explicitly restricted in 

such a way, that the first-order property can be maintained, viz. by 

requiring 

( 1) in AUT-Pio that l.l{Bl :: J.l (Cl when forming (X)B e (y)C 

(2) in AUT-l?il that B E a+ y, CE 8 +y when forming B $ c 

(3) in AUT-l?i that BE a+ y, CE s -+ y when forming B e c 

As a consequence we still have J.l ( {A
1 

}B) = IJ ( {A
2

} B) and in particular 

ll ({A}([x]B e [y]C)) = ].l(B) J.l (Cl • 

4.6.3 Now it will be clear that the generalized e-rules of 2.7 would 

spoil the first-order character. Example: let A E T, BE t, C E t, 
D E t then [x:AJC E A + T, [x:B]D E B + t. so [x:A]C e [x:B]D E 
(A e BJ -+ T. So, if E E A + C, F E B + D then (E $ F) E n ([x :A ]C e 

[x:B]D) • Clearly the functional complexity of { i 1 (G)} (E e F) for G E A 

and {i
2

(8)}(E e F) for HEB can be completely different, viz. that of 

C and D respectively. 

4.6.4 It is possible that a notion of norm (i.e. simplified type) can 

be defined which is manageable and measures functional complexity of 

these general e-terms, but the present norm (and the corresponding SN 

proof) is certainly not suitable for this situation. 

4.6.5 Remark: Strictly speaking, the suggested correction between the 

typing relation in AUT-Pi and the norms in AUT-Pio has not yet been 

accounted for. The preceding statements have to be understood on an 

intuitive, beuristic level. 
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4,7 A proof of Snncr-SN 

4.7.1 Here we show that the first S-SN proef of Ch.IV straightforwardl 

carries over to the case of Bnncr-SN. As our domain of expresslons we 

take, e.g., the termsof AUT-Pil• 

4.7.2 SN-conditions for Sn 

For non-main-reducing expresslons (also called immume fo~s or IF' 

it is sufficient for SN if all their proper subexpresslons are SN. lnci 

dentally this is also true for projection expresslons (because main n

reduction amounts to picking a certain subexpression). So we have: 

A SN •A(l) SN, and the funny property: A(l) SN •A(2) SN. 

We reeall the SN condition for appl expresslons in this case: 

{A}8 SN •A SN, 8 SN and (8 ~ [xJC • C[A] SN) 

4.7.3 Heuristics: the dead end setforS 

So, the substitution theerem for SN is again sufficient for provir: 

SN (see IV.2.4). The crucial case of the substitution theerem for B-S~ 

was where A is SN, 8 = {81}82 is SN, 82(AD ~ [y]C, but 82 * [yJC0• I.e. 

the reduction to square brackets form depends essentially on the sub

stitutions. Then we used the square brackets lemma: B2 ~ {F}x, 

({F}x)[A] ~ [y]C. 

We define the set Ex of these expression {F}x symbolically by a 

recursion equation E = x + {U}E , x x 
where U stands for the set of all expressions and it is of course under 

stood that all expresslons in E are in AUT-Pil again. x 
The expressions {F}x can be considered as dead endB when one tries 

to copy in 8
2 

the contractions leading from B2 [A~ to [y]C, i.e. when 

one tries to come "as close as possible" to an abstr expression. We do 

not bother to make the concept of dead end more precise, or more generë 

but just give this informal explanation for naming Ex the dead end set 
w.r.t. x, 8-reduction, and abstr expressions. 
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4.7.4 The dead end set for Sn 

When one tries to copy a s~-reduction sequence of B[A] in B one 

need notend up with an expression in E, but, e.g., can also end in 
x 

x(l)' The following theerem states that F defined by 

F x+ F(l) + F( 2) + {U}F 

is the dead end set w.r.t. x, S~ and immume farms (IF's). Let stand 

for ~Sn' and let * stand for [x/AD. 

Theorem: If B SN, B* ~ C, C E IF then B ~ C0 , C~ ~ C with either (i) 

C~ non-main reduces to C, or (ii) c0 E F. 

Proof: Just like the square brackets lemma (second proof, IV.2.4.3), by 

ind. on (1) 8(B), (2) t(B). Let B* main-reduce to C (otherwise take 

B :: C 
0

) • Th en B := x , ( and take C 
0 

:= B, C 
0 

E F) , B := D ( 
1 
l , B := D ( 

2
) or 

B {D1}D2• E.g. let B D(l)' Then D* ~ <D1,D2>, D1 ~ C. Apply 

ind. hyp. (2) toD. In case (i), D 2 <E1,E2>, E~ 2 D
1

, E; ~ D2, so 

B ~ E
1

, E7 2 C. Then apply ind. hyp. (1) to E
1

• In case (ii), 

D 2 E0 , E0 E F, E~ 2 <D1 ,D2> and B ~ Eo(l) E F, ot:: Eo(l) 2 C, 

so case (ii) holds for B too. 

Remark: (1) Similarly we can prove a more general outer-shape lemma 

(see II.11.5.4) for Sn, where the condition "CE IF" simply has been 

dropped. 

D 

(2) It is probable that such "standardization-like" theorems can 

also be proved without using SN (as in II.ll). 

4.7.5 Heuristics: the normsof dead ends 

The point of the s-SN proof is: 

where ~ is the length of the norm -. So, if B[All ? [y]C then 

X.(>J(yl) < ~(J.l(X)), and we can use ind. on normsin the crucial case of 

the substitution theorem. 

We are lucky that the same methad works for Sn-reduction too. 

Namely 
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So, if 

B[AD ~Sn [y]C then ~(~(y)) ~~(~(x)), 

4.7.6 The substitution theerem for Sn-SN 

Theorem: A Bn-SN, B Bn-SN • B[x/A] Sn-SN 

Proof: Ind. on (1) ~(A), (2) e
8

n(B), (3) JI.(B). Let~ be ~Sn' If B::: x 

then B(A]::: A so SN. If B € IF orB::: C(
1

) orB::: C(
2

) use ind. 

hyp. (3}. If B = {B1}B
2 

proceed as for 8-SN, using the norm 

properties of the dead end set F. 0 

4.7.7 8n-SN and Snno-SN 

An immediate corollary of the substitution theerem for 8n-SN is 

8n-SN itself. Now we can extend this to 8nno-SN (as in II.7.2.5) using 

(Bnl-<no)-pp, a case of ext-pp (see II.9.2). The requirement for pp is 

indeed fulfilled (see 4.5.4). 

VIII.5 Three proofs of sn+-SN, with application toAUT-Pi 

5.1 A proof of Bn+-SN using p- and im-reductions 

5.1.1 Here we show how the preceding SN-proof (based on the first 

version of the simple 8-SN proof in Ch. IV) has to be modified in order 

to cope with + (or +'). First we shall see how the norm considerations 

of that proef do not go through. 

5.1.2 The dead end set for 8n+ 

Let ~ be ~Bn+' The following theorem states that the set G defined 

by 

G .. x + G(l) + G(2l + {U}G + {G}<U $ Ul 

is the de ad end set w.r.t. x, Bn+ and IF's. Let * stand for [o'X:/A]. 

Theorem: Let B be SN, B* ~ C, c € IF then B 2: C0 with either (1) c* 
0 

non-main reduces to C, or (2) c* 
0 

::: C, c0 € G 
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Proof: As in 4.7.4, by ind. ond {i) S{B), (ii) t(B) 

Similarly, we can prove the corresponding outer shape lemma. 

The problem is now that the norm of the expresslons in G is not 

related to the norm of x. E.g. consider the typical +-dead end 

{x}(B e C). 

5.1.3 Improving the dead end set by p-reduction 

0 

We restriet our domain of consideration to AUT-Pi 0 • Insteadof rule 

+we choose rule +'. Besides we add permutative reductions. Then a great 

deal of the "bad guys" among the dead ends, i.e. whose norm is not re

lated to that of x, can be main reduced by a p-reduction. This will (in 

the next section) result in an improved dead end set H defined by 

H F + {F}(U e Ul with F as in 4.7.4. 

5.1.4 Let 2 be B+'Tip-reduction. The direct reducts of a p-main step are 

of the form {A} ([x]O(B) e [y]O(C)) (see 4.3.1 for the definition of 0), 

so never are in one of the immume farms (abstr, inj, pair, plus). 

Lemma: p-main reduction steps in a reduction to IF can be circumvented 

Proef: The last p-main step in a reduction to IF must be followed by a 

+'-main step. However this combination can be replaced by a single 

internal +'-step. 0 

Corollaries: 

(2) {B}C 2 D, D E IF ~ Bither (i) C 2 JE, E[D] 2 D or 

Proef: Each of these reductions to IF can be replaced by one without 

p-main steps. 0 

Part of the two corollaries can be summarized (with 0 as in 4.3.1) by: 

if 0(B) 2 D, D E IF then B 2 C, C E IF, 0(C) 2 D. 

This gives another lemma. 
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Lemma: If 0({B}([xJC
1 

e [xJC
2

)) ~ D, D € IF then 

{B} ([x]0(C
1

) e [x]0(C2)) ~ D. 

Proof: {B}([xJC1 e [xJC
2

) ~ E, E E IF, 0(EJ ~ D. So B ~ ij(A), 

Cj[A] ~ E. But then {B}([x]0(C
1

l $ [x]0(C
2

)) <:: 0(Cj[A]) ~ 0(E) ~ D 

q.e.d. 0 

This proof amounts to: if an expression allows both p-main and IE-main 

reduction then we can insert p-main followed by +'-main before perform

ing the IE-main step. Now we prove the theorem about the improved dead 

end set H. Let * stand for [x/A]. 

Theorem: If B SN, B* ~ C, C € IF then B ~ c0 , C~ ~ C witheither (1) C~ 

non-main reduces to C, or (2) c
0 

€ H 

Proof: As in· 4.7.4, by ind. on (i) 6{8), (ii) 9-(B). Here e refers to th 

current reduction Sn+'p. Let B* main reduce to C, B l x. If the 

first main step can be mimicked in B use ind. hyp. (i). Otherwise, 

by ind. hyp. (ii) B ~ 0(D), D € H, 0(D)* ~ C. If DE F then 

0(D) EH and we are done. Otherwise D {D3}((yJD1 e (yJD2l, 

D
3 

E F. Then B properly reduces toE= {D3}((y]0(D1) e [y]0(D2ll, 

E E H, and by the previous lemma E* ~ C, q.e.d. 0 

5.1.5 Improving the SN-conditions by im-reduction 

The crucial SN-conditions for6n +' (in AUT-Pio) is 

If (1) A SN, B SN, (2) B ~ [x]C .. C[AD SN and for j=1,2 

Now the p-reductions have improved our dead end set, but the problem is 

that they make the SN-conditions quite complicated. E.g. in order to 

prove that {A}{B}([xJC
1 

e [x]C
2

) is SN weneed that {A}C1 is SN, in 

particular if c
1 

~ [y]E we need that E[A) is SN etc. I.e. the SN-con

dition of {A}B ceases to be easily expressible in terms of direct sub

expressions of reducts of A and B. 
In order to solve this problem we add im-reduction, But at first 

we show that the dead end set is not changed by this addition. 
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5.1.6 The dead end set of Sff+'p,im 

Luckily the dead end set remains H. Let ~ stand for > The 
-S1T+'p,im' 

first lemma of 5.1.4 can be maintained. For let a p-main step be 

follwed by an im-main step. Then we can skip the main p-step and just 

apply the im-step internally. 

If 

The next corollaries need an obvious modification, in particular: 

IF then either (1) B ~ i. (A), 
J 

C.[AD ~ D (for j=l or j=2), or (2) C. ~ D (for j=l or j=2), 
J J 

And the property thereafter becomes: 

If 0(8) ~ D, D E IF then either (1) B ~ C, C E IF, 0(C) 2 D, or 

{2) 0(B) = {B}([x]C
1 

$ [x]C
2
), Cj ~ D (for j=l or 2) 

But the second lemma of 5.1.4 remains unchanged, Namely, if an express

ion allows p-main reduction but also im-main reduction, then we can 

insert p-main followed by im-main befare performing the im-main step. 

E.g. {{B
1

}([xJC
1 

e [xJC
2

)}([yJD
1 

e [yJD
2

) >p 

{B
1

}([x]{C
1
}([xJD

1 
e [yJD

2
l e ··•) >im {C

1
}([yJD

1 
e [yJD

2
) >im D

1
. 

so, the theorem of 5.1.4, that the dead end set is still H, carries 

over too. 

5.1.7 The new SN-conditions 

The point of the im-reduction is that the SN-conditions for 

e~+'p,im are identical with those for S1r+' (see 5.1.5). First we give 

the SN-conditions of {B}([x]C
1 

$ [xJC
2
). These are (1) B SN, c

1 
SN and 

c
2 

SN, and {2) B 2i.(Al ". C.[A] SN (for j=l and 2). 
J J 

Proof: Let the above condition be fulfilled. Use ind. on (1) 6(B), 

(2) ~(B), The interesting case is when the first main step in a 

reduction is a p-step. So let B 2 {B
3

}([yJB
1 

e [yJB
2
), to prove 

that {B
3

}([y]{B
1

}C $ [y]{B
2

}C) is SN, with C [xJC
1 

e [xJC
2

• By 

ind. hyp. (1) or (2) we just need that B
3 

is SN (trivial) that 

}C SN for j=1,2 and that {Bj[D]}C is SN, where B3 ij(D). 

Since B properly reduces to both B. and B.[D] (in case 2 (D)) 
J J 

we can use ind. hyp. (1) and get what we want. D 
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Theorem: The SN-conditions for Bn+'p,im are identical with those of 

Brr+' (see 5.1.5). 

Proef: Let {A}B fulfill the SN-conditions (1), (2), (3) of 5.1.5. We 

use ind. on 6(B). The interesting case is when the first main st~ 

is p. The case that B ~ [xJB
1 

e [xJB
2 

has been done before, so le 

B ~ {B
3

}((xJB
1 

e [xJB
2
), to prove that {B

3
}([x]{A}B

1 
e (x]{A}B

2
) 

is SN. I.e. that B
3 

SN, that {A}B
1 

and {A}B
2 

SN and that {A}B
1

UDD 

{A}B2[DD are SN whenever B
3 

~ ij(D) (j=l or 2). Now B properly 

reduces to both Bj and Bj[D! (if B3 ~ ij(D)) so we use the ind. 

hyp. and get what we want. 0 

In other words: we just need that the direct subexpresslons and t 

IE-main reducts (not aZZ the main reducts) are SN for proving that an 

expression is SN. 

5.1.8 The substitution theerem for SN 

Notation: We just write ~(A) </$ ~(B) to abbreviate ~(~(A)) </$ ~(~(B) 

Theorem: B SN, A SN, ~(x) = ~(A) ~ B[x/ADSN 

Proof: Ind. on (I) ~(A), (II) 6(B), (lil) t(B}. The crucial case is 

when B {B
1

}B
2 

and B[AD IE-main reduces. If this first main step 

can be mimicked in B use the second ind. hyp. Otherwise we end up 

with {Bi}C or {C}B2 with C € Hand B1 ~Bi or B2 ~ B2 

[yJD
1 

e [yJD
2

, respectively. If C € G then ~(Bil < ~(C) $~(x) so 

a first main reduction of ({BiJC)[A]l involves a substitution la/E 

with ~(2) $~(Bil <~(x). And a first rnain-IE reduction step of 

({C}B;llUll must be a +'-step, so involves a substitution h/ED 

with C[AD ~ i.(E). So in that case too ~(Z) = ~(E) < ~(C) $~(x). 
J 

Anyhow if C € G, we can use ind. hyp. (I). Otherwise 

c = {C3}([y]C1 e [y]C2), with c3 € G. Then a p-step is possible 

and can be inserted befere doing the main IE-step. This p-step ca 

be mimicked in the reduction of B, so we can use ind. hyp. (Il). 

5.1.9 SN for AUT-Pio and AUT-Pil 

Like before, an immediate corollary is Bn+'p,im-SN for AUT-Pio, s 

Sn+'-SN for AUT-Pi 0, whence Srr+-SN for AUT-Pil• Then by pp we can ex

tend the AUT-Pi1 result to Srr+ncr-SN. (Not for E.) 
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5.1.10 An alternative method 

Actually im-reduction can be avoided in this proof. Namely the 

effect of p-reductions on the SN-conditions can be expressed by means 

of certain inductively defined sets. 

We define a set of expressions B! by 

B! = B + {U}([x](B!) e U}+ {U}(U e [x](B!)). 

I.e. B! contains all these expressions that im-reduce to B. 

Then the SN-conditions for Sn+' become 

rf (1) B SN, C SN, (2) B ~ B' E A!, C ~ C' E ([y]Dl! ~ D[A] SN, 

and (3) B ~ B' E (i.(AJJ!, C ~ ([y e [yJC
2

J! ~ C.[AD SN (j=1,2) 
J J 

then {B}C SN. 

5.2 A secend proof of Sn+'-SN, using im-reduction 

5.2.1 This proef is basedon the secend insteadof the first s-SN-proof 

of Ch. IV (sec. IV.2.5, see also vrr.4.5). There we did not use the 

square brackets lemma, and no dead end set, so we can do without p

reduction. Our language is AUT-Pio, again, and ~stands for ~ S~+',im. 

5.2.2 Replacement theerem for SN 

As explained in VII.4.5, the kernel of this type of proof is a 

replacement theorem, rather then a substitution theorem, for SN. 

Theorem: If B SN, A SN, U(X) J.J{A) then B[x/A]LR SN. 

Proof: By ind. on (I) u(A), (II) 8(8), (III) R..(B). We write * for 

[x/ADLR' Consider a reduction sequence B* >
1

•••> 1 F >
1 

G, where 

the contraction leading from F to G is the first contraction not 

taking place inside some reduct of ene of the inserted courrences 

of A. Realize first that the number of those inside-A contractions 

is finite, because A is SN. Now we prove that G is SN. Distinguish 

two possibilities: 

(a) The step F >
1 

G does not essentially depend on the inserted 
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A's and can be mimicked in B. I.e. B >1 Go, GS ~ G. In this case 

we use ind. hyp. (II). 

(b) Otherwise some reduct of some inserted A p~ays a crucial role 

in the redex contracted. If F >Gis a ~-step, then, e.g., 

B -
G 

• • •x• • •:c • • • B* - • • •A • • •A • • • F = • • •A' • • •<C C > • • {1) I (l) I- 1'2(1) 
•••A'•••C1•••. Now ferm B0 : •••x•••y••• from B by replacing 

x(l) by a fresh y, with ~(y) a 1 (where a= a 1 x a
2
). And 

B E0[y/x
0

lll so B0 is SN, acB0) $ acB>, .t<Bo> < .t(B). so by ind 

* * hyp. (II) or (III), B
0 

is SN and B
0 

~ a0 = •••A'•••y••• with 

G = G0[y/C1 DLR' Here G0 is SN, c1 is SN, ~(yl : ~(Cj), .t(~(y)) < 

R.(~(X)) so we can apply ind. hyp. (I) to get that Gis SN. If 

F > Gis a a-step argue as in IV.2.5.3 or VII,4.5,6. If F > Gis 

a +'-step, the redex contracted is, e.g., {i
1 

(D)}([yJC
1 

e [y]C
2
), 

reducirig to C
1

[DD. Now distinguish (bl) a reduct of an inserted A 
is crucial in i 1 (D), (b2) a reduct of an inserted A is crucial in 

([yJC1 e [yJC2). First case (bl). Then B = •••x•••{x}C
0

•••, 

C~ ~ [yJC1 e [yJC2 , A~ i 1 (Dl. By a norm argumentthee-term must 

be present in B already, so c0 : [yJE1 e [y]E2, E; ~ C
1

, E; ~ C2. 

Now form B0 = •••x•••E1•••• This is an im-reduct of B, so SN and 

by ind. hyp. (II) B~ SN, reducing to G
0 

= •••A'•••C
1
•••, where 

G: •••A'•••C1(DD···· Clearly G0 SN, D SN and R.(~(D)) < .t(~(X)). 

So G = G0[y/DDLR SN by ind. hyp. (I). In case (b2), argue as int: 

a-case. Finally, the redex contracted in F is an im-redex, in whi• 

A plays a crucial rele. I.e. B •••x• .. {C
0

}x•••, A ~ [yJD1 e [y]D 

C~ ~ C, F: •••A' .. •{C}([yJD
1 

lil [yJD2)•••, G: •••A'•••D
1 
.... For1 

B
0 

= .. •x• • ·y .. ·, B = B0[y/{C0}xDLR; so either by ind. hyp. (II) 

or (III) B~ is SN, reducing to G0 = •••A'•••y•••. Clearly D1 SN, 

R.(~(D 1 )) < t(~(x)) so by ind. hyp. (I) G: G0[y/D1 DLR is SN. 0 

5.2.3 An immediate corollary of this replacement theerem is the 

ordinary substitution theorem, From this, as before, fellows Sn+'im-SN 

for AUT-Pi 0• So we get Sn+on-SN for AUT-Pil• 

5.3 A proef of a~+no-SN by computability 

5.3.1 In this proof we do not include no by a pp-result afterwards, 

but consider these ext-reductions from the beginning of the proef on. 
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We must consider AUT-Pi 1 because AUT-Pi 0 is not closed under n. our 

definition of aomputability has been strongly inspired by de Vrijer's 

definition in [70]. 

De Vrijer's definition is phrased in such a manner that the im

portant properties: (1) computability implies SN, (2) computability is 

preserved under reduction, follow almost immediately. Then, as usual, 

we prove by ind. on length that expressions are aomputable under sub

stitution. 

Notice that we do not include g, 

5.3.2 The definition of computability 

We write C for the set of computable terms of norm a. The set C 
a a 

is defined by induction on the length of a, as fellows: 

Let B E a. Then B E c if B SN and the following requirements are 
ct 

fulfilled: 

( 1) ct '\ .... a2, B 2: [y]C, A E Cctl ~ C[AD E Ca
2 

(2) a - al ® ct2' B ;:: <C,D> ~ C E Cal' D E Ca2 

( 3) a a1 e a2 , B 2: ij(C) ~CE Ca· (j=l,2) 
J 

(4) ct (ct
1 

e a
2

) -+ a
3

, B 2:C$D~C E c(:l1-+a3 I D E CCI2-+a3. 

Notice that each clause in the definition of C only depends on 
a 

C 's with S shorter than a • 
. B 

5.3.3 We write C for the set of all computable expressions, the union 

of all the C's. By definition: A E C ~A SN. Each condition in the 
a 

definition of computability of B has the form: B 2: C ~ P(C), with P 

some condition on C. 

So computability is preserved under reduction. 

5.3.4 Now we try to express the computability of an expression in terms 

of the computability of its subexpressions. First a lemma. 

Lemma: 

(1) [x]C 2: [x]D ~ C 2: D 

(2) <C,D> 2: <.E,F>,. C 2: E, D 2: F 



296 

(3) i.(C) ~ i.(D) • C;;?; D (j=1,2) 
J J 

(4) C e D ;;?; E e F • C <! E, D ;;?; F 

Proof: Without main reduction it is trivia!. Otherwise it is n or a. 

E.g. if <C,D> ~ <E,F> then C <! <E,F>(l) ;;?; E, D <! <E,F>(
2

) ~ F 

q.e.d. By the way, property (4) even holds in presence of E· D 

Lemma (computability conditions): 

(0) variables are in C 

(1) A SN, C E C, D E C • <A,C,D> E C 

(2) A SN, CE C • i
1 

(C,A> E C, i 2(C,A) E C 

(3) C E C, D E C • C e D E C 

(4) CE C • C(l) E C, C( 2 ) E C. 

(5) B E C, C E C • {B}C E C 

Proof: (0) is clear. (1), (2), (3) by the previous lemma. (4) as follo\ 

Let c E c then c SN so c(j) SN. If c(j) ;;?; [y]D then c;;?; <C1,C2> 

with C. ;;?; [y]D. Each of the C. is in C, so [y]D satisfies the re-
J J 

quired condition. Similar if C(j) s <D1 ,D2>, C(j) ;;?; i 1 (D) etc. 

Proof of (5): Let B,C E C so B,C SN. Induction on ~(B). We first 

check the SN conditions. Let C <! [y]D then D[BD E C so SN. Or let 

B <! ij(D), C <! c 1 e c2, to prove that {D}Cj is SN. Well, both Cj'l 

are in C, D E C and we can use the ind. hyp. to prove that 

{D}C, E C (so SN). Further, if {B}C;;?; [y]E (or reduces to <E,F> 
J 

etc.), this is only possible aftera main step, so either via somE 

D[BD with C ~ [y]D or some {D}Cj where B <! ij(D), C <! c1 e c2• 

Those expressions were in C so [y]E (and <E,F> etc.) satisfy the 

required conditions. 

5.3.5 Computability under substitution 

For expressions [y]C such simple computability conditions cannot 

be given. We define an even strenger notion than computability. 

Definition: B is said to be aomputabZe under substitution (aus) if 

A1,···,An E C, ~(xi) =~(Ai) for i=1,•••,n • B[x!ÄD E C 

D 
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Same easy properties are: 

(1) B Cus ~ B € C (e.g. take n=O) 

and (2) B Cus, B ;:: C""' C € C 

Then a lemma: Let U(C) 

Proof: Clearly cis SN. We use ind. on t(al). If c;:: [y]D, FE cal we 

must prove D[FD E Caz• This holds because {F}C ;:: D[FD. If 

C ~De E we must prove that D,E E C. For i
1 

(F) E Cal' 

{i1 (F)}C€C so {F}D E C. Now use the ind. hyp. Similar for E. 0 

5.3.6 Lemma: B Cus,CCus • [y:B]C Cus 

Proof: Let C Cus, B Cus, Ä E C of the right norms. Abreviate [x/Ä] by * 
We must prove that [y:B*Jc* E C. Well, B* € c, c* E c so 

[y : B* ]C* E SN • If [y:B*JC*;:: [y:D]E, FE C of the right norm then we 

need that E[F] E C. Because C is Cus, C[x,y/Ä,FD E c, which ex-

pression reduces to E[FD, q.e.d. In particular, if 

c* ~ {y}(El e E2), y * FV(E1 $ E2) I we have that {F}(E
1 lll E2) E c, 

sa by the lemma E
1 

lll E
2 

E C, E
1 

E C, E C, q.e.d. D 

Theorem: All AUT-Pil expressions are Cus 

Proof: Variables are Cus by definition. Further use induction on length. 

For the abstr case use the previous lemma. For all the ether cases 

use the lemma in 5.3.4. E.g. to prove that {B}C is Cus. Let * be 

as in the previous lemma. By ind. hyp. B* E C, C* E C, so 

{B*}C* E C. 

Corollaries: (1) All AUT-Pil expresslons are computable 

{2) All AUT-Pil expresslons are S~+ncr-SN 

5.4 Streng normalization for AUT-Pi 

5.4.1 The normability of AUT-Pi 

In order to extend our results from AUT-Pi to AUT-Pi we must first 

extend our definition of norm (see 4.2.3), and implicitly, of norma

bility, as fellows: 
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ll(T) - T 

ll(A) - a-+ fl .. ll(l:(A)) 

A, B of degree 2 • )l(A e B) = )l(A) e ll(B) 

And we must say what the norms of the variables are 

ll {X) ::: ll {typ {X) ) • 

• Our definition of normability,_ here, is modelled after the norma-

bility definition of AUT-QE {weak normability), in particular as far as 

the handling of 2-variables is concerned. For details see IV.4.4-IV.4.5 

First we define norm inclusion c: 

( 1 ) et. a norm =<> a c T 

<2> a c a .. <Y ~ a> c <Y .... a> 

Then we say that A fits in B (notation A fin B) if: 

degree(A) 3 • ll (A) - ll (B) 

degree(A) 2 • ll (A) c ll (B) 

Now we define the norm of constant expressions 

Ä fin ë[Ä] .. )l(c(Ä)) := 1-!(typ(a)[Ä]) 

Ä fin ë[ÄJI .. ll{d(Ä)) := ll(def{d)[Ä]) 

where x E ë is the context of the scheme, in which a (resp. d) was in

troduced. 

We want to show that correct expressions are normable, and of 

course that whenever A E B, A fits in B. In view of the instantiation 

rule and the fact that norms can change under substitution (for 2-

variables) we prove, as inCh. IV.4.5 a kind of normability under sub

stitution. 

Theorem: If Ä fin Ê[ÄD, y E Bj-c E D then C[Ä) fin D[Ä) (note that "fitti 

in" implies the normability of the expressions involved) 

Proof: Ind. on correctness. 
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Corollary: ~CE D • C fin D (so C, D normable) 

5.4.2 Note: By the above defined concept of normability lots of ex

pressions become normable which are certainly not correct in AUT-Pi. 

E.g. {A}(n([x:B]C)), with J,l(A) l.I(B), and (l::(B)) (
1
), with 

]J(B) 8
1 

+ 8
2

• This is a consequence of the fact that AUT-Pi is handled 

just like AUT-QE: n•s are (as regards norms) ignored, and !'s are in 

some sense identified with pairs. 

5.4.3 Extending the SN-result to AUT-Pi 

Clearly the presence of non-reducing constants such as !, n, 
(for 2-expressions) and 1 does not harm the SN-results of the previous 

sections. We just have to add ö-reduction. The eubstitution (resp. re

placement theorem for SN can easily be extended because ö-contractions 

in E1Ix/All (LR) either take place inside A or can be mimicked in B al

ready. Then we can preeeed as in IV.4.6 or directly prove B norrnabie • 

B SN, by ind. on (1) date(B), (2) ~(B). The new case is when B ~ d(ê). 

The C. 's are SN by ind. hyp. (2). Further we want that def(d)[ë] is SN. 
~ 

Well, def(d) is SN by ind. hyp. (1) and def(d)[ë] ~ def(d)[C
1

] ... ~Cn]l. 

So by iterated use of the substitution theerem we are done. Later we 

can add on, by pp. 

Alternatively we can extend the SN proof by aomputability to the 

present case, viz. by leaving the definition of computability unmodified 

and prove computabiZity under substitution by ind. on (1) date, (2) 

length. In particular let A
1
,···,Ak E C of the right norms, let* stand 

for [x/Ä], let B~,···,B~ E C. Then we must prove that d(Ë)* E C. The 

B*'s are SN. By ind. hyp. (1) def(d) is cus, so def(d)[Ë*] E C, so SN. 
i 

Further, if d<B*) ~ [y]E (or <E,F> etc.) then this reduction passes 

through def(dl[B*] (which was in C). 

So, finally we have 8~+onö-SN for AUT-Pi. 
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VIII.6 Some additional remarks on AUT-Pi 

6.1 The conneetion between AUT-QE and the abstr part of AUT-Pi 

Here the abstr part of AUT-Pi is the part generated by the genera 

rules (2.2.1, 2.2.2) and the specific rules group I (2,3), If it werel 

for the role of n, and the rule of product formation,this part of AUT

would be identical to AUT-QE. 

In the introduetion to this chapter we mentioned already that the 

rule of type-inclusion is somewhat ·strenger than the rule of product 

formation. This means that the obvious translation of AUT-Pi, viz. jus 

skipping the n•s produces correct AUT-QE, butnotall of AUT-QE. Namel 

without n, the rule of product formation becomes 

(I) 

which is just a specific instanee of the type-inclusion rule 

(II) 

Let us see whether sensible use of (I) can yield something like 

(II). So let~ E[y:S][x:a]T. Then y E S~{y}~ E [re:a]T (where y consist 

of the y. 'sin the reversed order). So by (I) y E ä~{y}~ ET, and by 
l. + + --+ 

iterated use of the abstr rule we get r~ E T with ~ = [y:B]{y}~. 
Clearly 

which 1nd1cates that AUT-QE is not a very essential extension of the 

image of AUT-Pi under the translation. Compare De Bruijn [15, 17]. 

6.2 The CR problem caused by & 

In Ch. II we gave a counter example for Se-CR. Namely [x]x and 

[yJi
1 

(y) $ [y]i
2

<y> are distinct Se-equal normal forms (just two 

different ways to write identity on a $-type). This suggests tosave 

CR by adding ealt (see 2.6) 
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However, Ealt and + interfere in a nasty way: 

[x](•••{x}F•·•) e [xJ(•••{x}G•••) <++ [x](··•{i
1 

(x)}(F e GJ···) e 

[xJ(•••{i2 (x)}(F e G)•••) >E [x](•••{x}(F e G)•••), so this does not 

help. 

In principle, CR is not too important for our purpose, we rather 

need a good decision procedure for definitional equality. Just like 

(in V.4) we suggested to implement n-equality by the rule 

{x}F Q G • F Q [x]G 

we eonjeeture here that we could generate full equality (including E) 

by adding 

But in order to quarantee the well-foundedness of such an algo

rithm, we need of course some kind of strong normalization result, 

which applies in the present situation. 

The general pattern of the counterexample to +ealt-CR reads 

[x]O({x}F) e [x]0({x}G) Q [x]O({x}(F eG)) 

where 0 is a very general eperation on expressions. This shows that 

extensional equality generates the equality induced by permutative re

ductions (sec. 4.3) 0({A}([x]B e [x]C)) Q {A}[x]O({x}([x]B e [x]C)) 

Q {A}([x]O({x}[x]B) • [x]O({x}[x]C)) Q {A}([xJO(B) • [x]O(C)). E.g., 

{D}{A}([x]B e [x]C) {A}[x]{D}{x}([x]B • [x]C) 

>galt {A}([x]{D}{i 1 (X)}([x]B e [x]C) e [x]{D} 

{A}([x]{D}B e [xJ{D}C), q.e.d. 

(x)}([x]B • [x]CJ) 
'+' 

Conversely, we might generate part of the e-equality by adding 

general permutative reductions, paying due attention to the thus arising 

SN problem. 

6.3 The SN-problem caused by € 

we strongly believe that SN holds for the full AUT-Pi reduction 

(including e), and that there are just some technica! problems which 

prevent the proofs of the preceding sectien to apply to that situation. 

We briefly sketch why each of the three proofs fails in preserree of e. 
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The problem with the first proef (5.1) is that the dead end set 

for, e.g., St-reduction is not so easy to describe. E.g. 

(y]{{i1 (y)}x}F e [y]{i
2

{yl}F is a typical dead end for Be. Of course 

Bn- or Bo-dead ends are not manageable either, but on can be included 

afterwards, using pp. 
Then the secend proef (5.2). An e-redex [y]{i

1 
{y)}F $ [y]{i

2
(y)}F 

can be created by substitution [x/AD in two different ways; (1) from 

x e [y]fi2 (y)}F, A= [y]{i1 (y)}F (and similar with the right hand part 

(2) from [y]{i
1

(y)}F
1 

• [y]{i
2

<y)}F2 , F
1
[A] : F, F

2
[A] : F. In case (1 

we are suggested to replace x e (y]{i1 (y)}F by a single variable z, an 

to introduce a new substitution [z/F). However, t(~(z)) > t(~{X)), 

which does not fit in the proef at all. But we can remove this case b~ 

just considering AUT-Pio. Case (2) does notpose a problem; the sub

stitution plus reduction can be simulated by reduction plus substituti 

starting from [y]{i
1 

(yl}F
0 

$ [y]{i
2

(y)}F0 , where both F
1 

and F
2 

can be 

constructed from F
0 

by substituting A for some of free x's. Besides, 

the second proef is based on replacement. This means that the e-redex 

above can also be created from, e.g., (3) [y]{x}F $ [y]{i 2ty)}F, with 

A: i
1 

(y), or (4) [y]{i
1 

(X)}F e [y]{i
2

!yl}F. These two expressions do 

not reduce, unless we switch to a generalized form of Ealt (which does 

not solve the problem, though- see below). 

Finally the computability method (5.3} fails because the propert1 

FE C, GE C • F $GE C is not so easy anymore. For, let 

F ~ [x]{i
1

(x)}[y]D, G ~ [x){i
2

(x)}[y]D. Then we just know that 

A E C • D[i
1 

!Al] E C, D[i2<A>] E C, but we want that DIA] € C for 

general A € C. 

We have tried to adapt the second SN-proof to this situation, vi2 

by restricting to AUT-Pio 1 and by introducing a liberalversion of 

&alt' named E'. 

e'; [y]F[i
1 

(y)] EP G > [y]F, Ge [y]F[i
2

!yl] > [y]F 

This can be considered a kind of improper reduction in the sense that 

it identifies expressions which in the intuitive interpretation do 

correspond to different objects. A typical way of.creating a new e'

redex is, e.g., from [y]x EP G by the replacement [x/i1 (y)]LR, reducinç 

to [y]y. one can indeed mimiek this by first reducing to [y]x, and thE 

apply a new replacement, viz. [x/y]. But the norm of this new x is 

longer than that of the old one. 
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SAMENVAlliNG 

In het Automath project zijn een aantal wiskundige talen ontwikke: 

die geschikt zijn om grote stukken wiskunde zó weer te geven dat een 

computer de correctheid van de wiskundige redenering kan controleren. 

Het programma dat deze controle verzorgt wordt verifiaator genoemd. De 

belangrijkste Automath talen zijn AUT-68, AUT-QE en AUT-Pi. 

De Automath talen zijn gebaseerd op systemen van gegeneralizeerde 

getypeerde. Ä-calaulus. De taaltheorie houdt zich bezig met syntaktischj 

kwesties, betreffende de definitiegelijkheid, de reductie-relatie en dj 

typeringa-relatie in deze systemen. Drie belangrijke eigenschappen 

waarop de taaltheorie zich richt zijn: (sterke) no~alisatie, gesloten· 

heid en Churah-Rosser eigenschap. Deze eigenschappen zijn onder meer 

van belang om de correcte werking van de verificator te kunnen aantone1 

Dit proefschrift kan worden opgevat als een voortzetting en een 

aanvulling op taaltheoretisch werk van Nederpelt en de Vrijer. Hoofdst1 

I geeft een overzicht van het Automath project, gaat uitvoerig in op dj 

rol van de taaltheorie binnen het project, en wordt besloten met een 

uitgebreide samenvatting van het proefschrift. Hoofdstuk II bevat de 

nodige preliminaria. Hoofdstuk III behandelt de theorie van afkortingel 

In de hoofdstukken IV, V en VI worden achtereenvolgend de drie genoemdj 

belangrijke eigenschappen bewezen voor AUT-68, AUT-QE en nog enige 

varianten. Hoofdstuk VII gaat in op de theorie van Nederpelt's Automatl 

systeem A. De drie belangrijke eigenschappen worden bewezen (dit beves· 

tigt twee vermoedens uit Nederpelt's proefschrift), en tevens wordt de 

Vrijer's grote-boom stelling van een nieuw bewijs voorzien. Hoofdstuk 

VIII bevat de theorie van AUT-Pi. Geslotenheid wordt bewezen voor het 

volledige AUT-Pi, alsmede sterke normalisatie en Church-Rosser voor eeJ 

deelsysteem van AUT.Pi. 

Sommige resultaten uit het prOèfschrift zijn niet alleen van toe

passing op Automath maar ook van belang in de À-calculus, en, door de 

formulae-as-types interpretatie, voor bewijstheorie. 
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STELLINGEN 

I 

Laat het systeem AUT-2 als volgt gedefiniêerd zijn. 

De types zijn opgebouwd uit het grondtype T met behulp van + • 

JYpe-inoZusie c is gedefiniëerd door: 

( 1) a een type • a c T 

(2) al cal, a2 c a2 ... (al+ a2) c <al+ a2l 

E~essies A behoren tot AUT-2 als ze een type t(A) krijgen volgens 

(1) t {.:ca) : = a 

(2) t(À.:ca. A}:=: (a+ t(A)) 

(3) t(Al (S + y), t(B) c a .,. t(AB): y 

Sterke normalisatie voor AUT-2 kan bewezen worden met de elementaire 

methodes van dit proefschrift. 

Lit. dit proefschrift I.4.12, IV.1.5, IV.2.4. 

II 

Een theorie van getypeerde À-calculus heet w-onvoZZedig in type a + a 
afgekort a+ S ~w, als er gesloten F,G van type a+ S zijn, zodat 

F !- G en VA:a(A gesle>ten.,.FA = GA). 

Laat o het grondtype zijn, laat = staan voor Sn-gelijkheid. 

(i) Zijn er alleen constanten van type o, dan (o + o) + (o + o) 1-w 

(ii) Is er tenminste één constante (0) van type o en precies één con-

stant.e (s) van type o + o dan (o + o) + o 1- w 

(ii~Voegt men, naast 0 en s, constanten toe voor primitieve recursie, 

waarbij = met de bijbehorende reductie wordt uitgebreid, dan 

o + o 1- w {en (o + o) + o ,.f- w, zoals blijkt uit een constructie 

van Tait). 

Lit. H.Friedman, Equality between functionals, in: LogicColloqui 

(ed. Parikh), Lecture Notes in Mathernaties 453, p. 22-37, 

Springer 1975. 
G,Pl.otkin, The À-calculus is w-incomplete, Journ.of Symb. 

Logic 39 (1974), p. 313-317. 



III 

Het vermoeden van Hindley dat de reductierelatie ~ 
0 

gedefiniëerd 
c~~ 

door 

A ~can8 : •AÀ ~an BÀ 

niet Church-Rosser is, is juist. 

Lit. J.R.Hindley, Combinatory reductions and À-reductions 

compared, Zeitschr.f.math.Logik u.Grundl.d.Math.23(1977), 

p. 169-180. 

IV 

De door Barendregt et al. gestelde vragen 

(1) is er een term F zodat 

FM normaliseert ~Meen numeral 

(2) is er een term F zodat 

FM solvable *Meen numeral 

kunnen ontkennend beantwoord worden. 

Lit. H.P.Barendregt, J.Bergstra, J.W.Klop, H.Volken, 

Representability in lambda-algebras, Indag.Math. 

38(1974), p.177-187. 

Het verwerpen van regel~ (A=B • ÀX.A = ÀX.B) in de À-calculus, 

zoals Martin-Löf dat op filosofische gronden bepleit, heeft on

aangename consequenties voor de praktische uitvoerbaarheid van 

de decisiemethode voor definitiegelijkheid. 

Lit. P.Martin-Löf, About models for intuitionistic type 

theories and the notion of definitional equality, 

in: Proc. of the third Scand. Logic Symp. (ed. S. Kanger}, 

p. 81-109, North-Holland 1975. 

Dit proefschrift, V.4.4. 



VI 

Een uitbreiding met simultane zoekfaciliteiten (in de vorm 

van een beheerste "breadth-first search") kan de efficiëntie 

van de verificatieprocedure voor definitiegelijkheid in Auto

matb-talen aanmerkelijk verbeteren. 

Lit. Dit proefschrift, III. 6, V.4.4. 

I.Zandleven, A verifying program for Automath, 

Proc. of the symp. APLASM (ed.Braffort), Parijs 

1974. 

VII 

Aankomende studenten (niet alleen wiskundigen) zijn meer gebaa1 

bij een kennismaking met een Automath-achtig systeem voor de 

weergave van logisch redeneren, dan met de uiteenzettingen ove1 

waarheidstafels die traditioneel tot de stof van inleidende 

logica-colleges behoren. 

Lit. N.G. de Bruijn, Wees contextbewust in WOT, 

Euclides 55(1979/1980), p. 7-12. 

R.P.Nederpelt, Bewijsmethoden, syllabus onderafd. 

Wiskunde, T.H. Eindhoven. 

VIII 

De - onnodige - conceptuele en technische moeilijkheden die 

samenhangen met het begrip assumptiekZasse in gebruikelijke 

natuurlijke-deductie systemen kunnen worden vermeden door 

een lineaire representatie van bewijzen te gebruiken zoals 

bijvoorbeeld bij Fitch en in Automath. 

Lit. G.Kreisel, Four lectures on proef theory, 

Clermont-Ferrand 1975 (p.26-27}. 

D.Leivant, stélling II bij zijn proefschrift, 

Amsterdam i976. 

J.B.Fitch, Symbolic Logic, An Introduction, 

New York 1952. 

D.Prawitz, Natural deduction, Almquist en 

Wiksell, Oslo 1965. 



Het vermoeden van Alberda dat de voorwaarde 
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voldoende zou zijn voor de positief~definietheid van de 

bijbehorende kriteriummatrix is onjuist. 

Lit.J.E.Alberda, Planning and optimization of 

networks: some general considerations, Bolletino 

di Geodesia e Scienze Affini 33(1974), p. 209-240. 

x 

De indexnotatie van Ricci en de kern-indexnotatie volgens 

Schouten druisen in tegen de gebruikelijke conventies be

treffende notatie en kunnen daarom in het lagerejaarson

derwijs maar beter vermeden worden. 

XI 

Het aanstellen van wetenschappelijk medewerkers in deel

tijd-betrekkingen kan voor de werkgever een lucratieve 

aangelegenheid zijn, aangezien vaak een groot deel van 

de resterende tijd tóch voor wetenschappelijk werk zal 

worden gebruikt. 

XII 

De tegenstellin~ die men gewoonlijk veronderstelt tussen kennen 

en be(Jl'ijpen is aanvechtbaar: uit het hoofd kennen kan al een 

vorm van begrijpen zijn. Bovendien kan ieder begrijpen door een 

diepere vorm van begrip achterhaald worden. 

Lit. Theo Tijssen, De gelukkige klas, p.42-50, 

Amsterdam 1974. 

J.v.Dormolen, Didactiek van de Wiskunde, 

p. 61-74, Utrecht 1974. 

Eindhoven, 15 februari 1980 D.T. van Daalen 


