3,068 research outputs found

    Implementing Azure Active Directory Integration with an Existing Cloud Service

    Get PDF
    Training Simulator (TraSim) is an online, web-based platform for holding crisis management exercises. It simulates epidemics and other exceptional situations to test the functionality of an organization’s operating instructions in the hour of need. The main objective of this thesis is to further develop the service by delegating its existing authentication and user provisioning mechanisms to a centralized, cloud-based Identity and Access Management (IAM) service. Making use of a centralized access control service is widely known as a Single Sign-On (SSO) implementation which comes with multiple benefits such as increased security, reduced administrative overhead and improved user experience. The objective originates from a customer organization’s request to enable SSO for TraSim. The research mainly focuses on implementing SSO by integrating TraSim with Azure Active Directory (AD) from a wide range of IAM services since it is considered as an industry standard and already utilized by the customer. Anyhow, the complexity of the integration is kept as reduced as possible to retain compatibility with other services besides Azure AD. While the integration is a unique operation with an endless amount of software stacks that a service can build on and multiple IAM services to choose from, this thesis aims to provide a general guideline of how to approach a resembling assignment. Conducting the study required extensive search and evaluation of the available literature about terms such as IAM, client-server communication, SSO, cloud services and AD. The literature review is combined with an introduction to the basic technologies that TraSim is built with to justify the choice of OpenID Connect as the authentication protocol and why it was implemented using the mozilla-django-oidc library. The literature consists of multiple online articles, publications and the official documentation of the utilized technologies. The research uses a constructive approach as it focuses into developing and testing a new feature that is merged into the source code of an already existing piece of software

    Optimizing Key Management within a Crypto-System using Aggregate Keys

    Get PDF
    Sharing data with peers is an important functionality in cloud storage. This is a study and analysis of secure, efficient, and flexible sharing of data with other users in cloud storage. The new public key encryptions which produce constant-size ciphertexts in such a way that effective delegation of decryption rights given to any set of ciphertexts are described in this paper. The novelty of the mechanism is that someone can aggregate any number of secret keys and turn them into a small single key, but combine the power of all the keys being grouped. To describe, in other words, the secret key holder could release a constant-size aggregate key for more flexible choices of ciphertext set in cloud storage, but different encrypted files outside of the set remain confidential. The aggregate compact key can be sent to others with ease or saved in a smart card with very less secure storage. In this paper, we discuss various such mechanisms and demonstrate the topic with a project. Some of the papers written by other authors in the area are analyzed in this paper. The project in this paper is a partial implementation of the proposed Crypto System

    Um estudo sobre a segurança e privacidade no armazenamento de dados em nuvens

    Get PDF
    Orientador: Marco Aurélio Amaral HenriquesDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Armazenamento de dados na nuvem é um serviço que traz diversas vantagens aos seus usuários. Contudo, em sistemas de nuvens públicas, os riscos envolvidos na terceirização do armazenamento de dados pode ser uma barreira para a adoção deste serviço por aqueles preocupados com sua privacidade. Vários provedores de serviços em nuvem que afirmam proteger os dados do usuário não atendem alguns requisitos considerados essenciais em um serviço seguro, confiável e de fácil utilização, levantando questionamentos sobre a segurança efetivamente obtida. Apresentamos neste trabalho um estudo relacionado aos requisitos de privacidade dos usuários e de segurança de seus dados em nuvens públicas. O estudo apresenta algumas técnicas normalmente usadas para atender tais requisitos, juntamente com uma análise de seus benefícios e custos relativos. Além disso, ele faz uma avaliação destes requisitos em vários sistemas de nuvens públicas. Depois de comparar estes sistemas, propomos um conjunto de requisitos e apresentamos, como prova de conceito, uma aplicação baseada nos mesmos, a qual melhora a segurança dos dados e a privacidade dos usuários. Nós mostramos que é possível proteger os dados armazenados nas nuvens contra o acesso por terceiros (incluindo os administradores das nuvens) sem sobrecarregar o usuário com protocolos ou procedimentos complexos de segurança, tornando o serviço de armazenamento em nuvens uma escolha mais confiável para usuários preocupados com sua privacidadeAbstract: Cloud data storage is a service that brings several advantages for its users. However, in public cloud systems, the risks involved in the outsourcing of data storage can be a barrier to the adoption of this service by those concerned with privacy. Several cloud service providers that claim to protect user's data do not fulfill some requirements considered essential in a secure, reliable and easy to use service, raising questions about the effective security obtained. We present here a study related to user's privacy and data security requirements on public clouds. The study presents some techniques normally used to fulfill those requirements, along with an analysis of their relative costs and benefits. Moreover, it makes an evaluation of them in several public cloud systems. After comparing those systems, we propose a set of requirements and present a proof of concept application based on them, which improves data security and user privacy in public clouds. We show that it is possible to protect cloud stored data against third party (including cloud administrators) access without burdening the user with complex security protocols or procedures, making the public cloud storage service a more reliable choice to privacy concerned usersMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica153392/2014-2CNP

    Big Data Privacy Context: Literature Effects On Secure Informational Assets

    Get PDF
    This article's objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities.Comment: 21 pages, 9 figure

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201
    corecore