

Ville Vehniä

Implementing Azure Active Directory Integration
with an Existing Cloud Service

Vaasa 2020

School of Technology and Innovations
Master’s thesis in Automation and

Information Technology

2

UNIVERSITY OF VAASA
School of Technology and Innovations
Author: Ville Vehniä
Title of the Thesis: Implementing Azure Active Directory Integration with an
 Existing Cloud Service
Degree: Master of Science in Technology
Programme: Automation and Information Technology
Instructor: MSc Heikki Mattila
Supervisor: Professor Timo Mantere
Year: 2020 Pages: 93

ABSTRACT:
Training Simulator (TraSim) is an online, web-based platform for holding crisis management ex-
ercises. It simulates epidemics and other exceptional situations to test the functionality of an
organization’s operating instructions in the hour of need. The main objective of this thesis is to
further develop the service by delegating its existing authentication and user provisioning mech-
anisms to a centralized, cloud-based Identity and Access Management (IAM) service. Making use
of a centralized access control service is widely known as a Single Sign-On (SSO) implementation
which comes with multiple benefits such as increased security, reduced administrative overhead
and improved user experience.

The objective originates from a customer organization’s request to enable SSO for TraSim. The
research mainly focuses on implementing SSO by integrating TraSim with Azure Active Directory
(AD) from a wide range of IAM services since it is considered as an industry standard and already
utilized by the customer. Anyhow, the complexity of the integration is kept as reduced as possi-
ble to retain compatibility with other services besides Azure AD. While the integration is a
unique operation with an endless amount of software stacks that a service can build on and
multiple IAM services to choose from, this thesis aims to provide a general guideline of how to
approach a resembling assignment.

Conducting the study required extensive search and evaluation of the available literature about
terms such as IAM, client-server communication, SSO, cloud services and AD. The literature re-
view is combined with an introduction to the basic technologies that TraSim is built with to jus-
tify the choice of OpenID Connect as the authentication protocol and why it was implemented
using the mozilla-django-oidc library. The literature consists of multiple online articles, publica-
tions and the official documentation of the utilized technologies. The research uses a construc-
tive approach as it focuses into developing and testing a new feature that is merged into the
source code of an already existing piece of software.

KEYWORDS: Azure Active Directory, Client-server communication, Cloud computing, Identity
and Access Management, Single Sign-On

3

Contents

Acknowledgement 9

1 Introduction 10

1.1 Case company and product 10

1.2 Problem and objectives 11

2 Theoretical background 13

2.1 Identity and Access Management 13

2.1.1 Identity 13

2.1.2 Access 15

2.1.3 Cryptography 16

2.2 Client-server communication 18

2.2.1 Components 19

2.2.2 Basic aspects 20

2.2.3 Messages 21

2.3 Single Sign-On 22

2.3.1 SAML 2.0 23

2.3.2 OAuth 2.0 25

2.3.3 OpenID Connect 26

2.4 Cloud computing 28

2.4.1 Traditional service models 29

2.4.2 Identity as a Service 31

2.5 Directory services 32

2.5.1 Active Directory 32

2.5.2 Azure Active Directory 34

3 Application specific information 36

3.1 Environment 36

3.1.1 Linux 36

3.1.2 Docker 37

3.2 Web server 39

4

3.2.1 Nginx 39

3.2.2 Gunicorn 40

3.3 Database and caching 41

3.3.1 PostgreSQL 41

3.3.2 Redis 42

3.4 Programming languages 43

3.4.1 Python 44

3.4.2 JavaScript 45

3.5 Frameworks and libraries 46

3.5.1 Django 46

3.5.2 React 49

4 Executing the Integration 51

4.1 Establishing integration requirements 51

4.2 Drawing up a plan 52

4.2.1 Choosing the protocol 53

4.2.2 Selecting a library 54

4.2.3 Building test scenarios 55

4.3 Setting up Azure AD 57

4.3.1 Creating tenant 58

4.3.2 Creating user 58

4.3.3 Registering application 59

4.3.4 Finding integration endpoints 61

4.4 Implementing the plan 63

4.4.1 Library installation 63

4.4.2 Configuring settings 64

4.4.3 Additional configuration 68

4.4.4 Login template 70

4.4.5 User Management 72

4.5 Executing test scenarios 75

5 Results 77

5

6 Conclusions and discussion 80

6.1 Meeting integration requirements 80

6.2 Experience with the library 80

6.3 Operating with existing installation 81

6.4 Azure subscription requirement 81

6.5 Future studies 82

6.5.1 Contributing to open source 82

6.5.2 Acquiring user phone number 83

6.5.3 Alternative identity providers 83

References 85

Figures

Figure 1. Description of symmetric and asymmetric encryption systems . 17

Figure 2. Process to validate the authenticity and integrity of a message. 18

Figure 3. Illustration of a forward proxy and a reverse proxy 20

Figure 4. Basic components of SSO and a schema of the login process 23

Figure 5. Sequence diagram of SAML 2.0 single sign-on flow 25

Figure 6. Sequence diagram of basic OAuth 2.0 authorization code flow. 26

Figure 7. Sequence diagram of OIDC single sign-on flow 28

Figure 8. Pyramid design of traditional cloud computing service models . 29

Figure 9. System architecture with ADFS and Azure AD SSO solutions 35

Figure 10. Simple interpretation of the Django MTV model 48

Figure 11. The dialog box for creating a new directory 58

Figure 12. The dialog box for creating a new user 59

Figure 13. The dialog box for registering an application 60

Figure 14. Application information from the Overview tab....................... 61

6

Figure 15. Client secret created at the Certificates & secrets tab 61

Figure 16. The list of all protocol endpoints provided by Azure AD 62

Figure 17. Architecture of OIDC settings files ... 65

Figure 18. Login screen after modification ... 71

Figure 19. Microsoft authentication dialog box .. 71

Figure 20. Edit user form of a regular user ... 74

Figure 21. Edit user form of an SSO user with reduced number of fields .. 75

Tables

Table 1. Common user attributes and activitie ... 14

Table 2. The list of integration requirements .. 52

Table 3. Pros and cons of SAML 2.0 and OIDC protocols 53

Table 4. Comparison of Django compatible libraries implementing OIDC. 55

Table 5. Test scenarios to verify successful integration 57

Table 6. Actual results and pass or fail statuses of the test scenarios 76

Abbreviations

3DES Triple Data Encryption Algorithm

ACID Atomicity, Consistency, Isolation and Durability

AD Active Directory

AES Advanced Encryption Standard

API Application Programming Interface

AWS Amazon Web Services

CAA Crypto Approval Authority

CD Continuous Delivery

CI Continuous Integration

CMS Content-Management-System

7

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

DTL Django Template Language

EC2 Elastic Compute Cloud

FIM Federated Identity Management

FOSS Free and Open-Source Software

FTP File Transfer Protocol

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Security

IAM Identity and Access Management

IDaaS Identity as a Service

IdP Identity Provider

IP Internet Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

LDAP Lightweight Directory Access Protocol

M2M Machine to Machine

MFA Multi-Factor Authentication

MITM Man in the Middle

MTV Model Template View

MVC Model-View-Controller

MVCC Multiversion Concurrency Control

NIST National Institute of Standards and Technology

OAuth Open Authorization

OIDC OpenID Connect

OS Operating System

8

OTP One-Time Password

OWASP Open Web Application Security Project

PSL Python Standard Library

PyPI Python Package Index

REST REpresentational State Transfer

SaaS Software as a Service

SAML Security Assertion Markup Language

SHA2 Secure Hash Algorithm 2

SP Service Provider

SPA Single-Page Application

SQL Structured Query Language

SSO Single Sign-On

Sudo Superuser do

TCP Transmission Control Protocol

TLS Transport Layer Security

TraSim Training Simulator

UI User Interface

URL Uniform Resource Locator

UX User Experience

VCS Version Control System

VM Virtual Machine

WSGI Web Server Gateway Interface

XML Extensible Markup Language

XSS Cross-Site Scripting

9

Acknowledgement

I would like to present a thank you to my workmates at Insta Digital for providing me the

opportunity to write my thesis. Major respect to all members of the Trust domain and a

special mention to Heikki Mattila for instructing me throughout the whole research pro-

cess. It has been a pleasure to dive into the world of web development with guidance

from true professionals such as Valtteri Luoma and Juanjo Díaz.

From University of Vaasa I express my gratitude to Professor Timo Mantere for supervis-

ing both my Master and Bachelor’s theses. Additional mention to Petri Välisuo and To-

bias Glocker for holding numerous interesting courses and always giving lectures with

encouraging attitude.

Most importantly, I would like to thank my family and friends for all the support I have

received during these years.

Ville Vehniä

Tampere, April 30, 2020.

10

1 Introduction

Do you know how to manage a crisis? They happen all the time and bring big change. As

we have seen with the ongoing coronavirus outbreak, the operating environment of

whole countries let alone companies can change in a flash. When the change is inevita-

ble, one can protect themselves or their organization from disruptive and unexpected

events by preparing how to manage the situation in a way that lessens or completely

prevents the damage inflicted (Tobak 2008). While crisis management is not an unam-

biguous process, the senior executives of organizations may not rise to the occasion and

their reactions can make matters worse.

1.1 Case company and product

This thesis is written for Insta Digital, which is a software company founded as a startup

of three persons during 2012 in the aftermath of Nokia’s meltdown (Latvala 2018). By

2018, the company had profitably grown from the three founding members to 75 soft-

ware specialists from 14 different nationalities. About the same time, Insta Digital (for-

merly known as Intopalo Digital) was acquired by Insta Group, a Finnish family owned

business focused on industrial automation, digitalization, cybersecurity and defense

technologies (Insta Group 2020). Insta Digital then became one of the five segment com-

panies that together compose the Group. At the time of writing, Insta Digital alone em-

ploys over one hundred professionals in Tampere, Helsinki and Munich, while the Group

has in total over 1100 employees.

The core service of Insta Digital is to solve a wide range of problems related to following

domains: leading digital transformation, design, web and cloud, advanced user inter-

faces, cybersecurity, data science and embedded systems. Despite its focus being on

providing professional services, Insta Digital offers a crisis management product called

Training Simulator (TraSim). The product is originally developed by a security company

called Countsec which was acquired by Insta Group in a similar fashion to Insta Digital.

11

TraSim and the related crisis management consultancy business was handed over to In-

sta Digital a while after its acquisition had taken place as a more suitable stakeholder for

the entity.

Essentially TraSim provides a safe platform to test the functionality of an organization's

operating instructions in the hour of need. It offers an online platform for holding visual

crisis management exercises that can be bundled with consultancy from crisis manage-

ment experts to raise the operational readiness of an organization’s key personnel to the

required level. TraSim prepares organizations for a true incident that is bound to happen

by simulating disruptions, emergencies, epidemics and other exceptional situations. The

product is served in a Software as a Service (SaaS) manner and it has been continuously

enhanced during its lifetime including one major rewrite to become compliant with the

protection level IV set by Crypto Approval Authority (CAA).

1.2 Problem and objectives

The main research question of this thesis is how to delegate the built-in authentication

and user provisioning mechanisms of an existing cloud service (TraSim) to a centralized,

cloud-based identity and access management service. The question originates from a

request of a customer organization to allow their employees to sign-on to TraSim using

the credentials stored to the organization’s Azure Active Directory (Azure AD) tenant.

This kind of implementation is called Single Sign-On (SSO) and it requires an integration

between a Service Provider (SP) and Identity Provider (IdP), which are TraSim and Azure

AD in this case.

Implementing SSO to a cloud service is not an uncommon request as the average enter-

prise was expected to use 17 SaaS applications in 2017 which is a 50 % increase from

2015 (Solomon 2016). One may speculate the increasing demand for SSO consists of

multiple factors such as the rise of cloud applications, password fatigue, new developer

12

methodologies, enterprise mobility, web and cloud native applications and the improved

security that SSO brings (Drinkwater 2018).

While there is an endless amount of software stacks that a SP can build on and a multi-

tude of different IdPs, the basic aspects of an integration remain similar in every imple-

mentation. The case specific underlying technologies only place certain limitations or

freedoms on which authentication protocols can be utilized and how they are to be im-

plemented. While every implementation is unique, this thesis aims to provide a general

guideline of how to complete a comprehensive integration process.

The research begins with a literature review about the themes behind the main objective

such as IAM, client-server communication, SSO, cloud services and Azure AD. The review is then

followed with an introduction to the basic technologies that TraSim is built with to justify the

choices made in the subsequent chapter, which deals with the actual integration process. The

literature consists of multiple online articles, publications and the official documentation of the

utilized technologies. The research uses a constructive approach as it focuses into developing

and testing a new feature that is merged into the source code of an already existing piece of

software. Finally, the study is concluded by recapping the results and answering following ques-

tions: how the combination of the technical decisions played out in the end, what could have

been done better and are there any promising areas of future studies.

13

2 Theoretical background

Before starting to plan the actual integration, one must acquire the basic knowledge of

related concepts. This chapter begins with introduction to Identity and Access Manage-

ment (IAM) and client-server communication. Then the focus shifts to SSO and authen-

tication protocols, cloud computing and the service models and then the chapter is

ended with an orientation to AD.

2.1 Identity and Access Management

The description of IAM is written below according to an online glossary published by

Gartner (2020). For in depth explanation, the individual words shall be disassembled and

expanded in more technical point of view during following chapters.

“Identity and access management is the discipline that enables the right individuals
to access the right resources at the right times for the right reasons. IAM addresses
the mission-critical need to ensure appropriate access to resources across
increasingly heterogeneous technology environments, and to meet increasingly
rigorous compliance requirements. IAM is a crucial undertaking for any enterprise.
It is increasingly business-aligned, and it requires business skills, not just technical
expertise. Enterprises that develop mature IAM capabilities can reduce their
identity management costs and, more importantly, become significantly more agile
in supporting new business initiatives."

2.1.1 Identity

In the digital world, where one can not physically prove their identity with the flash of a

government registered identification document, there are other means to prove the dig-

ital identity. Basically, digital identity is the compilation of information about a user, that

exists in digital form. This information can be grouped in two categories: user attributes

and user activities. These pieces of information, combined or solely, are the construction

14

blocks of the digital identity. Examples of common user attributes and activities are listed

below (Table 1).

Table 1. Common user attributes and activities.

The attributes userId, username and email are bolded to symbolize the fact they are of-

tentimes used as the unique identifier. This means a special kind of attribute, which is

used to separate different users from each other in a specific namespace. Again, a

namespace stands for a group where the unique identifier of an item is truly unique. For

example, in the citizen registry of Finland, there may exist only a single person with the

personal identification number 012345-6789. The process of choosing the unique iden-

tifier must be thoroughly considered. Things such as coverage, cardinality, revocation

and re-assignment of the unique identifier can cause trouble during the lifecycle of a

system. The unique identifier might need to be changed or re-assigned to another user.

Also, it must be made sure that the range of possible unique identifiers is wide enough

to cover all users. (Linden 2017).

15

2.1.2 Access

Access is something gained via a digital identity. It is the credibility that allows a user to

access a resource, use a service or interact with people in a trustworthy manner online.

Before gaining access, the identity of the user must be verified, or in other words, the

user must be authenticated. There are multiple authentication methodologies and pro-

tocols, designed for building a strong assurance of the identity of one entity to another.

(Gunter, Liebovitz & Malin 2011).

First, to start the authentication process, one must have an existing identity in the target

entity. Then the entity verifies that the user who is attempting to sign-in, truly owns the

identity registered to the entity. A successful authentication begins a session which lasts

for a specified time period or until the user signs out. The definition of a session from an

online session management guide published by The Open Web Application Security Pro-

ject (OWASP) (2020) is following:

“During a session the session ID or token is temporarily the equivalent to the
strongest authentication method used by the application, such as username and
password, passphrases, one-time passwords (OTP), client-based digital certificates,
smartcards, or biometrics (such as fingerprint or eye retina).”

This definition introduces us to the authentication methodologies with varying integri-

ties, which are often divided into three groups. The first group consists of credentials

and PIN-codes, things that the user can remember. The second group consists of physical

items such as a smart card, credit card, mobile phone or a one-time pad. The final group

includes the biometric authentication methodologies: a fingerprint, iris patterns or some

other unique feature. The authentication is considered strong when at least two meth-

odologies from different groups are present concurrently in terms of Multi-Factor Au-

thentication (MFA). (Linden 2017).

Machine to Machine (M2M) authentication is often executed using a cryptographic pro-

tocol based on either symmetric or asymmetric key pairs. Because of the complex nature

16

of the encryption algorithms to maintain cryptographic security of the ciphertext, the

decryption keys may become extremely long. Therefore, the cryptographic protocol can-

not be adopted for human authentication. Anyhow, cryptography can be utilized in the

second group of authentication methodologies. For example, a smart card can first au-

thenticate its holder with a PIN code, then a server authenticates the smart card using a

cryptographic protocol. Such a process also fulfills the MFA requirements. (Linden 2017).

2.1.3 Cryptography

Cryptography is the use of encryption and decryption techniques, which are processes

for making data, a message for example, unreadable by scrambling and turning it back

into intelligible form by the person or persons who are meant to receive it (Electronic

Frontier Foundation 2018). Traditional, symmetric key, encryption systems use the same

secret, or key, to encrypt and decrypt data. Therefore, it is useful for sharing information

between a set of people who are all authorized to access it. Advanced encryption stand-

ard (AES) and triple data encryption algorithm (3DES) are popular symmetric key encryp-

tion algorithms, ciphers.

Public key encryption uses two keys: one for encryption and another for decryption. The

encryption key is public and can be openly distributed, but the decryption key is only

known to the owner and it must be kept private to maintain security. For example, in a

messaging system that utilizes public key cryptography, any person can encrypt a mes-

sage using the receiver’s public key, and that encrypted message can only be decrypted

with the receiver’s private key. For example, RSA is a widely used asymmetric key cryp-

tosystem named after the inventors Rivest, Shamir, and Adelman. Symmetric and asym-

metric encryption systems are presented in the figure below (Figure 1). (Linden 2017).

17

Figure 1. Description of symmetric and asymmetric encryption systems.

The characteristics of public key cryptography allows the creation of a digital signature,

which gives the receiver of a message a reason to believe the message was sent by the

claimed sender and has not been modified during transport. The digital signature is cre-

ated by regularly encrypting a message with the receiver’s public key, and then encrypt-

ing the hash with the sender's private key and appending it to the original message. The

receiver can then use the sender’s public key to decrypt the digital signature. If the hash

of the original message completely matches with the decrypted digital signature, the

authenticity of the message is verified. The whole process is described in the figure be-

low (Figure 2). (Sectigo 2020).

18

Figure 2. Process to validate the authenticity and integrity of a message.

These distinctive features made public key encryption become a fundamental part of

modern applications and protocols to provide security. It is used in the Transport Layer

Security (TLS) standard, which keeps internet connections secure and safeguards any

sensitive data being transported between systems over the internet. Therefore, any con-

fidential information should only be sent to a server over a TLS protected connection,

Hypertext Transfer Protocol Security (HTTPS) for example. It is also essential to encrypt

any user credentials before storing them to a database in the server side to prevent the

plaintext credentials from leaking in case of a security breach.

2.2 Client-server communication

Clients and servers communicate over networks by sending small packages which are

combined into individual messages. Hypertext Transfer Protocol (HTTP), or its secure ver-

sion HTTPS, is the foundation of any communication on the internet. It is a client-server

protocol, where the messages sent by the client are called requests and the messages

sent by the server are called responses. HTTP is an application layer protocol where the

communication, requests and responses, is established and maintained through Trans-

mission Control Protocol (TCP). It works closely with the Internet Protocol (IP), which

defines how the packages are sent between the client and the server. HTTPS, the secure

version of the protocol, is sent over a TLS encrypted TCP connection. Due to its extensible

nature, HTTP is used to fetch Hypertext Markup Language (HTML) documents, images

19

and videos or to post content such as information entered to a form. (MDN Web Docs:

HTTP Headers 2019).

2.2.1 Components

HTTP-based systems have three components: client, web server and proxies. The client

is a tool, usually the web browser, that initiates the request. Take a web page for example,

the browser first fetches the HTML document, parses it and makes additional requests

to fetch Cascading Style Sheets (CSS) information and sub-resources of the page. Then

the browser combines the resources and presents a complete web page to the user. The

execution scripts of the page can later make additional requests based on user actions.

(MDN Web Docs: HTTP Overview 2019).

A Web server can refer to hardware or software, or a combination of both. The hardware

side means a computer, like a virtual machine, that stores the website’s files. It is a device

connected to the internet and supports physical data interchange with other devices. On

the software side, it is a piece of software that allows clients to access the hosted files.

At bare minimum, a server needs to understand Uniform Resource Locators (URLs) and

HTTP requests to be accessible and able to deliver requested content to the client. On

the opposite, a web server can be a complex entity, consisting of a huge collection of

servers, which appears to be only a single machine because of a reverse proxy. (MDN

Web Docs: HTTP Overview 2019).

Proxies are machines that lay between the client and the server to relay HTTP messages.

They often operate at a lower level becoming transparent at the HTTP layer. Proxies can

either modify the messages or forward them to the original destination without any al-

tering. Proxies may perform functions such as caching, filtering, load balancing, authen-

tication and logging. Load balancing is managed by a reverse proxy sitting in front of web

servers, that distributes client requests in a manner that maximizes capacity utilization

and ensures no one server is overloaded. Proxies provide security and anonymity in

20

contrast: a reverse proxy hides the identity of a web server and a forward proxy hides

the identity of a client. This functionality is illustrated in the figure below (Figure 3).

(Nginx: Reverse Proxy 2020).

Figure 3. Illustration of a forward proxy and a reverse proxy.

2.2.2 Basic aspects

HTTP is simple and human readable by design for easier debugging and decreased com-

plexity. Because of its stateless nature, there is no link between two HTTP requests being

successfully carried out on the same connection. Anyhow, HTTP cookies allow the use of

stateful sessions. Cookies are added to the header of a request, allowing creation of a

session where all the requests share the same state. Basically, the header is a slot in the

HTTP message where the client and the server can pass additional information.

21

The headers make HTTP extensible as they provide more control and functionality. Com-

mon controllable features include caching, relaxing the origin constraint, authentication,

proxy and tunneling and sessions. Caching means the headers can be used to inform a

special type of cache proxies to ignore certain stored documents. Relaxing the origin

constraint is a broader subject which points to removal of the same origin constraint,

meaning that web pages can source information from different domains. Controlling au-

thentication means proving user identity via headers like WWW-Authenticate or the use

of cookies. Proxies and tunneling can be controlled by identifying the protocol (HTTP or

HTTPS), original host IP and original client IP and adding the information to the header.

(MDN Web Docs: HTTP Headers 2020).

2.2.3 Messages

The HTTP flow is simple, and it performs in the following steps: First a reliable TCP con-

nection is opened between the sender and the receiver to ensure no messages are lost.

Then the actual HTTP request is sent with required information. Finally, a response is

received from the server and the TCP connection is closed or reused for another request.

(MDN Web Docs: HTTP Overview 2019).

First element of a request is an HTTP method. GET, POST, PUT and DELETE are typical

methods with self-explanatory names. Typically, the methods are used for fetching or

modifying web resources. Second element is the path of the resource to modify. Path

means the URL of the resource, which can be stripped from the protocol, domain and

port. To fetch a resource from the root of a domain, one would simply set “/” as the path.

Then comes the HTTP version, optional headers and possibly a body, which contains the

resources to be sent with the request. (MDN Web Docs: HTTP Overview 2019).

The structure of a response is comprehensive to a request. It has the version protocol,

headers and an optional body. The differentiating factor is a status code, which indicates

if the request was successful, or not, and why it failed. The status code can range from

22

100 to 599 and they are grouped in five classes: information responses (100-199), suc-

cessful responses (200-299), redirects (300-399), client errors (400-499) and server er-

rors (500-599). There is also the status message, which is a short description of the status

code. (MDN Web Docs: HTTP Overview 2019)

2.3 Single Sign-On

SSO is a property of IAM that enables the use of one set of login credentials to access

multiple systems within a single organization. This requires the existence of a single point

of authentication, the IdP. Basically, it is a server that manages user authentication.

Whenever a user tries to log into an application, instead of providing credentials to the

SP which is the server hosting the application, the IdP passes a token and user attributes

to the SP after a successful authentication. The token and user attributes, claims, are

provided using standard identity protocols such as Security Assertion Markup Language

2.0 (SAML 2.0), OpenID Connect (OIDC) or Open Authorization 2.0 (OAuth 2.0). These

protocols are further introduced in the following chapters. The figure below (Figure 4)

describes how the IdP and SP function when a login process is initiated. First, the client

authenticates with the IdP via username and password or some other mean. Then the

IdP passes the token and user attributes to the SP, using its protocol of choice. Generally,

the SP will save the values of the attributes to a corresponding user object and update it

on every login. (Sharma & Dave 2015).

Security personnel are often concerned that SSO creates a security risk by having the

same credentials across multiple services. However, there are many aspects of SSO that

counteract the concern. After careful consideration the less secure systems can be ex-

cluded from the SSO environment. A great benefit is the ability to enforce more stringent

password restrictions across the environment from a central IdP. These restrictions may

include a minimum length, password expiry time and invalid dictionary lists. Even spe-

cific Operating System (OS) and application restrictions can be brought in line with the

IdP configuration. With only one password to remember there is less password fatigue

23

and it is less likely written on a piece of paper. Some IdPs allow end users to reset their

password after validating their identity which reduces help desk costs and risk of social

engineering. The reduced likelihood of a failed login process is another aspect leading to

lower help desk workloads. Capability to quickly deactivate an employee’s access to mul-

tiple systems and the possibility to enhance security by enabling multi factor authenti-

cation are other major benefits of SSO. Even with all the security enhancing features it

is important to remember that even the strongest security databases have exploitable

weaknesses and organizations must have tools for monitoring user sign-on actions to

detect possible intrusions. (Kelly 2020).

Figure 4. Basic components of SSO and a schema of the login process.

2.3.1 SAML 2.0

The SAML 2.0 protocol is based on Extensible Markup Language (XML), which is a format

for encoding documents in both human and machine-readable form. SAML 2.0 was ap-

proved as Organization for the Advancement of Structured Information Standards (OASIS)

standard in 2005 has been widely used by enterprises ever since. In align with the other

protocols, SAML 2.0 allows the management of user identities and authorizations across

multiple applications.

24

Essentially, SAML 2.0 has three components: assertion, protocol and bindings. Assertions

are requests made by SP to the IdP and the protocol specification defines three different

kinds of assertion statements: authentication assertion, attributes assertion and author-

ization decision assertion. Authentication assertion declares identity of user, attributes

assertion contains details about the user, and authorization decision assertion, a request

to allow the assertion subject to access the specified resource has been granted or de-

nied (IBM 2020). Protocol component defines how to respond to the SAML 2.0 requests.

Bindings component states whether the response should be loaded into a HTTP POST or

HTTP Redirect request. (Sharma et al. 2015).

A simple use case is applied for every protocol, where Bob, on his browser, tries to access

a protected resource on TraSim, a list of ongoing situations. In the figure below (Figure

5), SP is the server hosting TraSim and IdP is the server where an identity manager is

installed, Azure Active Directory for example. In SAML 2.0 context, Bob is the principal,

the user SP is trying to authenticate and learn about. After trying to access the protected

resource, the SP redirects Bob to the IdP with an authentication request on the query

parameter. The IdP uses the authentication request to identify the service provider, and

unless a valid session already exists, Bob is prompted to enter his credentials. After the

IdP successfully authenticates Bob, it creates a new session and sends a response back

to the SP. The response states that authentication was successful, and it includes asser-

tions about the principal for creating a new user to the service or updating an existing

one. (Cheung 2016).

25

Figure 5. Sequence diagram of SAML 2.0 single sign-on flow.

2.3.2 OAuth 2.0

The OAuth 2.0 protocol can use four different process flows known as authorization

grant types: authorization code grant type, implicit grant type, resource owner password

credentials grant type and client credentials grant type. First of these types, the author-

ization code grant type will be under the loop, as it is a popular one. The OAuth 2.0

authorization framework defines a web Application Programming Interface (API) called

authorization endpoint. This endpoint handles authorization requests and responses.

An authentication response has an access token as its parameter. The token is in JSON

web token (JWT) format which contains three parts: header, payload and a signature.

The header has information about the type of the token and the algorithms used to se-

cure its contents. The payload contains a set of claims (statements about the permissions

that should be allowed), and other information such as the expiration time of the token.

The signature is used to validate whether the token is trustworthy by means that are

described in the digital signature chapter. Following paragraph describes the basic OAuth

2.0 authorization code flow presented in the figure below (Figure 6). (OAuth 2020).

26

When Bob tries to access the protected resource, SP sends an authorization grant re-

quest, and Bob is redirected to the IdP. The SP receives the authorization grant after Bob

allows the permission. The grant represents Bob’s authorization, and the SP sends it as

a parameter of the authentication request to receive an access token. Provided the token

is valid, it can be used to fetch Bob’s resources from the IdP.

Figure 6. Sequence diagram of basic OAuth 2.0 authorization code flow.

2.3.3 OpenID Connect

OIDC is a specification as to how to issue ID tokens. It is a simple identity layer on top of

the OAuth 2.0 protocol allowing the verification of user identity and obtaining their at-

tributes in REpresentational State Transfer-like (REST) manner. Compared to OAuth 2.0,

OIDC performs many of the same tasks, but in a way that is API-friendly, and usable by

native and mobile applications. It defines optional mechanisms for robust signing and

27

encryption, roughly meaning that a ciphertext cannot be decrypted under a different key.

(OpenID 2018).

In contrast to SAML 2.0, OIDC satisfies the same use cases with a simpler, JavaScript Ob-

ject Notation (JSON) and REST based protocol. Also, SAML does not have mobile or na-

tive support, it is only designed for web applications. While all the protocols tend to use

different naming conventions for the service and identity provider, this thesis will stick

to the SP and IdP naming convention. For example, the OIDC equivalent for SP is Relying

Party and the IdP equivalent is OpenID Provider.

The authorization endpoint, described in the OAuth 2.0 chapter, requires response_type

as a mandatory request parameter, for which OIDC has defined flows to issue ID tokens

by extending the specification of the response_type request parameter. This extension

means that OIDC has added id_token and none as possible values for the response_type

parameter in addition to code and token. OIDC has also allowed the parameter to be any

combination of code, token and id_token. In practice, this means there are eight differ-

ent combinations of OIDC authorization and authentication flows. The SSO flow of a case,

where the value of response_type parameter equals to code, is presented in the figure

below (Figure 7) and described in the following paragraph. This case is chosen because

it is the most popular one. (Kawasaki 2017).

When Bob tries to access the protected resource, he is redirected to the IdP and a client

ID, specific to SP, is passed via the same request. Bob gets redirected back to the SP with

an authorization code after successful authentication. Then the SP sends the received

authentication code, client ID and client secret to an authorization endpoint, which re-

sponds with an access token. Finally, the access token can be used to fetch user attrib-

utes from a userInfo endpoint. Both endpoints are usually tied to the IdP.

28

Figure 7. Sequence diagram of OIDC single sign-on flow.

2.4 Cloud computing

“Simply put, cloud computing is the delivery of computing services—including
servers, storage, databases, networking, software, analytics, and intelligence—
over the Internet (“the cloud”) to offer faster innovation, flexible resources, and
economies of scale. You typically pay only for cloud services you use, helping lower
your operating costs, run your infrastructure more efficiently and scale as your
business needs change.”

That is how Microsoft (2020) defines cloud computing in an article that acts as an intro-

duction to their own cloud computing platform called Azure. Basically, the term de-

scribes data centers where one may purchase computing services without the burden of

managing their own computing facilities. In its modern form, cloud computing was in-

troduced in August 2006, when Amazon created Amazon Web Services (AWS) and intro-

duced Elastic Compute Cloud (EC2) interface (Amazon 2006). That is the single point in

29

history which, according to an online article Shift to Service Based Model by Gartner

(2008), started the shift from company-owned hardware and software assets to service-

based models and will cause a dramatic change in how IT products are consumed. AWS

was soon followed by Google App Engine, OpenNebula, Microsoft Azure, OpenStack,

IBM SmartCloud, Oracle Cloud and Google Compute Engine.

2.4.1 Traditional service models

National Institute of Standards and Technology (NIST) has declared three standard ser-

vice models for cloud computing providers: Infrastructure as a Service (IaaS), Platform

as a Service (PaaS) and the previously mentioned SaaS. The models are often presented

as a pyramid model as in Figure 8, but one may also exist without the other. SaaS can be

implemented directly on a physical machine without the need of PaaS or IaaS layers, or

on the contrary, a program can be directly accessed on IaaS without SaaS bundling.

Figure 8. Pyramid design of traditional cloud computing service models.

30

IaaS, at the bottom of the pyramid, is the computing infrastructure of a data center, or a

cluster of data centers, managed over the internet. IaaS can be quickly scaled up and

down based on demand without worrying about the physical servers and networking

infrastructure. The cloud computing platforms, Azure for instance, can be called IaaS

providers as they manage the physical infrastructure. Then the customer, or their IT ad-

ministrator, must only purchase, configure and manage their own software (operating

systems, middleware and applications), and of course, pay the bills. (Microsoft: IaaS

Overview 2020).

PaaS, at the middle of the pyramid, is a platform where consumers may deploy con-

sumer-created applications onto a cloud infrastructure. The twist is that the applications

are created using tools languages, libraries, services and tools supported by the PaaS

provider. Unlike with IaaS, the consumer has no control over the cloud infrastructure

apart from possible configuration settings for the hosting environment. The benefits of

PaaS are automatically scaling storage, computing and licensing resources. Famous ex-

ample of a PaaS provider is Heroku by Salesforce or Elastic Beanstalk by AWS. (Mell &

Grance 2011).

SaaS, at the top of the pyramid, is a service available to a consumer on a cloud infrastruc-

ture. The consumer has no control over any of the underlying infrastructure or applica-

tion specific technical solutions. Therefore, there is zero need of management for the

platform where the application runs. Usually the user specific settings are the only con-

figurable options which leaves the IT departments at ease. Oftentimes IAM of the service,

one of the key topics of this thesis, is the important task that remains for them to grasp.

The scalability trend continues with SaaS, as the service is often subscription or license

based, and easily adjustable as the number of users varies. (Liu et al. 2018).

Anyhow, SaaS also has its drawbacks. Unless there is an SSO or a Federated Identity Man-

agement (FIM) implementation, data of the users must be stored on the SaaS providers

database on their server. This is problematic especially because of the user credentials.

31

According to cybersecurity institute Sans, incorrect use, storage and transmission of such

credentials could lead to compromise of very sensitive assets and be a springboard to

wider compromise within an organization. The SaaS provider is solely responsible for the

credential management chain.

2.4.2 Identity as a Service

An article published by PingIdentity states that while companies are embracing cloud

and mobile technologies, they are moving beyond traditional network boundaries and

the capabilities of their legacy IAM solutions. Identity as a Service (IDaaS) is a cloud

based IAM offering built and operated by a third-party provider. It allows companies to

use SSO, authentication and access controls to enable secure access to their SaaS appli-

cations.

The basic idea behind IDaaS is to support the SaaS applications. This is effective for small

and medium sized companies that already are strongly attached to the cloud. On the

enterprise level, with complex IT environments including a mix of on-premises and SaaS

applications, IDaaS is typically used as an extension to existing IAM infrastructure. There-

fore, the IDaaS provider must be able to build a bridge to existing user directories for

authentication, integrate with multiple applications hosted on varying locations and pro-

vide access management for web, mobile and API environments. Some of the leading

IDaaS vendors include OneLogin, Centrify, Microsoft and Okta. (PingIdentity 2020)

A press release by Gartner (2019) predicts that by 2022, 80 percent of IAM purchases by

global midsize and larger organizations will use the IDaaS delivery model. They believe

this is due to the ease of implementation and rapid time to value of IDaaS offerings.

Especially companies that favor SaaS adoption and do not consider the operational man-

agement of IAM functionality as their core business highly value IDaaS. Besides the

steady movement of application to cloud, the combination of configurable, rather than

32

customizable, functional offerings and modern application architectures is causing a sub-

stantial portion of the market adaptation towards IDaaS.

2.5 Directory services

Following sections examine the directory services developed by Microsoft, Active Direc-

tory and Azure Active Directory.

2.5.1 Active Directory

Active directory is a central repository for information of all resources that exist in an

organization’s network including users, groups, devices, programs and documents. It is

used across most of today’s major organizations as a primary tool for managing the or-

ganization’s information. For example, a network administrator can create a group of

users and give them access to specific directories or services. Traditionally AD comes

with a Windows Server OS and it is designed to work with the Windows ecosystem.

The structure of AD consists of domains, trees and forests. Objects, such as users and

devices, that use the same database can be grouped into a single domain. Multiple do-

mains can be combined into a single group called a tree. Multiple trees can then be com-

bined into a collection called forest. AD is a massive entity and it provides several services,

the Active Directory Domain Services (AD DS), including domain services, certificate ser-

vices, lightweight directory services, directory federation services and rights manage-

ment. (Microsoft: Identity 2017).

AD DS is a centralized data store that manages login authentication, search functionality

and other communication between users and domains. The certificate services create,

distribute and manage secure certificates. Lightweight directory services support direc-

tory-enabled applications using Lightweight Directory Access Protocol (LDAP), which is a

33

protocol for making directory information available over the internet. Directory federa-

tion services provide the SSO functionality to authenticate users in web applications in

one session. Finally, the rights management services protect copyrighted digital content.

Active Directory Federation Services (ADFS) was born out of the increasing need to find

a way to authenticate and authorize users to web applications. It works in conjunction

with AD to establish a trust relationship between a Windows domain controller and a

service. ADFS uses a claims-based access-control authorization model to authenticate

users via cookies and SAML. All through ADFS is a free feature on Windows Server, it

requires the actual Windows Server license which can be expensive and a server for

hosting it. ADFS can also be a burden to integrate with the cloud or mobile application

and it requires IT resources to install, configure and maintain. (Lujan 2019).

LDAP is another traditional way to authenticate users on AD networks and implement

SSO. It is a lightweight subset of X.500 directory access protocol and has been around

since the early 1990s. As a lightweight protocol LDAP runs efficiently on systems and it

gives great control over authentication and authorization. Whereas ADFS is focused on

Windows environments, LDAP can accommodate other environments including Linux

and OS X. However, comprehensively to ADFS, implementing LDAP is a formidable tech-

nical process requiring a significant amount of work and deep technical skills. (DeMeyer

2019).

Transition to the cloud has made a huge influence on the way modern organizations au-

thenticate users. Any reliance on on-premises functionality has become a hindrance, ra-

ther than a help. A lot of organizations are looking to free themselves from legacy meth-

ods, such as the ADFS and LDAP. There is no denying that these methods still have their

time and place, but the huge advantage of the cloud is the flexibility to choose just the

right authentication method for a given situation. Microsoft launched Azure AD in 2015,

which is an online service for providing identity management. The following chapter will

34

introduce Azure AD and a brief explanation on how to use it for authenticating web ap-

plications. (Guest 2019).

2.5.2 Azure Active Directory

Azure is not limited to compute and storage features, as it also provides a variety of ser-

vices for security, virtual networking, communication mechanism and caching strategies.

Primarily Azure AD implements a cloud service for web application authentication, SSO

and user management. It is often used as a standalone cloud directory service for imple-

menting SSO between a corporation and SaaS applications and synchronizing directories

of the SaaS applications. Basically, Azure AD is a REST-based extension of AD, which is

regularly used alongside on-premises AD. (Tejada, Bustamante & Ellis 2015).

Even though Azure AD has similarities to AD DS, there are many distinguishing features

between the two. It is essential to notice that using Azure AD is not equivalent to on-

premises AD or to deploying an AD domain controller on a virtual machine on Azure and

adding it to on-premises domain. Above all, Azure AD is an identity solution, designed

for accepting HTTP and HTTPS communications. These communication restrictions deny

the use of Kerberos and prevent Azure AD from being queried with LDAP. Instead, the

previously introduced protocols SAML 2.0, OAuth 2.0 and OIDC can be utilized. Despite

its name, Azure AD does not only provide identity management for Microsoft services,

or services registered and listed in their official application gallery. Third party service

providers can benefit from leveraging Azure AD if their applications use supported com-

munication protocols. (Altili 2017).

To go more in depth with the differences of AD and Azure AD following use cases can be

considered: An application has two versions, on-premises and cloud. The on-premises

version uses AD for identity provision, whereas the cloud version uses Azure AD in the

same way. As previously mentioned, Azure AD has users and groups just like on-premises

AD, and user permissions can be assigned on a group level. Azure AD also adds features

35

like self-service password reset, self-service group membership and multi-factor authen-

tication. There is no subscription requirement for Azure AD tenants, so it is free to use

with certain limitations. In some cases, where a company can solely rely on Azure AD, it

removes the obligation of maintaining an on-premises AD reducing costs. (Jensen 2018).

Azure AD users can be sourced from multiple locations. First option is Azure AD sourced

users which means creating the users by hand in the directory. Second option is synchro-

nizing user accounts from on-premises AD, or Windows Server AD by using a tool called

Azure AD Connect. This way all users will have the same information as in the on-prem-

ises AD. The final source of users is guest users. If there is a demand to allow an external

user to access an application registered to a corporation, a guest user can be invited and

assigned the permission to access the application. The figure below (Figure 9) contains

example architecture of an on-premises AD which has been migrated to cloud (Azure AD)

and uses multiple SSO solutions with different identity protocols. Notice that ADFS only

supports SAML 2.0 and the applications can also be hosted on-premises. (Jensen 2018).

Figure 9. System architecture with ADFS and Azure AD SSO solutions.

36

3 Application specific information

This chapter introduces the technology stack TraSim is built with and how it is hosted

and served to the clients. All this information acts as a base for setting the requirements

for a successful integration. The chapter begins with describing the basics of Linux OS

and Docker platform that together form the hosting environment. Then focus shifts to

Nginx and Gunicorn which are used for serving the application to clients. To speed up

the serving process a caching system, Redis, is utilized. Dynamic content is stored in a

PostgreSQL database. Finally, the main building blocks of TraSim, programming lan-

guages Python and JavaScript are introduced. These languages are extended to frame-

works and libraries such as Django and React to simplify the development process and

maintenance of the application.

3.1 Environment

TraSim is a multi-container Docker application that is hosted on a virtual machine pow-

ered by a Linux OS. To understand this architecture, one must have insight about the

technologies. While they are both broad subjects, the basic features are explained below.

3.1.1 Linux

Linux has been around since the mid-1990s and has since reached a huge user-base. It

is used everywhere: phones, thermostats, cars, refrigerators and it runs most of the in-

ternet, stock exchanges and all the world's top supercomputers. As an OS just like Win-

dows or OS X, Linux manages the communication between software and hardware, with-

out which the software could not function. The perks of being less vulnerable to cyberat-

tacks, zero cost of entry, simplicity and reliability have enabled Linux to become as pop-

ular as it is today. (Linux 2020).

37

Linux has several different versions to suit a variety of users and use cases. These ver-

sions are called distributions such as Ubuntu, Debian and Fedora targeted for desktop

use and Ubuntu Server, CentOS and Red Hat Enterprise Linux for server use. Most of the

server distributions are free, but Red Hat Enterprise Linux comes with an associated price

which in the other hand does include support. When choosing the server-only distribu-

tion one must decide whether a desktop interface is needed or is a command line

enough. Having no Graphical User Interface (GUI) means the server will not be stalled by

loading graphics, but it requires a solid understanding of the Linux command line. While

CentOS offers everything that is required of a server out of the box, it is possible to start

up with a desktop distribution like Ubuntu and add pieces as required to support server

functions. (Linux 2020).

Most of the Linux distributions include an app store: a centralized location for installing

software. While the app store has a different name on the distributions, it has the same

purpose on them all. For GUI-less servers, the applications are installed via command-

line tools. Whereas Debian-based distributions install applications with a tool called apt-

get, Fedora-based distribution takes use of yum. Just like the app stores, these tools work

similarly to each other despite the different names. To install an application via these

command line tools, one must add a special sudo keyword to the top of the command.

Sudo stands for “superuser do” and it prompts for a password in prior to executing a

command to issue that the current user has super user privileges which are required in

order to install software. By default, all commands are run as a non-privileged user due

to security concerns. (Linux 2020).

3.1.2 Docker

The Overview chapter of Docker’s formal documentation (2020) describes itself accord-

ingly:

38

“Docker is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so you
can deliver software quickly. With Docker, you can manage your infrastructure in
the same ways you manage your applications. By taking advantage of Docker’s
methodologies for shipping, testing, and deploying code quickly, you can signifi-
cantly reduce the delay between writing code and running it in production”

Most essentially, Docker allows one to package and run an application in a loosely iso-

lated environment called a container, which could be imagined as a lightweight Virtual

Machine (VM). But unlike VMs, containers run on the host machine’s kernel and the ex-

tra load of a hypervisor, the process that separates OS and applications from underlying

physical hardware, is not required. According to Docker, this means “...you can run more

containers on a given hardware combination than if you were using virtual machines”.

Docker provides tooling and a platform to manage containers throughout their whole

life cycles. Containers can be used when developing an application and its supporting

components, distributing and testing the application and deploying it to the production

environment. Therefore, containers are great for Continuous Integration (CI) and Contin-

uous Delivery (CD) workflows. (Docker 2020).

The containers are created from images, which are read-only templates containing in-

structions on how to create a certain container. An image is often based on another im-

age, which is customized to fill the requirements of a service. For example, one may build

an image based on the Ubuntu image, install the dependencies via the apt-get tool and

copy source code and configuration files of an application to make it run. An image is

built by creating a Dockerfile that uses YAML syntax to define the steps needed to create

an image and run it. Each instruction in the file creates a layer in the image. If the file is

later modified, only the layer that has changed needs to be rebuilt. Another type of YAML

file, docker-compose, exists to define and run multi-container Docker applications. It al-

lows multiple services to be run with a single command. (Docker 2020).

Docker uses a client-server architecture, where a client talks to a daemon, which builds,

runs and distributes containers. The client and daemon communicate using a REST API

39

over UNIX sockets or a network interface. The daemon listens for Docker API requests

and manages Docker objects such as images, containers, networks and volumes accord-

ingly. The client is the principal way how users interact with Docker. Then there are

Docker registries that store Docker images. For example, Docker Hub is a public registry

available for anyone to store and retrieve images from. The registries can also be private,

and they can be utilized in a similar manner to general software development platforms

such as GitHub that use a distributed Version Control System (VCS) Git to efficiently han-

dle projects. (Docker 2020).

3.2 Web server

Software side of the web server relies on Nginx as a HTTP server, load balancer and re-

verse proxy which is then coupled with a Python Web Server Gateway Interface (WSGI)

server called “Green Unicorn”, Gunicorn.

3.2.1 Nginx

According to the official documentation, Nginx is an HTTP and reverse proxy server, a

mail proxy server, and a generic TCP/UDP proxy server, originally written by Igor Sysoev.

An internet monitoring company Netcraft stated in February 2020, that Nginx served or

proxied 25.68 % of the busiest sites and had the biggest market share of all sites com-

pared to other web server developers. The indicated load balancing abilities run side by

side with the reverse proxy component of Nginx. Both act as intermediaries in the com-

munication between clients and server, performing functions that improve efficiency

(Nginx: About 2020).

Load balancing is often enabled on busy sites that need multiple servers to handle the

high volume of requests efficiently. Having multiple servers also removes a single point

of failure, therefore increasing reliability. All the servers commonly host the same service,

40

which simplifies the load balancer’s job to distribute the workload in a way that makes

the best use of each server’s capacity and results in the fastest possible user experience.

Besides the faster response times, the load balancer decreases the number of error re-

sponses a client sees. The errors simply do not happen as often when the load balancer

diverts requests from unhealthy servers to healthy ones. To quote Nginx’s (2020) glos-

sary about Load Balancing: “the state of a server is checked via a sophisticated method

in which the load balancer sends separate health-check requests and requires a specified

type of response to consider the server healthy”.

Nginx uses an asynchronous event-driven approach to handle requests. This modular

architecture provides a predictable performance even under a significant load. Nginx’s

HTTP proxy and web server features can handle over 10 000 simultaneous connections

with efficient memory use, when 10 000 inactive HTTP keep-alive connections require

2.5MB of memory. The goal and a driving factor for Nginx development was to outper-

form the popular Apache web server. The goal was met as Nginx can handle approxi-

mately four times more requests per second than Apache, while using significantly less

memory. Though there are some drawbacks as Nginx is less stable on Windows systems

and harder to install and configure than Apache. Other domains Nginx is suitable for

include serving static files, handling slow clients, terminating SSL and forwarding dy-

namic requests to Gunicorn. (Nginx: About 2020).

3.2.2 Gunicorn

A web server is an interface between the server and outside world, that allows clients to

access the hosted files. Anyhow, it cannot directly talk to Django applications, or Python

applications in general. Another interface is required between the web server and the

application to run and serve it to the clients. To solve this problem, the Python standard

called WSGI was developed. Having the standard promotes scaling abilities of web traffic

by segregating the responsibilities between the servers and web frameworks. It also

gives developers flexibility to swap out web stack components when necessary. From a

41

variety of valid options, TraSim utilizes the WSGI server Gunicorn where Nginx passes

requests according to its configuration. (Gunicorn 2020).

Gunicorn is designed for UNIX systems and it is compatible with various Python web

frameworks. Gunicorn, or a WSGI server in general, runs on the web server as a separate

container, that further on runs the actual web application. It translates the HTTP re-

quests arriving from Nginx to WSGI compatible form, that can invoke a callable object of

a module on a Python application. Then it translates the WSGI responses of the applica-

tion back into HTTP format and directs them to Nginx. While Gunicorn can be used as

the front-facing web server, it is not recommended as Gunicorn has security vulnerabili-

ties, cannot do SSL termination and it is simply less advanced than an explicit web server.

(Makai 2020).

3.3 Database and caching

Web services often require a database or multiple databases when dynamic content,

data processing functionality or a user registration system is incorporated. While there

are a multitude of options, TraSim uses a relational database PostgreSQL. Generally, a

relational database is a set of formally described tables which allows the data to be iden-

tified and accessed in relation to another fragment of data in the database by using

Structured Query Language (SQL) standard. Then, to achieve higher performance, a Re-

dis cache is enabled for the PostgreSQL database.

3.3.1 PostgreSQL

PostgreSQL is a powerful relational database that extends the SQL standard combined

with additional features. It is an open source project that dates back to 1986. PostgreSQL

has a proven architecture that stores, processes and retrieves data accurately and con-

sistently throughout its entire life cycle. The community behind PostgreSQL has made it

42

compatible with all major operating systems and highly extensible via a robust feature

set. For example, one may define custom data types and functions or write code from a

variety of different programming languages without recompiling the database. Post-

greSQL can be scaled to manage petabytes of data in production environments. (Post-

greSQL 2020).

To make sure that concurrent operations generate correct results, PostgreSQL uses a

method called Multiversion Concurrency Control (MVCC). This method gives each trans-

action a snapshot of the database, which allows changes to be made without affecting

other transactions. This guarantees the validity of Atomicity, Consistency, Isolation and

Durability (ACID) properties of the database even in the event of an error or a failure.

Because of its stability and open source nature, PostgreSQL requires a minimum amount

of maintenance and is free to use. Therefore, its total cost of ownership is low in com-

parison with other database management systems. For that reason, many companies

such as Apple, Fujitsu, Red Hat and Cisco have built their products and solutions using

PostgreSQL. (PostgreSQL 2020).

3.3.2 Redis

As an in-memory key-value store with high data access speed, Redis is a good option for

enabling client-side caching. Basically, it is a technique that can increase scalability, stor-

ing speed and data availability of an existing PostgreSQL instance. It does this by exploit-

ing the available memory in the application servers in order to store some subset of the

database directly in the application side. Normally when data is requested from a server,

it will query the database for information. But with client-side caching, the application

will store the reply inside the application memory and there is no need for a database

query. (Redis 2020).

Accessing data from the store is magnitudes faster than a standard database query and

it prevents the database from being overloaded with exceedingly large amounts of

43

queries from different clients. Caching is especially useful if the database has a lot of

inefficient data models and queries. However, instead of introducing caching to bypass

the problematic designs, they should be fixed to increase the overall efficiency of the

application. It should also be investigated if there are specialized tools that would lead

to the same result as caching but in a more sophisticated manner. (Redis 2020).

The problem with caching lies in deciding what to cache and when to refresh it. Basically,

there are three ways to use Redis with a database. First option is to off-set some reads

by caching commonly accessed data in Redis. Second option is to write data to Redis first

and push it to the database later. Third option is to cut out the database entirely, as some

data can live only in Redis. Caching should be taken into consideration if a query is com-

plex, commonly used and it blocks the rendering of an UI. The query should also return

data that can be slightly stale, and one can stand losing. To ensure the data on Redis is

as up to date as possible, it must be refreshed based on cache invalidation policies. Redis

can be configured to automatically expire an item after a set time period, meaning the

item will be queried from the database. Data with high read rates and low write rates

can be configured to be refreshed each time something is written. There is even a pos-

sibility to cache everything and gradually delete the data from the cache that is not get-

ting read. (Redis 2020).

3.4 Programming languages

The programming languages Python and JavaScript, basic building blocks of TraSim are

introduced in the following sections and further utilized in the Frameworks and libraries

chapter.

44

3.4.1 Python

The description of the programming language from a topic called The Python Tutorial of

Python’s official documentation (2020) is quoted below. As the description includes a lot

of terms, they are further explained in the following paragraphs to gain better insight

about the language.

“Python is an easy to learn, powerful programming language. It has efficient high-
level data structures and a simple but effective approach to object-oriented pro-
gramming. Python’s elegant syntax and dynamic typing, together with its inter-
preted nature, make it an ideal language for scripting and rapid application devel-
opment in many areas on most platforms.”

Python can be considered simple and easy to learn because of its pseudo-code nature

and simple syntax. Python is classified as Free and Open-Source Software (FOSS) and it

has been created and is constantly improved by a community. Being a high-level lan-

guage, one does not need to manage low-level details like memory management when

writing a program. Due to its FOSS nature, python has been ported to work on most

available platforms, for example Linux, Windows, OS X, FreeBSD and many more. Having

an interpreted nature means that Python first internally converts the source code to a

transitional form called bytecodes and then translates the bytecodes to native language

of the machine. Following features were not mentioned in the description but Python is

both extensible and embeddable, meaning a part of a Python program can be written in

C or C++ and vice versa. (Swaroop 2003).

One of the greatest advantages of Python are the extensible libraries, both Python

Standard Library (PSL) and Python Package Index (PyPI). The standard library is always

available with a python installation whereas third party PyPI packages must be down-

loaded and installed by using the package installer pip. Web development is one of the

many application domains that python is used in. Following web development choices

are offered via PyPI: frameworks (Django and Pyramid), micro-frameworks (Flask and

Bottle) and advanced content management systems such as Plone and Django CMS.

These offerings are often dependent on Python’s standard libraries that support many

45

internet protocols such as HTML, XML, JSON, Email processing and File Transfer Protocol

(FTP). (Python 2020).

3.4.2 JavaScript

JavaScript is an interpreted, asynchronous programming language commonly used in

web development. It is a client-side scripting language, originally developed by Netscape,

that is processed by the client's web browser rather than on the web server. The pro-

grams written with JavaScript are called scripts and they can be embedded to the HTML

document of a website. While JavaScript is strongly influenced by Java, it is very different

in this aspect. As JavaScript evolved, it became an independent language based on a

specification called ECMAScript.

All the major browsers have their own JavaScript engines: Chakra in Internet Explorer

and Edge, SpiderMonkey in Firefox and V8 in Chrome and Opera. As a side note, the V8

engine has also been expanded to Node.js, a JavaScript runtime that executes JavaScript

code outside of the browser. Node.js unifies web application development as it enables

the use of a single programming language for both server and client-side scripts. The

engines work in a complex manner, but at the essence they first parse through the Ja-

vaScript code, convert it to machine code and execute. There are various small steps in

the process which include a lot of optimization, analyzing and more optimization of the

code. (Kantor 2020).

JavaScript has certain limitations and features, and its capabilities immensely depend on

the environment it is running in. For example, Node.js allows the code to read and write

arbitrary files and perform network requests. In-browser JavaScript’s abilities are limited

due to security concerns. It cannot execute programs, read or write arbitrary files or in-

teract with devices such as a microphone without permission. Moreover, in-browser Ja-

vaScript is designed as a safe language, that does not provide low-level access to memory

or Central Processing Unit (CPU). It can perform actions related to manipulating a

46

webpage and interacting with a user and a web server. These actions incorporate adding

and modifying HTML content, reacting to user actions, sending requests and setting

headers and storing data to client-side local storage. (Kantor 2020).

In recent years, defining a web page’s structure in JavaScript instead of in HTML using

frameworks such as React, Angular and Vue.js has become increasingly popular. Web

pages structured in this manner, that dynamically rewrite their content instead of load-

ing entire new pages, are called Single-Page Applications (SPAs). Reasoning behind the

transition lies in simplified development and maintenance of the user interaction, front-

end, code that otherwise easily becomes unnecessarily complex.

3.5 Frameworks and libraries

Web pages can be stripped down into two fundamental components, front-end and

back-end, referring to the client-server model. Anyhow, the difference between these

two is not always clear. Front-end, the client side, is ordinarily considered as the HTML,

CSS and JavaScript controlling the page. Whereas back-end, the server side, is where an

underlying database and any related logic lives. A Python web framework Django and a

JavaScript library React are presented in the following paragraphs.

3.5.1 Django

Official home of the Django project describes it in the following manner:

“Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design. Built by experienced developers, it takes care of much
of the hassle of Web development, so you can focus on writing your app without
needing to reinvent the wheel. It’s free and open source.”

47

At the time when Django was released in 2005, frameworks such as React did not exist

and the concept of front-end was more imprecise than it is today. Hence, Django uses a

basic templating language known as Django Template Language (DTL) for rendering con-

tent, which has been kept immutable despite the incoming pressure from rapidly evolv-

ing front-end technologies. An article written by Will Vincent argues that instead of sin-

gle-handedly being a back-end framework, Django is a full-stack framework, because it

can be solely used to build powerful websites. Even so when full stack is often considered

as an internal API that interacts with a separate front-end JavaScript framework.

Even when Django has remained true to its origins as a Model-View-Controller (MVC)

designed to operate with relational databases, many third-party packages have been

created to keep Django up to date. These packages support technologies such as non-

relational databases (NoSQL), real-time internet communication and modern JavaScript

practices. The MVC, or more precisely its variation called Model Template View (MTV),

means that the development process begins from writing a model, then a view which

connects to a path, and then a template for presenting data (Galvis 2018). Django models

are the tools used to work with data and databases. Then the view can be considered as

a way of presenting the model in a certain format. It retrieves data from a database via

the model, formats it and bundles it up in an HTTP response. Finally, the data is pre-

sented in the template. The figure below (Figure 10) illustrates a simplified version of the

Django MTV model. (George 2020).

48

Figure 10. Simple interpretation of the Django MTV model.

While Django alone can be used to build a REST API, an extension called Django REST

Framework (DRF) has been created to make the APIs more powerful and flexible. In gen-

eral, REST API is a popular architectural style of providing interoperability on the internet.

Basically, the REST API can be considered as the interface that allows the browser, or the

frontend created with React in this case, to exchange information with the backend.

Hence, DRF can be chosen over the traditional Django approach in case one only wants

to create APIs instead of a complete web application. (Django REST Framework 2020)

Django’s automatic admin site might lead to an assumption that Django is a Content-

Management-System (CMS). Anyhow, this is false as Django is not a turnkey product,

meaning a fully complete and ready to operate framework like Drupal. Instead, it is a

programming tool for building web pages and the admin site is just a single module of

the framework. Although Django has accommodation towards building CMS applications,

49

that does not mean it is any less suitable for building applications without any resem-

blance to CMS aspects.

3.5.2 React

React is a library instead of a framework. Why is that? The key difference between these

two is the inversion of control. While a library is a collection of class definitions, from

which the required asset, a class or a function, can be accessed when necessary. A frame-

work is regularly more complex: there are predefined actions to be taken, a schema ac-

cording to which the code needs to be written.

React is designed for building User Interfaces (UIs). It couples the rendering logic with

other UI logic such as event handling, state management and preparing data for display.

Instead of putting markup language and logic in separate files, React has units called

components that contain both. This is achieved with the use of JSX, a special syntax ex-

tension to JavaScript that produces React elements. Syntax wise JSX is close to HTML,

but it has all the JavaScript features. A JavaScript expression can be embedded in JSX by

wrapping it in single curly braces inside the JSX. After compilation, JSX expressions are

evaluated to regular JavaScript objects. The compilation is done by Babel which is a FOSS

JavaScript transcompiler. React Document Object Model (DOM) escapes any values em-

bedded in JSX and converts them to a string before rendering. Therefore, injection at-

tacks such as Cross-Site Scripting (XSS) are prevented and it is safe to embed user input

in JSX. (React: Introducing JSX 2020).

Elements are the smallest building blocks of React applications and they describe what

is seen on the screen. Unlike browser DOM elements, React elements are plain objects

and inexpensive to create. As previously mentioned, the React DOM takes care of updat-

ing the browser DOM and matching the React elements. This is done by creating a root

HTML element where the React DOM inserts elements with the help of some DOM-spe-

cific methods. The elements are immutable, which means they cannot be changed. The

50

only way to update the UI is to create a new element. The React DOM does a lot of

optimizations in the process and only updates necessary elements. (React: Rendering

Elements 2020).

The components, containing markup language and logic, are conceptually like JavaScript

functions. Instead of parameters, components accept arbitrary inputs called props and

return elements. Besides functions, JavaScript classes introduced in ECMAScript 6 can

be used to define a component with some additional features. A component is rendered

by using an element to represent it, and a single component may refer to multiple other

components in its output. SPAs typically have a single component at the top of the hier-

archy. Splitting components into smaller components is considered as a good practice,

to a certain extent of course. This extraction, combined with descriptive naming conven-

tion, increases the reusability of components in larger apps. (React: Components and

Props 2020).

51

4 Executing the Integration

Complexity of the integration is kept as reduced as possible and only the necessary user

attributes email, first name and last name are claimed from the IdP. This means that the

user roles and groups on the IdP side, which could be utilized to build complex logic to

the user management of the service, are completely ignored. The restriction is due to a

limited development budget and the customer’s lack of suitable groups in their Azure

AD tenant. Also, the integration is more likely to remain compatible with a variety of IdPs

when it is kept simple. Therefore, TraSim becomes further productized as the integration

can be completed also for other customers with a feasible amount of work. The following

sections examine the whole integration process.

4.1 Establishing integration requirements

The requirements listed in the integration plan are separated into general and applica-

tion specific categories and presented in the table below (Table 2). The firstly mentioned

includes general level requirements including technical and security related topics such

as using a protocol compatible with Azure AD, implementing the protocol in a secure

manner, using SHA-2 algorithm with a minimum digest size of 256 bits for digital signa-

tures, making the integration widely configurable and supporting Linux, Python 3.6+ and

Django 2.2+. The algorithm and digest size limitations are there to fill the minimum re-

quirements for protection level IV (Viestintävirasto 2018). The application specific re-

quirements include connecting OIDC user identities with Django user identities, creating

new user accounts, claiming user attributes from the IdP, populating or updating the

Django user instance on authentication, allowing the use of multiple authentication

sources and setting the passwords of SSO users as unusable and unchangeable.

52

Table 2. The list of integration requirements.

4.2 Drawing up a plan

The requirements bring in a multitude of factors to consider while creating an imple-

mentation plan. Hence, a top-down approach is taken to first fulfill the major, more gen-

eral requirements and to reduce the amount of options. All requirements are evidently

met by gradually following the implementation plan.

53

4.2.1 Choosing the protocol

Azure AD supports multiple protocols for authentication and authorization, such as

SAML 2.0, OIDC and OAuth 2.0. While the latter is more of an authorization framework,

SAML 2.0 and OIDC, the industry standards for federated authentication, are left to

choose from. Both options have their pros and cons, which are more demonstratively

presented in a table format (Table 3). Briefly put, SAML 2.0 is most common out of avail-

able solutions and highly reliable when implemented correctly. Anyhow, it is arguably

complex and extremely verbose specification to implement, which can lead to long de-

velopment cycles and compromised security. OIDC relies on HTTPS for encryption and

trust and uses the JWT standard to store and verify identity data instead of the complex

XML-based schema. (Vaughn 2019).

Table 3. Pros and cons of SAML 2.0 and OIDC protocols. (Vaughn 2019).

From these two protocols, OIDC is chosen mainly due to its simple but secure nature,

use of modern JWTs and Microsoft’s instructions to apply it for modern applications,

especially when building a completely new one (Microsoft: Manage Applications 2020).

SAML 2.0 got multiple pros and it is firmly established as a standard within many

54

companies. Anyhow, the increased technical complexity and the lack of flexibility for ad-

dressing modern topologies made SAML 2.0 the less desirable choice. Also, its own rich-

ness translates into expensive requirements in terms of cryptography and bandwidth

that are not proportionate to the actual needs of modern applications (Bertocci 2016).

4.2.2 Selecting a library

After selecting the protocol, it must be implemented in the application. As it is not fea-

sible nor secure to implement OIDC support from scratch, a community developed PyPI

library needs to be utilized. There are certain technical requirements from the library,

such as it must support Linux OS, Python version 3.6 and Django version 2.2. In other

words, the library needs to be designed for a Django project. Other requirements include

clear documentation, wide configurability, security, mature development status, active

community, open source licensing agreement and support for multiple authentication

backends to work in parallel.

Two suitable candidates exist, and they are briefly compared in the table below (Table

4). The libraries are very similar: both support the OIDC authorization code flow in a

lightweight manner and provide all the endpoints, data and logic needed to add OIDC

capabilities to a Django project. Mozilla-django-oidc is backed by Mozilla, the organiza-

tion behind the Firefox browser and multiple other projects. The other candidate,

django-oidc-provider, is originally designed by a private individual Juan Fiorentino. All

the information in the table is collected from official GitHub repositories where the pro-

jects are maintained.

The decision between the libraries is not simple. In the end, it heavily depends on per-

sonal preference. Fiorentino’s library is more popular and widely used in terms of GitHub

stars and forks. It was also established in 2015, two years prior to the library by Mozilla.

Anyhow, both libraries are in mature production development status and fulfil the tech-

nical requirements. The facts encouraging the use of Mozilla’s library are great

55

documentation, configurability and active community pushing additional features and

bug fixes. The library has also been end-to-end tested and audited by the Mozilla InfoSec

team. Based on this information, mozilla-django-oidc is the library of choice.

Table 4. Comparison of Django compatible libraries implementing OIDC. (GitHub 2020).

4.2.3 Building test scenarios

Testing is required to validate whether the actual OIDC SSO establishment functions as

expected, is defect free and matches the original requirements. This is done by first

56

creating an Azure AD tenant and integrating it with a testing environment. Then the func-

tionality of the integration is verified with certain test cases.

The test scenarios are presented in the following table (Table 5). They are designed to

test the application, service provider, side. Azure AD is trusted to handle the user author-

ization, password restrictions, MFA and other similar concerns as promised on Mi-

crosoft’s documentation. The scenarios include basic functionality such as redirecting a

user to the IdPs authentication page after a push of the SSO button. After successful

authentication, the user is expected to be directed to the default page of the service.

Then there are scenarios for the initial login process, consecutive logins, signing out, re-

questing a password reset link, using a regular Django user and turning the SSO imple-

mentation off via environment variables. Once all scenarios pass, the functionality of the

integration can be verified to function at an appropriate level.

57

Table 5. Test scenarios to verify successful integration.

4.3 Setting up Azure AD

Before the integration can take place and the SP can be configured, the IdP needs to be

set up. Following chapters go through the process of creating an Azure AD tenant, man-

aging users, registering an application and finding integration endpoints.

58

4.3.1 Creating tenant

New Azure AD tenant can be created by navigating to https://portal.azure.com and click-

ing Create a resource on the command bar. Then a marketplace page is loaded, and Az-

ure AD can be selected by search or from the Identity tab. Then the dialog box presented

in the figure below (Figure 11) opens and it is supplied with organization name, initial

domain name and region.

Figure 11. The dialog box for creating a new directory

4.3.2 Creating user

The next step is to populate the directory by provisioning users. This can be done using

Azure AD management portal, Microsoft Graph API or Azure AD Connect. In this case,

the management portal is utilized, and it can be accessed by clicking Azure AD on the

command bar, selecting Users tab and then clicking New user. Now a dialog box opens

for creating a new user or inviting a guest user. After filling up all required information

the user can be created, and it is added to All users list in the Users tab. The Block sign

in -field that can be seen in the figure below (Figure 12) is left disabled.

59

Figure 12. The dialog box for creating a new user.

4.3.3 Registering application

The application is registered by navigating to the newly created directory, selecting App

Registrations tab and clicking New registration. Then a dialog box opens for registering

60

the application and it is provided with a name and the redirect URI. There is also a field

to select what kind of user accounts can access the endpoints of the application. What

should be selected depends on the requirements of the particular use case. The third

option, “Accounts in any organizational directory (Any Azure AD directory - Multi Tenant)

and personal Microsoft accounts (e.g. Skype, Xbox)”, is selected in the figure below (Fig-

ure 13) for testing purposes. The application is enabled for users to sign-in by default

and user assignment is not required, which means all tenant users are granted access to

the application.

Figure 13. The dialog box for registering an application.

After the registration is complete, client ID and tenant ID are found from the Overview

tab (Figure 14). While the tenant ID is used for identifying the directory and protocol

endpoints, the client ID is a public identifier for applications. Basically, every application

registered to the Azure AD tenant has its own unique identifier, so that the tenant knows

which application a user is trying to access.

61

Figure 14. Application information from the Overview tab.

The secret that is used for decrypting the encrypted hash of a signed JWT is added in the

Certificates & secrets tab of the application page in Azure by clicking New client secret.

It can be set to expire in a year, two years or never. The secret must be kept secure under

any circumstances to maintain the confidentiality of the application. The tenant and the

application, for which the secret presented in the figure below (Figure 15) is created, are

only created for screening purposes and are never used even in a testing environment.

Figure 15. Client secret created at the Certificates & secrets tab.

4.3.4 Finding integration endpoints

Azure AD exposes endpoints for WS-Federation metadata and sign-on, SAML 2.0 sign-on

and sign-out, OAuth 2.0 token and authorization, OIDC and Azure AD Graph API (Tejada

et al. 2015: 318). All the endpoints are presented in the figure below (Figure 16) and they

can be viewed on Azure by navigating to the directory, selecting App registrations tab

62

and clicking Endpoints. When integrating using OIDC, all required endpoints are found in

the OIDC metadata document which is available at https://login.microsoftonline.com/

fee7bd5a-1343-4aa8-88ea-5414e64986d8/.well-known/openid-configuration.

Figure 16. The list of all protocol endpoints provided by Azure AD.

The OIDC library requires JWKs, token, authorization and user endpoints. When authen-

ticating a user, the request containing client ID is first sent to the authorization endpoint

of the tenant. Then the user is presented a login page, and after successful authentica-

tion, a response containing JWT is returned to the redirect URI set in the registration

process. The authenticity of the response is verified using the client secret to make sure

it is valid and signed by a trusted issuer. In production environments the traffic to

https://login.microsoftonline.com/

63

domains such as login.microsoftonline.com is often blocked by a firewall, so the SSO im-

plementation will not work until settings are modified to enable the traffic.

The IdP side is now set up and accessible for all users registered to the tenant. Next,

TraSim needs code to satisfy the OIDC authentication scenario including the client ID,

client secret and the endpoints listed below:

“jwks_uri”:

"https://login.microsoftonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/discovery/keys",

“token_endpoint”:

"https://login.microsoftonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/oauth2/token",

“authorization_endpoint”:

"https://login.microsoftonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/oauth2/v2.0/authorize",

“user_endpoint”:

”https://login.microsoftonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/openid/userinfo”

4.4 Implementing the plan

This chapter walks through how the library that implements the OIDC protocol is in-

stalled and configured.

4.4.1 Library installation

The mozilla-django-oidc library is first added to special type of a file called require-

ments.txt. This file allows the installation of multiple PyPI libraries with a single com-

mand, that is completed in the project’s Dockerfile. Basically, for requirements.txt to

work, it only requires the name and version of all the libraries one wants to install. This

is done in following manner:

64

Example-library==1.0.0

…

mozilla-django-oidc==1.2.3

…

Example-library-N==1.0.0

Anyhow, before the library can be installed, a package called libffi-dev needs to be in-

stalled to the system running the application. This package provides a portable, high level

programming interface to provide a bridge from the interpreter program to compiled

code (Sourceware 2020). While the system in use is a minimal Docker image based on

Alpine Linux with Python installed, libffi-dev and multiple other packages that remain

undefined due to security concerns are installed using Alpine Linux package manage-

ment tool apk. These packages are installed in the same Dockerfile as the PyPI libraries

listed in the requirements.txt file.

FROM python:3.6.10-alpine

RUN apk add --no-cache \

Example-package \

…

libffi-dev \

…

Example-package-N

RUN python3 -m pip install -r requirements.txt --no-cache-

dir

…

4.4.2 Configuring settings

The OIDC library expects that all OIDC related settings are configured in a single file, set-

tings.py, which is a common approach for Django projects. As the settings file has a ten-

dency of becoming unnecessarily large and complex, the OIDC specific settings and ad-

ditional configurations are defined in separate files, auth.py and oidc.py, which are then

imported to the settings file. Anyhow, adding environment specific information to the

code causes trouble when reconfiguring the project for different environments or pro-

tecting sensitive data, such as secret keys, from being stored to a VCS. The struggle is

65

further increased in containerized Docker environments. Environment variables are in-

troduced to battle these issues. They are defined in a specific .env file and accessed in

the code with the help of a useful library called django-environ. They enable the config-

uration of OIDC settings, and Django settings in general, without hardcoding them. The

whole design is presented in the figure below (Figure 17).

Figure 17. Architecture of OIDC settings files.

The .env file includes OIDC configuration information presented in the code block below.

Variable ENABLE_OIDC tells Django that the current environment has enabled OIDC au-

thentication, or SSO, and certain actions should be performed. OIDC_USERNAME_CLAIM

defines which claim should be mapped as the username of the user about to authenti-

cate. These two are custom variables that the library does not require or support by

default. The rest are standard variables and include information such as the client ID,

client secret, signing algorithm, JWKs endpoint, authorization endpoint, token endpoint

and user endpoint.

For the JWT signing algorithm there are two possibilities, HS256 and RS256. The latter

points to asymmetric key algorithm that uses a combination of Hash-based Message Au-

thentication Code (HMAC) and SHA-256 to generate and validate a signature. HS256 in

66

turn points to symmetric key algorithm with only one secret key shared between the

parties. Therefore, the same key is used both to generate a signature and to validate it.

RS256 was eventually chosen because Azure AD provides an endpoint for fetching the

public key of the service by default and the consumer does not need to know the secret

key. The rest of the standard values are provided after creating an Azure AD tenant and

registering an application. This process is thoroughly described in the testing chapter.

ENABLE_OIDC=True

OIDC_USERNAME_CLAIM=email

OIDC_RP_CLIENT_ID=9f4cacde-d2e8-486b-b988-cd74abba551b

OIDC_RP_CLIENT_SECRET=aQMfPpYpGXW0v2PzSiB1lhb__ox4PN=]

OIDC_RP_SIGN_ALGO=RS256

OIDC_OP_JWKS_ENDPOINT=https://login.microsof-

tonline.com/d8c88df3-0908-4794-9210-11941acd6b1d/discov-

ery/v2.0/keys

OIDC_OP_AUTHORIZATION_ENDPOINT=https://login.microsof-

tonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/oauth2/v2.0/authorize

OIDC_OP_TOKEN_ENDPOINT=https://login.microsof-

tonline.com/d8c88df3-0908-4794-9210-11941acd6b1d/oauth2/to-

ken

OIDC_OP_USER_ENDPOINT=https://login.microsof-

tonline.com/d8c88df3-0908-4794-9210-

11941acd6b1d/openid/userinfo

The environment variables are then accessed in the auth.py file. They are casted to a

specific variable type and given a default value, which is applied in case the correspond-

ing environment variable is not found. The ENABLE_OIDC variable plays a major role

while it is used as a condition in settings.py file to enable or disable the SSO implemen-

tation.

import environ

env = environ.Env()

SSO setup (OpenID Connect)

ENABLE_OIDC=env('ENABLE_OIDC', cast=bool, default=False)

OIDC_USERNAME_CLAIM=env('OIDC_USERNAME_CLAIM', cast=str, de-

fault='email')

OIDC_RP_SIGN_ALGO=env('OIDC_RP_SIGN_ALGO', cast=str, de-

fault=None)

OIDC_RP_CLIENT_ID=env('OIDC_RP_CLIENT_ID', cast=str, de-

fault=None)

67

OIDC_RP_CLIENT_SECRET=env('OIDC_RP_CLIENT_SECRET', cast=str,

default=None)

OIDC_OP_JWKS_ENDPOINT=env('OIDC_OP_JWKS_ENDPOINT', cast=str,

default=None)

OIDC_OP_AUTHORIZATION_ENDPOINT=env('OIDC_OP_AUTHORIZA-

TION_ENDPOINT', cast=str, default=None)

OIDC_OP_TOKEN_ENDPOINT=env('OIDC_OP_TOKEN_ENDPOINT',

cast=str, default=None)

OIDC_OP_USER_ENDPOINT=env('OIDC_OP_USER_ENDPOINT', cast=str,

default=None)

After defining the variables in auth.py they are imported to settings.py, where the OIDC

library accesses them by default. Besides importing the variables, changes presented in

the following code block need to be made. The changes include conditionally appending

a silent session refresh to middleware, mozilla-django-oidc to installed applications and

inserting an overridden version of the OIDC library’s OIDCAuthenticationBackend class

to authentication backends and allowing the access of URLs starting with “/oidc” without

authentication.

Middleware is a framework that hooks components into Django’s request and response

processing. The installed applications setting is used to wire the combination of models,

views, templates and middleware of an application, or a library, to a project. Authenti-

cation backends setting provides an extensible system when a user needs to be authen-

ticated against a different service than Django’s default (Django: Authentication 2020).

The if condition is added as a security measure: some installations do not use SSO and

therefore these settings are unnecessary and should not be appended.

 from .auth import *

…

if ENABLE_OIDC:

MIDDLEWARE += [

'mozilla_django_oidc.middleware.SessionRefresh',

]

INSTALLED_APPS += [

 'mozilla_django_oidc',

]

AUTHENTICATION_BACKENDS.insert(1,'core.oidc.CustomOI-

DCAuthenticationBackend')

68

 LOGIN_EXEMPT_URLS += [

 r'^oidc'

]

…

Finally routing options of the OIDC library are added to urls.py in a similar manner:

 …

if settings.ENABLE_OIDC:

urlpatterns += [

 url(r'^oidc/', include('mozilla_django_oidc.urls'))

]

…

4.4.3 Additional configuration

The additional configurations modify the way Django users are created or updated and

how OIDC user identities are connected to Django users. While users log into the appli-

cation by authenticating with the IdP, the default behavior of the OIDC library is to look

up a Django user matching the email field to the email address in the user attributes

claimed from the IdP (GitHub: mozilla-django-oidc 2020). This method of connecting the

users is made configurable by importing the OIDC_USERNAME_CLAIM attribute from the

settings.py file and a class called OIDCAuthenticationBackend from the OIDC library.

Then the filter_users_by_claims() method is overridden by subclassing the previously

imported class.

Methods create_user() and update_user() are overridden accordingly. The logic is to map

the claimed user attributes, which are first name, last name name and the configurable

attribute to corresponding Django user fields. The configurable attribute, most com-

monly email, is mapped to the username of a Django user. In addition to mapping the

claims, the password of the Django user is as unusable and an additional user profile

field called is_sso_user, which is of type Boolean and false by default, is set to true. This

69

Boolean attribute is used for controlling the fields of update profile forms. More specifi-

cally, the ability to set or reset the password of an “SSO user” is disabled. The methods

for creating and updating a user are very similar, firstly mentioned creates a new user if

a matching username is not found, and the latter updates the user attributes on every

login.

from mozilla_django_oidc.auth import OIDCAuthentication-

Backend

from django.conf import settings

class CustomOIDCAuthenticationBackend(OIDCAuthentication-

Backend):

 def filter_users_by_claims(self, claims):

 username = claims.get(settings.OIDC_USERNAME_CLAIM)

 if not username:

 return self.UserModel.objects.none()

 try:

 return self.UserModel.objects.fil-

ter(username__iexact=username)

 except:

 return self.UserModel.objects.none()

 def create_user(self, claims):

 user = super(CustomOIDCAuthenticationBackend,

self).create_user(claims)

 user.username = claims.get(set-

tings.OIDC_USERNAME_CLAIM, '')

 user.email = claims.get('email', '')

 user.first_name = claims.get('given_name', '')

 user.last_name = claims.get('family_name', '')

 user.set_unusable_password()

 user.save()

 user.profile.is_sso_user = True

 user.profile.save()

 return user

 def update_user(self, user, claims):

 user.username = claims.get(set-

tings.OIDC_USERNAME_CLAIM, '')

 user.email = claims.get('email', '')

 user.first_name = claims.get('given_name', '')

 user.last_name = claims.get('family_name', '')

 user.set_unusable_password()

 user.save()

70

 user.profile.is_sso_user = True

 user.profile.save()

 return user

4.4.4 Login template

Login functionality is enabled by adding a link that initializes the OIDC authentication

process to the login template. The link is assigned classes to achieve button style and the

previously introduced logic is followed as the button is only displayed when integration

is enabled. The code is presented below:

 {% block login_form %}

 <div class=”row”>

 …

 {% get_setting_by_key "ENABLE_OIDC" as enable_oidc %}

 {% if enable_oidc %}

 <div class="text-center">

 <a href="{% url 'oidc_authentication_init' %}"

class="btn btn-primary btn-block">

 {% trans 'Single sign-on' %}

 </div>

 {% endif %}

 …

 </div>

{% endblock login_form %}

The code results in added Single Sign-On button in the login form which is presented in

the following figure (Figure 18).

71

Figure 18. Login screen after modification.

After clicking the Single sign-on button, the user is redirected to authenticate with Azure

AD (Figure 19). Then the user is redirected to the service.

Figure 19. Microsoft authentication dialog box.

72

4.4.5 User Management

Some of the logic considering user management needs to be modified when applying

the SSO implementation. Adding an additional Boolean field to the Django user object is

an effective way to accomplish this. Django provides built-in support for database migra-

tions, which makes it easy to rework a model, as migrations can be quickly generated to

create necessary tables in the database. In practice this is achieved by first adding the

name, type and default value of the new field:

class PersonProfile(models.Model):

 …

 is_sso_user = models.BooleanField(default=False,

blank=True)

 …

Then the migration is created and applied to make changes in the database with follow-

ing commands:

 python manage.py makemigrations

 Python manage.py migrate

TraSim’s built-in user management requires some fine tuning after implementing the in-

tegration. As the passwords of SSO users are set as unusable, it must be made sure that

they remain in the state and cannot be modified. Therefore, password and confirm_pass-

word fields of class BaseProfileForm, which extends as a base form for all profile related

actions, are removed from all SSO users.

Base form for all person forms

class BaseProfileForm(ModelForm):

…

def __init__(self, *args, **kwargs):

 super(BaseProfileForm, self).__init__(*args, **kwargs)

 try:

 user = self.instance.user

 self.fields['email'].initial = user.email

 self.fields['first_name'].initial =

user.first_name

73

 self.fields['last_name'].initial = user.last_name

 if user.profile.is_sso_user:

 self.fields.pop('password')

 self.fields.pop('confirm_password')

 except ObjectDoesNotExist:

 pass

There remains a field called authenticate requiring the password of the user who is mod-

ifying a profile to authenticate the changes. Hence SSO users do not have a password,

they normally cannot modify their own profile nor someone else’s. This is corrected by

adding a logical OR-operator to the if-statements of the user profile editing logic, that

checks the authenticity of the entered password. Now the authorization field is still dis-

played for everyone, but SSO users may leave the field empty whereas regular users are

required to enter their password. The regular and updated edit user forms are presented

in the figures below (Figure 20 & Figure 21).

def edit(request, pk):

 …

 if request.method == 'POST':

 …

 if form.is_valid():

 if check_authorization(request, request.user,

form) or request.user.profile.is_sso_user:

Updating the user and user profile (email,

first name, last name, phone)

 else:

 # Raise form validation error

 else:

 …

 if not request.user.profile.is_password_author-

ized() and not request.user.profile.is_sso_user:

 form.fields['authorization'].required = True

74

Figure 20. Edit user form of a regular user.

75

Figure 21. Edit user form of an SSO user with reduced number of fields.

4.5 Executing test scenarios

The test scenarios with actual results and pass or fail statuses are presented in the table

below (Table 6). The only test scenario with failed status is following: Remove user access

during session. The main functionality works, as the user session is terminated after the

silent refresh if the user has been suddenly unauthorized. Anyhow, the functionality has

an unwanted side effect.

76

After establishing a session and leaving it open for a while, the silent re-auths of the

session refresh middleware exceeded the maximum amount of entries Azure AD allows.

This security feature caused all incoming messages from the corresponding IP address

to become automatically blocked for a few hours. A possible workaround is to increase

the length of the interval between re-auths, but it is not guaranteed to solve the problem

with full certainty. Therefore, some built-in session expiry mechanisms of Django are

trusted to prevent long sessions from happening.

Table 6. Actual results and pass or fail statuses of the test scenarios.

77

5 Results

The main research question of this thesis is how to implement Azure AD integration with

an existing cloud service to enable SSO and user provisioning. Being able to answer this

question requires a basic knowledge about many concepts such as IAM, web technolo-

gies, SSO, cloud computing and AD. Then, to be able to proceed with the integration

after embracing the basic knowledge, one needs to distinguish the technologies of the

service they are developing that, together with the properties of Azure AD, adds bound-

aries on how the integration can be completed. Another important factor is the com-

plexity of the SSO solution, the range of information that is claimed from the IdP. This

widely affects the user management processes of the service.

After obtaining all the information, a set of requirements was created to actualize the

boundaries of an operative solution and to assist in the decision-making process. The

requirements are presented in Table 2 and include general requirements considering the

technologies and security of the service and more exact application specific require-

ments. Then the requirements were used to choose a protocol for enabling the Azure

AD integration. OIDC was the protocol of choice due to its simple and modern, but secure

nature. Next step was to plan the implementation of the protocol. While it was consid-

ered infeasible and unsustainable to securely implement the protocol from ground up

exclusively for this purpose, a community developed PyPI library, mozilla-django-oidc,

was utilized. This library was selected, because it was one of the few that supported the

requirements of the service, and it was widely used, configurable, actively developed

and provenly secure. Finally, the planning phase is ended with building the test scenarios,

which are presented in Table 5. The scenarios are combinations of actions, for example

checking the values of certain user attributes after the authentication process initialized

by a click of a button. All the scenarios are initially based on the requirements and intent

to verify whether the integration behaves as expected.

Before the library could be installed and configured to work with the SP, the IdP had to

be set up. The processes of creating an Azure AD tenant, managing users, registering an

78

application and finding the integration endpoints for OIDC were thoroughly explained

using figures. Then, after obtaining the necessary information, the implementation

phase could take place. It started with installing the mozilla-django-oidc library and de-

fining the required packages in the Dockerfile of the image used by the SP. Environment

variables were introduced to separate the settings that are used to configure the library

from VCS and to make them easier to change or completely disable. The environment

variables are accessed and managed in a slightly complex manner between the Python

modules which is presented in Figure 17. The values of the variables were obtained while

setting up the IdP and they include information such as the client ID, client secret and

JWKs, authorization, token and user endpoints.

Setting up the library was followed by additional configuration of how the OIDC user

identities are connected to the Django user identities and how users are created or up-

dated after authentication. Basically, this phase included making the decision which one

of the claimed user attributes should be mapped to the unique username field of the

Django user. The email field was chosen, because it is quite standard approach and the

field is unique also on the Azure AD side. Also, the password of the Django users that are

connected to OIDC user identities, were configured to be set as unusable to prevent

them from using Django’s core authentication system. Lastly, before executing the test

scenarios, an SSO-button was added to the template of the login page to initialize the

authentication process and an additional Boolean field was added to the Django user

object. The field was added to fine tune the user management of the service by denying

the SSO-users from setting a password and disabling the requirement which obligates

one to verify any changes made to their personal information using their password. The

original and modified versions of the user profile edition forms are presented in figures

20 & 21.

Finally, after creating the IdP and registering the application, installing and setting up the

OIDC library, configuring the SP and building the Docker image, the service could be

started in a local development environment and the test scenarios were executed. All

79

but one of the scenarios passed: the failed scenario had to do with removing user access

to the service during a session. The expected result was that the user session would be

eventually terminated when the recurring silent re-auth happens. It did terminate the

session as expected, but there were some compatibility issues with Azure AD, which

caused the connection to become blocked due to the excessive amount of authentica-

tion requests. The silent re-auth middleware was eventually removed and built-in ses-

sion expiry mechanisms of Django were trusted to prevent long sessions from happening.

80

6 Conclusions and discussion

This chapter focuses on reviewing the status of the Azure AD integration: how did the

combination of technologies, protocols and technical decisions play out in the end. The

review is followed by examining the areas of future studies which mainly focus on what

could have been done better.

6.1 Meeting integration requirements

One could argue that the integration was not successful as one test scenario failed, that

might compromise the security of the service. Anyhow, this is a niche case, which only

occurs if the user is unauthorized from the service during a session. Even if it does hap-

pen, the session expiry mechanisms of Django are configured to automatically expire the

cookie after its age exceeds four hours. Therefore, the user would have on average 2

hours to access the resources instead of 7.5 minutes with the session custom silent re-

auth middleware. The difference is significant, but it still outweighs the multitude of is-

sues caused by a blocked authorization endpoint. Root cause of the problem has not

been closely examined but it is held unlikely fixable without contributing to the open

source project.

6.2 Experience with the library

All in all, the mozilla-django-oidc was clear and easy to follow. It has nearly 30 different

Django settings that can be used to customize the configuration, of which every single

one is precisely described. The part of the documentation that addressed connecting

OIDC user identities to Django users did not work as indicated. Anyhow, a quick look at

the source code of the library, which is clean and has transparent error messages, solved

the problem. Even when the settings were split in multiple modules to better isolate the

81

whole OIDC implementation and corresponsive configurations, the library continued to

work as intended.

6.3 Operating with existing installation

When integrating IAM solution with a service that has an already existing user registry,

it must be ensured that there is no unintended overlapping of identifying user infor-

mation fields between the user registries of the existing service and the newly integrated

IAM solution. The OIDC authentication library used in this thesis connects the user iden-

tities registered to TraSim and Azure AD by claiming the identifying field of a user regis-

tered to Azure AD and mapping it to a user with equivalent identifying field on user reg-

istry of the existing service, TraSim. This mapping, or authentication process can only

take place if the password of the user registered to TraSim is set as unusable, which pre-

vents the user from authenticating via Django’s core authentication system.

6.4 Azure subscription requirement

Creating the Azure AD tenant is straightforward and free of cost. Anyone with a Microsoft

account can create a tenant of their own. Anyhow, the application registration, following

the creation of the tenant, requires a premium Azure AD subscription. With an annual

commitment, Premium P1 subscription costs $6 per user per month and P2 subscription

drags the price up to $9 (Microsoft: Azure AD Pricing 2020). The P2 subscription offers

the same features as P1 but it is enchanted with advanced identity protection and iden-

tity management capabilities. Fortunately, the premium features can often be trialed

even with a free tier user account without a purchased subscription.

82

6.5 Future studies

This chapter examines the ideas for future studies that appeared during the writing pro-

cess: adding support for multiple directories to the mozilla-django-oidc library, a review

and comparison of IAM solutions and service providers and the possible utilization of

Keycloak for standardizing the way application handle user management.

6.5.1 Contributing to open source

Some use cases may require a single environment of the service to be integrated with

multiple Azure AD tenants. By default, this is not supported by mozilla-django-oidc li-

brary. Adding the support would be possible by either contributing to the project or sub-

classing additional classes of the library and inserting new custom logic. Option number

one would be a better choice in terms of credibility but it can be a slow process and there

is a possibility that the pull request is simply denied by the authors. Anyhow, it is some-

thing worth the investigation and a great chance for learning Python.

User synchronization is an additional feature that would be increasingly useful especially

when operating with a large user base. It would automatically create matching users

from the Azure AD tenant to the built-in user management system of TraSim. In a sce-

nario where the tenant already contains suitable groups for the executive team, occupa-

tional health and safety personnel and more, the members can be assigned to corre-

sponding groups on the application. The group membership status would then be kept

up to date by the automatic directory synchronization when any change on the tenant

side is reflected to the application. All in all, this feature would decrease the need to use

TraSim’s user management and move more responsibility to the tenant and its admins.

83

6.5.2 Acquiring user phone number

One might have noticed that the phone number field of the profile edit forms is not set

by default nor claimed from the IdP. This is due to the fact that Microsoft identity plat-

form implementation of OIDC does not support phone scope, a collection of phone num-

bers registered to a user that can be represented as a claim value in the JWT or ID token

(Microsoft: Permission and Consent 2020). As address is another unsupported scope,

one may draw the conclusion that these restrictions are made to protect user privacy. It

is possible that the phone number information could be claimed from some other API

provided by Microsoft. Anyhow, this functionality can easily become complex and make

the implementation unnecessarily delicate.

6.5.3 Alternative identity providers

Managing identities has become of the most challenging aspects information technology

professionals face in their operating environment with an ever-widening array of soft-

ware services and other network boundaries (Ferrill 2019). Therefore, a more extensive

study that provides information about the IAM solutions to more effectively realize the

benefits of SaaS applications and reduce their operating costs. Oftentimes these solu-

tions provide directory services for sourcing identities and directory extension services

for connecting identities in the cloud or simply to synchronize information from another

system. There might exist considerably large differences in terms of usability and relia-

bility of the IAM solutions. A company specialized in the IAM field could provide a signif-

icantly advanced solution compared to a general solution built by a universal company.

Lately an open source solution, Keycloak, has been gaining a lot of interest.

Keycloak is an Apache licensed solution to add authentication and security services to

applications. It was launched in 2013 by Red Hat and remains actively developed with a

new release every six weeks. It supports SSO using all the standard protocols, MFA, One-

time password (OTP), social login while providing centralized user management and

84

directory services (Keycloak 2020). The project is robust with broad documentation and

many examples. It is hosted on GitHub with about 280 contributors, 5600 stars and 2700

forks. According to an article by Sairam Krish, the handling of user management is a re-

peated process across projects, but Keycloak supports a wide variety of the use cases

and saves developers from the repetitive task of writing authentication code. Hence,

Keycloak integration allows developers to build an established way of setting up the user

management features required by their applications. Anyhow, Keycloak brings more to

the table when working technologies do not come with built-in authentication and user

management systems. Hence, the use of Keycloak could be studied when working on a

project with more suitable technologies.

85

References

Altili, E (2017). Difference Between Azure AD vs Active Directory (AD) and AWS Directory

Service [Online]. [26.02.2020]. Available: https://medium.com/@ealtili/differ-

ence-between-azure-ad-vs-active-directory-ad-and-aws-directory-

508fca4d6d0a

Amazon (2006). Announcing Amazon Elastic Compute Cloud EC2 Beta [Online].

[27.01.2020]. Available: https://aws.amazon.com/about-aws/whats-new/2006/

08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta

Bertocci, V (2016). Modern Authentication with Azure Active Directory for Web Applica-

tions [Online]. [19.03.2020]. Available: https://ptgmedia.pearsoncmg.com/im-

ages/9780735696945/samplepages/9780735696945.pdf

Cheung, J (2016). SAML for Web Developers [Online]. [14.02.2020]. Available:

https://github.com/jch/saml

DeMeyer, Z (2019). The Difference Between LDAP and SAML SSO [Online]. [17.02.2020].

Available: https://securityboulevard.com/2019/04/the-difference-between-

ldap-and-saml-sso

Django (2020). Overview [Online]. [03.03.2020]. Available: https://www.djangopro-

ject.com/start/overview

Django (2020). Customizing Authentication in Django [Online]. [19.03.2020]. Available:

https://docs.djangoproject.com/en/3.0/topics/auth/customizing

Django REST Framework (2020). About [Online]. [24.03.2020]. Available:

https://www.django-rest-framework.org/#

https://medium.com/@ealtili/difference-between-azure-ad-vs-active-directory-ad-and-aws-directory-508fca4d6d0a
https://medium.com/@ealtili/difference-between-azure-ad-vs-active-directory-ad-and-aws-directory-508fca4d6d0a
https://medium.com/@ealtili/difference-between-azure-ad-vs-active-directory-ad-and-aws-directory-508fca4d6d0a
https://ptgmedia.pearsoncmg.com/images/9780735696945/samplepages/9780735696945.pdf
https://ptgmedia.pearsoncmg.com/images/9780735696945/samplepages/9780735696945.pdf
https://github.com/jch/saml
https://securityboulevard.com/2019/04/the-difference-between-ldap-and-saml-sso
https://securityboulevard.com/2019/04/the-difference-between-ldap-and-saml-sso
https://www.djangoproject.com/start/overview
https://www.djangoproject.com/start/overview
https://docs.djangoproject.com/en/3.0/topics/auth/customizing
https://www.django-rest-framework.org/

86

Docker (2020). Overview [Online]. [01.03.2020]. Available: https://docs.docker.com/get-

started/overview/

Drinkwater, D (2018). What is Single Sign-On? How Single Sign-On Improves Security and

the User Experience [Online]. [24.01.2020]. Available: https://www.csoon-

line.com/article/2115776/what-is-single-sign-on-how-sso-improves-security-

and-the-user-experience.html

Electronic Frontier Foundation (2018). Deep Dive End to End Encryption: How Do Public

Key Encryption Systems Work? [Online]. [05.02.2020]. Available:

https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-

key-encryption-systems-work

Ferrill, T (2019). The Best Identity Management Solutions for 2020 [Online]. [20.03.2020].

Available: https://uk.pcmag.com/cloud-services/71363/the-best-identity-man-

agement-solutions-for-2020

Galvis, J (2018). From Django to React: How to Write Frontend if You Are a Backend De-

veloper [Online]. [07.03.2020]. Available: https://iamondemand.com/blog/

django-react-write-frontend-backend-developer

Gartner (2008). Shift to Service Based Model [Online]. [27.01.2020]. Available:

https://www.gartner.com/it/page.jsp?id=742913

Gartner (2019). Gartner Predicts Increased Adoption of Mobile-Centric Biometric Au-

thentication and SaaS-Delivered IAM [Online]. [11.02.2020]. Available:

https://www.gartner.com/en/newsroom/press-releases/2019-02-05-gartner-

predicts-increased-adoption-of-mobile-centric

https://uk.pcmag.com/cloud-services/71363/the-best-identity-management-solutions-for-2020
https://uk.pcmag.com/cloud-services/71363/the-best-identity-management-solutions-for-2020
https://iamondemand.com/blog/
https://www.gartner.com/it/page.jsp?id=742913

87

Gartner (2020). Identity and Access Management (IAM) [Online]. [27.01.2020]. Available:

https://www.gartner.com/en/information-technology/glossary/identity-and-ac-

cess-management-iam

Gartner (2020). Gartner Predicts Increased Adoption of Mobile-Centric Biometric Au-

thentication and SaaS-Delivered IAM [Online]. [10.02.2020]. Available:

https://www.gartner.com/en/newsroom/press-releases/2019-02-05-gartner-

predicts-increased-adoption-of-mobile-centric

George, N (2020). Django’s Structure – A Heretic’s Eye View [Online]. [07.03.2020]. Avail-

able: https://djangobook.com/mdj2-django-structure

GitHub (2020). Django-oidc-provider [Online]. [19.03.2020]. Available:

https://github.com/juanifioren/django-oidc-provider

GitHub (2020). Mozilla-django-oidc [Online]. [19.03.2020]. Available:

https://github.com/mozilla/mozilla-django-oidc

Guest, D (2019). ADFS Azure vs. AD: How Microsoft Changed the Authentication Game

[Online]. [24.02.2020]. Available: https://thirdspace.net/blog/adfs-azure-ad-mi-

crosoft-changed-authentication

Gunicorn (2020). Gunicorn – WSGI Server [Online]. [13.03.2020]. Available:

https://docs.gunicorn.org/en/stable

Gunter, C., Liebovitz D. & B. Malin (2011). Experience-Based Access Management: A Life-

Cycle Framework for Identity and Access Management Systems [Online].

[03.02.2020]. Available: https://ieeexplore-ieee-org.proxy.uwasa.fi/

document/5887313

https://www.gartner.com/en/newsroom/press-releases/2019-02-05-gartner-predicts-increased-adoption-of-mobile-centric
https://www.gartner.com/en/newsroom/press-releases/2019-02-05-gartner-predicts-increased-adoption-of-mobile-centric
https://djangobook.com/mdj2-django-structure
https://github.com/
https://github.com/mozilla/mozilla-django-oidc
https://thirdspace.net/blog/adfs-azure-ad-microsoft-changed-authentication
https://thirdspace.net/blog/adfs-azure-ad-microsoft-changed-authentication
https://docs.gunicorn.org/en/stable
https://ieeexplore-ieee-org.proxy.uwasa.fi/

88

IBM (2020). SAML Concepts [Online]. [10.02.2020]. Available: https://www.ibm.com/

support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.securityexten-

sions.doc/topics/saml_concepts.html

Insta Group (2020). About Us [Online]. [24.03.2020]. Available: https://www.in-

sta.fi/en/about-us

Jensen, J (2018). What is Azure Active Directory? [Online]. [26.02.2020]. Available:

https://cloudpuzzles.net/2018/01/what-is-azure-active-directory

Kantor, I (2020). An Introduction to JavaScript [Online]. [07.03.2020]. Available:

https://javascript.info/intro

Kawasaki, T (2017). Diagrams of All the OpenID Connect Flows [Online]. [14.02.2020].

Available: https://medium.com/@darutk/diagrams-of-all-the-openid-connect-

flows-6968e3990660

Kelly, M (2020). Is Single Sign-On a Security Risk? [Online]. [28.02.2020]. Available:

https://www.giac.org/paper/gsec/811/single-sign-security-risk/101711

Keycloak (2020). About [Online]. [20.03.2020]. Available: https://www.key-

cloak.org/about.html

Krish, S (2018). Keycloak Integration: Overview [Online]. [20.03.2020]. Available:

https://medium.com/@sairamkrish/keycloak-integration-part-1-overview-

812010d6c7cf

Latvala, J (2018). Joining Forces with Insta [Online]. [24.03.2020]. Available:

https://www.intopalo.com/blog/2018-11-13-joining-forces-with-insta

https://www.ibm.com/
https://www.insta.fi/en/about-us
https://www.insta.fi/en/about-us
https://cloudpuzzles.net/2018/01/what-is-azure-active-directory
https://javascript.info/intro
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://medium.com/@darutk/diagrams-of-all-the-openid-connect-flows-6968e3990660
https://www.giac.org/paper/gsec/811/single-sign-security-risk/101711
https://medium.com/@sairamkrish/keycloak-integration-part-1-overview-812010d6c7cf
https://medium.com/@sairamkrish/keycloak-integration-part-1-overview-812010d6c7cf
https://www.intopalo.com/blog/2018-11-13-joining-forces-with-insta

89

Liu, S., Yue, K., Yang, H., Liu, L., Duan, X & T. Guo (2018). The Research on SaaS Model

Based on Cloud Computing [Online]. [16.02.2020]. Available: https://ieeexplore-

ieee-org.proxy.uwasa.fi/document/8469462

Linden, M (2017). Identiteetin- ja Pääsynhallinta [Online]. [02.02.2020]. Available:

https://trepo.tuni.fi/bitstream/handle/10024/116591/linden_identitee-

tin_ja_paasynhallinta.pdf?sequence=1&isAllowed=y

Linux (2020). What is Linux? [Online]. [28.02.2020]. Available: https://www.linux.com/

what-is-linux

Lujan, V (2019). SSO vs. LDAP [Online]. [17.02.2020]. Available: https://jump-

cloud.com/blog/sso-vs-ldap

Makai, M (2020). WSGI Servers [Online]. [06.03.2020]. Available: https://www.fullstack-

python.com/wsgi-servers.html

MDM Web Docs (2020). HTTP Headers [Online]. [07.03.2020]. Available: https://devel-

oper.mozilla.org/en-US/docs/Web/HTTP/Headers

MDN Web Docs (2020). Django Web Framework (Python) [Online]. [05.03.2020]. Availa-

ble: https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django

MDN Web Docs (2019). HTTP Overview [Online]. [05.03.2020]. Available: https://devel-

oper.mozilla.org/en-US/docs/Web/HTTP/Overview

Mell, P & T. Grance (2011). The NIST Definition of Cloud Computing: Recommendations

of the National Institute of Standards and Technology [Online]. [16.02.2020].

Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublica-

tion800-145.pdf

https://ieeexplore-ieee-org.proxy.uwasa.fi/document/8469462
https://ieeexplore-ieee-org.proxy.uwasa.fi/document/8469462
https://trepo.tuni.fi/bitstream/handle/10024/116591/linden_identiteetin_ja_paasynhallinta.pdf?sequence=1&isAllowed=y
https://trepo.tuni.fi/bitstream/handle/10024/116591/linden_identiteetin_ja_paasynhallinta.pdf?sequence=1&isAllowed=y
https://www.linux.com/
https://jumpcloud.com/blog/sso-vs-ldap
https://jumpcloud.com/blog/sso-vs-ldap
https://www.fullstackpython.com/wsgi-servers.html
https://www.fullstackpython.com/wsgi-servers.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

90

Microsoft (2017). Active Directory Domain Services [Online]. [17.02.2020]. Available:

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/active-direc-

tory-domain-services

Microsoft (2020). Azure Active Directory Pricing [Online]. [23.03.2020]. Available:

https://azure.microsoft.com/en-us/pricing/details/active-directory

Microsoft (2020). Cloud Computing Overview [Online]. [18.02.2020]. Available:

https://azure.microsoft.com/en-us/overview/what-is-cloud-computing

Microsoft (2020). Single Sign-On to Applications in Azure Active Directory [Online].

[18.03.2020]. Available: https://docs.microsoft.com/en-us/azure/active-direc-

tory/manage-apps/what-is-single-sign-on

Microsoft (2020). Permissions and Consent in the Microsoft Identity Platform Endpoint

[Online]. [23.03.2020]. Available: https://docs.microsoft.com/en-us/azure/ac-

tive-directory/develop/v2-permissions-and-consent

Microsoft (2020). What is IaaS? [Online]. [02.02.2020]. Available: https://azure.mi-

crosoft.com/en-us/overview/what-is-iaas

Netcraft (2020). February 2020 Web Server Survey [Online]. [13.03.2020]. Available:

https://news.netcraft.com/archives/2020/02/20/february-2020-web-server-sur-

vey.html

Nginx (2020). About [Online]. [06.03.2020]. Available: https://nginx.org/en

Nginx (2020). What Is a Reverse Proxy Server? [Online]. [06.03.2020]. Available:

https://www.nginx.com/resources/glossary/reverse-proxy-server

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/active-directory-domain-services
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/active-directory-domain-services
https://azure.microsoft.com/en-us/pricing/details/active-directory
https://news.netcraft.com/archives/2020/02/20/february-2020-web-server-survey.html
https://news.netcraft.com/archives/2020/02/20/february-2020-web-server-survey.html
https://www.nginx.com/resources/glossary/reverse-proxy-server

91

OAuth (2020). OAuth 2.0 Authorization Framework [Online]. [15.02.2020]. Available:

https://auth0.com/docs/protocols/oauth2

OWASP (2020). Session Management Cheat Sheet [Online]. [05.02.2020]. Available:

https://owasp.org/www-project-cheat-sheets/cheatsheets/Session_Manage-

ment_Cheat_Sheet

PingIdentity (2020). What is Identity as a Service (IDaaS)? [Online]. [10.02.2020]. Availa-

ble: https://www.pingidentity.com/en/resources/client-library/articles/identity-

as-a-service-idaas.html

PostgreSQL (2020). About [Online]. [15.03.2020]. Available: https://www.post-

gresql.org/about

Python (2020). Applications for Python [Online]. [02.03.2020]. Available:

https://www.python.org/about/apps

Python (2020). The Python Tutorial [Online]. [02.03.2020]. Available: https://docs.py-

thon.org/2/tutorial

React (2020). Components and Props [Online]. [11.03.2020]. Available: https://re-

actjs.org/docs/components-and-props.html

React (2020). Introducing JSX [Online]. [11.03.2020] Available: https://re-

actjs.org/docs/introducing-jsx.html

React (2020). Rendering Elements [Online]. [11.03.2020]. Available: https://re-

actjs.org/docs/rendering-elements.html

https://auth0.com/docs/protocols/oauth2
https://www.postgresql.org/about
https://www.postgresql.org/about

92

Redis (2020). Redis Server-Assisted Client-Side Caching [Online]. [16.03.2020]. Available:

https://redis.io/topics/client-side-caching

Sans (2014). Database Credentials Coding Policy [Online]. [02.02.2020]. Available:

https://www.sans.org/security-resources/policies/server-security/pdf/data-

base-credentials-policy

Sectigo (2020). What Is a Digital Signature? [Online]. [05.02.2020]. Available:

https://www.instantssl.com/digital-signature

Sharma, A., Sharma, S & M. Dave (2015). Identity and access management- a compre-

hensive study [Online]. [03.02.2020]. Available: https://ieeexplore.ieee.org/doc-

ument/7380701

Solomon, S (2016). Growing Pains: Latest Research Shows IT Struggling to Meet SaaS

Application Demand [Online]. [24.01.2020]. Available: https://www.better-

cloud.com/monitor/cloud-application-use-growth-impact

Sourceware (2020). Libffi [Online]. [02.03.2020]. Available: https://sourceware.org/libffi

Swaroop, C.H (2020). About Python [Online]. [02.03.2020]. Available: https://py-

thon.swaroopch.com/about_python.html

Tejada, Z., Bustamante, M.L & I. Ellis (2015). Developing Microsoft Azure Solutions: Exam

Ref 70-532. Microsoft Press, 2015. 432p.

Tobak, S (2008). How to Manage a Crisis, Any Crisis [Online]. [24.03.2020]. Available:

https://www.cnet.com/news/how-to-manage-a-crisis-any-crisis

https://redis.io/topics/client-side-caching
https://www.sans.org/security-resources/policies/server-security/pdf/database-credentials-policy
https://www.sans.org/security-resources/policies/server-security/pdf/database-credentials-policy
https://www.instantssl.com/digital-signature
https://ieeexplore.ieee.org/document/7380701
https://ieeexplore.ieee.org/document/7380701
https://www.bettercloud.com/monitor/cloud-application-use-growth-impact
https://www.bettercloud.com/monitor/cloud-application-use-growth-impact
https://sourceware.org/libffi
https://python.swaroopch.com/about_python.html
https://python.swaroopch.com/about_python.html
https://www.cnet.com/news/how-to-manage-a-crisis-any-crisis

93

Vaughn, A (2019). Which Single Sign-On Technology Should I Choose? [Online].

[18.03.2020]. Available: https://mindtouch.com/resources/which-sso-technol-

ogy-should-i-choose

Viestintävirasto (2018). Kryptografiset Vahvuusvaatimukset Luottamuksellisuuden Suo-

jaamiseen - Kansalliset Suojaustasot [Online]. [26.03.2020]. Available:

https://www.kyberturvallisuuskeskus.fi/sites/default/files/media/regula-

tion/ohje-kryptografiset-vahvuusvaatimukset-kansalliset-suojaustasot.pdf

Vincent, W (2018). Is Django a Full Stack Framework? [Online]. [07.03.2020]. Available:

https://wsvincent.com/is-django-a-full-stack-framework

https://mindtouch.com/resources/which-sso-technology-should-i-choose
https://mindtouch.com/resources/which-sso-technology-should-i-choose
https://www.kyberturvallisuuskeskus.fi/sites/default/files/media/regulation/ohje-kryptografiset-vahvuusvaatimukset-kansalliset-suojaustasot.pdf
https://www.kyberturvallisuuskeskus.fi/sites/default/files/media/regulation/ohje-kryptografiset-vahvuusvaatimukset-kansalliset-suojaustasot.pdf
https://wsvincent.com/is-django-a-full-stack-framework

