388,826 research outputs found

    Identifying the period of a step change in high-yield processes

    Full text link
    Quality control charts have proven to be very effective in detecting out-of-control states. When a signal is detected a search begins to identify and eliminate the source(s) of the signal. A critical issue that keeps the mind of the process engineer busy at this point is determining the time when the process first changed. Knowing when the process first changed can assist process engineers to focus efforts effectively on eliminating the source(s) of the signal. The time when a change in the process takes place is referred to as the change point. This paper provides an estimator for a period of time in which a step change in the process non-conformity proportion in high-yield processes occurs. In such processes, the number of items until the occurrence of the first non-conforming item can be modeled by a geometric distribution. The performance of the proposed model is investigated through several numerical examples. The results indicate that the proposed estimator provides a reasonable estimate for the period when the step change occurred at the process non-conformity level. Copyright © 2009 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64306/1/1007_ftp.pd

    Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments

    Get PDF
    Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.BMBF, 02WGR1421A-I, GROW - Verbundprojekt SaWaM: Saisonales Wasserressourcen-Management in Trockenregionen: Praxistransfer regionalisierter globaler Informationen, Teilprojekt 1DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Assessment of the spatial and temporal variations of water quality for agricultural lands with crop rotation in China by using a HYPE model

    Get PDF
    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with little data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims (i) to assess the performance capabilities of a new and relatively more advantageous model-hydrological predictions for the environment (HYPE) to simulate stream flow and nutrient load in ungauged agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters, which shows that the parameters related to the effective soil porosity were most sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes, whereas P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. The lowest NSEs (Nash-Suttclife Efficiency) of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands

    Guidelines for Identifying Business Risks and Opportunities Arising From Ecosystem Change

    Get PDF
    Outlines the Corporate Ecosystem Services Review, a methodology to help businesses develop strategies for managing operational, regulatory, reputational, market, and financing risks and opportunities arising from their dependence and impact on ecosystems

    Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology

    Get PDF
    The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as ‘deterministic components’ or ‘trends’ even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures

    The water footprint assessment manual: setting the global standard

    Get PDF
    This book contains the global standard for \u27water footprint assessment\u27 as developed and maintained by the Water Footprint Network (WFN). It covers a comprehensive set of definitions and methods for water footprint accounting. It shows how water footprints are calculated for individual processes and products, as well as for consumers, nations and businesses. It also includes methods for water footprint sustainability assessment and a library of water footprint response options. A shared standard on definitions and calculation methods is crucial given the rapidly growing interest in companies and governments to use water footprint accounts as a basis for formulating sustainable water strategies and policies

    A Strategic Approach to Agricultural Research Program Planning in Sub-Saharan Africa

    Get PDF
    Recent studies have shown that agricultural research can have high payoffs in Africa, but impact depends on how well technology fits with evolving needs and capacity in the agricultural sector and the rest of the economy. Structural adjustment policies (e.g., market liberalization, currency devaluation) and political change are transforming user demands for new technology and the economic environment in which technology must perform. The challenge is how to design agricultural research as a strategic input to promote broad-based economic growth, structural transformation, and food security in the increasingly market-driven, but fragile, economies of Africa.Food Security, Food Policy, Agricultural Research, Research and Development/Tech Change/Emerging Technologies, Downloads May 2008-July 2009: 44, Q18,
    corecore