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A B S T R A C T

The detection and attribution of long-term patterns in hydrological time series have been important research
topics for decades. A significant portion of the literature regards such patterns as ‘deterministic components’ or
‘trends’ even though the complexity of hydrological systems does not allow easy deterministic explanations and
attributions. Consequently, trend estimation techniques have been developed to make and justify statements
about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on
observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting
consequences of human activities on the hydrological cycle. This analysis usually relies on the application of
some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-
Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima,
minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper dis-
cusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from
three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of
NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that
even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of
view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori addi-
tional information on the underlying stochastic process, according to deductive reasoning. This prevents the use
of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the
correlation structures characterizing hydrological time series might easily be underestimated, further compro-
mising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though
adjusting procedures accounting for correlation have been developed, some of them are insufficient or are ap-
plied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using
250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test
results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow
records, whose larger sizes enable a more reliable assessment of the correlation structures.

Faced with a sample of unknown origin, many applied statisticians
working in economics, meteorology and the like, hasten to decompose it
into a trend and an oscillation (and added periodic terms). They assume
implicitly that the addends are attributable to distinct generating me-
chanisms, and are statistically independent. This last implicit assumption
is quite unwarranted, except when the sample is generated by Brownian
motion. (B.B. Mandelbrot, The Fractal Geometry of Nature, p. 352,
1982)

1. Introduction

Due to the complexity of hydrological systems, their analysis and
modeling heavily rely on historical records as theoretical reasoning and
deduction are often inadequate. This analysis is even more problematic
when we depart from the hypothesis of stationarity to embrace that of
nonstationarity. Even though the two notions of stationarity and non-
stationarity should apply to models and not to the real-world processes
themselves (see Section 4 below), considerable literature assumes that
the observed time series generated by the real world seldom appear to

https://doi.org/10.1016/j.advwatres.2017.10.015
Received 6 June 2017; Received in revised form 4 October 2017; Accepted 13 October 2017

⁎ Corresponding author at: School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
E-mail address: francesco.serinaldi@ncl.ac.uk (F. Serinaldi).

Advances in Water Resources 111 (2018) 132–155

Available online 18 October 2017
0309-1708/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2017.10.015
https://doi.org/10.1016/j.advwatres.2017.10.015
mailto:francesco.serinaldi@ncl.ac.uk
https://doi.org/10.1016/j.advwatres.2017.10.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.10.015&domain=pdf


be stationary but exhibit more complicated nonstationary behavior. In
many cases, conclusions on nonstationarity are based on the outcome of
trend tests applied to finite-size time series covering relatively short
periods of record.

A change of paradigm from stationary to nonstationary can be
claimed to account for human activities producing predictable changes,
such as land-use and land-cover changes, and water resources ex-
ploitation, or more complex but less predictable phenomena such as the
worldwide hydrologic change ascribed to anthropogenic climate
change (ACC) (Milly et al., 2015). In this respect, in the last three
decades, a huge number of studies have investigated possible human-
driven changes in the form of slowly-varying trends or abrupt changes
in time series of hydrological variables across different regions of the
world. Broadly speaking and taking for granted unavoidable differ-
ences, the aim of these studies has been to understand if these changes
are detectable, what is their pattern, and ultimately, to infer non-
stationarity, thus promoting the implementation of nonstationary
models to support new design and planning strategies (e.g., Ouarda and
El-Adlouni, 2011; Rootzén and Katz, 2013; Cheng et al., 2014, among
many others).

Therefore, we believe there exists a need for careful inspection of
the basic concepts of null hypothesis statistical tests (NHSTs) for trends
and their application to hydrological problems. Following Serinaldi and
Kilsby (2015), this paper is an attempt to meet this need. In fact, the
purpose of our work is neither to review the state of the art of the
research related to trend analysis, nor to give examples of the problems
discussed thereto. Rather, we summarize and attempt to shed some
light on the reasons for contradictory results encountered in the lit-
erature, and discuss widespread practices that can easily be identified in
many studies. Therefore, the conceptual perspective of this study
should be seen as a guideline in agreement with the general but sci-
entifically based and widely applicable statement by Mandelbrot in the
opening motto of this paper. On the other hand, we attempt to confute a
certain mechanistic approach often characterizing the literature on the
topic. We highlight that conceptual arguments and mathematical defi-
nitions are necessary to provide practical advice to identify trends, to
interpret results, and to avoid misleading usage and conclusions.

The paper is structured as follows. By using a simple example,
Section 2 introduces the discussion and research questions, and sum-
marizes our conclusions in order to provide the reader with a clear
outline of what will follow. Section 3 reviews the role of trend testing
and some problems related to historical derivation, epistemological
reasons, and detection and attribution of changes under temporal per-
sistence. Then, in Section 4, we discuss the importance of clear termi-
nology corresponding to well-defined concepts to avoid mis-
understandings relying on different interpretation of the same terms.
Section 5 gives an overview of the properties of some commonly used
trend tests, namely, Mann-Kendall (MK) and Pettitt. In Section 6, we
analyze 250 unimpacted stream flow time series across the con-
terminous United States spanning the period 1950-2011. Discussion
and final remarks are given in Section 7.

2. NHST for trends: overview of key ideas

2.1. Setting the scene with a simple example

We start our discussion by a simple example of typical trend testing
exercise familiar to practitioners as we want to highlight the basic
concepts behind trend testing procedures. Fig. 1(a) and (b) shows the
average annual discharge of two nearby rivers that we will call the Nera
River and Velino River, referring to the following discussion for an in-
depth description of these data. Both time series, ranging from 1916 to
2015, show an apparent change point around the years 1974–1975 as
well as statistically significant and similar autocorrelation functions
(Fig. 1(c) and (d)); the Kendall correlation coefficient between the two
time series is =τ 0.32K . Since we do not know if the autocorrelation is a

consequence of a possible deterministic change of regime or the effect of
the dependence structure, we use statistical tests accounting for the
latter. Therefore, we apply both the classic Pettitt tests and four addi-
tional versions accounting for possible first-order Markov autocorrela-
tion structure and fractional Gaussian noise (fGn; also known as
Hurst–Kolmogorov process) (Serinaldi and Kilsby, 2016a). Following
the common interpretation of trend tests, the tests unanimously lead to
the conclusion that a possible deterministic change around 1974–1975
at the 5% significance level. After splitting the series into two sub-series
(before and after the change point) we find that their autocorrelation is
not significant (Fig. 1(e)–(h)). Therefore, we next apply standard Pettitt
and MK tests to the two sub-series for both rivers (Villarini et al.,
2009a). Since no significant trend or change point was found in the sub-
series, we can conclude that autocorrelation is reasonably the effect of
an abrupt change occurred around 1974–1975. Based on these results,
the common approach attempts to explain such changes by some an-
thropogenic activities, including some more easily recognizable (i.e.
river training, water abstraction, dam construction, etc.) and some less
(i.e., ACC, climate teleconnections, etc.). In the latter case, the attri-
bution is performed by some further statistically-based analysis (see
e.g., Merz et al., 2012; Viglione et al., 2016, and references therein, for
an overview of the attribution problem and examples).

However, the nature of the time series analyzed above is completely
different. In fact, the true nature of these data is that they are nothing
more than artificially generated series designed to be a complete con-
trast. The Nera River sequence is a step-wise signal superimposed on a
sample of independent pseudo-random realizations drawn from a
Gaussian distribution (Fig. 1(i)), whereas the Velino River sequence is a
sub-set extracted from a longer time series of size 2000, which is a
realization of a discrete-time fGn with unit variance and Hurst para-
meter =H 0.8 (Fig. 1(j)).

This synthetic experiment highlights that even procedures specifi-
cally devised to account for the interplay between possible determi-
nistic trends and/or change points are not able to discriminate, and can
easily lead to incorrect conclusions. In fact, persistence generates local
trends and abrupt changes, and deterministic changes result in artificial
persistence. Notice that sequences similar to Velino time series can
easily be extracted by a quick visual inspection of the entire time series,
since these local trends and step changes are a characteristic of per-
sistent processes.

Since abrupt changes can be seen as a special (limit) case of
monotonic slowly-varying trend, in the following discussion we gen-
erally indicate both types with the term ‘trend’, unless otherwise spe-
cified. The null hypothesis is defined as {H0: there is no deterministic
trend}, while the alternative hypothesis as {H1: there is deterministic
trend}. Further specifications are given according to the specific context
throughout the text.

2.2. Forgotten questions whose answers are often taken for granted

Some research questions arise from the example in the previous
section:

1. What is the origin of slowly-varying trends (or step changes) in
hydro-meteorological time series? Are they due to external drivers
(e.g., well-defined human interventions) or are they related to in-
trinsic persistence or other causes? Alternatively, is measured per-
sistence a spurious effect of trends induced by external forcing, or
are observed trends spurious effects of persistence or other gen-
erating mechanisms?

2. Can null hypothesis statistical tests (NHSTs) for trends answer the
above questions? Which information can trend NHSTs provide?

3. Under the assumption that trend NHSTs can provide information
about trends in recorded series, can one draw conclusions about
nonstationarity, thus justifying, for instance, the use of nonsta-
tionary modeling in hydrological frequency analysis?
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2.3. Resetting some beliefs concerning NHST for trends

Since answers to the above questions require an extensive discus-
sion of arguments often neglected in hydro-meteorological applications,
in this section we firstly summarize the main conclusions, and then we
present in full detail the reasoning leading to them in the remainder of
the paper. Broadly speaking, searching for answers to the above ques-
tions reveals critical aspects related to trend NHST that can be classified
as empirical, methodological, and theoretical. The first refer to the
nature of the data, the second to the models used to make inference,
and the latter to logical foundations and semantics (i.e. the link be-
tween symbol, concept, and referent; Eco (1976)). All these aspects are
already known and discussed but spread out in various research areas;
however, they are often overlooked, and their impact on results dra-
matically underestimated in many hydro-meteorological studies.

Following the structure of the subsequent sections, these arguments
can be summarized as follows:

1. NHSTs have a logically flawed rationale coming from ill-posed and
theoretically unfounded hybridization of Fisher significance tests
and Neyman-Pearson hypothesis tests; they do not provide the in-
formation that scientists need (i.e., the likelihood of H0 given the
data and/or physical significance), do not allow conclusions about
the truth of falsehood of any hypothesis, and do not apply to ex-
ploratory non-randomized studies. Trend tests share the general
problems of NHST procedures. Such issues are concerned with the
inverse probability problem, the confusion between substantive and
statistical hypotheses, and the fact that NHSTs are not devised for
exploratory studies. In fact, hydro-meteorological data are unique in
the sense that every record is the only available realization or

Fig. 1. Panels (a) and (b) respectively depict time series of the average annual discharge of the Nera River and Velino River. In (c) and (d), ACFs of the time series shown in panels (a) and
(b). In (e) and (f), ACFs of the first part of the time series shown in panels (a) and (b), before the change point. In (g) and (h), ACFs of the second part of the time series shown in panels (a)
and (b), after the change point. Panels (i) and (j) show the original nature of time series plotted in panels (a) and (b), respectively. See text for further details.
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trajectory of the underlying process. Since alternative experiments
cannot be performed, these observations do not provide the type of
independent information that would be obtained by observing the
same variables over a period of similar length at another point in
time. Even though hypothesis testing falls in the realm of so-called
confirmatory analysis, its nature is basically dissenting as its out-
comes can only be rejection or no rejection, and both cases reflect
lack of knowledge about the null hypothesis H0 and the alternative
hypothesis H1: formal acceptance is not a contemplated option.
Moreover, statistical significance does not imply physical sig-
nificance because the former depends on the sample size, and almost
every test assigns statistical significance to physically negligible
differences for very large samples (see Sections 3.1).

2. Hydro-meteorological data are commonly characterized by spatial
and temporal dependence. This property can greatly help to inter-
pret and account for many features of hydro-meteorological records
such as apparently unexpected variability. Dependence is usually
incorporated into the null hypothesis H0 in order to compare the
assumption H1 of deterministic trend with a more realistic H0 re-
laxing the assumption of independence. Nevertheless, dependence
can be strongly underestimated due to the limited extent and un-
iqueness of the hydro-meteorological data, which should therefore
be carefully taken into account. For example, this study highlights
that even more refined statistical techniques accounting for depen-
dence can be not enough. In fact, we show that the nature, quantity,
and quality of some annual summary statistics are not sufficient to
infer the dependence (and thus the variability) resulting from the
entire daily process (see Sections 3.2 and 6).

3. Trend tests are widely used to assess the effect of known external
forcings (e.g., land cover change) on hydro-meteorological records
(e.g., flow peaks) in order to explore inhomogeneity or trends or
nonstationarity (e.g., McCuen, 2003). Such procedures often result
in circular reasoning because if we assume that the forcing process is
changing according to some deterministic function of time - and
thus it is nonstationary - and it affects in some way a target process
of interest (e.g., flood intensity or frequency), then we already know
that the target process is nonstationary. In these cases, we are in-
terested in the size of the effects and not in the presence/absence of
generating mechanism, which is already known (see Section 3.3).

4. The outcome of trend NHSTs cannot support and justify the use of
nonstationary models. As a deterministic trend is a systematic
change reflecting a time-dependent process, the mathematical rule
describing the evolution of this change should be established by
deductive reasoning (a priori; see e.g., Poppick et al., 2017) or as-
sumed as a working hypothesis but cannot be inferred solely from
the data without external information, because, without attribution,
new data might easily change the nature and shape of the supposed
trend. Therefore trends cannot result for instance from fitting arbi-
trary parametric curves or applying smoothing filters to observed
records. Despite the possible goodness of fit, these pseudo-trends
might yield completely unreliable predictions. This lack of relia-
bility reveals the actual nature of such data-driven trends, i.e. that
they refer to the time series and not to the underlying process, and
thus are affected by sampling uncertainty and can change as addi-
tional data become available (Luke et al., 2017; Serinaldi and Kilsby,
2015). Therefore, even though nonstationary modeling is legitimate,
every step should be approached with great care in order to be lo-
gically and scientifically correct, bearing in mind the underlying
assumptions of procedures, methods, and models used in each stage
of the analysis. Beside possible ill-posed selection of nonstationary
models yielding unreliable predictions, overlooking theoretical as-
sumptions generates misconceptions such as the incorrect belief of
the existence of temporally varying return periods and corre-
sponding return levels and their confusion with time varying prob-
abilities of exceedance and quantiles, whereby the mathematical
definitions of return period yield unique and comparable values in

stationary and nonstationary contexts (Cooley, 2013; Olsen et al.,
1998; Salas and Obeysekera, 2014; Serinaldi, 2015; Serinaldi and
Kilsby, 2015; Volpi et al., 2015) (see Sections 3.3 and 4.2).

5. Another consequence of the limited extent and uniqueness of the
hydro-meteorological data is that one needs to make a number of
implicit but strong assumptions in order to treat these records as
outcomes of deterministic, stochastic, or some mixed processes. In
this respect stationarity and ergodicity play a key role in statistical
inference. Ergodic theory deals with the relationship between sta-
tistical averages and sample averages, which is a central problem in
the estimation of statistical parameters in terms of real data. For
example, empirical summary statistics (e.g., moments) are in-
formative only under the assumption that the process is stationary
and ergodic. For example, even if the sample mean of an observed
time series can always be estimated and does not change irrespec-
tive of stationary or nonstationary assumptions, in the first case it is
assumed to be representative of the process thanks to ergodicity,
while in the latter it is not (if one does not account for the source of
nonstationarity). This means that other realizations of the same
nonstationary process can have completely different sample
averages, none of which can give insight into the actual population
mean of the process, if any. Therefore, assuming nonstationarity
requires great care in order to understand what we can really infer
from data under lack of ergodicity. Without supporting the non-
stationary choice with deductive (top-down) arguments identifying
the mechanism generating the time-dependent behavior of the
process, the modeling procedure reduces to a mechanistic numerical
exercise attempting to minimize some performance criterion with
the aim to follow local patterns of fitting data sets. As mentioned
above, this approach yields models that reveal the weakness of their
derivation and justification when predictions are compared with
new (future) observations in validation data sets (see Sections 4.1
and 4.2).

6. Nonstationarity is a very stringent assumption as it implies that one or
more characteristics of the distribution of a system depend on time by a
deterministic function dt. As the term deterministic implies being free
of uncertainty, nonstationarity cannot be claimed from the data only
without an attribution identifying the source of the deterministic de-
pendence on time. Therefore, Koutsoyiannis and Montanari (2015)
noted that “Because it explains in deterministic terms part of the
variability, a nonstationary description is associated with reduced un-
certainty. Hence unjustified or inappropriate claim of nonstationarity
results in underestimation of variability, uncertainty and risk”. Here,
uncertainty does not refer to specific parametrization but to the ex-
istence and overall behavior of time-dependent deterministic pro-
cesses. For example, the existence and general evolution of seasonal
behavior is deduced from arguments independent from data (i.e.,
planetary dynamics), while its parametrization varies for each specific
data set. Excluding spurious local trends characterizing stationary
stochastic processes, trends of interest in hydro-meteorology are those
related to mechanisms generating departures from the so-called natural
variability (which is implicitly assumed to be stationary). Such trends
are therefore a form of nonstationarity, which implies the existence of
a deterministic function of time dt requiring detection and attribution
by combining deductive reasoning, which supports and justifies the
existence of dt, and inductive inference, which provides preliminary
knowledge and quantication/parametrization of dt. The definition of
deterministic trend has direct practical consequences (see Sections 4.3
and 4.4):
(a) The commonly used approach of comparing nested models with

time-varying and constant parameters by using some perfor-
mance criterion is not sufficient to infer nonstationarity if dt
does not result from deductive reasoning, but results from
simple fitting procedures. General poor performance in predic-
tion confirms the weakness of such a bottom-up procedure
(Serinaldi and Kilsby, 2015).
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(b) Replacing the dependence on time (i.e., dt) with dependence on
teleconnection indices or other environmental variables
showing clear stochastic behavior does not make models non-
stationary, but simply doubly stochastic stationary. This re-
placement makes models nonstationary only if such auxiliary
environmental variables are themselves nonstationary, and thus
time-dependent according to a well-defined function dt. This is
particularly important for a correct application and interpreta-
tion of frequency analysis based on generalized linear models
(GLMs), generalized additive models (GAMs), or similar.

7. Trend NHSTs suffer logical flaws and some of them are also in-
correct or incorrectly applied. For example, the still widely applied
so-called trend-free prewhitening (TFPW) (Yue et al., 2002) was
shown to be theoretically flawed (Serinaldi and Kilsby, 2016a), as its
original version does not address the variance inflation related to
dependence, which can be even exacerbated. This explains the
contradicting results reported in the literature concerning the out-
come of this test compared with alternative procedures. The cor-
rectness of applied tests (or methodology in general) should not be
taken for granted, and a preliminary check of their performance
under H0 (controlled conditions) should be performed (by simula-
tion) before their application, especially if the methodology was not
developed by statisticians (see Section 5).
The choice between stationary and nonstationary depends on a
stringent process of attribution supported by deductive arguments,
which come before and go beyond statistical inference techniques
(see Section 6).

3. The (non)logic of trend hypothesis tests: what they cannot say
about trends and nonstationarity

3.1. The consequences of a difficult birth: NHSTs logical flaws and
misinterpretations

In several fields of applied science, NHSTs have been widely dis-
cussed and criticized for a long time (Cohen, 1994; Gill, 1999; Johnson,
1999; Levine et al., 2008; Beninger et al., 2012; Ellison et al., 2014;
Nuzzo, 2014; Briggs, 2016; Greenland et al., 2016; Wasserstein and
Lazar, 2016, and references therein), but to our knowledge, the pro-
blems concerning NHSTs received little attention in hydrological sci-
ences (McBride et al., 1993; Nicholls, 2001; Clarke, 2010). NHST is a
synthesis of the Fisher test of significance, developed as a general ap-
proach to scientific inference, and the Neyman-Pearson hypothesis test,
designed for applied decision making and quality control (Levine et al.,
2008). These methods are conceptually different and imply different
interpretations of their outcomes. Neyman and Pearson believed they
had made Fisher’s theory of significance testing more complete and
consistent, whereas Fisher never perceived the emerging Neyman-
Pearson theory as correcting and improving his own work on tests of
significance (Gigerenzer et al., 1989, pp. 98 and 102). A heated con-
troversy followed, and “although the debate continues among statisti-
cians, it was silently resolved in the ‘cookbooks’ written in the 1940s to
the 1960s, largely by non-statisticians, to teach students in the social
sciences the ‘rules of statistics’ ” (Gigerenzer et al., 1989, p. 106). The
result was a so-called ‘hybrid system’, i.e. NHST (Beninger et al., 2012),
merging “Fisher’s easy-to-calculate P value into Neyman and Pearson’s
reassuringly rigorous rule-based system” (Nuzzo, 2014). Overlooking
the great differences in conceptual interpretation, this seemed perfectly
acceptable to statistics end-users, partly because often the same for-
mulas were used and the same numerical results obtained
(Gigerenzer et al., 1989, p. 106). This has led to an enormous confusion
about, for instance, the meaning of a significance level, coining the
well-known expression ‘the null hypothesis is rejected at the α level’,
which occurs neither in Fisher nor in the writings of
Neyman and Pearson. Moreover, the neglect of controversial issues and
alternative theories, and the anonymous presentation of an apparently

monolithic body of statistical techniques often turned the hybrid theory
into a mechanical ritual, even though Fisher, and Neyman-Pearson had
all warned against drawing inferences from tests without judgment
(Gigerenzer et al., 1989, p. 107 and 209). This historical digression
confirms how damaging a mechanistic approach can be through over-
looking subtle, but fundamental, theoretical concepts.

The differences between Fisher and Neyman-Pearson systems
highlight their incompatibility and the problems affecting the NHST
synthesis. With Fisher significance testing, no explicit alternative hy-
pothesis H1 to the null H0 is identified, and the p-value that results from
the model and the data is evaluated as the strength of the evidence for
the research hypothesis. Therefore there is no notion of ‘power of test’
nor of accepting alternative hypothesis H1 in the final interpretation.
Conversely, Neyman-Pearson tests identify complementary hypotheses,
H0 and H1, in which rejection of one implies acceptance of the other,
and this rejection is based on a predetermined significance level α.
Neyman-Pearson hypothesis test defines the significance level α a priori
as a function of the test (i.e., before even looking at the data), whereas
Fisher’s test of significance defines the significance level afterwards as a
function of the data. The NHST synthesis pretends to select α a priori, but
actually using a posteriori p-values to evaluate the strength of the evi-
dence. This allows inclusion of the alternative hypothesis but removes
the search for a more powerful test (Gill, 1999). The power of a test is
actually a problematic issue in hybrid NHST as it is most often un-
defined. The sampling distributions of both H0 and H1 are specified in
Neyman-Pearson theory and an effect size or point prediction must be
specified for H1 in order for the concept of power to be meaningful and
for defining the sample size required to obtain the required power.
Conversely, in hybrid NHST, H1 is simply specified to be not H0 and vice
versa (e.g., {H0: there is no deterministic trend} and {H1: there is
deterministic trend}), i.e., H0 and H1 are written such that they are
mutually exclusive and exhaustive (Levine et al., 2008). Moreover, one
of the NHST hypotheses is always labeled as the null hypothesis as in
the Fisher test, whereas Fisher intended the null hypothesis simply as
something to be ‘nullified’ or falsified in agreement with (and influ-
enced by) the contemporary 1935 Karl Popper’s Logic of Scientific Dis-
covery. NHST partially uses the Neyman-Pearson decision process ex-
cept that failing to reject the null hypothesis is treated as a ‘modest’
support for the null hypothesis (Gill, 1999).

Leaving aside problems related to some abuses and misinterpreta-
tions that can be partially corrected, the hybrid NHST suffers some
logical flaws that cannot be overcome:

1. Converse inequality argument or inverse probability problem: p-values
do not and cannot assess the strength of evidence supporting a hy-
pothesis or model. In fact, a p-value is simply the probability of
obtaining the result (data or evidence D ) if H0 were true, P H[ ],0D

while the researcher is interested in the probability of the null hy-
pothesis, P[H0], or the probability of the null hypothesis given the
data, P H[ ]0 D . Of course, in general, ≠P H P H[ ] [ ],0 0D D and they
are related by the Bayes theorem =P H P H P H P[ ] ( [ ] [ ])/ [ ]0 0 0D D D .
Interpreting p-values as P H[ ]0 D rather than P H[ ]0D corresponds
to switching, for instance, the statements: “(1) Most people who face
a firing squad die from bullet wounds, and (2) Most people who die
from bullet wounds have received them from a firing squad!”
(Beninger et al., 2012). The (flawed) logic of NHST is as follows: (i)
if H0 is true then the data are highly likely to follow an expected
pattern, (ii) the data do not follow the expected pattern, (iii)
therefore H0 is highly unlikely. This can translate to statements such
as: (i) if a person is an American then it is highly unlikely she/he is a
member of Congress, (ii) the person is a member of Congress, (iii)
therefore it is highly unlikely she/he is an American. In other words,
a low p-value, i.e. P[Congress|American], does not imply a low P
[American|Congress] (Pollard and Richardson, 1987; Gill, 1999).
Thus, p-value says nothing about the truth or otherwise of H0 or H1

or the strength of evidence for or against either one. In this respect,
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Neyman and Pearson were very clear “...as far as a particular hy-
pothesis is concerned, no test based on the (objective) theory of
probability can by itself provide any valuable evidence of the truth
or falsehood of that hypothesis” (Neyman and Pearson, 1933).

2. Substantive theories vs. statistical hypotheses: In hybrid NHST, the
statistical null hypothesis and the statistical alternative hypothesis
are written such that they are mutually exclusive and collectively
exhaustive. Therefore, if we accept the incorrect assumption that
one could reject H0 on the basis of a small p-value, then H1 is in-
ferred to be probably true since no other alternatives (besides H0

and H1) are logically possible (Levine et al., 2008). However, H1 can
result from multiple and conflicting substantive theories. For ex-
ample, local step changes in Fig. 1(a) and (b) can result from fluc-
tuations of a persistent process or the superposition of uncorrelated
random noise and a deterministic stepwise signal. Accepting a
substantive theory on the basis of results concerning a statistical
hypothesis relies on the formal fallacy of ‘affirming the consequent’
(i.e., ‘If p, then q; q; therefore, p’), which is the form of all scientific
inference aimed at supporting a theory by verifying its observational
consequences. Statistical hypotheses are numerical consequences of
the substantive theories, not their semantic equivalents
(Meehl, 1997).
It should be noted that Fisher did not distinguish between sub-
stantive hypotheses and statistical hypotheses (Gigerenzer et al.,
1989, p. 97). However, the p-value was intended simply as an in-
formal way to judge whether evidence is worthy of a second look
(Nuzzo, 2014), and ‘rejecting H0’ does not mean a categorical
adoption of the belief that it is false. In fact, according to Fisher, “in
learning by experience, ... conclusions are always provisional and in
the nature of progress reports, interpreting and embodying the
evidence so far accrued” (Fisher, 1935, p. 25). On the other hand,
Neyman and Pearson introduced their hypothesis test as a ‘rule of
behavior’ to make decisions accounting for possible consequences
“without hoping to know whether each separate hypothesis is true
or false” (Neyman and Pearson, 1933). In other words, both Fisher
and Neyman and Pearson were well aware of the fallacy of ‘af-
firming the consequent’ and the impossibility for inductive inference
to make conclusions about the truth or falsehood of a scientific
hypothesis. Statistical considerations alone cannot lead to a deci-
sion.

3. Classic NHST does not apply to exploratory studies: Most research
studies can be generally classified as either experimental or ob-
servational (Flueck and Brown, 1993). The major distinction is that
the former requires the ability of the scientist to control the prin-
cipal inputs in order to assess the effects on the outputs. Therefore,
studies of trends in hydro-meteorological variables can be classified
as observational because there is no scope for controlling the inputs
(e.g., the researcher cannot control the amount of rainfall), thus
making such studies more difficult to plan and analyze than ex-
perimental ones. Both experimental and observational studies
usually have three stages denoted as preliminary, exploratory, and
confirmatory, even if the third stage can or should actually aim to
falsify/disprove the scientific hypothesis, according to the so-called
‘modus tollens’ of deductive inference (i.e., ‘If p, then q; no q;
therefore, no p’) (Meehl, 1997). Leaving aside the preliminary stage
concerning general insights into questions about the research topic
(e.g., which measurements are useful and can be made, amount of
available or collectable data in the study period, etc.), exploratory
studies aim to define claims about foreseen or unforeseen relations
on the basis of a plausible conceptual model (i.e., a researcher’s
description of the process of interest) and appropriate scientific
evidence, whereas confirmatory studies are specifically defined
processes focused on replicating or disproving a result while mini-
mizing sampling and non-sampling errors (Flueck and Brown, 1993)
with small probability that results can come from causes different
from the tested theory.

Exploratory studies are flexible in their research of evidence (e.g.,
variables to be included), but this flexibility should not be confused
with a superficial treatment of the data and methods. Focusing on
data, analyses can rely on randomized or non-randomized samples.
NHST requires randomized samples as it involves three steps often
overlooked but fundamental: (i) the choice of the probabilities of
occurrence, α and β, of Type I and Type II errors (not only the sig-
nificance level α); (ii) random selection of only n samples from the
designed population, whereby n is related to the sampling dis-
tribution of the test statistic, α, and β, in order to guarantee the
desired test’s significance and power; and (iii) the test must be
performed only once. All these steps should be performed before
collecting data. Therefore, logical flaws apart, NHST yields ‘valid’
results only if these steps are followed, thus justifying the definition
of ‘design based’ inference. When the above steps do not apply,
NHST is out of context because of lack of a priori basis.
In the case of research related to ACC detection, for instance, “most
detection studies apply NHST to a sample of data, and determine
whether to reject the null hypothesis of zero trend in the atmo-
spheric variable under consideration” (Nicholls, 2001). These stu-
dies typically use all the available records and these data are far
from being randomly selected samples with size fulfilling the re-
quirements in terms of α and β (Prosdocimi et al., 2014). Moreover,
hydro-meteorological observations usually exhibit serial and spatial
correlation, and other properties that can be accounted for but make
the outcomes further uncertain. Based on the above remarks, it
follows that such studies fall in the non-randomized exploratory
family, thus excluding confirmatory tools such as NHST (assuming
that this is a logically coherent procedure), and requiring in turn the
use of split samples or future data subsets to provide confirmatory/
disproving information (Flueck and Brown, 1993). Moreover, in the
exploratory stage, one is really not interested in finding a statisti-
cally significant effect or trend (which can always emerge by in-
creasing the sample size) but in physically significant effects.

Assuming that one overlooks these aspects, how should the outcome
of NHSTs be interpreted? Rejection of H0 does not necessarily imply the
acceptance of H1, as the discrepancy of the observations from the
conditions corresponding to H0 can actually result from factors not
included in the formulation of H0 (e.g., larger variability due to lack of
independence) and different from H1. It is also less legitimate to accept
substantive hypotheses owing to the formal logic fallacy of ‘affirming
the consequent’. On the other hand, if H0 is not rejected, then this does
not mean that it can be concluded that H0 is true, but only that ex-
perimental evidence does not support the rejection of the null hy-
pothesis. Unfortunately, the intricacy of such reasoning is once again a
result of the hybrid nature of NHST. In fact, Fisher intended significance
tests as tools for screening situations worthy of deeper study (without
H1), while Neyman-Pearson hypothesis tests were proposed as rules of
action implicitly accounting for the consequences (quantified a priori
by α and β) of choosing between two competing alternatives.

Therefore, even overlooking logical flaws, trend NHSTs can only
reveal possible changes which are not compatible with random fluc-
tuations corresponding to very specific reference processes (e.g., in-
dependent and identically distributed (iid) random variables), thus re-
quiring further investigation. We can then extend to general trend
NHSTs what Busuioc and von Storch (1996) recommended for Pettitt
test: trend/change tests should be used not as tests but as mere tools for
preliminary screening. Small (large) values of the test statistics should be
taken as indications for possible upward or downward changes. Such
changes should be accepted as physically meaningful if they can be
related with a predictable process based on theoretical models (e.g.,
logistic models describing population growth under limited resources)
and/or well identified physical dynamics justifying causality (e.g., dam
building, river training, etc.).
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3.2. Hidden dependence: the limits of short time series and the role of
reference models

Once clarified what conclusions can(not) be drawn from trend
NHSTs and in which context, we can better discuss the role of persis-
tence in trend detection. The example in Section 2.1 shows that the
underestimation of persistence plays a key role and should be ac-
counted for. The estimation of Hurst parameter involved in Pettitt tests
adapted for fGn yields H values of 0.5 and 0.66, for the Nera River and
Velino River, respectively. However, while =H 0.5 is consistent with
the fact that the Nera River data are actually independent, the value

=H 0.66 underestimates the actual value 0.8 even though the estimator
is corrected for the bias by the method described in Appendix A. This
confirms that model identification under scarce observations (i.e. short
time series) is a difficult statistical task, subject to large uncertainty and
bias. Koutsoyiannis and Montanari (2007) have already investigated
this aspect showing that very long time series (thousands of observa-
tions) are required to correctly recognize fGn. Therefore, under-
estimation of persistence is an aspect that should not be overlooked
when using whatever trend NHST involving a correction procedure for
this property. Note that the underestimation of persistence might lead
to consider data approximately independent, and thus applying stan-
dard tests with no corrections. This choice can inflate the number of
detected significant deterministic trends.

One should also account for the underestimation of variance, which
is another well-known phenomenon related to the persistence of some
stochastic processes (e.g., Koutsoyiannis, 2011; Tyralis and
Koutsoyiannis, 2011; Koutsoyiannis and Montanari, 2015) arising from
the fact that the process stays in a given subset of the state space for
several time steps, thus requiring much time to explore the entire state
space. For example, even though the fGn time series in Fig. 1(j) has
theoretical unitary variance, its 100-size subsets have an average var-
iance equal to 0.9. Note that the larger uncertainty related to persis-
tence should not be confused with “the assumption of a deterministic
temporal change in the pdf (specifically, the second moment) of a
random process (evidently, from historical observations to future ana-
lysis period)” (Milly et al., 2015) (see Section 4 for further details). In
other words, persistence inflates the overall variance, which is larger
than that corresponding to the independent case. Of course, as for
persistence, estimating the variance from short time series can yield
substantial underestimation, with similar consequences on the outcome
of trend NHSTs (i.e., inflated number of detected deterministic trends).

Dependence is introduced in trend NHSTs to build a more realistic
H0 relaxing the assumption of independence in the iid model, whereas
deterministic trends relax the hypothesis of identical distribution in the
iid model in the H1 side. Since long-term patterns in finite samples can
result from (be effects of) both persistence and deterministic changes in
distribution, in trend NHSTs we attempt to compare two hypotheses
that can produce comparable effects, knowing a priori that they can.
Thus, why is dependence considered a ‘null’ condition, while determi-
nistic changes in distribution are assumed to produce an effect? The
difference between the two schemes is that the deterministic trends
require attribution whereas persistence is compatible with pure sto-
chastic processes, implicitly assuming that persistence provides a rea-
listic description of natural systems.

As mentioned above, NHSTs cannot tell us which model is the most
credible, and they cannot be used for such exploratory studies but only
in a confirmatory/disproving stage by using independent data and a
well-specified model reproducing properties that are unlikely to be
reproduced by other competitors. Therefore, in absence of physical
theory, both options (persistence and deterministic changes) are legit-
imate, but the main issue concerns their ability to describe variations in
the wider population. This is usually only achievable when there are
additional sources of data against which each model can be judged.

3.3. Distinguishing processes and time series: a matter of attribution

Often trend NHST is the first step to infer systematic changes of the
studied process over time and thus its nonstationarity, eventually jus-
tifying the adoption of nonstationary models. However, this procedure
is logically flawed, and the opposite should be done. Exploratory ana-
lysis should suggest a set of theories/models. These models should be
used to reproduce challenging properties of the observed data, and then
confirmatory/disproving analysis in terms of prediction should be ap-
plied. A successful model/theory can provisionally be retained until
disproved by further applications on new data. The common inversion
of reasoning is partly related to the confusion between processes and
time series.

The problem of contaminated data series with trends and seasonal
effects has been a matter of common experience for hydrologists. The
traditional way of dealing with such an issue is to produce a new time
series (the output of a certain filter or adjusting procedure) which re-
presents in some sense an estimate of what the real series would be if
the contaminating effect were absent. According to Jaynes (2003, p.
536): “Then choice of the ‘best’ physically realizable filter is a difficult
and basically indeterminate problem; fortunately, intuition has been
able to invent filters good enough to be usable if one knows in advance
what kind of contamination will occur”. When a data set is filtered
according to incorrect assumptions, detrending may introduce spurious
artifacts that distort the information that statistics and probability
theory could have extracted from the raw data; so, caution is advisable
especially with refined filters giving a false sense of reliability, whereby
this can come only from reasoned judgment. Hence, testing trends on
finite and short time series can easily be inconclusive and/or misleading
because of the intrinsic difficulty, if not impossibility, of detecting
nonstationarity (of a process) solely from data without exogenous in-
formation, as is discussed later (leaving aside the logical arguments
discussed above).

Let us suppose that a dam was built along a river, thus influencing
its regime according to the dam operation rules. If we know a priori the
existence of the dam, we do not need to perform a trend analysis be-
cause we already know that the flow regime has been changed by dam
construction; we can study how the dam impacted on specific char-
acteristics of the flow regime (i.e., the effect size), if this information is
not already included in dam design specifications. On the other hand, if
we do not have a priori information on the dam existence, trend NHST
can only tell us that some source of discrepancy from pure randomness
is present; however, this does not allow one to infer nonstationarity of
the underlying process without additional information identifying a
clear causality rule. In fact, as shown in Sections 2.1, 3.1, and 3.2,
multiple factors can generate such discrepancy in finite time series, and
trend NHST does not allow one to draw conclusions on the substantive
causes. In these circumstances we should propose a set of theories based
on plausible reasoning, develop suitable models, and compare their
prediction performance with independent observations. However, these
models will be credible only if they incorporate rules describing the
dynamics of the process (e.g., dam’s effects), thus making its evolution
predictable (i.e., river flow will follow a given regime until the dam
operates).

Therefore, without clear attribution via exogenous information,
trend NHST can only provide a generic indication that further in-
vestigation is required (according to the rationale of Fisher and
Neyman-Pearson original methodologies). In this respect, such attri-
bution cannot be vague or based on some kind of statistical analysis
affected by its own uncertainty, because what is needed is not some sort
of statistical correlation but a (substantive) causal physical relationship
that should be general and valid beyond the period of the observed
records. Therefore, even sophisticated regression models (e.g., GLMs,
GAMs, etc.) do not fulfill these requirements as they fall in the class of
analog models (Flueck and Brown, 1993) for which extrapolation is not
advisable (Cooley, 2013) and easily leads to physically inconsistent
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predictions (Serinaldi and Kilsby, 2015; Luke et al., 2017). Non-
stationarity requires the postulation of a law of temporal evolution of
the process, and this law should be based upon substantive hypotheses
in order to be general and valid for prediction of still unobserved data
(Poppick et al., 2017). Using the example of the dam, GLMs fitted on
the data can incorporate time dependent terms but these data-driven
regression laws do not say anything about the dam operation rules and
their effect, and their extrapolation in time is not supported by any
reasoned judgment about the causes of the observed patterns (are they
real or spurious? how will they evolve?). On the other hand, additional
information on the dam existence and operation and its mathematical
formalization can justify the introduction of nonstationary models (e.g.,
Ayalew et al., 2017). Thus, nonstationarity and corresponding mod-
eling strategies are allowed only if we make (a priori) assumptions
about the processes, and the causes of nonstationarity are clearly
identified and formalized via deductive reasoning about e.g., the effects
of a dam on the river regime. Nonstationarity cannot result from in-
ductive inference from data only, as the observed patterns can be the
effect of various unknown causes (persistence, nonlinearity, non-
stationarity, etc.), which cannot be discriminated in exploratory studies
or misusing questionable confirmatory tools.

It should be noted that these remarks are well-known in climatology
(Hasselmann, 1997), for instance, but seem to be overlooked in many
hydro-meteorological studies relying almost exclusively on trend
testing to draw conclusions. Indeed, according to Mitchell et al. (2001,
p. 700), “Detection is the process of demonstrating that an observed
change is significantly different (in a statistical sense) than can be ex-
plained by natural internal variability. However, the detection of a
change in climate does not necessarily imply that its causes are un-
derstood... from a practical perspective, attribution of observed climate
change to a given combination of human activity and natural influences
requires another approach. This involves statistical analysis and the
careful assessment of multiple lines of evidence to demonstrate, within
a pre-specified margin of error, that the observed changes are: unlikely
to be due entirely to internal variability; consistent with the estimated
responses to the given combination of anthropogenic and natural for-
cing; and not consistent with alternative, physically plausible ex-
planations of recent climate change that exclude important elements of
the given combination of forcings... Detection (ruling out that observed
changes are only an instance of internal variability) is thus one com-
ponent of the more complex and demanding process of attribution”.

These recommendations are fully general and not restricted to the
problem of ACC detection and attribution. They highlight the im-
portance of defining the magnitude of internal variability (space-time
covariance and dependence structure (Hasselmann, 1993; 1997;
Poppick et al., 2017)), which is a challenging task (as discussed in
Section 3.2 and further in Section 6), as well as the need of jointly using
deductive and inductive methods, and excluding other physically rea-
sonable explanations before arriving at a clear attribution.

4. Voces significant res mediantibus conceptis1: missing interpretant
generates a hiatus between sign and object

4.1. Stationarity

In the previous sections, we discussed some theoretical and practical
limits of trend testing, including the problems posed by the intrinsic
nature of the hydro-meteorological data, the misuse of confirmatory
tools in exploratory analyses, and the influence of dependence, as well
as the basis and logic of NHSTs and their interpretation. All these as-
pects raise serious questions regarding the actual information and
conclusions that can be drawn from trend NHSTs and exploratory stu-
dies relying on them. However, to better understand why

nonstationarity cannot be inferred from this analysis we need to go
back to basic concepts and definitions.

As the title of this section suggests, we put the emphasis on the
meaning of common terms in the context of trend testing, as the se-
mantics of those terms is often confusing in the literature. Although
there is ongoing debate about this issue (Koutsoyiannis and Montanari,
2015; Milly et al., 2015), we believe it is worth recalling and expanding
it, where necessary, because of its importance for correctly setting up
and interpreting data analysis. Unless stated otherwise, throughout this
paper we use upper case letters for random variables and lower case
letters for values, parameters, or constants.

Referring to Koutsoyiannis and Montanari (2015) for a rigorous
presentation of the formal definitions of stationarity and non-
stationarity, we recall that “... a stationary stochastic process in the
sense of Khinchin ... is a set of random variables Xt depending on the
parameter t, − ∞ < < +∞t , such that the distributions of the systems

…X X X( , , , )t t tn1 2 and …+ + +X X X( , , , )t τ t τ t τn1 2 coincide for any n, t1, t2, ...,tn,
and τ”. This definition has been translated in various ways such as:
“Stationarity means that hydrological variables fluctuate randomly
within an unchanging envelope of variability” (Bayazit, 2015), or “...
stationarity, or temporally stable probability distribution functions
(PDF),” (Rice et al., 2015). Even though such definitions are acceptable
in informal discussions, the actual meaning of Khinchin’s definition
merits some further discussion to avoid misunderstandings. Assuming
that t denotes time, Khinchin’s definition means that the n-dimensional
joint distribution of n random variables is identical independently of
their location along the time axis. However, since the mathematical
definition refers specifically to random variables Xt, the sets of reali-
zations …x x x( , , , )t t tn1 2 and …+ + +x x x( , , , )t τ t τ t τn1 2 are unavoidably dif-
ferent. By the way, Mandelbrot (1982) (p. 384) emphasized that:
“When mathematicians first encountered stationary processes having
extremely erratic samples, they marvelled that the notion of stationarity
could encompass such wealth of unexpected behavior. Unfortunately,
this is a kind of behavior that many practitioners insist is not sta-
tionary”.

So, the actual problem in inductive exploratory analysis of trends is
to understand if such fluctuations are consistent with a unique n-di-
mensional joint distribution or they come from different distributions.
Given the uniqueness of observed hydro-meteorological records and the
well-known uncertainty in making inference from very short time series
(the most common case in hydro-meteorology), the problem is chal-
lenging. In order to make the problem easier to treat, one often focuses
only on the first moments (actually, up to second order because of the
high uncertainty in estimating higher-order moments (Lombardo et al.,
2014)), thus introducing the concept of weak stationarity, where
Khinchin’s definition reduces to identity of population means E[Xi],
population variances Var[Xi], and population covariances over n time
steps independently of their location along the time axis.

4.2. Ergodicity

We cannot emphasize too strongly the clear distinction between the
population properties that are deduced logically from the theory and
the sample properties that are determined empirically from observa-
tions. Sample estimates are derived from time averages whose re-
lationship to the statistical parameters of the theoretical process must
be established only in the form of ergodicity. In order to highlight the
importance of ergodicity, it is worth recalling that a stochastic process
X(t, ζ) is a collection of time functions depending on the outcome ζ of an
experiment ,L or a collection of random variables over a parametric
support t (time, space, etc.) (Papoulis, 1991, pp. 285–286). Fig. 2 helps
to clarify these definitions. For a fixed outcome ζ* (i.e., a fixed co-
ordinate along the ‘Event space’ axis), X(t, ζ*) is a single time function
(or trajectory) describing a sample (or realization) of the given process.
One of these realizations can be the sequence of the truly observed
records, while the others are possible outcomes that did not occurred1 Signs correspond to objects through interpretants (Eco, 1976).
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but could. On the other hand, if t is fixed as t* and ζ varies, then X(t*, ζ)
is a random variable describing the state of the given process at time t*.
If both t and ζ are fixed, X(t*, ζ*) is a number, i.e. the specific value
assumed by the process at the specific time.

In real world applications, we often know only a single finite-size
sample of X(t, ζ) (e.g., a sequence of daily stream flow values between
year t and +t τ). So, a central problem is to infer the parameters of the
underlying stochastic process from such sample. This is possible only if
the process is ergodic, meaning that the time average of any (integr-
able) function g(X(t, ζ)) equals the true (ensemble) expectation E[g(X(t,
ζ))], as the size of the available sample tends to infinity (Papoulis, 1991,
pp. 427–428). Clearly, this is not possible if E[g(X(t, ζ))] depends on t.
Therefore, we must assume a stationary underlying process. Focusing
on the mean of the process, ergodicity implies that

∫∑= = =
→∞ →∞ =

+

−∞

∞
X t ζ

τ
x s ζ X t ζ xf x xlim ( , ): lim 1 ( , ) E[ ( , )] ( )d .

τ
τ

τ s t

t τ

obs obs
(1)

More generally, ergodicity allows the use of the empirical prob-
ability density function fobs

 (or f ,i
 f ,j
 etc.) of a sample of X(t, ζ) as an

estimate of the probability density functions fXi ( f ,Xj ...) of the random
variables X(ti, ζ) (X(tj, ζ), ...) describing the state of the process at time ti
(tj, ...). If a process is nonergodic, then statistical inference from data is
not allowed because sample averages, variances, and distributions are
not representative of their population counterparts. Moreover, we
should consider that stationarity is a necessary (but not sufficient)
condition to ergodicity of stochastic processes (Koutsoyiannis and
Montanari, 2015). Therefore, a nonstationary process is nonergodic;
thus, estimates from data are not representative of the process when we
claim nonstationarity. In fact, nonstationarity implies that the popula-
tion distributions f f, ,X Xi j and fXk in Fig. 2 are not identical to each

other, and thus fobs
 is no longer representative of any of them. In fact

“The histogram is assumed (at least implicitly) to be an estimate of the
marginal STATIONARY distribution. Note that second-order statio-
narity, or one of the other forms of weak stationarity, is not sufficient;
strong stationarity at least must exist for the special case of n = 1 (the
number of points, not the dimension of the space). If the random
function is not stationary, at least to this extent, then the histogram is
not an estimate of a distribution related in a known way to the random
function” (Myers, 1989). Similarly, if f f, ,X Xi j and fXk have different
moments (e.g., mean and/or variance changing in time), the empirical
sample moments are not representative of any of these local population
moments.

This can be surprising in light of the extensive use of nonstationary
models such as GLMs and GAMs with time-dependent parameters in

hydro-meteorological frequency analysis, for instance. Of course, the
problem is not about these models by themselves, but their misuse. In
fact, these models actually fit local trends (observed in the period of
record) that can be due to multiple factors (anthropogenic activity,
persistence, nonlinearity, etc.), which in turn cannot be identified by
data alone. Moreover, they are often justified owing to the better per-
formance compared with iid versions (which are not challenging com-
petitors), and overlooking more realistic options that can yield patterns
close to the observed ones. Nonstationary models are legitimate when
there is additional information on the cause of time-dependent beha-
vior. The identification of the cause of local trends is paramount for
extrapolation in order to be sure that the nonstationary effects continue
beyond the period of record. Without this additional information,
prediction based on pure data-driven time-dependent patterns easily
yields physically inconsistent results when extrapolating into the future
or past (Luke et al., 2017; Serinaldi and Kilsby, 2015; Villarini et al.,
2009b). Actually, low reliability and high uncertainty in predictions of
evolution of nonstationary patterns might be an index of the little
evidence supporting the nonstationary choice (Serinaldi and
Kilsby, 2015).

4.3. Nonstationarity

At this point, a definition of nonstationarity is required. In order to
illustrate nonstationary processes, Koutsoyiannis and Montanari (2015)
considered the decomposition = +X d ,t t tE where tE is a stationary
stochastic process and dt is a deterministic function of time dt≡ d(t).
Milly et al. (2015) proposed a similar representation, namely,

= +X a b ,t t t tE where at and bt are deterministic and tE is stochastic. We
slightly generalize the decomposition suggested by Koutsoyiannis and
Montanari (2015) as follows

= +X dG[ ] G[ ],t t tE (2)

where G[ · ] is a generic operator (some examples are given below).
According to Koutsoyiannis and Montanari (2015), a deterministic

function of time is “precisely known and perfectly predictable”meaning
that a system input corresponds to a single system response, contrasting
stochastic dynamics where a single input could result in multiple out-
puts. Since every inductive analysis based on observed data is always
affected by uncertainty, a deterministic function cannot be inferred
from the data only, but it should result from deductive reasoning and be
validated by data which were not used in the model construction. No-
tice that this definition is consistent with the idea which became famous
as Laplace’s demon, i.e. the classical definition of strict physical

Fig. 2. Explanatory sketch of a stochastic
process X(t, ζ). For a given outcome ζ* of an
experiment, the trajectory X(t, ζ*) denotes a
sample of the process. For example, the ‘obs’
case refers to a possible observed time
series, while the other patterns are alter-
native samples associated with other pos-
sible results of the experiment. For fixed t*,
the set of values along the ‘Event space’ axis
describe the state space of a random vari-
able X(t*, ζ), i.e. the given process at time t*.
For fixed t and ζ, bullet points denotes the
specific value assumed by the process at a
specific time. f ,obs

 f ,i
 f ,j
 f ,k
 and fl are the

empirical probability density functions of
various samples of X(t, ζ) corresponding to
some given values of ζ, while f ,Xi f ,Xj and

fXk are the probability density functions of

the random variables X(ti, ζ), X(tj, ζ), and X
(tk, ζ) describing the state of the process at
time ti, tj, and tk, respectively. See
Section 4.2 for further details.
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determinism. According to Laplace, the demon is indeed a superhuman
intelligence that could know and model all details of the universe to
infinite precision: “for such an intellect nothing would be uncertain and
the future just like the past would be present before its eyes”
(Laplace, 1814). In other words, if all changes in nature are expressible
through mathematical functions of time, complete and precise knowl-
edge of the initial conditions at a certain moment allows one to per-
fectly predict the conditions at all later (and earlier) times.

However, predictability and determinism are also easy to disen-
tangle in practical applications. As shown in many studies on de-
terministic chaos, the approximate character of scientific knowledge
renders dynamical systems unpredictable even though they are fully
governed by underlying deterministic laws (Sivakumar, 2016;
Yevjevich, 1974). Actually, determinism is a matter of spatio-temporal
scales; in fact, even if the process (i.e., vector function representing the
deterministic dynamics) is perfectly known, perfect predictability be-
yond a given temporal horizon can completely be lost owing to very
small uncertainty in initial conditions (Berliner, 1992; Koutsoyiannis,
2010; Lorenz, 1963) that is magnified by possible nonlinearity leading
to emergence of (deterministic) chaotic behavior (e.g., von Storch and
Zwiers, 2003, pp. 1–2). While chaos theory explains unpredictability of
a deterministic system in practice, Laplace’s demon assumes perfect
predictability under ideal, complete and precise knowledge of the
system (including initial conditions). Therefore, the two ideas are
compatible with each other, as already recognized by Laplace himself,
who wrote “All these efforts in the search for truth tend to lead it
(human mind) back continually to the vast intelligence which we have
just mentioned, but from which it will always remain infinitely re-
moved” (Laplace, 1814).

The decomposition in Eq. (2) is a rather general description of
nonstationarity. In fact, if G[ · ] is the identity operator, Eq. (2) de-
scribes the (simplest) decomposition of the process itself, = +X dt t tE .
If G[ · ] is the expectation, we have = +X dE[ ] E[t t tE ], referring to a
process that is nonstationary in mean (first moment). When G[ · ] de-
notes the variance, then = +X dVar[ ] Var[t t tE ], describing a process
whose variance depends on a deterministic function of time, such as the
Brownian motion (Bm) with Var[Xt]∝t. In other words, nonstationarity
implies that the distribution of the system …X X X( , , , )t t tn1 2 depends on
time by a deterministic function, which can however refer to one or
more characteristics of the distribution (e.g., mean, variance, higher-
order moments, autocorrelation, etc.). For Bm, as well as fractional Bm
and autoregressive integrated moving average processes (ARIMA),
nonstationarity refers to deterministic functions of statistical moments,
and inference is performed on the increment process

= + −Y t X t X t( ) ( 1) ( ) because taking the first difference yields a sta-
tionary process by removing the dependence of the moments on time.
Whatever is the specific form of nonstationarity (in mean, variance,
etc.), statistical inference (e.g., calculation of moments) only applies to
a corresponding stationary process obtained by suitable transforma-
tions (e.g., differencing) under the assumption that the original process
has a specific form of nonstationarity. However, without an attribution
identifying the source of the deterministic dependence on time, non-
stationarity cannot be claimed from the data only. Claiming non-
stationarity (i.e., the existence of a deterministic function of time for
some statistical properties of Xt) on the basis of the outcome of NHSTs
such as MK, Pettitt, or unit root NHSTs such as Dickey and Fuller (1979)
and Kwiatkowski–Phillips–Schmidt–Shin (Kwiatkowski et al., 1992) is
simply not possible owing to the problems discussed in Section 3 and
the definitions given above.

4.4. What is a trend?

We argue that some widespread misconceptions concerning trend
detection and attribution result from a lack of definition of ‘trend’.
Thus, attempting a reasonable definition and opening the debate about
this point seems useful. First of all, the concept of trend should be

related to nonstationarity. This seems a reasonable assumption, as we
are not interested in local but long-term patterns spanning for instance
the entire series of records and resulting from e.g. persistence of un-
derlying stationary processes. In this case, the stochastic nature of
persistent (quasi-periodic or monotonic) patterns make their magni-
tude, onset, and end unpredictable, and a pure stochastic stationary
description is sufficient. Thus, we should conclude that a trend of true
interest (which is the focus of the largest part of hydro-meteorological
literature on the topic) should strictly be related to a form of non-
stationarity.

If so, recalling Khinchin’s definition of stationarity and the discus-
sion in Section 4.3, a stochastic process has a trend if one or more of its
statistical properties vary in time according to a deterministic law of time
dt . The function dt can be monotonic, non-monotonic, periodic, and can
refer to the average, variance, or other statistical properties of the
process (see Section 4.3). In this respect, there is no difference, for in-
stance, among (i) trends defined as smooth, long-range changes in some
moment/parameter of the time-varying distribution (as used e.g., in
GLM/GAM modeling), (ii) stochastic trends captured by random walk-
type processes (i.e., Bm, fBm, ARFIMA, etc.), or (iii) trend described by
physical equations in processes involving stochastic differential equa-
tions or different types of physical-statistical models. In all of these
cases, for the parameters of GLMs/GAMs, for the variance of Bm and
fBm processes, and for the specific characteristics described by the
physical part of physical-statistical models, there is a function dt ac-
counting for deterministic time-dependent evolution of the system.
Concerning dt, a misconception widespread in GLM/GAM-based hy-
drological frequency analysis is the belief that replacing t with other
variables makes the model nonstationary. This is true only if such
variables are themselves nonstationary, and thus time-dependent ac-
cording to a well-defined function. Replacing t with teleconnection
indices (e.g., North Atlantic Oscillation index) or other variables
showing clear stochastic behavior simply yields stationary doubly sto-
chastic models.

If a trend is identified with the existence of a deterministic function
of time dt, and thus with nonstationarity, remarks on detection and
attribution provided in Section 4.3 apply, and in particular we should
exclude the possibility to make inference from data only. For example,
seasonal cycles are forms of dt resulting from a fundamental deductive
reasoning (exogenous information) concerning planetary dynamics and
corresponding mathematical theory. This deductive step allows for the
choice of inference tools and then a quantitative evaluation of seasonal
components from data for each specific case. Seasonal cycles are pre-
dictable with negligible uncertainty as we are almost sure of the oc-
currence of equinoxes and solstices in the next decades or even cen-
turies, unless the occurrence of unpredictable catastrophic events acting
at the solar system or galaxy scale. Here, lack of uncertainty refers to
the existence of the seasonal dt, and not to its contingent parametriza-
tion, which varies in each specific case.

Under these premises, introducing other forms of trend should rely
on the same approach, merging deductive and inductive reasoning. For
example, a commonly used approach of comparing nested models with
time-varying and constant parameters by using some performance cri-
terion is not enough if the time-dependent function dt does not result
from deductive reasoning, but results from simple fitting procedures. In
these cases, higher parametrized (time-dependent) models might
simply account for local apparent trends, giving very poor performance
in prediction owing to lack of identification of substantial causes acting
beyond the period of record (Serinaldi and Kilsby, 2015).

Trends of interest in hydro-meteorology are often monotonic or low-
frequency type spanning over the period of record (possibly related to
anthropogenic activity). We argue that ‘frequency’ is actually the main
difference between seasonal trends and other forms of deterministic
time-dependent trends. Seasonal trends look like monotonic or half-
wave trends if the focus is on sub-annual time windows, because the
process is not fully developed at such a time scale, and one cannot

F. Serinaldi et al. Advances in Water Resources 111 (2018) 132–155

141



retrieve signal components with frequencies lower than half period of
record, as described by the Nyquist–Shannon sampling theorem.
Therefore, even the use of effective filtering methods such as singular
spectrum analysis, wavelet analysis, or empirical mode decomposition
cannot help in trend identification if we are not able to arrive at a clear
attribution of the patterns described by the lowest frequency compo-
nents resulting from filtering.

Being a form of nonstationarity or its expression, trends are allowed
only if they rely on exogenous knowledge involving theoretical argu-
ments or empirically well-defined processes (in agreement with
McCuen (2003)). Without such an additional information, trends
cannot be inferred from the data only, because they refer to the un-
derlying process …X X X( , , , )t t tn1 2 and not to its realizations

…x x x( , , , )t t tn1 2 (i.e., observed time series; in agreement with the starting
point of Chandler and Scott (2011)). Without attribution to unique
substantive cause and exclusion of any other possible cause, exploratory
tools, filtering, or model selection can only highlight local (low-fre-
quency, persistent) fluctuations but they do not allow one to make
conclusions on stationarity or nonstationarity. This is in agreement with
von Storch and Zwiers (2003) (p. 9) who stated: “Trends in the large-
scale state of the climate system may reflect systematic forcing changes
of the climate system (such as variations in the Earths orbit, or in-
creased CO2 concentration in the atmosphere) or low-frequency in-
ternally generated variability of the climate system. The latter may be
deceptive because low-frequency variability, on short time series, may
be mistakenly interpreted as trends. However, if the length of such time
series is increased, a metamorphosis of the former ‘trend’ takes place
and it becomes apparent that the trend is a part of the natural variation
of the system”. These remarks are general and hold true not only for
climate but also in every context exhibiting large uncertainty about the
number, type, and effect of the acting physical processes.

Based on the discussion above, we can then provide an un-
ambiguous definition of trend as: time-dependent deterministic and
therefore predictable change dt of the properties of a process Xt, where
the term “deterministic” implies prediction variance equal to zero (one-
to-one relationship). This definition highlights that trends (and non-
stationarity) refer to the underlying process, and attempting to infer
nonstationarity requires both detection and attribution based on a
combination of deductive reasoning, which supports and justifies the
existence of a time-dependent deterministic function (i.e., trends and
nonstationarity) and inductive reasoning, which provides (i) pre-
liminary knowledge by exploratory data analysis, and (ii) quantifica-
tion/parametrization of dt by confirmatory/disproving analysis and
modeling. We stress that ‘prediction variance equal to zero’ does not
refer to the specific parametrization of dt but its existence and its overall
evolution. For example, the parametrization of seasonal trends (com-
ponents) obviously varies even for the same process observed at dif-
ferent locations, but the existence of the seasonal cycle and its effects in
terms of alternation of wet/dry and cold/warm conditions along the
calendar year are predictable with (almost) no uncertainty. Other forms
of trend/nonstationarity are allowed only if they are supported by the
same kind of deductive and inductive arguments.

5. Trend and abrupt change tests: an overview of overlooked
critical aspects in practical applications

In this section, we discuss some problems concerning the practical
application of two NHSTs for trends, i.e. the Mann-Kendall (MK) (Mann,
1945; Kendall, 1970) and Pettitt tests (Pettitt, 1979). The following
remarks apply under the assumption that we disregard logical argu-
ments in Sections 3 and 4, still apply these tests for exploratory analysis,
and use them to make conclusions on trends/nonstationarity.

Among many available statistical testing procedures devised for
assessing the significance of a change (e.g., Kundzewicz and
Robson, 2004), the MK and Pettitt tests are widely used rank-based
nonparametric tests to check the presence and timing of slowly-varying

and abrupt changes in the mean or median of hydro-meteorological
variables such as rainfall, runoff, and temperature (e.g., Villarini et al.,
2009a; 2011b; Ferguson and Villarini, 2012; Rougé et al., 2013;
Tramblay et al., 2013; Guerreiro et al., 2014; Sagarika et al., 2014; Rice
et al., 2015; 2016; Mallakpour and Villarini, 2015; 2016; Ahn and
Palmer, 2016; Archfield et al., 2016; Do et al., 2017, among others).

The popularity of these tests is related to their simplicity in terms of
implementation, their robustness against outliers or measurement er-
rors (as they are rank-based), and the availability of exact or asymptotic
distributions of their test statistics under null hypothesis {H0: no trend/
no change} and independence, i.e. iid conditions. Moreover, being
based on the so-called Mann-Whitney statistic, the Pettitt test and the
MK test are formally related to each other, thus highlighting that dis-
tinguishing between slowly-varying and abrupt changes is only a matter
of scale and time of evolution of the change (Rougé et al., 2013;
Serinaldi and Kilsby, 2016a).

Even though these tests are used to check changes in the mean or
median, the first myth to dispel is that MK and Pettitt tests are devised
to detect changes in the central tendency summary statistics. They ac-
tually check a wider hypothesis called stochastic ordering. Given a se-
quence of random variables = …X{ } ,i i n1, , with cumulative distribution
functions Fi, MK checks against the alternative hypothesis

≷ +H F x F x: ( ) ( ),i i k1 for every i, every x, and every k>0 (Mann, 1945),
while Pettitt checks against ≷H F x F x: ( ) ( ),1 b a where Fb (Fa) is the
common distribution of the m ( − −n m 1) random variables before
(after) the change point (Pettitt, 1979). Therefore, even though these
hypotheses are commonly restricted to a shift in the location parameter,
these tests are sensitive to all possible conditions resulting in stochastic
ordering (Serinaldi and Kilsby, 2016a).

Based on the above belief, when a change point or a monotonic
trend is detected, often the magnitude of the abrupt change is quanti-
fied by the difference in mean or median between the sub-series before
and after the change, while the trend by the so-called Sen’s slope (e.g.,
Khaliq et al., 2009b; Rice et al., 2015; 2016; Nilsen et al., 2016;
Tananaev et al., 2016). In light of the actual nature of MK and Pettitt
tests, such quantification is not justified, especially for MK. In fact, even
if we assume that MK only checks for changes in mean/median, it refers
to monotonic changes that can be linear or nonlinear (stepwise, S-
shaped, or abrupt as a limiting case) resulting from more general
changes in the overall shape of the distribution. Of course, the choice of
linear trends reflects practical requirements; indeed, assuming more
complicated (higher-parametrized) patterns can be unjustified for
usually short time series because of the additional uncertainty affecting
the estimation. Since Sen’s estimator for the slope of a linear trend is
rank-based (nonparametric), it is considered more robust than classical
mean square error (MSE); however, its nonparametric nature does not
make it more coherent with MK outputs than MSE estimates of linear
trends. Even though the need of quantifying a possible change is un-
derstandable, reducing the indication of possible monotonic trends
given by MK to that of a linear trend is too restrictive, and does not
reflect the rationale and outcome of MK test. Since perfectly linear
trends rarely describe realistic evolution patterns of complex hydro-
meteorological processes (even under actual deterministic forcings),
such a kind of quantification should be at most purely qualitative, and
possibly avoided in order to provide a correct communication. In any
case, it cannot be considered an actual trend in light of discussion on
detection and attribution in Section 4.4.

Of course, trend tests can only detect inhomogeneities within the
time interval covered by the observed records. This also explains why
they cannot be used to infer nonstationarity: stationarity is a property
of the theoretical process Xt, for − ∞ < < +∞t , and concerns the
identity of population statistical properties for every subset of random
variables in every point of the time line, while trend tests can only
check possible changes in finite and usually short time windows where
observed fluctuations might easily be spurious. Since we cannot ex-
trapolate conclusions beyond the period of records without identifying
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a deterministic and predictable cause of such inhomogeneities, the
outcome of trend tests cannot be used to justify the application of
nonstationary models for frequency analysis. Such a usage is in-
appropriate and might lead to unrealistic predictions (Serinaldi and
Kilsby, 2015).

The previous remarks have important consequences on the proce-
dures used to account for the effects of the temporal correlation. The
effect of the autocorrelation on tests devised for independent data is a
general increase of the rejection rate of the null hypothesis {H0: no
trend} of the statistical test, even if the underlying process is stationary.
This is due to the information redundancy that makes the effective
sample size smaller than the observed size, thus implying that the ef-
fective variance of the test statistics to be used in the testing procedure
under serial dependence is larger than that provided by standard results
obtained under the hypothesis of independence (e.g., Bayley and
Hammersley, 1946; Koutsoyiannis and Montanari, 2007). This phe-
nomenon is known as variance inflation and has been accounted for
using three general approaches: the explicit calculation of the inflated
variance (e.g., Hamed and Rao, 1998; Koutsoyiannis, 2003; Matalas
and Sankarasubramanian, 2003; Yue and Wang, 2004; Hamed, 2008;
2009b), prewhitening procedures (e.g., Katz, 1988; Kulkarni and von
Storch, 1995; von Storch, 1999; Yue et al., 2002; Yue and Wang, 2002;
Bayazit and Önöz, 2007; Hamed, 2009b), and bootstrap techniques
(Khaliq et al., 2009a; Kundzewicz and Robson, 2004).

Referring to Khaliq et al. (2009b) and Bayazit (2015) for a review,
we focus on some aspects that are generally overlooked:

1. Firstly, all tests involving the iid hypothesis should be corrected for
the effect of autocorrelation. Neglecting this aspect might lead to
contradictory results further discussed in Section 6.3.

2. Since some procedures involve trend removal (e.g., Yue et al., 2002;
Hamed, 2008), this is usually supposed to be linear. As mentioned
above this choice is understandable from a practical point of view
but less defensible if it is interpreted as a deterministic evolution of
some physical (hydro-meteorological) process. Linear trends cover a
very limited subset of the actual hypothesis tested by MK and Pettitt
tests as well.

3. The procedures proposed in the literature consider corrections based
on the autocorrelation values estimated on the data themselves. This
poses two problems: (i) for short time series, autocorrelation is
generally underestimated (e.g., Koutsoyiannis, 2003; Koutsoyiannis
and Montanari, 2007), where the bias is larger if the underlying
process exhibits long range dependence (LRD); thus, when the cor-
rection procedure involves a specific dependence structure (often
Markovian), autocorrelation should be adjusted (see Serinaldi and
Kilsby (2016a) and Appendix A); and (ii) it is taken for granted that
the dependence structure of the underlying process can be retrieved
by the analyzed summary statistics (usually, annual minima,
averages, maxima, etc.). The point (ii) is subtle but critical; in fact,
the behavior of summary statistics can be strongly influenced by the
nature of the underlying process; for example, processes with LRD
yields maximum values over blocks of observations that tend to
cluster in time (e.g., Bunde et al., 2005; Eichner et al., 2011). This
results in apparent trends in terms of frequency and magnitude if the
analysis relies on short series of such maxima, even though these
summary statistics might easily show no or very weak autocorrela-
tion. Since this behavior is found in stream flow time series
(Serinaldi and Kilsby, 2016c), we show in the case study that it
might have a dramatic effect on trend NHST outcomes.

4. In some cases, correction procedures are flawed, failing to provide
any adjustment. As an example among others, the so-called trend-
free prewhitening (TFPW) (Yue et al., 2002) was shown to be the-
oretically flawed (Serinaldi and Kilsby, 2016a), as its original ver-
sion does not address the variance inflation problem, which can be
even exacerbated. Since it has been widely applied thanks to its
relative simplicity, results of several analyses reported in the

literature should be taken with great care and possibly revised.

Two aspects characterizing several published trend analyses based
on NHST need to be mentioned: (i) the correctness of applied tests (or
methodology in general) is almost always taken for granted, while a
preliminary check of their performance under H0 (controlled condi-
tions) should be performed (by simulation) before their application,
especially if the tests were not developed by statisticians and result
from some empirical reasoning without a necessary mathematical proof
(as shown for the hybridization of Fisher and Neyman-Pearson methods
in Section 3); (ii) empirical results are often interpreted without the
necessary rigor, thus resulting in misleading conclusions, confusing
artifacts with meaningful results.

6. Case study

In this section, we investigate the consequences of the above dis-
cussion on data analysis and its interpretation. To this aim, we use data
already analyzed in the literature to show how results and conclusions
can remarkably change if we account for logical, methodological, and
practical issues discussed in previous sections. Note that our analysis is
not exactly a study of reproducibility because data and some methods
are not precisely equal to those applied in previous studies. However,
the use of MK and Pettit is justified for sake of comparison with pre-
vious studies, and key general results are reproduced and then com-
pared with new findings relying on more realistic null hypotheses.

6.1. Observational data

Long term trends in stream flows over the conterminous United
States (CONUS) have been extensively studied. Referring to
Sagarika et al. (2014) for a recent review, we recall that the past studies
focused on various summary statistics and/or data sets, including peak
discharge records (Barrett and Salis, 2016; Hirsch and Ryberg, 2012;
Lins and Cohn, 2011; Mallakpour and Villarini, 2015; Villarini et al.,
2009a; Villarini and Smith, 2010; Villarini et al., 2011a; Vogel et al.,
2011), monthly data (Kalra et al., 2008; Lettenmaier et al., 1994), and
mean daily observations (Ahn and Palmer, 2016; Lins and Slack, 1999;
McCabe and Wolock, 2002; Rice et al., 2016; 2015; Sagarika et al.,
2014). The interest for such an area is not only practical, but is also
related to the great variety of hydrologic regimes/conditions across
CONUS, as well as the availability of data and metadata, which allow
for more accurate studies than in other parts of the globe.

Since the trend analysis described below (Section 6.2) requires both
daily data and summary statistics (i.e., maxima or averages) on a sea-
sonal and annual basis, in this study, mean daily flow records are used.
The data set is extracted from the Hydro-Climatic Data Network
(HCDN-2009) (Lins, 2012), which comprises 743 stations maintained
by the U.S. Geological Survey (USGS). HCDN-2009 is a subset of the
wider USGS GAGES-II (Geospatial Attributes of Gages for Evaluating
Streamflow, version II) reference stations providing geospatial data and
classifications for 9 322 stream gages. HCDN-2009 provides a stream
flow data set suitable for analyzing hydrologic variations and trends in
a climatic context, as it includes quality-controlled time series from
stations that were screened to exclude sites where human activities or
other activities affect the natural flow, and with sample size sufficiently
large for analysis of patterns in stream flow over time (Lins, 2012). A
list of HCDN-2009 stations along with basic attributes can be found at
the web site http://water.usgs.gov/osw/hcdn-2009/, while the data set
is freely available at http://waterdata.usgs.gov/nwis/sw.

This study focuses on 250 stations having continuous and simulta-
neous observations with no missing values between the water years
1951 and 2011 included (i.e., October 1950 to September 2011).
Following Sagarika et al. (2014), the data set comprises only one station
on a particular stream within each U.S. hydrologic unit code (HUC), to
reduce spatial bias in the results. Moreover, even though some stations
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have continuous data spanning longer periods, we selected only si-
multaneous data from 1951 to 2011 to guarantee temporal homo-
geneity and to allow some remarks on spatial correlation discussed later
in Section 6.3. For seasonal analysis, seasons are defined as autumn
(October–December), winter (January–March), spring (April–June),
and summer (July–September).

6.2. Methodology

6.2.1. Testing local significance
In this study, possible slowly-varying trends and abrupt changes of

some stream flow properties are analyzed by MK and Pettitt tests in four
different settings:

1. Classical versions devised for independent random variables.
Hereinafter they are denoted as ‘standard MK’ and ‘standard Pettitt’.

2. A corrected and unbiased TFPW (TFPWcu) version of both tests
accounting for first-order autoregressive AR(1) dependence (i.e.,
classic Markovian dependence) and bias correction for ACF under-
estimation (denoted as AR(1)-TFPWcu MK and AR(1)-TFPWcu
Pettitt). TFPWcu procedure is applied to show that a correct TFPW
procedure yields results different from those of the classical setting,
highlighting that the similarities of results often recognized in the
literature are actually artifacts (see Section 5). The reader is referred
to Serinaldi and Kilsby (2016a) for further details.

3. A prewhitening version accounting for fGn dependence proposed by
Hamed (2008) for MK test and adapted by Serinaldi and Kilsby
(2016a) for Pettitt. This version allows one to account for long range
dependence (LRD) and improves the original prewhitening proce-
dure by introducing bias corrected estimates of the Hurst parameter
H (characterizing the fGn ACF) based on the formulas provided in
Appendix A. These tests are denoted as fGn-CPW MK and fGn-CPW
Pettitt, where CPW indicates ‘conditional prewhitening’, meaning
that the prewhitening procedure is applied only if H is found sig-
nificantly different from 0.5 at the 5% significance level. These
versions are detailed in Hamed (2008) and Serinaldi and Kilsby
(2016a).

4. The last version is based on Monte Carlo simulation of daily stream
flow sequences in order to check the impact of daily dynamics on
the annual/seasonal statistics and trend test outcomes. This way, we
introduce a more realistic null scenario in terms of dependence
structures that is built by exploiting the whole available information
instead of few tens of annual/seasonal summary statistics. In more
detail, each daily stream flow time series is deseasonalized (fol-
lowing the procedure described by e.g., Serinaldi and Kilsby (2016c)
and Serinaldi and Kilsby (2016b)), and residuals are resampled by
the iterative amplitude adjusted Fourier transformation (IAAFT)
method (Schreiber and Schmitz, 1996; Kugiumtzis, 1999; Schreiber
and Schmitz, 2000; Venema et al., 2006a; 2006b; Serinaldi and
Lombardo, 2017), which allows for simulation of surrogate data
preserving almost exactly the empirical distribution function and
power spectrum (ACF) of the observations. IAAFT surrogates are
stationary (Franzke, 2013) by construction because of randomiza-
tion of Fourier phases. Combining surrogate residuals and seasonal
components yields synthetic daily stream flow time series under the
null hypothesis preserving almost exactly both the marginal dis-
tribution and correlation structure of the observed ones. Small dis-
crepancies in marginal distributions do not matter as the used trend
tests are rank based. Therefore, summary statistics of interest (here,
averages and maxima on a seasonal and annual basis) are extracted
and standard MK and Pettitt tests are applied. The procedure is re-
peated many times to obtain the sampling distribution function of
MK and Pettitt test statistics accounting for the dependence prop-
erties of the daily process under stationary conditions. In other
words, our new null hypothesis is ‘observed trends in annual/sea-
sonal values are consistent with patterns coming from a stationary

daily process with given (observed) marginal distribution and de-
pendence structure’.

6.2.2. Testing field significance
When data from multiple stations are analyzed, one can ask whether

the results imply that there is a significant effect when considering the
entire group of stations, i.e. the so-called field significance (Daniel
et al., 2012; Katz and Brown, 1991; Livezey and Chen, 1983; Wilks,
1997; 2006). This recognizes that, when performing multiple tests, it is
more likely to detect significant changes by chance. This probability
increases if the data are spatially correlated. In this case, spatial cor-
relation acts similarly to temporal correlation, introducing information
redundancy owing to possible similar patterns across spatially corre-
lated sequences. Referring to Khaliq et al. (2009b) for an overview of
methods to treat field significance, we recall that they fall in two ca-
tegories (Daniel et al., 2012). One controls the false discovery rate
(FDR, i.e., the expected fraction of local null hypothesis rejections that
are incorrect) (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001) and is nearly equivalent to the Walker test (Fisher,
1929; Katz, 2002; Wilks, 2006). The other relies on counting the
number of rejections at local level and then comparing these values
with the selected critical values obtained from the empirical distribu-
tion of number of rejections resulting from bootstrap procedures pre-
serving (approximately) spatial or spatio-temporal correlation (Khaliq
et al., 2009b; Wilks, 1997).

Daniel et al. (2012) highlighted that the choice of method depends
on the spatial nature of the studied effect (e.g., trend). If it is expected
that the effect is widespread (local), it would be preferable to use the
count-based (FDR approach), while a combination of both approaches
could be applied if there is no a priori expectation. In this study, we
focus on the Walker test because (i) it is easy to implement and robust
to cross correlations (Khaliq et al., 2009b; Wilks, 2006), and (ii) the
counting method requires intensive and different simulation procedures
for IAAFT-based trend tests and the other tests (Standard, AR(1)-
TFPWcu, and fGn-CPW). We recall that the Walker test consists of
comparing the smallest of p-value corresponding to the test statistics
computed on k time series with the critical value

= − −p α1 (1 ) k
W global

1/ : the global null hypothesis {H0: no global
trend} may be rejected at the a global level αglobal if the smallest of k
independent local p-values is less than or equal to pW (Wilks, 2006).
The counting method is only applied to check the variability of field
significance for the lag-1 ACF term ρ1, and the Hurst coefficient H in the
series of annual/seasonal summary statistics (see Khaliq et al., 2009b,
p. 121, for a detailed description). All tests are performed at the 5%
local and global significance level.

6.3. Results

6.3.1. Temporal dependence of maximum and mean flows
Given the influence of autocorrelation on detection of possible

trends, the dependence structure of annual and seasonal maximum and
mean flows are preliminarily investigated. Owing to the limited sample
size of such a type of data, only parsimonious models such as AR(1) and
fGn are usually considered, even though the latter would require very
long time series for a reliable inference. Figs. 3 and 4 show the spatial
distribution of the sites where ρ1 and H are found to be locally and
globally significant, along with the sites where both models are locally
significant. Global significance is assessed at the HUC scale. Of course,
the number of sites showing possible significant persistence are higher
for mean values than for maxima owing to the higher variability of the
latter. No particular spatial patterns are evident.

These results are not surprising if we consider the persistence of the
underlying flow process and recognize that maxima are values sampled
from the daily process, while mean values result from averaging all
daily data in each season or year. Nonetheless, Figs. 3 and 4 allow some
methodological remarks. When we test significance for ρ1 and H, we are
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implicitly assuming an underlying model (AR(1) or fGn) as alternative
hypothesis H1; this implies that the estimates should be corrected ac-
cordingly for possible bias. For example, testing ρ1 under the assump-
tion that the underlying process is fGn requires a bias correction pro-
cedure different to that used under the assumption of AR(1) process.
This aspect is often neglected and ρ1 is commonly tested using biased
estimates yielded by default estimators working under iid assumptions
(Koutsoyiannis, 2016).

Another remark concerns the output of the Walker test and counting
method for global significance. When the two approaches yield different
results, the Walker test tends to identify more areas with significant re-
sults; according to the nature of the Walker test (which is sensitive to local
effects), in some of these cases, field significance results from a single
locally significant station falling in the HUC area, especially if the number
of stations in that area is small. Daniel et al. (2012) provided some insight
into selecting suitable sub-regions to assess field significance. To avoid

bias, sub-regions should be identified a priori (before performing the
analysis) and domain limitation should be made as a result of some phy-
sical insight. In this respect, HUCs are a credible choice. However,
Daniel et al. (2012) also stress that “If some region in a domain is seen to
contain a large number of significant stations, it is certainly inappropriate
to apply the field significance test over just this limited domain without a
physically based justification”. Also in this case, the clustering of sig-
nificant trends might be due to the spatial correlation of (large scale)
meteorological variables driving the flow processes in a specific area. In
other words, local clusters in space are the natural effect of spatial cor-
relation, as local clusters of high/low values in a time series might reflect
temporal correlation. Since it is easy to confuse spatio-temporal correla-
tion with deterministic trends, these remarks highlight the importance of
using clear definitions in order to distinguish between stochastic fluctua-
tions and deterministic changes whose attribution should be based on a
priori information and causality.

Fig. 3. Spatial patterns of significant values (at the 5% significance level) of ρ1 and H for the annual flow maxima on an annual and seasonal basis. Left column of panels refers to ρ1,
middle column to H, while the right column highlights the sites where both ρ1 and H are found significant. Maps in left and middle columns also show hydrologic units where ρ1 and H are
found to be field significant according to Walker test, bootstrap test, and both. See text for further details.
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6.3.2. Trend analysis of maximum and mean flows
Results of trend analysis are shown in Figs. 5–8. According to the

aim of this study, as for correlation, the following remarks focus on
methodological aspects. In fact, the spatial patterns of significant trends
and their sign are similar to those published in the literature (e.g.,
Sagarika et al., 2014), while their interpretation deserves some remark.
For example, AR(1)-TFPWcu MK and fGn-CPW MK tests on maxima
(Fig. 5) tend to give similar number of rejections, which is smaller than
that of standard MK. This contrasts with results often reported in the
literature and confirm that they are related to the ineffectiveness of the
original TFPW procedure. As a variety of hypotheses has been proposed
to explain the disagreement between TFPW and other prewhitening
procedures in terms of possible physical causes, it is therefore in-
structive to discover that they are pure speculations, and results are
simply artifacts.

Another important result is the strong decrease of significant trends
obtained by IAAFT MK. The annual/seasonal maxima extracted from
(stationary) series reproducing the observed persistence of the daily

sequences show apparent trends that are stronger than those resulting
from persistent models directly fitted on annual/seasonal maxima, thus
reducing the evidence for deterministic trends in such summary sta-
tistics. In other words, focusing on annual/seasonal maxima might lead
to underestimate variability and temporal clustering of high/low va-
lues.

Similar remarks hold for annual/seasonal average values (Fig. 6). It
should be noted that the residual clusters of positive trends in the New
England (north west) for summer maximum and mean values (Figs. 5(t)
and 6(t)) are coherent with the spatial correlation and climate dynamics
of that area (Kingston et al., 2007). This does not mean that the New
England rivers have not witnessed a possible increase in the last 60
years; however, it might be explained in terms of spatial correlation as a
shared behavior depending on a common meteorological driver acting
in an area characterized by quite a uniform response. Obviously, from a
practical point of view, such an increase raises management problems,
whose solutions however change if we assume that these changes are
deterministic (in the sense specified in Section 4) or stochastic. In fact,

Fig. 4. As for Fig. 3, but for annual average flow values. The same interpretation applies.
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in the first case we should identify a predictable evolution law (making
attribution), which is unlikely linear or polynomial, and cannot be
deduced from the data themselves in the form of some arbitrary
smoothing function.

Results for the Pettitt test in Figs. 7 and 8 highlight another aspect
often overlooked in the literature and related to the fact that both tests
rely on the Mann-Whitney statistic and they are theoretically related to
each other (Rougé et al., 2013). This implies that standard MK and
Pettitt often yield similar results in terms of significant changes in a
given direction (upward/downward), even if such results are obviously
interpreted in a different manner (slowly varying monotonic changes
and abrupt changes) (e.g., Sagarika et al., 2014; Pathak et al., 2016).
The link between the two tests also implies that both are sensitive to
autocorrelation (Serinaldi and Kilsby, 2016a), and they should yield
coherent results when autocorrelation is accounted for. A comparison of
Figs. 5 and 6 with Figs. 7 and 8 supports this conclusion showing that
both tests yield similar spatial patterns in terms of significant upward/
downward changes. In this context, distinguishing and interpreting
slowly varying and abrupt changes can be secondary as it is simply a
matter of scales (e.g., Rougé et al., 2013). This highlights once again the

need for attribution based on exogenous information which is not de-
rived exclusively on purely statistical non-causal relationships. Results
for IAAFT-based tests also show the dramatic decrease of evidence for
deterministic changes when fluctuations of seasonal/annual averages
and maxima are influenced by the entire flow process at daily scale.
Therefore, even if the autocorrelation of the observed seasonal/annual
averages and maxima is properly accounted for in AR(1)-TFPWcu and
fGn-CPW trend tests, the above results reveal that it is not sufficient and
might strongly underestimate the actual persistence of the underlying
processes. When this is taken into account, apparently strong trends/
changes might become coherent with the intrinsic variability char-
acterizing stationary but persistent processes.

Recalling the discussion about the natural local clustering of sig-
nificant results due to spatial correlation and testing multiplicity
(Daniel et al., 2012), we studied how the number of significant trends
globally changes across the CONUS for the different types of tests, i.e.
the different treatment of the autocorrelation. Fig. 9 summarizes the
global number of rejections for all combinations of data and tests.
Standard tests (especially Pettitt) generally yield higher number of re-
jections for maximum values. For mean flows, there is not much

Fig. 5. Spatial distribution sites showing significant monotonic trends (at the 5% significance level) according to MK test for the annual flow maxima on an annual and seasonal basis.
Panels in each row, from left to right, show results for standard, AR(1)-TFPWcu, fGn-CPW, and IAAFT versions of the MK test. Hydrologic units exhibiting field significance according to
Walker test are also highlighted.
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difference between standard tests and AR(1)-TFPWcu and fGn-CPW
versions. In all cases, IAAFT version yields a dramatic decrease of sig-
nificant outcomes. Fig. 9 also reports the 95% prediction bands (con-
tinuous red lines) of the number of rejections expected over 250 in-
dependent trials (i.e., performed tests). Prediction limits correspond to
the 2.5th and 97.5th percentiles of a binomial distribution with para-
meters 250 and 0.05 (i.e., the number of trials and the rate of suc-
cesses). The diagrams show that IAAFT-based tests yield a number of
occurrences which is almost always consistent with what is expected
when a purely random experiment with 5% of probability of success is
performed. In some cases the outcome is also close to the expected
value ⌊ ⌋ =250·0.05 12.

However, the binomial distribution describes the outcome of in-
dependent experiments, whereas stream flow time series are spatially
correlated, especially in some specific areas reacting in a similar way to
common (large-scale) meteo-climatic dynamics. Cross-correlation can
be accounted for by simulation; however, a fast computation, which is
very accurate in several cases, can be performed by using the beta-bi-
nomial distribution (see Appendix B). Considering the 2.5th and 97.5th
percentiles of the beta-binomial distribution (red dot-dashed lines in
Fig. 9), the number of significant outcomes always fall within the
prediction bands for IAAFT-based tests, while the rate of rejection for

AR(1)-TFPWcu and fGn-CPW tests is less unexpected than under spatial
independence. In this respect, it is worth recalling that the pairwise
spatial correlation terms involved in the beta-binomial parametrization
refer to the spatial correlation of seasonal/annual averages and
maxima; therefore, stronger correlation and over-dispersion is expected
if the spatial correlation of daily series is taken into account. It should
also be noted that the estimation of the spatial (cross) correlation is
affected by temporal correlation (Katz and Brown, 1991; Hamed,
2009a; 2011). Accounting for these aspects results in stronger spatial
correlation and further increase of over-dispersion. This implies wider
prediction intervals of the number of significant outcomes, and thus
even less evidence for global field significance. These results confirm
the dramatic impact of the spatial correlation on field significance
(Douglas et al., 2000) and the double effect of the autocorrelation on
local trend detection and estimation of spatial correlation. If we also
consider that autocorrelation is a non optimal measure of dependence
implying systematic underestimation of the actual intensity of persis-
tence (as shown above), it can be concluded that we often strongly
underestimate the actual spatio-temporal variability of the processes
generating the analyzed data.

We stress once again that all the above analyses do not allow any
conclusion about the actual stochastic or deterministic nature of the

Fig. 6. As for Fig. 5, but for annual average flow values. The same interpretation applies.
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observed trends. Results only tell us that a stochastic stationary re-
presentation cannot be excluded, and several results reported in the
literature simply depend on the choice of an unrealistic stationary op-
tion (iid) as a null hypothesis. In other words, observed trends are
consistent with both a stationary and nonstationary assumptions, when
we choose a suitable and more realistic stationary benchmark. The
choice between the two modeling options depends upon a stringent
process of attribution supported by additional information and the clear
identification of a cause excluding any reasonable alternative ex-
planation. This process goes beyond the application of trend tests or
detection of statistically significant correlation with other hydro-me-
teorological variables by NHSTs, which, we recall, suffer logical flaws
and are not devised for exploratory studies.

7. Discussion and conclusions

Published trend analysis in hydro-meteorology often consists of a
superficial application of statistical tools, such as NHSTs, as cookbook
recipes. This attitude is further spread by the availability of powerful
statistical software implementing the state of the art of statistical

methodologies developed by statisticians but also questionable proce-
dures developed by practitioners. As already highlighted by von Storch
and Zwiers (2003), this approach is particularly dangerous for anyone
who is not sufficiently acquainted with the basic concepts of statistics.
Moreover, software availability also promotes the tendency to jointly
apply combinations of sophisticated techniques (often obscure, re-
dundant or even contrasting with each other) that compound and am-
plify the problems caused by the indiscriminate use of recipes
(von Storch and Zwiers, 2003, p. 97).

Since every hydro-meteorological record is the only available rea-
lization or trajectory of the underlying process, this prevents the ap-
plication of confirmatory analysis because any statement, or null hy-
pothesis, cannot be contested with a statistical test since independent
data are unavailable. No statistical test, regardless of its power or
complexity, can overcome this problem because it is not a matter of
methodology but of available information. The only possible solution is
extending this information by additional data going backward (i.e.
collecting paleo data sets) or forward (i.e. awaiting the availability of
new data to test theories). In this respect, the use of physics-based
models can partly help (e.g., Poppick et al., 2017). However, even such

Fig. 7. Spatial distribution sites showing significant abrupt change (at the 5% significance level) according to Pettitt test for the annual flow maxima on an annual and seasonal basis.
Panels in each row, from left to right, show results for standard, AR(1)-TFPWcu, fGn-CPW, and IAAFT versions of the Pettitt test. Hydrologic units exhibiting field significance according
to the Walker test are also highlighted.
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models can never be fully validated/disproved as we do not know if
they capture all the important properties of the physical processes, and
thus the answers given by such models could simply be spurious. A
rigorous attribution is required to attempt the identification of unique
causes and exclusion of any other plausible alternative.

Based on the above discussion, the actual meaning, interpretation,
and limits of trend tests should be recovered. As every statistical test,
trend tests can be valuable tools in appropriate contexts, while they
cannot be an appropriate tool to infer nonstationarity. They can at most
be used as mere tools for preliminary screening whose outcome should
be carefully checked and complemented with exogenous information. If
a clear physical mechanism related to a predictable evolution of the
properties of the process at hand is not identified, we cannot make
conclusions about the reason of rejection or lack of rejection, since
multiple factors not included in the null and alternative hypotheses can
actually play a role.

The case study presented in this paper shows the dramatic differ-
ence resulting from the use of trend tests involving different depen-
dence structures, namely, (unrealistic) independence, AR(1) and HK
dependence estimated from the target annual summary statistics, and
empirical dependence of target variables resulting from that of the
parent daily process. We stress that our discussion and these results do

not support stationarity versus nonstationarity. Dependence is only
used as a more realistic and challenging alternative to deterministic
trends in order to show that NHSTs are actually inconclusive when we
compare two options yielding similar observations, and a decision
concerning the generating mechanism of the studied process and its
modeling cannot rely on data only. Since trend tests are also used as
automatic criteria to justify the use of nonstationary models for fre-
quency analysis, we discourage such a kind of cookbook recipe usage,
as it is inappropriate and might lead to unreliable and paradoxical
predictions (Serinaldi and Kilsby, 2015). Of course, nonstationary
modeling is still legitimate when it is justified by preliminary attribu-
tion relying on additional deductive information on the cause of time-
dependent behavior.

It should also be noted that this study does not focus on the inter-
pretation of the physical meaning of probability (e.g., frequentist or
Bayesian approach to data analysis) but on the role of inductive and
deductive information and reasoning in the scientific inferential pro-
cedure. Following Christakos (2011, pp. 177–181), the knowledge
bases can be classified between two major categories: general (or core),
denoted by KB-G, and specificatory (or site-specific), KB-S, whereby the
former may include scientific theories, natural laws, phenomenological
models, cultural relations, and long-established worldviews, while the

Fig. 8. As for Fig. 7, but for annual average flow values. The same interpretation applies.
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latter considers different sources of evidence that are tied to the par-
ticular local situation and may be not of general validity (i.e., exact and
inexact (uncertain) measurements and records). This study shows how
a mechanistic application of tests (and models) involving only KB-S is
not sufficient to draw conclusions on stationarity or nonstationarity
(regardless of the complexity or refinement of the analysis tools) but
seem to be the only source of information used in much literature. On
the other hand, we emphasize the fundamental role of KB-G that, being
based on wisdom of the past, seems to be “irretrievably lost in the
postmodern world” (Christakos, 2011, p. 179). In this respect, how KB-
G and KB-S are blended is a secondary aspect, although Bayesian fra-
mework offers attractive tools to perform a synthesis (Christakos, 2011,
pp. 375–380).

Trend tests may be tools for very preliminary screening, for ex-
ample, in large scale analyses (involving e.g., large number of time
series) concerning data quality control, where we are interested in
detecting time series affected by systematic instrumental errors. In
these cases, we know a priori the mechanism generating ‘non-
stationarity’ (i.e., instrumental malfunction) and its possible effects,
and an unambiguous attribution can be made from the knowledge of
the instrument specifics. In other cases, rejections can be used to

identify primary sub sets deserving further investigations for a clear
attribution of the origin of the detected inhomogeneities. However, lack
of rejection does not authorize the conclusion that nothing is happening
in the remaining subset, which should be further analyzed in any case.
Other conclusions in this exploratory context go beyond what the trend
tests can tell us.
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Appendix A. Bias correction for the maximum likelihood estimates of H

Tests involving prewhitening based on fGn correlation structure require the estimation of the Hurst parameter H. It is well known that H is
difficult to estimate especially for short time series (Koutsoyiannis and Montanari, 2007). Following Hamed (2008), for fGn-CPW and fGn un-
conditional prewhitening (fGn-UPW) versions of MK and Pettitt tests (Serinaldi and Kilsby, 2016a), H is estimated by the maximum likelihood (ML)
method (McLeod and Hipel, 1978; McLeod et al., 2007), which was proven to be more accurate (Tyralis and Koutsoyiannis, 2011) than other
estimators relying on graphical diagnostic plots (see e.g., Serinaldi, 2010). Nonetheless, residual bias affect ML estimates as well. Even though we
showed that the direct assessment of persistence on summary statistics, such as seasonal/annual averages and maxima might lead to underestimation
of persistence in any case, it is worth adjusting the ML estimation bias in order to reduce the problem. Bias correction was defined based on an
extensive Monte Carlo simulation using 10,000 random samples drawn from a fGn process for each combination of H between 0.5 and 0.99 by steps
equal to 0.01, and sample size n ranging from 20 to 250 by steps equal to 5. The left side panels on Fig. 10 show a map and two projections of the
surface describing the bias of the ML estimator as a function of H and n. The correction involves two stages: first, the dependence of bias of H and n is
adjusted by a rational polynomial of the first order, and second, the residual dependence on H (middle column of panels in Fig. 10) is removed by a
four-order polynomial. The right side panels in Fig. 10 show that procedure yields a final residual bias lower than 0.01 (i.e., one order of magnitude
lower than the original bias) for all combinations of H and n. The resulting bias correction formulas are

= − + − + −H H H H H0.826 3.889 10.94 10.91 4.06 ,unb I I
2

I
3

I
4 (A.1)

where

= − +
+

+ +
−

H n
n

n
n

H3.40 92.674
271.609 77.280

98.470 156.590
96.862 240.783

,I ML (A.2)

in which, HML is the original ML estimate, and is the corrected output.

Appendix B. Beta-binomial distribution

The beta-binomial (BB) distribution is a compound distribution resulting for the ordinary binomial distribution = − −( )f k p p( ) (1 ) ,n
k

k n k where
p∈ [0, 1] represents the constant probability of a success in n trials, when p is assumed to be no longer constant but fluctuating according to a beta
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Fig. 10. Level plots and projections showing the original bias of the ML estimator of H (panels in the left side), the effect of the first stage of the bias correction procedure described by
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distribution function =
−− −

f p
p p

α β
( )

(1 )
B( , )

,
α β1 1

where B denotes beta function, and α and β are two positive shape parameters. The BB density function

can be written as (Skellam, 1948)
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,
(B.1)

Letting = +π α α β/( ), the mean and variance of beta-binomial can be written as (Ahn and Chen, 1995)

=K nπE[ ] , (B.2)

and

= − + −K nπ π n ρVar[ ] (1 )[1 ( 1) ],BB (B.3)

where = + +ρ α β1/( 1)BB is known as the “intra class” or “intra cluster” correlation. Being positive by definition, ρBB gives rise to over-dispersion as
it inflates the variance −nπ π(1 ) of the original binomial distribution with constant p. On the other hand, ρBB does not affect the expected value,

which is identical for both BB and standard binomial. For correlated experiments, =
∑ ∑

−
≠ρ

ρ

n n( 1)
,j k

BB
jk

where ρjk denotes the pairwise correlation

between experiment (site) j and k. In the context of this study, ρBB is therefore the average cross-correlation between the time series recorded across
the CONUS area, which is ≈ 0.04. This is the value used to compute the prediction limits reported in Fig. 9. It is worth noting the impact of ρBB
despite its apparently small value.
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