540 research outputs found

    UAV-Enabled Surface and Subsurface Characterization for Post-Earthquake Geotechnical Reconnaissance

    Full text link
    Major earthquakes continue to cause significant damage to infrastructure systems and the loss of life (e.g. 2016 Kaikoura, New Zealand; 2016 Muisne, Ecuador; 2015 Gorkha, Nepal). Following an earthquake, costly human-led reconnaissance studies are conducted to document structural or geotechnical damage and to collect perishable field data. Such efforts are faced with many daunting challenges including safety, resource limitations, and inaccessibility of sites. Unmanned Aerial Vehicles (UAV) represent a transformative tool for mitigating the effects of these challenges and generating spatially distributed and overall higher quality data compared to current manual approaches. UAVs enable multi-sensor data collection and offer a computational decision-making platform that could significantly influence post-earthquake reconnaissance approaches. As demonstrated in this research, UAVs can be used to document earthquake-affected geosystems by creating 3D geometric models of target sites, generate 2D and 3D imagery outputs to perform geomechanical assessments of exposed rock masses, and characterize subsurface field conditions using techniques such as in situ seismic surface wave testing. UAV-camera systems were used to collect images of geotechnical sites to model their 3D geometry using Structure-from-Motion (SfM). Key examples of lessons learned from applying UAV-based SfM to reconnaissance of earthquake-affected sites are presented. The results of 3D modeling and the input imagery were used to assess the mechanical properties of landslides and rock masses. An automatic and semi-automatic 2D fracture detection method was developed and integrated with a 3D, SfM, imaging framework. A UAV was then integrated with seismic surface wave testing to estimate the shear wave velocity of the subsurface materials, which is a critical input parameter in seismic response of geosystems. The UAV was outfitted with a payload release system to autonomously deliver an impulsive seismic source to the ground surface for multichannel analysis of surface waves (MASW) tests. The UAV was found to offer a mobile but higher-energy source than conventional seismic surface wave techniques and is the foundational component for developing the framework for fully-autonomous in situ shear wave velocity profiling.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145793/1/wwgreen_1.pd

    The Application of Unmanned Aerial Vehicle (UAV) For Slope Mapping at Gambang Damai Residents, Pahang: A Case Study

    Get PDF
    In this paper, the work of slope mapping using unmanned aerial vehicle (UAV) with its perimeter, area and volume of certain selected areas at Perumahan Taman Gambang Damai in Kuantan Pahang are discussed. Previous work of slope mapping using traditional survey equipment considered as time consuming and very challenging especially in hilly regions. This study also focused on determining the potential slope hazard based on slope angle. Modern UAV able to take high quality image which essential for the effectiveness and nature of normal mapping output such as Digital Elevation Model (DEM) and Digital Orthophoto. These photos captured by the UAV will later exported to Agisoft to generate full map of study area. With the help of Global Mapper, the measurement such as perimeter, area and volume of selected study areas can be determined easily and considered as the main interest in this study. Based on the results of the two slopes (slope A and slope B), slope B give a bigger volume which is 1469.7 m3 compare to slope A which is 1382.9 m3. The enclosed area for slope A is 1634.3 m2 which is bigger compare to slope B which is 766.86 m2. Besides, the perimeter of slope A is 162.28 m which is bigger compare to slope B which is 159.45 m. In addition, another outcome of this study is, this modern method of mapping helps researchers and engineers to study the possibility of slope hazard based on their respective slope angle. From the results, the angle for slope A is 47.35⁰ while the angle for slope B is 54.75⁰. Both of the slopes considered as very steep slope. In conclusion, modern technology of UAV proves to be very effective for mapping in geotechnical engineering. Slope mapping using multi-rotor UAV help researchers and engineers to obtain slope measurement within short period of time compare to previous traditional method

    The Application of Unmanned Aerial Vehicle (UAV) For Slope Mapping at Gambang Damai Residents, Pahang: A Case Study

    Get PDF
    In this paper, the work of slope mapping using unmanned aerial vehicle (UAV) with its perimeter, area and volume of certain selected areas at Perumahan Taman Gambang Damai in Kuantan Pahang are discussed. Previous work of slope mapping using traditional survey equipment considered as time consuming and very challenging especially in hilly regions. This study also focused on determining the potential slope hazard based on slope angle. Modern UAV able to take high quality image which essential for the effectiveness and nature of normal mapping output such as Digital Elevation Model (DEM) and Digital Orthophoto. These photos captured by the UAV will later exported to Agisoft to generate full map of study area. With the help of Global Mapper, the measurement such as perimeter, area and volume of selected study areas can be determined easily and considered as the main interest in this study. Based on the results of the two slopes (slope A and slope B), slope B give a bigger volume which is 1469.7 m3 compare to slope A which is 1382.9 m3. The enclosed area for slope A is 1634.3 m2 which is bigger compare to slope B which is 766.86 m2. Besides, the perimeter of slope A is 162.28 m which is bigger compare to slope B which is 159.45 m. In addition, another outcome of this study is, this modern method of mapping helps researchers and engineers to study the possibility of slope hazard based on their respective slope angle. From the results, the angle for slope A is 47.35⁰ while the angle for slope B is 54.75⁰. Both of the slopes considered as very steep slope. In conclusion, modern technology of UAV proves to be very effective for mapping in geotechnical engineering. Slope mapping using multi-rotor UAV help researchers and engineers to obtain slope measurement within short period of time compare to previous traditional method

    Case-Based Reasoning of Man-Made Geohazards Induced by Rainfall on Transportation Systems

    Get PDF
    Due to global warming and environmental change, disastrous natural events have increased in scale and impact, e.g., Typhoon Morakot, in 2009 and 2011 Tƍhoku earthquake and resulting tsunami in Japan. Hazard management is becoming increasingly important, making it a necessity to manage risk and fully understand critical scenarios. For example, the National Infrastructure Protection Plan of the United States emphasizes on lessons learned from past disasters. In this chapter, several selected cases of accidents caused by man-made geohazards in Taiwan are studied

    The Role of Unmanned Aircraft Systems (UAS) in Disaster Response and Recovery Efforts: Historical, Current and Future

    Get PDF
    A wide range of legislation has been proposed or put into place that restricts the use of unmanned systems. These actions by legislators and regulators will stifle the growth of this technology and the associated surrounding industry. The largest obstacle to the proliferation of UAS in the U.S. is the FAA. The FAA has designated the location of six test sites that are anticipated to allow for less restrictive and formative research to assess the technologies that the FAA has claimed need to exist in order to integrate UAS into the NAS. Further complicating the adoption of UAS for beneficent causes is the plethora of local and state legislation and regulation. Whilst many state restrictions do have built-in caveats to potentially allow for disaster support utilizing UAS, not all are so explicit. All of these actions make the adoption ofUAS in disaster areas more complex and may sway associated agencies away from purchasing UAS for these uses in the future. This research outlines historical uses of UAS to provide basis for the adoption in disaster relief. Examples of past use of unmanned systems in exigent event response are provided including post-hurricane rescue, wild fire monitoring, and landslide disaster relief. An example of missed opportunities with UAS, the Boston Marathon bombing is also outlined. Current UAS usage in first response is explained including types of platforms and sensors that show promise in such operations. Future considerations for UAS adoption in disaster efforts are outlined

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    • 

    corecore