2,652 research outputs found

    NETWORK ANALYTICS FOR THE MIRNA REGULOME AND MIRNA-DISEASE INTERACTIONS

    Get PDF
    miRNAs are non-coding RNAs of approx. 22 nucleotides in length that inhibit gene expression at the post-transcriptional level. By virtue of this gene regulation mechanism, miRNAs play a critical role in several biological processes and patho-physiological conditions, including cancers. miRNA behavior is a result of a multi-level complex interaction network involving miRNA-mRNA, TF-miRNA-gene, and miRNA-chemical interactions; hence the precise patterns through which a miRNA regulates a certain disease(s) are still elusive. Herein, I have developed an integrative genomics methods/pipeline to (i) build a miRNA regulomics and data analytics repository, (ii) create/model these interactions into networks and use optimization techniques, motif based analyses, network inference strategies and influence diffusion concepts to predict miRNA regulations and its role in diseases, especially related to cancers. By these methods, we are able to determine the regulatory behavior of miRNAs and potential causal miRNAs in specific diseases and potential biomarkers/targets for drug and medicinal therapeutics

    Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014

    Get PDF
    The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported

    MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance

    Get PDF
    Gene network information has been used to improve gene selection in microarray-based studies by selecting marker genes based both on their expression and the coordinate expression of genes within their gene network under a given condition. Here we propose a new network-embedded gene selection model. In this model, we first address the limitations of microarray data. Microarray data, although widely used for gene selection, measures only mRNA abundance, which does not always reflect the ultimate gene phenotype, since it does not account for post-transcriptional effects. To overcome this important (critical in certain cases) but ignored-in-almost-all-existing-studies limitation, we design a new strategy to integrate together microarray data with the information of microRNA, the major post-transcriptional regulatory factor. We also handle the challenges led by gene collaboration mechanism. To incorporate the biological facts that genes without direct interactions may work closely due to signal transduction and that two genes may be functionally connected through multi paths, we adopt the concept of diffusion distance. This concept permits us to simulate biological signal propagation and therefore to estimate the collaboration probability for all gene pairs, directly or indirectly-connected, according to multi paths connecting them. We demonstrate, using type 2 diabetes (DM2) as an example, that the proposed strategies can enhance the identification of functional gene partners, which is the key issue in a network-embedded gene selection model. More importantly, we show that our gene selection model outperforms related ones. Genes selected by our model 1) have improved classification capability; 2) agree with biological evidence of DM2-association; and 3) are involved in many well-known DM2-associated pathways

    Heterogeneous Types of miRNA-Disease Associations Stratified by Multi-Layer Network Embedding and Prediction.

    Full text link
    Abnormal miRNA functions are widely involved in many diseases recorded in the database of experimentally supported human miRNA-disease associations (HMDD). Some of the associations are complicated: There can be up to five heterogeneous association types of miRNA with the same disease, including genetics type, epigenetics type, circulating miRNAs type, miRNA tissue expression type and miRNA-target interaction type. When one type of association is known for an miRNA-disease pair, it is important to predict any other types of the association for a better understanding of the disease mechanism. It is even more important to reveal associations for currently unassociated miRNAs and diseases. Methods have been recently proposed to make predictions on the association types of miRNA-disease pairs through restricted Boltzman machines, label propagation theories and tensor completion algorithms. None of them has exploited the non-linear characteristics in the miRNA-disease association network to improve the performance. We propose to use attributed multi-layer heterogeneous network embedding to learn the latent representations of miRNAs and diseases from each association type and then to predict the existence of the association type for all the miRNA-disease pairs. The performance of our method is compared with two newest methods via 10-fold cross-validation on the database HMDD v3.2 to demonstrate the superior prediction achieved by our method under different settings. Moreover, our real predictions made beyond the HMDD database can be all validated by NCBI literatures, confirming that our method is capable of accurately predicting new associations of miRNAs with diseases and their association types as well

    Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

    Get PDF
    Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes
    • …
    corecore