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miRNAs are non-coding RNAs of ∼ 22 nucleotides in length that inhibit gene ex-

pression at the post-transcriptional level. By virtue of this gene regulation mechanism,

miRNAs play a critical role in several biological processes and patho-physiological

conditions, including cancers. miRNA behavior is a result of a multi-level complex in-

teraction network involving miRNA-mRNA, TF-miRNA-gene, and miRNA-chemical

interactions; hence the precise patterns through which a miRNA regulates a cer-

tain disease(s) are still elusive. Herein, I have developed an integrative genomics

methods/pipeline to (i) build a miRNA regulomics and data analytics repository,

(ii) create/model these interactions into networks and use optimization techniques,

motif based analyses, network inference strategies and influence diffusion concepts to

predict miRNA regulations and its role in diseases, especially related to cancers. By

these methods, we are able to determine the regulatory behavior of miRNAs and po-

xii



tential causal miRNAs in specific diseases and potential biomarkers/targets for drug

and medicinal therapeutics.
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CHAPTER 1

INTRODUCTION

microRNAs (miRNAs) are small non-coding RNAs that inhibit post-transcriptional

gene expression by complementary base pairing at the 3-UTRs of target messenger

RNAs (mRNAs)[1]. Transcription of a miRNA coding gene is under direct control

of transcription factors (TFs). Expression of a miRNA is also regulated by environ-

mental factors, xenobiotics, and drugs. These factors essentially regulate TFs and

consequently regulate transcription of miRNAs[2]. A TF can positively or negatively

regulate miRNA transcription. A transcribed miRNA, by virtue of its feed-back and

feed-forward loop regulation mechanisms, regulates its own transcription machinery

or expression of other genes and thereby regulates gene expression. A single miRNA

may target nearly 200 mRNAs[3] and henceforth may regulate multiple signaling

pathways and various essential biological processes (BPs) such as development, ag-

ing, immunity, and autoimmunity, etc.

Deregulations of miRNAs are well documented for their association with various

patho-physiological conditions including different types of cancers, metabolic disor-

ders, and neuronal diseases among others. Therefore, understanding miRNA regula-

tion is of high importance in bio-medical research. Exploration of the entire regulome

of a miRNA is indispensable to understand its biology and mechanisms through which

it regulates gene expression in a given biological condition. Understanding of such

mechanisms will help in developing diagnostic, prognostic, and therapeutic strategies.

The regulome of a miRNA essentially consists of modules such as upstream regula-

tors, downstream targets, modulated pathways, and regulated BPs. The regulome

1



Fig. 1.: Schematic diagram of modules and their inter-relationships in a miRNA

regulome

also considers associated diseases when a miRNA is deregulated. A miRNA regulome

is presented in Figure 1.

Identifying and predicting miRNA and disease associations, has been extensively

researched in the past few years [4–7]. However, the precise mechanisms of miRNAs

regulating diseases are still unclear. Hence, gathering valuable evidence regarding

identification of miRNAs influencing human diseases has become a widespread interest

in arena of bio-medical research with a future towards the enhancement of human

medicine. Hence, in brief, the goal of this thesis is as follows,

Goal: To determine/identify a miRNA-regulatory network using network sci-

entific methodologies from integration of disparate data sources, especially in the

context of diseases.

In this work, we try to comprehend miRNA regulatory behavior which is a result

of a multi-level complex interaction network involving miRNA-mRNA, TF-miRNA-

gene, miRNA-chemical and miRNA-SNP based interactions. We develop several

methods and strategies to explore these aspects. In Chapter 2, we present a brief

background of various studies and computational tools developed to determine these

2



aforementioned associations and factors.

List of contributions

1. In Chapter 3, we discuss several individual miRNA data repositories and present

a necessity for an integrated platform with several analytic tools embedded into

it. Thereafter, we design and create an integrated data platform for miRNA

regulomics.

2. In Chapter 4, we model the miRNA-disease associations into a bipartite graph

model, and determine the key set of miRNAs for a set of diseases using Maxi-

mum Weighted Matching optimization methodology. We also study the motif

patterns observed in miRNA-disease networks and study the network topologi-

cal aspects.

3. In Chapter 5, we use a consensus-based methodology to predict miRNA-miRNA

interaction networks based on miRNA expression values recorded in various

diseases. We also identify signature core miRNA-miRNA interaction compo-

nent among multiple cancers in several categories.

4. In Chapter 6, we use influence diffusion theory to quantify influence diffusion

in a miRNA-miRNA regulation network across several disease classes and de-

termine critical causal miRNAs which play a causal role.

5. In Chapter 7, we determine further regulatory behavior imposed by single nu-

cleotide polymorphism (SNP) based interactions with genes and TFs and their

impact on miRNA-miRNA interaction networks of particular diseases. Herein,

we predict SNP-related causal miRNAs in two diseases.

3



CHAPTER 2

LITERATURE REVIEW

Several existing miRNA-related databases individually provide information on specific

aspects of a miRNA. For example, miRbase[8] maintains data on sequence reposito-

ries, mir2Disease[9] provides miRNA-disease relationships, TransmiR[10] maintains

information on miRNAs and their upstream transcription factors, and miREnvi-

ronment [11] offers miRNA regulation in response to environmental factors. Many

databases such as miRecords [12], miRWalk [13], mirDIP [14] , miRTarBase[15] etc.

have been developed to enlist predicted and experimentally validated targets of miR-

NAs. However, none of these databases provide the entire regulome of a miRNA nor

are helpful in understanding the miRNA biology or function as a stand-alone data

analytics repository. Attempts have been made to understand miRNA interactome at

systems level in C. elegans (TF-miRNA-TF interactions)[16] through computational

simulation of miRNA regulated overall gene expression program and cross-talk be-

tween miRNA targets[17] and by constructing regulatory models of miRNA-kinase-

TF, miRNA-TF, and TF-TF. Similarly, systems approach to predict TF-miRNA

crosstalk in human protein interactome, demonstration of regulatory principles among

miRNAs, TFs, and miRNA target genes, miRNA-mRNA and miRNA-miRNA in-

teractions, and tissue-specific miRNA- TF regulatory networks are also have been

attempted to explore the miRNA interactome. Nevertheless, these works are mostly

computational predictions and do not provide the entire regulome of miRNA. Given

the importance of miRNA in biomedical research, disease diagnosis, prognosis, and

therapy; there has been an inflow of new miRNA related information in recent years.
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Therefore, a novel data platform that provides all essential details of a miRNA regu-

lome is necessary. Similarly, a state-of-the-art analysis platform exploring mechanisms

behind various biological and patho-physiological processes which a miRNA regulates

is also required. Owing to these reasons, we developed a miRNA data and analyt-

ics repository, miRegulome. miRegulome aims to address the need for such a novel

database that represents the entirety of miRNA regulome. In the current version of

miRegulome (v1.0) we have incorporated all the downstream modules and transcrip-

tion factors (TFs) and diverse group of chemicals as the upstream regulatory modules

and their correlations. miRegulome is explained further in-depth in Chapter 3.

For Chapter 4, the goal was to develop approaches that predict/determine asso-

ciations between miRNAs and diseases. One of the preliminary works in developing

miRNA-disease prediction models demonstrated that miRNAs related to same dis-

eases tended to work together as miRNA groups[9]. This is an significant observation.

It necessitates that any model of miRNA-disease association/prediction which claims

to be effective considers this homologous nature of a miRNA. Jiang, et al., 2010 [6]

uses the same approach and further derives a functional similarity between disease-

related miRNAs and phenotype similarities to derive a score which evaluates the

likelihood of association of a miRNA and the disease. Jiang, et al., 2010 [18] uses the

disease-gene associations to develop a Näive−Bayes model, which prioritizes candi-

date miRNAs based on their genomic distribution. This model relies heavily on the

associations between gene-disease and interactions of miRNA and target. However,

both these models have high false-positives and high false-negatives in their predic-

tions [19]. This limitation was however, addressed [4], by training a support vector

machine classifier based on the input set of features extracted from false-positives

and false-negative predicted associations. As demonstrated by Lu, et al. 2008 [20],

miRNA-set families tend to closely work towards certain diseases. Hence, implic-

5



itly diseases tend to affect the working of other diseases too. This has also been

researched [21], where specifically prostate cancer and non-prostate cancer miRNAs

are distinguished by the usage of topological features wherein, a prioritization of dis-

ease candidate was performed using a network-centric method. Apart from using

disease-gene information, few models have used the assumption that miRNA loci and

Online Mendelian Inheritance in Man (OMIM) disease loci may contain significant

overlaps [22]. This significance score is calculated and used to identify potential as-

sociations between miRNAs and OMIM diseases. Chen, et al, 2012 [19] uses global

network similarity measure as compared to local network information to implement

a random walk on a functionally similar miRNA network, which prioritizes candidate

miRNAs for specified diseases. Xuan, et al., 2013 [5] improvises the miRNA func-

tionality estimated approach by appending disease phenotype similarity information

and content of disease terms to the existing method. This is used to assign weight

to miRNA-disease associations and a weighted k-most similar neighbor based pre-

diction method is deployed. Global network similarity is also used in the inference

methods presented [7], where apart from miRNA-similarity and phenotype-similarity

inferences, a network based inference model is used. In this model [7], the miRNAs

related to queried miRNA are ranked and associated with ranked disease phenotypes

associated with target phenotype, thereby relying on known gene-phenotype associa-

tions. Graph theory has been extensively used to model and analyze such biological

networks [20] and especially bipartite graph modeling has been used to model the

miRNA-disease network [19][7][23][20]. Chen, et al., 2014 [24] has tried to overcome

the limitations posed through various previous works, by developing an algorithm

of Regularized Least Squares for miRNA-disease association (RLSMDA). Previous

models like that of Chen, et al., 2012 [19] which although demonstrate high accuracy

in prediction based on their case studies and cross-validation, cannot work in scenar-
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ios where associations between the diseases and miRNAs are unknownn; and hence

cannot predict novel miRNA-disease associations. Chen and Zhang [7] addressed this

in their work, which could predict novel associations between diseases and miRNAs,

with no prior knowledge of their association. However, its performance was inferior

to that of Chen, et al. [19] based on cross-validation results [24]. The work presented

by Chen, et. al [24] uses the miRNA functional similarity and disease functional

similarity [25] and devises an optimization formulation to generate a continuous clas-

sification function which calculates the probablity score of each miRNA to a given

disease. Using graph theory, some network inference based prediction algorithms have

also been used[26]. In this case, three networks: environmental factors (EF)-miRNA,

EF-disease and miRNA-disease were modeled into bipartite networks and three meth-

ods, i.e. network based inference (NFI) algorithm [27], EF structure similarity-based

inference model and disease phenotype similarity-based inference models were was

used to generate an EF-miRNA-disease association model which is validated via 10-

fold cross validation. The cases studies presented display impressive results. However,

this work too, can predict associations between EF-miRNA-disease which are known

in prior and does not predict novel associations [26].

Our models, in contrast to the previous works does not present miRNA-disease

predictions, rather performs a maximum matching in a set of miRNAs and diseases

to determine and prioritize diseases with highest cumulative impact. Hence, the

resulting diseases, each of them have valid PubMed literature supporting it, and

thereby accurate association with miRNAs. This gives the user complete confidence

in the results, he/she is provided with. Further more, all other previous tools are

prediction models, predicting a miRNA-disease edge/association. These models do

not produce associations between set of miRNAs onto a set of diseases, thereby not

exploring the overall dynamics of multi-level interaction of a miRNA-disease network.
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Our model (in Chapter 4) which acts as an extension to the existing body of work in

this field, works on a set of miRNAs and produces an output of a set of associated

diseases, taking into account the impact and association of every miRNA in the set

with every disease in the set.

In Chapter 5, the motivation was to infer miRNA-miRNA interaction networks

based on miRNA-disease expression data and foldchange values. Computations ef-

forts have been implemented to study and discover the disease-miRNA interaction net-

work based on functional enrichment analysis[28], social network analysis method[29],

similarity-based methods[7], diffusion-based method[30], Within and Between Score

approach[31], integrating various genomic and phenotype data[32], using the model

of Restricted Boltzmann machine[33] and based on support vector machine, among

others. Similarly, co-regulated miRNA clusters across different types of diseases and

the prioritized candidate miRNAs across multiple diseases have also been predicted.

Such examples are- miRNA-miRNA synergistic network construction using functional

modules and topology[34], by integrating multidimensional high-throughput data,

through a progressive data refining approach, by grouping miRNAs based on their

shared diseases, shared common targets and GO enrichment analysis of their pre-

dicted targets[35], by matching miRNA and mRNA expression profiles[36], through

topological features in the deregulated miRNA target network[21] using cross-cancer

differential co-expression network[37, 38], and by maximum weighted matching in-

ference model and motif-based analysis method[39]. However, a ‘systems model’ is

essential for identification of a core miRNA-miRNA co-regulatory signature or pattern

across several cancers. Network theoretic algorithms such as biclique-based (graph

theoretic) method[40], biclustering technique based on a bipartite graph method[38]

among others have been deployed to discover and predict the patterns of miRNA

regulatory models. Similarly, graph theoretical methods and network inference mod-
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els were applied to analyze complex regulatory interactions and reconstruction of

regulatory and other biological networks[41–44].

For Chapter 6, the motivation was to study the social networking aspect of the

miRNAs. The study of information diffusion has always been an attractive area of

research for the social and information-based research community. The concept of

information diffusion in a network has been widely deployed in the field of social

network theory to study spread of ideas, rumors and product adoption between the

individuals in the network via the ‘word of mouth’ effect [45–47]. Although, this

concept was initially applied in the field of sociology to study the various behavioral

phenomena, like the spread of a new concept, it was also extended later to understand

the spread of specific diseases [48]. However, understanding influence diffusion in a

complex network like that of miRNAs’ can be challenging. In this work, considering

the fact that miRNAs of similar diseases tend to work together [20], we focus on

the ‘social nature’ of miRNA and diseases and deploy an information diffusion model

which is apt for such cases, wherein a miRNA’s influence on its neighboring miRNAs

is analyzed. Social influence can affect a range of behaviors in networks such as dis-

semination of information/influence, communication and in this case, even mutation.

In both the LT and IC model, the nodes (i.e. the miRNAs) in the network can be in

one of the two states - active or inactive. The activated nodes spread their influence

by activating their neighboring inactive nodes based on a certain criteria or effect.

Garnovetter et al. [49] proposed the LT model by applying a specific threshold in each

of the nodes of the network. Herein, each node is activated only by its neighbor(s)

depending upon the cumulative weight of the incoming edges to the node. The node

becomes active when the cumulative sum of the weight of the incoming edges from an

active neighboring node crosses its threshold value. Once activated, the node remains

active and tries to activate its neighbor, thereby propagating its influence. On the
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contrary, the IC model uses edge probability to determine the information diffusion.

In this model, an active node has a single opportunity to activate its neighbors. The

edge weights represent the activation probability or likelihood of information propa-

gation in between two nodes. Hence, upon activation, an active neighbor may choose

the neighbor with highest edge weight to activate.

The following chapters describes each methodology, results and findings in further

depth and detail.
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CHAPTER 3

MIREGULOME - MIRNA DATA AND ANALYTICS REPOSITORY

In miRegulome, we have incorporated all experimentally validated data for every

module (upstream regulators, downstream targets, modulated pathways, regulated

biological processes, and associated diseases) of a miRNA regulome from published

literatures indexed in PubMed. miRegulome v1.0 contains experimentally validated

information for 803 miRNAs from 12 species, 113 chemicals, 187 upstream TF regu-

lators, 3079 targets, and 160 diseases manually curated from 3417 PubMed indexed

articles. Predicted 873 functions and 355 pathways are currently available in this

database. The data repository comprises of

1. miRNAs and upstream chemical regulators : Each selected article having chemical-

miRNA relationships is curated to capture the (i) chemical(s) (ii) miRNAs re-

sponding to the chemical(s), (iii) species of the miRNAs, (iv) expression of the

miRNAs (up-/down-regulation) in responses to the chemical(s), (v) experimen-

tal conditions, (vi) techniques used to detect the expression levels of miRNAs,

and (vii) the corresponding PubMed ID

2. Upstream TF regulators and downstream targets : experimentally validated

upstream TF regulators and the downstream target genes/mRNAs of each

miRNA that are having have upstream chemical regulators, are curated from

the PubMed indexed literature and incorporated into the database.

3. Prioritized targets and miRNA functions of each miRNA using the Toppgene[50]

suite of tools.
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4. miRNA involved pathways

5. disease module : miRNA-disease relationships along with regulation of the

miRNA (up- and down-regulation) in the disease condition were curated from

PubMed listed published literature for those miRNAs that respond to chemical

stimulus and were incorporated

3.1 Analyses tools

miRegulome is empowered with four unique tools to provide meaningful associa-

tions among chemical-disease, miRNA-disease, gene-disease, and disease-chemical-

miRNA along with affected BPs based on user specific datasets. The results of

these analyses correspond with a bipartite modeling approach which we developed

in Chapter 4 to explore the associations among miRNAs and diseases available in the

database. In miRegulome, each association whether its chemical-miRNA, miRNA-

disease, gene-miRNA etc. is manually curated from PubMed indexed literature and

each of such these relationships are tagged with specific PubMed ID from where the

data are taken. These tools mine the database and give relevant associations to the

user by querying the miRegulome database and counting the associations (direct or

indirect) between entries. The output is returned as ranked association counts with

Z-score statistical analysis rather than statistical enrichment measures. We calculated

the Z-scores using the formula: Z − score = (X − µ)/ρ , where X is the association

count of the particular association i.e. the number of PMIDs citing the association,

µ is the mean of the association counts for the entire association type, and ρ is the

standard deviation. Hence, a positive Z − score indicates that the count of the asso-

ciation is higher than the average of such associations, and a negative value indicates

that it is below the average mean. A value of 0 would mean, it is equal to the average.
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Fig. 2.: Chemical-miRNA-disease tool

Chemical-disease analysis

This analysis tool allows the user to explore the associations between a chemical

to a disease via miRNAs. When a user selects a particular chemical, the tool retrieves

all the miRNAs associated with the chemical. Thereafter, the tool retrieves all the

diseases in which the miRNAs are associated. For example, if a user selects chemical

C2 (see Figure 2) in the Chemical-Disease analysis tool, miRNAs M1 and M3 are

retrieved and subsequently, their associated diseases D1, D2 and D3 are retrieved.

Finally, the tool ranks the diseases in which these miRNAs (which are associated with

the chemical) are associated, counting the PubMed IDs. The tool then displays the

disease names, their association counts and their respective Z-scores for the counts

(See Figure 3). Using similar methodology, the BPs which are associated with the

miRNAs are displayed according to the count of their associations as recorded in the

database. It does not assert a direct link between the chemical to a disease or to the

BPs via the miRNA, rather allows the user to explore and test their hypothesis for

indirect associations between the chemical and the disease via the miRNA.
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Fig. 3.: Chemical-miRNA-disease tool results

miRNA-disease analysis

In this analysis, when an input of one or more miRNAs is provided, the tool

provides three tables for the user to get a comprehensive understanding of their

results (See Figure 4). The tool searches for all diseases associated with the provided

miRNA (s) and the distinct miRNA-disease associations (based on PubMed IDs).

Following which, it ranks the diseases based on their number of recorded (PubMed

IDs) associations and displays them. The user can click on the CountofPMIDs and

see the unique PubMed IDs supporting the results. The tool also displays the Z-scores

for each disease along with its rank. Z-score here is a standardized score for the count

of each disease, indicating the resultant disease’s location in a distribution of other

diseases, in relation to the mean and standard deviation of miRNA-disease counts.

The Z-score of the disease tells the user, how many standard deviations it is from the

mean distribution of all miRNA-disease count distribution present in the database.

To further understand the relative impact of each miRNA (entered by the user) to the

disease, we display each miRNA-disease edge with a Z-score. This value gives the user

the, individual miRNA-disease strength of association. It also displays which among
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Fig. 4.: miRNA-disease tool results

the input miRNAs has the highest/lowest impact on the disease, thereby giving a

more in-depth insight into the results. Moreover, the ’Count of PMIDs’ gives the

cumulative count of PubMed IDs citing the associations of the input miRNAs with

the disease.

Gene-disease analysis

When a list of genes is entered by the user in the input field, the tool searches for

miRNAs associated with the set of genes and counts the number of gene-miRNA as-

sociations (i.e. PubMed IDs) recorded in the database. Thereafter, the tool searches

and counts the existing relationships (i.e. PubMed IDs) between the observed miR-

NAs and diseases. Following which, the tool ranks the diseases based on their count

of PubMed entries. Similarly, the tool also displays the list of BPs which are associ-

ated with the specified set of genes via miRNAs, and ranks them following the same

principle of the miRNA-disease analysis tool. The tool does not assert a relation-
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ship between the entered genes and diseases but highlights the top diseases indirectly

associated with the genes entered, via the miRNAs.

Disease-chemical/miRNA analysis

This tool works in the opposite way of the Chemicaldisease analysis tool. It

takes disease(s) as an input and searches the repository for specific miRNA(s)-disease

associations. Thereafter, it retrieves the chemicals associated with the miRNAs. The

tool displays these associations and ranks them based on the number of occurrences

in the database (i.e. PubMed IDs). This gives the user an insight into possible role

of chemicals in regulating miRNAs which are deregulated in the input disease(s).

miRegulome aims to provide the complete regulome of any miRNA listed in this

database as derived from published literature. The current version of miRegulome

v1.0 provides the complete regulome for chemically responsive 803 miRNAs from 12

species. miRegulome can be accessed online at http://bnet.egr.vcu.edu/miRegulome

and is free for academic research. jQuery, JavaScript, and HTML has been used to

design the web-user interface. PHP has been used for server-side scripting support.

Google visualization library has been used to represent the data in an interactive

form. MySQL v.5.1.63 is used as database to store regulome information. It runs on

Apache 2.2.17 on Ubuntu 12.04. The database and its integrated tools can be best

used using the latest versions of Google Chrome and Mozilla Firefox browsers.

This work was published in Barh et al., 2015.[51] A future work in alignment

with this motivation was also published in Nalluri et al., 2016.[52]
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CHAPTER 4

MAXIMUM WEIGHTED MATCHING MODEL

Identification of miRNA-disease associations through experimental laboratory meth-

ods are time consuming and expensive [4]. Hence, a large interest has been devoted

towards finding important underlying associations through various computational

models.

A network of miRNAs and diseases underlain with TFs and target genes is a

very dense network and thereby poses a very complex networking scenario. Com-

plex networks offer a unique perspective to explore relationships among homoge-

neous and heterogeneous entities. These entities can be biological molecules, diseases,

genes etc. Hence, graph theoretic concept is very apt to model and mine important

miRNA-disease associations. In our research, almost all the observed miRNA-disease

networks, such as miRegulome, mir2Disease [9], miRNA-disease association network

(MDAN) [19] and Human MicroRNA Disease Database (HMDD) [20] are scale-free;

meaning few nodes i.e miRNAs have the highest impact on other nodes, thereby act-

ing as hubs. Hence, a miRNA-disease network follows the topological characteristics

of scale-free networks. For e.g. Figure 5 shows a scale free network of miRNA-

disease association network of HMDD. Further details about the topological metrics

of the scale-free nature of these miRNA-disease networks are elaborated in the Section

Motif-Based Analysis.

Using the graph theoretical network model, in this work we aim to find the most

impacted diseases upon action/altercation of specified miRNAs. Here, we present

a model that determines a prioritized set of diseases which are most definitely in-
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Fig. 5.: Network of miRNA disease associations in HMDD. Blue circles represent

miRNAs and red triangles represent diseases

fluenced upon the cumulative action/altercation of specified miRNAs. These asso-

ciations are determined by a pipeline process of applying the maximum-weighted-

maximum-matching algorithm to the network model in Section 4.1, calculating cu-

mulative weights per disease in Section 4.1.1, and applying the disease ranking scheme

in Section 4.1.2. A preliminary version of this work was presented earlier[53]. Further-

more, none of the previous work have presented any work on the motif-based analysis

of miRNA-disease networks. In this chapter, we analyze the topological features of

several miRNA-disease networks, especially the motifs in these networks and also the

cumulative impact of a set of miRNAs onto a set of diseases. The visualization of

these results and their topological perspective is elaborated in the Section 4.2.3.

4.1 Maximum Weighted Matching Inference model

Single or multiple miRNA(s) is/are up- or down- regulated in one or a set of

disease(s). The instances of up and down-regulations between a miRNA and disease,
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signify the strength of association between the pair. The interactions of miRNAs and

diseases can be mapped as a complex network such that miRNAs and diseases are

nodes in the network [Figure 5]. This mapping is critical to explore the associations

and depends heavily on the type of interactions. A graph theoretical concept such as

bipartite graph [54] can be used to model this problem. In this work, we have modeled

the miRNA-disease interaction as a bipartite graph which is shown in Figure 6-A.

A bipartite graph is a graph G(V,E) in which the set of vertices V can be

partitioned into two disjoint sets V1 and V2 such that every edge connects a vertex in

V1 to the one in V2 [54]. In our model, miRNAs and diseases have been categorized

as two disjoint sets and an edge represents an association between them. The data

consisting of miRNAs and diseases has been used from miRegulome. Herein, the edges

are weighted i.e. the number of publications citing up/down regulations between a

miRNA-disease pair. For e.g., in Figure 6-A the edge weight of 20 between m1 and

d1 represents the number of PubMed IDs citing miRNA m1 regulating disease d1.

Hence, the weight of the edge represents the strength of the association between the

miRNA and disease. Based on this data, we derive a weighted network consisting of

miRNA-disease interactions.

Maximum weighted matching (MWM): In the graph G(V,E), if there is a set of

edges such that no two edges share a common end vertex, it is known as a matching.

Maximum matching is a matching with largest possible set of edges. A maximum

weighted matching is a maximum matching such that the sum of the weights of the

edges is maximum. This is explained below.

Consider a miRNA-disease interaction network as in Figure 6, where m1 to m4

are miRNAs and d1 to d7 are diseases. The weight on the edge represents the strength

of the association between the miRNA-disease pair, in terms of the number of pub-
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Fig. 6.: Maximum weighted matching

lications citing up-regulating and down-regulating a disease. For e.g. in Figure 6,

the edge m1-d2 has a weight of 30, which indicates there are 30 publications (i.e.

PubMed IDs) in the curated literature of miRegulome which cite the miRNA m1

either up-regulating or down-regulating disease d2. As Figure 6-(B), shows after the

application of the MWM algorithm, the resultant sum of edges is the maximum score,

which implies that there is no possible combination of m-d pairs in the network, whose

cumulative sum is higher than the result. Hence, the MWM helps in determining the

strongest miRNA-disease pairs combination among a set of active miRNAs. The re-

sults give the cumulative impact of a set of activated miRNAs on the set of associated

diseases, which are most certainly impacted. The goal is to present a concise list of

diseases with highest confidence of being influenced and not to determine specific

miRNA-disease associations; rather an association between a set of miRNAs onto a

set of diseases. Models of such association that calculate the cumulative impact of a

set miRNAs onto a set of diseases are not many. This is important because miRNAs

and diseases tend to interact closely in sets and groups and hence a tool in prioritiz-

ing disease candidates is helpful in presenting a comprehensive and yet concise list,
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displaying the cumulative impact of specified miRNAs.

In our premise, since we are exploring the associations among a set of miRNAs

onto a set of diseases, it is important to note that many diseases might be associated,

but not all diseases might be significantly relevant to the set of inputted miRNAs.

Hence, we have to consider each miRNAs sphere of influence onto diseases, as well

as its relevance to other miRNAs sphere of influence. Herein, the MWM algorithm

addresses the issue, by choosing the optimum set of associations (with highest cumu-

lative sum) that the set of miRNAs present. This algorithm takes into account each

miRNAs sphere of influence and its strength of influence/association and thereby cal-

culates a set of edges, in consideration with set of miRNAs such that the resultant

cumulative influence of the set of miRNAs onto the set of diseases is highest. In other

words, just because a certain miRNA-disease edge has not been selected, it does not

imply, it is not considered. What it implies is that, it is not important when the

entire set is considered. Also, the goal is to produce a concise list and not an entire

set of associated diseases. This constraint does well to generate a set which is both

representative of every miRNAs sphere of influence as well as determining the highest

impacted diseases.

In any given miRNA-disease network, the solution to the MWM algorithm in a

given G(V,E) can be solved as an optimization problem.

Optimization problem formulation: Objective: To achieve the maximum sum of

weighted edges between miRNA and diseases, subject to constraints that no vertices

share the same edge. This helps us in getting the most prominent collection of pairs

such that, their cumulative sum is the maximum among all possible combinations.

Variables: Let Xi,j be an edge between a miRNA and disease, Weighti,j be the

edge weight between the miRNA-disease pair, m and d be the set of miRNAs and
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diseases respectively.

Algebraic formulation:

Maximize
∑
i,j

Weighti,j ∗Xi,j

s.t.
∑
j

Xi,j ≤ 1(j = 1, 2, ...,m)

∑
i

Xi,j ≤ 1(i = 1, 2, ..., d)

In the above formulation, we are maximizing the cumulative sum of the edges,

with the constraints that no miRNA or disease should be repeated. These constraints

help in reducing the repetition of common diseases associated with different miRNAs;

since miRNAs tend to regulate about 50 to 100 or more diseases based on data in the

human microRNA disease database (HMDD)[20] and miRegulome. This is important

keeping in view that the goal is to present a breadth of diseases within the concise

list, bearing on the fact that miRNAs tend to work closely in sets.

The above MWM optimization formulation is a linear programming problem

and geometrically, its a convex function. The resulting feasible region of solutions is

a polyhedron. This linear programming equation is solved using the linear program

(LP) solver GLPSOL which uses the simplex method [55].

4.1.1 Prioritization of disease candidates

Since many miRNAs are connected to a single disease they have a cumulative

influence on it. For e.g. in Figure 7, disease d2 is influenced by miRNAs m1 and

m2. Similarly, diseases d3 and d4 are influenced by more than one miRNA. In real

scenarios, diseases are regulated by multiple miRNAs. Hence, it is vitally important

that we consider the cumulative impact of all the active miRNAs on its associated
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diseases. In this model after the miRNAs-disease network is created based on user

input of active miRNAs, we calculate the cumulative impact of all of them on each

connected disease. Figure 7, shows the influence on each diseases numerically. This

helps in understanding in many ways, how a disease can be influenced by multiple

miRNAs, which is not considered in the MWM model. The MWM model, as shown in

Figure 6, selects the top impacted diseases. Each diseases’ impact can be calculated

by adding the weights of every active miRNA and the particular disease, as shown in

Figure 7.

This approach gives a ranked list of diseases.

Fig. 7.: Cumulative impact of each miRNA

4.1.2 Disease ranking scheme

Although, the application of MWM algorithm gives the most prominent miRNA-

disease associations, it has a limitation. Because of the constraint that no two edges

can share a common vertex, a strongly associated miRNA-disease pair can get ignored

in the MWM selection process. For example, consider miRNAs m2 and m3 in Figure

6; for miRNA m2 and miRNA m3, the m3 − d3 pair weight is 16 and m3 − d4 pair
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weight is 10. However, in the resultant matching only m3 − d4 pair is selected (see

Figure 6), because addition of this edge provides the highest cumulative sum when

all possible resultant combinations are considered. The pairs m3 − d4 and m2 − d3

are selected in the matching but their pair weights are 10 and 2 respectively, which

is less than the non-selected pair, m3 − d3. In order to overcome this limitation, a

disease ranking scheme has been adopted.

Here, diseases are ranked as per their highest cumulative impact from miRNAs

(see Figure 8-C) as explained in Section 4.1.1. This set of ranked diseases is compared

with the set of diseases obtained after the MWM algorithm (See Figure 8-B). The

rank of the disease in the MWM set which is least ranked is noted. If there are other

diseases which have a higher rank than the least-ranked disease and are not included

in the MWM set; those are added to the final output set of diseases (see Figure 8-

D). This method makes sure that a disease which is highly influenced is not missing

after the MWM algorithm is applied. MWM algorithm helps in giving a definite

and concise set of affected diseases. Prioritizing of diseases ranks them as per their

impact. Disease ranking scheme enhances the result set by overcoming the limitation

of the MWM algorithm, and adding higher ranked diseases in the final resultant set

of diseases.

When the miRNAs are entered by the user, an automated script performs the

following functions:

1. Runs the database procedure gathering the relevant literature pertaining to the

set of miRNAs

2. Generates the cumulative impact of miRNA onto each disease in a ranked man-

ner (Figure 8-C)

3. Creates a network model of the miRNA-disease associations in GMPL (Figure
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Fig. 8.: Cumulative impact of each miRNA

8-A)

4. Runs the MWM optimization script which operates on the created network

model and generates the optimum set of associations (Figure 8-B)

5. Observes the disease in the results of MWM (Figure 8-B) and identifies the least

ranked among them. Thereafter, it checks for diseases with higher cumulative

count than the least ranked disease, in the result set of (2), i.e Figure 8-C. If

there are any diseases with higher cumulative impact and not included in the

MWM set (4), they are added to the resultant set (Figure 8-D). For e.g. in

Figure 8, the set of diseases through MWM were {d2, d3, d4, d5} and the set

of diseases through ‘Disease ranking’ were {d2, d4, d1, d5, d3}. Disease d1

had higher cumulative impact compared to the least ranked disease d3 in the

MWM set and hence it was added to the final resultant section. Therefore, the

final resultant set of diseases is {d2, d4, d1, d5, d3}

This model has been used on the data from miRegulome, HMDD, and miR2Disease

[9] databases. Table 1 presents some of the results. PubMed IDs are provided for
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further reference.

This approach stands in contrast with many of the previous approaches men-

tioned in the Literature section. Firstly, most of the previous works, for e.g. [19],[4],[5]

and [6] are prediction based results and present ‘1-to-1’ miRNA-disease association.

In contrast, our work explores the associations between the set of miRNAs onto set

of diseases and presents results which are known associations, validated by PubMed

ids and not predicted. Secondly, our starting premise and motivation for this work,

unlike the previous works, is to explore the collaborative working of the sets of miR-

NAs and diseases. There are not many tools, which determine a set of diseases based

on the user’s input set of miRNAs to which we can compare. Thirdly, previous works

present a list of associations between miRNA and diseases which are static in nature,

and predict new associations which are valid with certain confidence score. However,

the approach and results in our work are dynamic; meaning the results will change

every time a new set of miRNAs are entered. The results are generated at the instant

- by sending a query to gather the relevant literature, generating the network model,

optimizing the objective of the network model, calculating the cumulative impact on

diseases and producing the set of diseases. As more and more new associations are

added to the databases, the results would only change for better. The results are not

new predictions rather set of known diseases, determined and prioritized to the set of

input miRNAs. Owing to the aforementioned reasons, there could not be a reasonable

and fair comparison done with previously established, benchmarked prediction-based

datasets used in [19], [6], [7] and [23] which are static, 1-on-1 miRNA-disease predic-

tions.

This work was published in Nalluri et al.,2013.[53]
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4.2 Motif based analysis

The topological features of miRNA-disease network could provide valuable in-

sights into the nature of collaboration of miRNAs and diseases, since miRNAs emerge

to work in groups [20]. It has been observed that motifs are the fundamental building

blocks in biological networks [56], since they are frequently occurring substructures.

These substructures can be of sizes 2 or above. Hence, we studied the topological

features of this network, namely motifs. We performed a motif-based analysis of

a miRNA-disease interaction network, and the disease-disease interaction network.

mfinder [57] and fanmod [58] software are used to determine the most significant mo-

tifs in the considered miRNA-disease networks. Motifs generated by mfinder are

identified in green color and motifs generated by fanmod are identified in orange

color. Apart from the networks derived from miRegulome, these motif-based analyses

were also performed in miR2Disease[9] network and also the HMDD [20] database.

4.2.1 mirna-disease network

The miRNA-disease associations obtained from miRegulome contained 468 nodes

and 2998 edges which is a sparse network with a density value of 0.0273. The degree

distribution of miRNA-disease network (see Figure 9) follows power-law property of

scale-free networks, i.e. their degree distribution follows the property of P (k) ∼ k−γ

[59]. Earlier research on scale-free networks showed that such networks are mod-

ular. While bipartite graph analyses identify diseases that are most influenced by

miRNAs using empirical evidence, motif analyses offers an additional perspective by

introducing structural insight to the miRNA-disease networks. The following 3 node

(see Figure 10) and 4 node motifs (see Figure 11) were found to be significant. The

3 node motif implies there a miRNA regulating at least two diseases and at least two
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miRNAs regulating a single disease. It also corroborates the finding that, when a

single disease is being regulated by a single miRNA, that same miRNA is regulating

one another disease - thus implying a non-direct way (i.e. via a miRNA) of a disease

affecting another disease. Hence, if two miRNAs are regulating a single disease, it can

be deduced that either the miRNAs are working against each other or in agreement

with each other in regulating that particular disease. A significant presence of this

motif implies, there are multiple connections of this sort among a diverse set of miR-

NAs and diseases, which pose a complex networking scenario. A significant amount

of 4 node motifs in this network emphasize the earlier observation made above; in

that a single miRNA is regulating three diseases, three miRNAs regulating a single

disease and two miRNAs regulating a two diseases. This provides a glimpse into the

intricate networking of miRNAs and diseases. These results are further corroborated

by the findings of MDAN [19], that 64.96% of diseases were at least associated with

two miRNAs and about 70% of the miRNAs were associated with two or more dis-

eases. In the 3-node motif and the 4-node motif, the nodes could represent either a

miRNA or a disease. However, the edge will always represent an association between

a miRNA and a disease. Hence, if a certain node is assumed to be a miRNA, the

node lined to it is a disease and vice-versa.

In DISMIRA — a tool developed based on the approach presented in this paper

— upon the input of miRNAs, the top diseases are displayed which participate in

maximum number of motifs in the network of entered miRNAs and diseases. Vi-

sualization presents an insightful display of the motif structures, thereby providing

the research community with a graphical understanding of the nature of association

between the miRNAs and diseases.
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Fig. 9.: Degree distribution of miRNA-disease network

Fig. 10.: 3 node motif in miRNA-disease network

Fig. 11.: 4 node motifs in miRNA-disease network
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Fig. 12.: Example showing the graph transformation from miRNA-disease network

to disease-disease network

4.2.2 Disease-disease network

In order to understand the associations and pattern between the diseases, an ex-

clusive disease-disease network was derived as a projection off the miRNA-disease net-

work. Consider the miRNA-disease network to be graph MD and the disease-disease

network to be graph D. An edge between two diseases exists in D if both these dis-

eases are influenced by the same miRNA. This graph transformation is demonstrated

in Figure 12.

The resulting network has 132 nodes and 3357 edges. To determine the structural

properties of disease-disease network, its degree distribution is plotted in Figure 13.

Observably, the distribution does not seem to follow power-law distribution which

usually indicates scale-free nature of a network. Upon analyses, the same motifs (see

Figure 10 and Figure 11) which were observed in miRNA-disease network, were found

to be significant in this network. This observation supports the notion that diseases

tend to work in tandem with other diseases and in our case via a miRNA passage,

they influence each other.

These same motifs were observed to be significant in the mirna-disease network of

the human microRNA disease database (HMDD) [20] and the mir2Disease database
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Fig. 13.: Degree distribution for disease-disease associations

[9], hence strengthening the case for these motifs to be vitally important in the avail-

able miRNA-disease networks. The HMDD network consisted of 961 nodes (of miR-

NAs and diseases) and 6448 edges, while the mir2Disease database consisted of 309

nodes (miRNAs and diseases) and 637 edges.

mfinder and fanmod, both generate random networks in their process of motif

identification. mfinder uses 100 random networks and fanmod uses 1000 random

networks. During this randomizing, 4-node or 3-node sub-graphs are generated among

which, the identified motifs have been found to be significant. Figure 14 is an excerpt

of the result summary for the significance of 4 node motif in the miRNA-disease

network of miRegulome by mfinder. The explanation has been taken from the manual

guide of mfinder.

Figure 14 explains the number of occurrences of the 4-node motif in the network,

the criteria taken for a motif to be significant, its Z-score, uniqueness and number of

random networks generated.
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Fig. 14.: Summary of results explaining motif identification/significance

We have incorporated motif-based analysis feature in the tool DISMIRA. Upon

the input of miRNAs, the tool will display the diseases which have the highest sharing

of motif structures with other miRNAs/diseases.

Table 2 shows the diseases and respective motif participation counts for an ex-

ample input set of miRNAs. Malignant melanoma, Epithelial ovarian cancer (EOC),

Breast cancer and Lung cancer are found in thirty seven square motifs.

4.2.3 Network Visualization

The network of miRNAs and diseases can be easily observed in this interactive

visualization feature of DISMIRA. This insightful perspective into the miRNA-disease

associations helps the user in the understanding of the networking of miRNAs and

their associated diseases, and also interpreting the the associations among miRNAs

and diseases. Maximum weighted matching algorithm and the motif-based analy-

ses are deployed into DISMIRA and their results are presented using the interactive

visualization. The user can input a set of miRNAs and select either the maximum
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weighted matching algorithm or the motif-based approach to identify significantly

associated diseases, and see their corresponding regulations and PubMed IDs. Upon

submitting the input query of miRNAs, the resultant diseases are displayed visually.

miRNAs are represented by blue nodes, resultant diseases i.e. the top affected dis-

eases from both the approaches are represented by orange nodes and other associated

diseases to the miRNAs are represented by the green nodes (see Figure 15). The

resulting miRNA-disease associations are represented using a network visualization

in a force-directed layout, meaning placement of miRNAs and diseases are in the

most aesthetic way and there is minimal crossing over of edges. This layout makes

the understanding of the network very intuitive. Once the results appear, users can

zoom-in and zoom-out of the graph for granular level of details such as edge associa-

tions, nearby entities and their respective associations etc. Edges between the nodes

are disabled by default and are shown upon selecting a specific node. This helps

in user-driven network discovery. Upon clicking a miRNA or a disease, its edges

are highlighted giving the user, the immediate reach of the entity. Multiple node

selections are available to identify nodes of common interest. Interacting with this

network visualization of miRNAs and diseases provides helpful insights which are not

collected otherwise, such as — the shortest path from a miRNA/disease to another

miRNA/disease, the k or k + 1 closest neighbors of a miRNA/diseases and a global

perspective of a miRNA or disease’s topological placement in the larger picture of

this network.

There are no miRNA-disease interactive visualization tools available for free, as

far as we know, at the time of this publication. The visualization tool in this work,

generates a user specified network of miRNAs-diseases and allows the user to dis-

cover the network with the progression of clicks. The width of the edges i.e. thick

and thin, intuitively convey the strength of association between the miRNA-diseases.
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Furthermore, users can research the top impacted diseases and their subsequent up-

/down regulation by miRNAs on clicking the disease details and searching them in

PubMed literature (see Figure 16). Moreover, the results are displayed intuitively in

a 3-way approach; after receiving the list of diseases in the output, the user can click

on a certain disease and know why the disease is significant (based on the PubMed

id count), where is it relevant (based on its topological position in the larger picture

of miRNA-disease network) and how it is impacted (by seeing each miRNA’s impact

and subsequent regulation towards it). This would assist in thorough investigation.

To aid in further detail and completeness for the user, once the network is displayed,

all miRNA-disease associations along with their PubMed IDs are provided for down-

load in CSV format. Users use this CSV file in other visualization softwares of their

choice too. The visualization is developed using Django framework [60], Python [61]

(networkX [62]), JavaScript [63], d3js library [64], bootstrap and HTML with the sup-

port of MySQL for back-end database. A snapshot of the visualization is presented in

Figure 15. This tool can be accessed for free at: http://bnet.egr.vcu.edu:8080/dismira.

4.2.4 Case study and utility

Consider the input of miRNAs, hsa-mir-125a, hsa-mir-34a, hsa-mir-21 to DIS-

MIRA. Upon choosing the maximum weighted matching (MWM) based model the

most impacted diseases are: colorectal cancer, hepatocellular carcinoma (HCC), pan-

creatic cancer and breast cancer. However, users can select individual miRNAs and

observe the association onto other diseases along with the strength of the association.

Thicker edges represent high count of PubMed literature supporting the association

and regulation (see Figure 15).

Moreover, upon clicking a certain disease, in our example, say ’colorectal cancer’

- its subsequent regulation details, PMIDs can be retrieved. In this case, by studying

34



Fig. 15.: Visualization of results of maximum weighted matching algorithm

the results further, it can be noted that mir-21 is strongly up-regulated during this

disease, whereas mir-125a and mir-34a are being down-regulated (see Figure 16)

However, in case of ‘pancreatic cancer’, mir-21 and mir-125a are both being up-

regulated and mir-34a is being down-regulated. The scenarios of multiple miRNAs

working together and against each other towards their regulation during a certain dis-

ease can be easily observed and studied. Upon selecting the motif-based approach for

the same miRNAs, the top diseases are: hepatocellular carcinoma (HCC), colorectal

cancer, prostrate cancer and pancreatic cancer with their motif counts of 470, 446,

431 and 317 respectively. These diseases are occurring in most motif structures of

3-node and 4-node. As shown in Figure 17, it is intuitive that these diseases would be

in most of the motifs due to their topological placement in the network, i.e. prostate

cancer, pancreatic cancer and hepatocellular carcinoma are the bordering diseases of

three miRNAs’ range. Hence, they are most participative in the interaction of several

diseases i.e. 3-node and 4-node motifs.
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Fig. 16.: Regulation details of colorectal cancer

Fig. 17.: Motif participation of diseases
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Fig. 18.: miRNA’s range of influence

Whereas, breast cancer (see black dotted arrow in Figure 17) which was one of the

resultant diseases in the MWM approach, is listed further below the aforementioned

diseases with 265 motifs (observe its placement in the Figure 17) since its being

regulated by two miRNAs and thereby less motifs. Upon clicking a certain miRNA,

its range of influence can be observed as displayed in Figure 18.

Using the visualization, the user can also determine paths or shortest paths to un-

related diseases, for e.g. see Figure 19, the disease cholagiocarcinoma and melanoma

seem to be unrelated. However, upon drawing careful egdes, it can be noted that

melanoma is three hops away from cholangiocarcinoma, via papillary throid carcinoma

(PTC). Upon the activation of the disease PTC, mir-34a and mir-21 are active and

thereby the weak possibility of the activation and association of cholangiocarcinoma

and melanoma. Similar such paths between diseases of interest can be explored by

the user.

It is important to note that, this visualization does not provide strong certainty

in predicting or determining the disease-disease interaction, rather merely provides

the abstract idea of the reach of the diseases onto each other. However, this tool does
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Fig. 19.: Paths between diseases

provide the preliminary overview of the disease-disease interaction network which can

be studied adeptly to uncover significant underlying associations.

The above methodology was published in Nalluri et al.,2015[39]
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Table 1.: MWM based algorithm results

S.No. miRNAs Diseases PubMeds

for

results

1 hsa-mir-9-1,

hsa-mir-9-2,

hsa-mir-200c

Breast cancer, Colorec-
tal cancer, Kidney can-
cer, Ovarian cancer

23617747

2 hsa-mir-182,

hsa-mir-200a,

hsa-mir-200b,

hsa-mir-200c

Lung cancer, Ovarian
cancer (OC), Hepa-
tocellular carcinoma
(HCC), Breast can-
cer, Kidney cancer,
Colorectal cancer,
Oral squamous cell
carcinoma

23272653

3 hsa-mir-29a,

hsa-mir-34a,

hsa-mir-34b,

hsa-mir-25

Ulcerative coltis, Se-
rious ovarian cancer,
Bladder cancer, Pituary
adenoma, Primary
Biliary cirrhosis, Ep-
ithelial Ovarian Cancer,
Cardiac hypertro-
phy, Breast cancer,
Acute Lymphoblas-
tic leukemia, Kidney
cancer, Gastric cancer
and nasopharyngeal
carcinoma

18056805,

19475496,

19646430,

16461460,

18728182,

18390668,

17823410
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Table 2.: Example for disease participation in square motifs with the set of input

miRNAs using motif analysis

Input miR-

NAs

Disease (participation count in motifs)

hsa-mir-184

hsa-mir-200a

hsa-mir-200b

hsa-mir-200c

Malignant melanoma (37)
Epithelial ovarian cancer (EOC) (37)
Breast cancer (37)
Lung cancer (37)
Cancer (23)
Ovarian cancer (OC) (23)
Serous ovarian cancer (23)
Hepatocellular carcinoma (HCC) (18)
Kidney cancer (18)
Endometriosis (9)
Non-alcoholic fatty liver disease (9)
Oral squamous cell carcinoma (OSCC) (8)
Colorectal cancer (5)
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CHAPTER 5

CONSENSUS BASED NETWORK INFERENCE

The multi-level interactions of miRNAs in cancer-like multi-factor diseases are more

complex due to the possibility of several types of interactions such as the classi-

cal miRNA-mRNA, miRNA-environmental factors, miRNA- transcription factors-

miRNA, and our newly hypothesized direct miRNA-miRNA interactions without any

intermediate linkers such as transcription factors. However till date, no experimental

proof of direct miRNA-miRNA interactions exists except a single study reported in

mouse[65].

Although, the patterns and reasons behind miRNA’s deregulation in cancers are

not fully understood, it has been found that miRNAs operate in clusters and tend

to work together in groups,[66]as evidenced in certain diseases[20]. Such coordinated

regulation, mutual co-targeting and co-regulation, and miRNA regulation by other

miRNAs are reported in many disease conditions including various cancers[66]. To

elucidate the miRNA-disease associations at regulome level, we developed the miReg-

ulome database and analysis tools[51]. Furthermore, in cancers it has been observed

that groups of miRNAs, known as ‘superfamily’, express consistently across several

cancers and may act as drivers of tumorigenesis, where few key miRNAs direct the

global miRNA expression patterns[67]. Identification of such groups of super-families

of miRNAs obviously leads to the intuition that the therapeutic suppression or expres-

sion of any one the miRNAs in the family would compensate for the other participants

of the family[67]. Our hypothesis is that, these miRNAs in such ‘super-families’ may

interact directly or indirectly, by forming a core miRNA-miRNA co-regulatory net-
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work and thereby acting as a signature component for prognosis, prediction, and early

diagnosis of any disease including cancer.

5.1 Methods

In this work, we have used the miRNA expression data sets available in the

PhenomiR[68] database to predict miRNA-miRNA core/signature interactions across

several cancers using a combination of (i) six state-of-the-art network inference algo-

rithms, (ii) a wisdom of crowds [69] based consensus approach[70] to generate disease-

specific miRNA interaction networks with higher accuracy, and (iii) a simplified graph

intersection analysis to identify the miRNA-miRNA core interactions across multiple

diseases belonging to a particular disease class.

The methodology adopted in this paper is comprised of i) translating the miRNA-

disease expression scores from the PhenomiR database into a miRNA expression ma-

trix (Figure 20, Step 1); ii) deploying six network inference algorithms on the expres-

sion matrix and deriving the miRNA-miRNA interaction scores from each algorithm

(Figure 20, Step 2); iii) performing a consensus-based approach, i.e. estimating an

average score for every miRNA-miRNA interaction across its six predicted scores (Fig-

ure 20, Step 3); iv) validating the resultant interactions using precision-recall analysis

with a hypothetical true network generated using the PubMed IDs from PhenomiR;

v) analyzing the miRNA-miRNA interaction networks for every disease and detec-

tion of the conserved miRNA-miRNA interactions across various groups of cancers

and finally vi) validating the conserved miRNA-miRNA interactions in the identified

group of cancers via manual literature search.
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Fig. 20.: Overview of the methodology with Mi denoting miRNAs and Dj denot-

ing the diseases. Step 1 consists of translating the PhenomiR data set into three

miRNA expression matrices (a, b and c) based on three approaches. In Step 2, each

of these matrices are subjected to six network inference algorithms which produce

the interaction scores across the different MiDj nodes. In Step 3, the six individ-

ual MiDj −MxDy interaction scores are averaged into a final score designating its

confidence.
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Fig. 21.: Schematic of the miRNA-disease regulation with fold-change values.

Fig. 22.: Schematic of the miRNA expression data set. [(a) and (b)]: Data from Phe-

nomiR is mapped into an miRNA expression matrix. (c) Network inference approach

is applied to the matrix to derive the probabilistic interaction network.
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5.1.1 Data preparation and modeling

The data from the PhenomiR database is freely available and was used in this

study. PhenomiR 2.0 was downloaded for the purposes of this study. PhenomiR

2.0 is a comprehensive data set containing 535 database entries across 345 articles

recording miRNA expressions in diseases[68]. As shown in Figure 21, the data from

PhenomiR was converted into a disease-specific miRNA expression matrix (shown in

Figure 22). The miRNAs whose fold-change values were not available in PhenomiR

2.0 data set were discarded from the study; this also includes some misformatted

lines of data that were excluded from further processing as they were also missing the

fold-change values. Here, the core idea is to consider a pair of miRNA and disease

as a single miRNA-disease (MD) node, as seen in Figure 22; note that, for ease of

reference, we consider an MiDj pair as an MD node which conceptually designates a

disease-specific miRNA. The same miRNA participating in multiple diseases will have

different expression profiles in each of them and hence the disease specific miRNA

terminology, i.e., MD, signifies a miRNA’s expression profile in a particular disease.

Thus, every unique miRNA-disease pair constitutes a unique MD type node. In

this disease-specific miRNA expression matrix (Figure 22-b), each row represents a

study/experiment and each column represents an MD ’s expression score in that study.

The resultant expression matrix herein, has 4,343 unique nodes/columns (i.e., unique

MDs in the network) for 267 samples (i.e., rows).

In the PhenomiR data set, some MDs have two fold-change values indicating

minimum and maximum expression scores while other MDs only report a minimum

fold-change expression score (for e.g., see Figure 20, Step 1, PhenomiR data set, row

2). To assess these scenarios, we devised three different methodologies (described in

the next section), generated separate expression matrices based on each methodology
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and performed the subsequent analysis on each of them.

Average scoring

Under Average scoring method, for the MDs having both minimum and maxi-

mum fold-change values per sample, their average was taken and considered as the

final expression value in the expression matrix. As shown in Figure 20, Step-1, the

entry M1-D1 has two expression values - 2.3 and 2.9, i.e., minimum fold-change and

maximum fold-change respectively, which were averaged to 2.6 in the Expression Ma-

trix 1 (see Figure 20, Step 1-a). For MDs with only their minimum expression values

reported, this single value was also considered to be its average expression value.

Retaining maximum and minimum expression values

The Average scoring method can lead to a potential loss of information as the

individual maximum and minimum expression values (when available) were not re-

tained. Hence we designed the following two methods to generate the expression

matrix.

1. Max-Min scoring

Under Max-Min scoring method, for the MDs having minimum and maximum

fold-change expression values, (instead of taking their average) both these data

points were considered as separate entries; thus, the same MD was considered

twice in the expression matrix with the duplicate entry designating a new exper-

iment. As displayed in Figure 20, Step 1, the first row entry, M1-D1 in Study-1

has two expression values; these values were individually considered as separate

data points and included in the expression matrix accordingly along with their

co-expressing miRNAs’ expression values, providing us with Expression Matrix

2 (see Figure 20, Step 1-b).
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2. Computing Missing Max. scoring

Under Computing Missing Max scoring method, for the MDs which did not have

a maximum fold-change expression value, we took an average of its maximum

fold-change values across all its other samples and substituted this average score

as it’s maximum fold-change expression value. As shown in Figure 20, Step 1,

the entry M2-D1 on 2nd row does not have a maximum fold-change value.

However, M2-D1 combination has maximum fold-change expression values of

6.7 and 6.1 from sample #5 and #6, respectively. Herein, we took an average

of these two values, i.e. 6.4 and substituted it for the original missing value

for M2-D1 in the 2nd row. This method overcomes the limitation posed due

the non-availability of the expression value by giving its closest approximation,

based on the particular MD ’s expression pattern across the sample spectrum.

After applying this method, the Average Scoring method was performed on this

matrix to obtain Expression Matrix 3 (see Figure 20, Step 1-c).

After the three expression matrices were derived, a reverse engineering method-

ology[70] was adopted to reconstruct the MD-MD regulatory network from these

expression matrices (Figure 22, Network Inference), by applying six widely used net-

work inference algorithms along with a consensus-based ranking algorithm, which is

explained in the next section.

5.1.2 Network inference algorithms

Each expression matrix has 4,343 nodes and therefore, there are potentially 4,343

x 4,343 (i.e. 18,861,649) MD-MD interactions in the network. Six different network

inference algorithms were applied on the miRNA expression matrix, which gave pre-

diction scores for every MD-MD interaction. We used the mutual information-based

algorithm, Context Likelihood of Relatedness (CLR)[71], Maximum Relevance Min-
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imum Redundancy Backward (MRNETB)[72], Basic Correlation methods (Pearson

and Spearman), Distance Correlation (DC)[73], and regression-based Gene Network

Inference with Ensemble of Trees (GENIE3)[74] algorithms for network inference. The

details of the algorithms are given in Appendix A. Note that, the Basic Correlation

methods resulted in two different network inference algorithms based on the type of

correlations implemented, i.e., one each for Pearson and Spearman correlations.

5.1.3 Consensus based network inference approach

Each of the six individual network inference algorithms produced a ranked list of

prediction scores for every MD-MD interaction (see Figure 20, Step-2). Thereafter,

we used the wisdom of crowds [69] approach, which proposes that the aggregation

of information from the community yields better results than the individual few.

In this study, the consensus based approach aggregates the collective information

(i.e. prediction scores) from the six individual network inference algorithms and

computes a more accurate final score for MD-MD interactions. This rank is computed

by taking an average of the predicted ranks of each interaction derived from the

corresponding network inference algorithms. Figure 23 displays the workflow of this

approach. This approach was earlier implemented to infer gene-regulatory networks

and yielded highest accuracy compared to each of the individual network inference

algorithms[70].

This consensus based network inference approach is executed in the Average

Rank [70] algorithm which essentially computes the average score of a particular MD-

MD interaction by taking the mean of its six predicted ranks. The ranking method-

ology used in this algorithm is based on the Borda count method. This method is

used in elections during which voters rank candidates as per their preferences. The

winning candidate is the one with the best average rank. Here, all the interactions
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are first ranked in descending order of their predicted scores (as seen in the column

Rank in Table 3). Describing briefly, the Borda count method allocates points to each

rank. The highest ranked interaction (meaning, 1) get the maximum Borda points

(number of interactions - 1) and the lowest ranked interaction has 0 Borda points as

demonstrated in the column Borda points in Table 3. In order to derive the final rank

between 0 and 1, these points are thereafter normalized to derive a relative Borda

rank. Thus, each rank has been translated to its new relative Borda rank. Note

that, the Borda count ranking method is among the many other methods to perform

averaging of the ranks in the consensus methodology.

The six network inference algorithms generate six different ranks for each in-

teraction and the consensus algorithm next computes an average Borda rank for the

interaction. Tables 3 and 4 display a scenario of ranking four MD-MD interactions I1,

I2, I3 and I4 via a consensus-based approach as executed in AverageRank algorithm.

Table 3 displays the ranked list of predictions for these interactions by all the six

network inference algorithms based on their prediction scores. For example, in Table

3, Algorithm 1 ranks MD-MD interactions in this order — I4, I2, I1 and I3 based on

their prediction scores. The individual ranks for miRNA-miRNA interaction I4 are 1,

3, 4, 2, 2 and 3 by the six algorithms respectively (as highlighted in blue), and their

relative respective Borda ranks are 1, 0.333, 0, 0.666. 0.666 and 0.333. The final rank

of interaction I4 is the average of all the Borda ranks, i.e., 0.49, as demonstrated in

Table 4 (as highlighted in blue). Similarly the final ranks of every other interaction

is computed using the following formula,

Final − rank(I) =
1

K

K∑
j=1

Borda− rankj(I) (5.1)

where, K is the number of algorithms (six, in our case). These results are
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displayed in Table 4.

Fig. 23.: Workflow of the consensus-based miRNA network inference.

An example of the final result listing of our MD-MD interactions is shown in

Table 5 (also see Figure 20 Step-3):

In these results, we noted all the different possibilities of interactions that can

occur considering the miRNA-disease pair, i.e. MD as a node. There are essentially

four types of interactions that can exist in this network. These are explained in Table

6. Among these types, type 1 is a self-loop and not applicable for our purposes. For

application purposes of our methodology, we focused on analyzing the set of interac-

tions belonging to type 3 which is further elaborated in the next section. Interactions
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of type 2 and type 4 will be studied in the future to analyze the relationship between

diseases sharing a common miRNA (type 2 ) and the proximity between dissimilar

miRNAs and dissimilar diseases (type 4 ) having high probabilities of interaction.

Disease-specific miRNA network construction

In this section, the results of the type 3 interactions were selected for disease-

specific analysis. There were 66 unique diseases in the final predicted list of interac-

tions from the Average Rank algorithm. Under a specific disease Dx, all the miRNA-

miRNA edges, i.e. M1Dx-M2Dx edges were collected into a single Dx disease network;

thereby giving us the disease-specific miRNA-miRNA interaction network (DMIN )

(Figure 24, Step 1). DMIN is a network G = (V, E), where V = {M1Dx,M2Dx, ...MnDx}

(i.e., set of miRNAs under disease name Dx) and E is the ordered set of edges, where

edge e = {Mi,Mj}. We performed a similar network construction for every cancer-

related disease, Dx. To pursue a more definitive and cancer-specific analysis, only

cancer-related diseases were chosen and grouped into classes based on their tissue/or-

gan specificity. We created four major classes: i) gastrointestinal cancers (esophageal,

gastroesophageal, gastrointestinal, gastric, and colorectal cancer), ii) endocrine can-

cers (hepatocellular, pancreatic, and thyroid carcinoma follicular, and thyroid carci-

noma papillary), iii) leukemia/blood cancers (hematological tumors, acute myeloid

leukemia, chronic lymphatic leukemia, and acute myelogenous leukemia), and iv)

nerve cancers (neuroblastoma, medulloblastoma, and glioblastoma).

Under a particular disease class, all the corresponding DMIN s were combined

into a single network (Figure 24, Step 2). Using graph intersection analysis, we mined

the miRNA-miRNA interaction networks of all the cancers within the specific class to

identify a conserved (signature/core) miRNA-miRNA interaction component. This

identified miRNA-miRNA interaction component was present in all the diseases of
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that particular class. These findings are reported in the Section pan-cancer miRNA

signatures and the results are discussed in the Section Discussion.

Fig. 24.: Overview of the disease analysis.

5.2 Results

Validation of interactions

After executing the Consensus based network inference approach on three input

miRNA expression matrices derived from the three approaches mentioned in the Data

preparation and modeling section (Average scoring, Retaining Max-Min and Comput-
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ing Missing Max.), we obtained three sets of predicted miRNA-miRNA interactions.

Each predicted interaction was validated by querying for PubMed IDs in the Phe-

nomiR database which cited and reported the occurrence of miRNAs’ association with

the specific disease in a single PubMed ID. For e.g., for each predicted interaction,

i.e. MaDx to MbDx, if a PubMed ID cited the occurrence of the association between

the miRNAs (Ma,Mb) and the disease (Dx), the interaction was termed as true/-

validated (1); else the predicted interaction was termed as unknown/unverified (0).

Based on this, labels were generated for every interaction in the resultant set forming

the true network. We performed a precision-recall analysis to ascertain the accuracy

of the consensus-based network inference method. The precision-recall values were

calculated using the formula:

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn
(5.2)

where tp, fp, and fn are true-positives, false-positives and false-negatives respectively.

Figure 25 displays the results of the precision-recall analysis and the ROC curve

for all the three approaches used. As demonstrated in the figure, the Average scoring

method fared better than the other two methods; in fact the Computing Missing

Max. method also performed well for low recall but gradually degraded for higher

recall values. Based on this precision-recall curve, our proposed methodology displays

a high precision (for up to a 30% recall) demonstrating its effectiveness in providing

high confidence to the results. The ROC curve shows that both the Average scoring

and Computing Missing Max. methods are comparable in predicting the true positives

when compared to the number of false positives seen alongside.

Note that our true network generation method has some obvious limitations.

While a true edge constituting the association of the two miRNAs with the same

53



disease in the same PubMed ID is still acceptable (specifically because these edges

were manually curated), the unverified edges may simply mean that a study has

not yet been reported associating the miRNAs to the same disease. Hence, a high

precision performance should be the best judge of our methodology whereas the recall

curve can be somewhat circumstantial.

Pan-cancer miRNA signatures

After the Validation of interactions, in order to confidently detect miRNA signa-

tures in the specified disease classes, only the top 10% interactions with the highest

confidence scores were used in the construction of DMIN (Figure 24, Step 1) and the

subsequent graph intersection approach (Figure 24, Step 2). Hence, all the considered

miRNA-miRNA interactions had a confidence score of 0.9 and above. As reported

in Figure 26, under gastrointestinal cancers, we detected a signature component of

three miRNAs (hsa-mir-30a, hsa-mir-181a-1, and hsa-mir-29c). For endocrine can-

cers, the signature component consisted of hsa-mir-221, hsa-mir-222, hsa-mir-155,

hsa-mir-224, hsa-mir-181a-1, and hsa-mir-181b-1. For leukemia cancers, the signa-

ture component consisted of hsa-mir-29b-1, hsa-mir-106a, hsa-mir-20a, hsa-mir-126,

and hsa-mir-130a. We observed two different signatures for nerve cancers. For subse-

quent validation of these cancer-specific signature set of miRNAs, we manually mined

PubMed articles which corroborate our results, as reported in Figure 26. We queried

both the PhenomiR database and the PubMed Central database for these reported

PubMed IDs; the results from these two sources are shown in different colors in Figure

26. We also observed that, while hsa-mir-30 is common in gastrointestinal and nerve

cancers; hsa-mir-181 is shared by gastrointestinal, endocrine and nerve cancers. The

miRNA signature component of the category leukemia is found to possess a distinct

group of miRNAs (Figure 26). The role and involvement of these miRNAs in their
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associated diseases are further elaborated in the Discussion section.

The individual steps involved in the manual search process from PubMed Central

are shown in Figure 27. To summarize, we first searched PubMed Central with the

list of core miRNAs and each disease for which they form a signature component.

We next manually checked the ’search’ results to confirm the associations (i.e., the

pruning step for PMIDs). If not enough results were retrieved from this search,

we entered each miRNA, disease pair individually for all the miRNAs forming the

signature component in that disease; each of these results were then manually pruned

and collated to give us the set of PMIDs corresponding to the core miRNAs for that

disease. This process was repeated for all the other diseases of a particular disease

class.

5.2.1 miRsig - an online tool

In order to aid researchers to identify disease-specific miRNA-miRNA interac-

tion networks across several diseases, we developed the miRsig tool, available at

http://bnet.egr.vcu.edu/miRsig. miRsig allows the user to visualize the miRNA-

miRNA interaction network for each disease recorded in PhenomiR and also across

multiple diseases. The results are based on the consensus-based network inference

approach. miRsig also allows users to search for a common/core miRNA-miRNA

interaction component in a user-specified selection of diseases (see Figure 28). Users

can create their own class/category of cancers by selecting more diseases, as shown

in Figure 28. The edges in the interaction have confidence scores as weights, from 0

(minimum) to 1 (maximum). Hence, the tool also allows the user to view only the

higher/lower/specific confidence interactions by changing the Maximum and Mini-

mum confidence score ranges. Currently, the total number of edges across the entire

miRNA-miRNA interaction networks are more than 18 million. Hence, to avoid clut-
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tering of the result set and to allow clear visibility and comprehension of the network,

the Minimum score is set to 0.5, if not specified by the user. Users can also view

and analyze the topological properties of miRNA clusters interacting in each or a

set of diseases. The signature/core miRNA-miRNA interactions among esophageal,

gastroesophageal, gastrointestinal, gastric, and colorectal cancers, as predicted and

visualized is shown in Figure 28. This network component consisting of three miRNAs

(has-mir-30a, has-mir-181a-1, and has-mir-29c) is the signature component for all the

aforementioned five cancers, and can be validated using simple literature search on

PubMed Central database as demonstrated in Figure 27.Users can also download the

miRNA-interaction network in the format of an edge-list in a CSV file. This edge-list

can be imported in various network analysis tools such as, NodeXL, Cytoscape, etc.

for further study and analysis of the interaction network.

miRsig tool has been developed using MySQL as the back-end database and

HTML, PHP, JavaScript, AJAX for front-end design. The interactive network visu-

alization has been implemented using data visualization library, D3.js[75].

5.2.2 Discussion

miRNA-mRNA interactions have been substantially documented [76] and is a

prime area of ongoing research. Similarly, miRNA- miRNA interactions through

mutual co-expression[77], via transcription factor[78], and miRNA-disease associa-

tions[79] have also been reported. However, miRNA-miRNA interactions towards

identification of a core miRNA-miRNA module that could potentially be a signature

component for a particular disease have not been studied enough. Many studies have

used computational approaches to study this aspect. A miRNA-miRNA co-regulation

network in lung cancer was identified using a progressive data refining approach[35].

Similarly, miRNA expression profiling along with a genome-wide SNP approach was
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used to create a miRNA-miRNA synergistic network to study coronary artery dis-

ease[80]. miRNA-miRNA interactions were also identified in esophageal cancer using

K-clique analysis on a bipartite network consisting of miRNAs and subpathways[81].

Additionally, miRNA-target interactions were integrated with miRNA and mRNA

expressions to deduce miRNA-miRNA interactions in prostate cancer[82]. A net-

work topological approach was also undertaken to identify disease miRNAs by con-

structing a miRNA-miRNA synergistic network consisting of co-regulating functional

modules[34].

In this work, we adopted a strategy that takes a miRNA expression profile and

uses six different network inference algorithms (CLR[71], MRNETB[72], Basic Corre-

lation (Pearson and Spearman), DC[73], GENIE3[74]), each varying in their inference

strategies, integrated with a consensus approach and graph intersection to identify

the conserved miRNA-miRNA interaction signature across a group of diseases (can-

cers, in this case). The identified signatures were validated via manual literature

search and were found to be associated within the classes of the selected cancers,

demonstrating the efficacy of the method. Under validation, we retrieved the PMIDs

reporting the associations from the PhenomiR database and also performed a man-

ual literature search in the PubMed Central database to separately corroborate our

results, as displayed in Figure 26.

Our results show that, the expression profile of hsa-mir-30a, hsa-mir-181a-1,

and hsa-mir-29c could be a signature for gastrointestinal cancers that comprises of

esophageal, gastroesophageal, gastrointestinal, gastric, and colorectal cancers (Figure

26). These miRNAs are already reported to be associated with these cancers[83–

86]. miRNAs (hsa-mir-30a, hsa-mir-29c, hsa-mir-181a-1) displayed the same trend of

expression in a study of esophageal adenocarcinoma (EAC) and Barrett’s esophagus

(BE) and were differentially up-regulated in both the disease tissues. hsa-mir-181a
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and hsa-mir-29c showed higher expression levels in EAC to that of BE with high

grade dysplasia[86]. Studies have also reported hsa-mir-181a, hsa-mir-30a and hsa-

mir-29c being overexpressed in esophagela carcinoma (EC) and hsa-mir-29c to be

underexpressed in EC[87][88] and therefore, this group of miRNAs may be considered

for developing a pan-diagnostic tool for the aforementioned cancers.

We identified that hsa-mir-221, hsa-mir-222, hsa-mir-155, hsa-mir-224, hsa-mir-

181a-1, and hsa-mir-181b-1 make the signature for endocrine cancers (hepatocellular,

pancreatic, and thyroid cancers) (Figure 26). Reports suggest that these miRNAs are

predominantly associated with this group of cancers[89–92]. In another study analyz-

ing molecular signatures for aggressive pancreatic cancer, all the miRNAs (hsa-mir-

221, hsa-mir-222, hsa-mir-155, hsa-mir-224, hsa-mir-181a-1, and hsa-mir-181b-1) were

significantly altered due to chronic exposure to conventional anti-cancer drugs[93]. A

large-scale meta-analysis investigating candidate miRNA biomarkers for pancreatic

ductal adenocarcinoma (PDAC) across eleven miRNA expression profiling studies,

reported all the miRNAs to be up-regulated and having a consistent direction of

change. miRNAs hsa-mir-221, hsa-mir-222, hsa-mir-155 were reported to be upreg-

ulated together in at least five of these studies with a consistent direction. Among

them, miRNAs hsa-mir-221, hsa-mir-155 were identified as part of a meta-signature

and biomarkers for PDAC[94]. Studies also report all these miRNAs to be associated

with lung cancer[95]. Thus this set of miRNAs may be used/tested as a diagnostic

tool for all the endocrine cancers considered here.

Seven miRNAs (hsa-mir-29b-1, hsa-mir-146a, hsa-mir-20a, hsa-mir-126, hsa-mir-

99a, hsa-mir-199b and hsa-mir-130a) that are well documented for their association

with various kinds of leukemia[92, 96–101] are found to form the signature component

of leukemia from our analysis (Figure 26). miRNAs (hsa-mir-29b-1, hsa-mir-20a, hsa-

mir-126, hsa-mir-146a, hsa-mir-199b) were differentially expressed in a blood stem
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cell study in which the blood stem cells were treated with plerixafor and granulocyte

colony-stimulating factor. The miRNAs were recorded to be expressed in this treated

cell study analyzing acute lymphocytic leukemia conditions[102]. miRNAs (hsa-mir-

126, hsa-mir-130a, hsa-mir-99a, hsa-mir-146a, hsa-mir-199b) have also been reported

to express together in a myeloid cell study exploring transcription factor binding site

motifs[103]. Therefore, this signature group of miRNAs can be potentially used as a

screening or diagnostic tool for a range of different types of leukemia.

In case of neurone cancers (neuroblastoma, medulloblastoma, and glioblastoma)

we detected two signatures: i) hsa-mir-323, hsa-mir-129-1, hsa-mir-137, hsa-mir-330,

hsa-mir-149, hsa-mir-107, hsa-mir-30c-1, hsa-mir-181b-1 and ii) hsa-mir-30b, hsa-

mir-331, hsa-mir-150, hsa-let-7a-1 (Figure 26). Regarding the first signature network

component, hsa-mir-137, hsa-mir-330, hsa-mir-149, hsa-mir-107, hsa-mir-181b were

among the miRNAs whose experimentally validated targets (such as CTBP1, CDC42,

CDK6, E2F1, VEGFA, AKT1, KAT2B) affect the pathways which play a crucial

role in glioblastoma biology. Deregulations of hsa-mir-137, hsa-mir-330 and hsa-mir-

149 lead to effects in the glioma de novo pathway, VEGF signaling pathway and

Notch signaling pathway [104]. Among the miRNAs reported in the second signature

component, hsa-mir-330 and hsa-mir-30b are among the top ten miRNAs having least

coefficient of variation in the expression of benign kidney tumor and hsa-mir-150 is

differentially expressed in metastatic clear cell renal cell carcinoma[105].

Comparing our results with other similar works has been challenging, primar-

ily because there are not many studies that have reported direct miRNA-miRNA

co-regulations across these disease classes. Similar studies[35, 67, 106] have used

different disease and miRNA data sets which makes a one-to-one comparison chal-

lenging. In some previous works, miRNA-miRNA regulatory associations have been

deduced based on the semantic similarities between the associated diseases[25] and
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based on the analysis of shared transcription factors, common targets, KEGG path-

way analysis and corroboration from literature[35]. However, none of these methods

allow for a network-level miRNA-miRNA analysis for a variety of diseases and hence

cannot be used for comparison purposes to the predicted interaction networks in this

paper.

Online analysis and visualization of results is an aid to the research community.

Along these lines, several network analysis and visualization tools have been devel-

oped, such as VisANT for integrative online visual analysis of biological networks

and pathways[107], miRegulome for miRNA regulome visualization and analysis[51]

and miRNet for functional analysis of miRNAs within a high-performance network

visual analytics system[108] among others. However, no tool is available so far which

can perform an online visualization and analysis of signature miRNAs across multiple

diseases. The miRsig tool developed here bridges this gap and provides an intuitive

analysis and visualization of core/signature miRNA-miRNA interaction components

for several diseases.

In this work, we have developed a powerful consensus-based network analyses to

identify disease specific miRNA-miRNA interactions. The method is effective in iden-

tifying the signature/core miRNA-miRNA interactions for a group of diseases; here

tested on cancer. These signature miRNAs would have potential use as diagnostic/

prognostic/therapeutic values in a group of related diseases such as cancers. miR-

sig is a powerful prediction and visualization tool for core/signature miRNA-miRNA

interaction among a number of user specific diseases.

This work was published in Nalluri et al.,2017[109]
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Interaction Averaging of Borda ranks Final rank

I2 (0.66 + 1 + 1 + 1 + 1 + 0.66) / 6 0.88

I3 (0 + 0.66 + 0.66 + 0.33 + 0.33 + 1) / 6 0.49

I4 (1 + 0.33 + 0 + 0.66 + 0.66 + 0.33) / 6 0.49

I1 (0.33 + 0 + 0.33 + 0 + 0 + 0) / 6 0.11

Table 4.: Final ranks for each interaction; the final rank of interaction I4 is 0.49

Rank Interaction Score

1 Hepatocellular carcinoma:hsa-mir-183 ⇒ Hepatocellular carcinoma:hsa-mir-374a 0.9786

2 Hepatocellular carcinoma:hsa-mir-374a ⇒ Hepatocellular carcinoma:hsa-mir-182 0.9781

3 Breast cancer:hsa-let-7a-1 ⇒ Breast cancer:hsa-mir-30d 0.2985

4 Breast cancer:hsa-let-7a-1 ⇒ Breast cancer:hsa-mir-381 0.2426

Table 5.: Format of the results based on the consensus approach.

Type # Interaction type Edge Remark

1 miRNAssame, Diseasessame M1D1 →M1D1 Self-loops, N/A

2 miRNAssame, Diseasesdifferent M1D1 →M1D2 Present in the result set

3 miRNAsdifferent, Diseasessame M1D1 →M2D1 Present and used for analysis

4 miRNAsdifferent, Diseasesdifferent M1D1 →M2D2 Present in the result set

Table 6.: Types of interactions in the network
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Fig. 25.: Precision-recall and ROC curves displaying the accuracy of the three meth-

ods. The figure demonstrates that the Average scoring (blue curve) method fared

better than Retaining Max-Min (green curve) and Computing Missing Max. (red

curve) methods. The inset image shows that the precision of Average scoring method

slightly outperformed the Computing Missing Max. and was the best overall per-

former.
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Fig. 26.: Signature miRNA-miRNA interaction component identified in various cancer

categories. The PubMed IDs citing the critical miRNAs with the disease from the

PhenomiR database are in magenta while the PubMed IDs from the PubMed Central

database are in blue. 64



Fig. 27.: Flowchart of the work flow for manual literature search.
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Fig. 28.: miRNA-miRNA interactions shown in miRsig for esophageal, gastroe-

sophageal, gastrointestinal, gastric, and colorectal cancers.
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CHAPTER 6

INFLUENCE DIFFUSION MODEL

In this study, we use information diffusion theory to quantify the influence diffusion

in a miRNA-miRNA regulation network across multiple disease categories which we

derived in our previous work (Chapter 5). Our proposed methodology determines the

critical disease specific miRNAs which play a causal role in their signaling cascade and

hence may regulate disease progression. We extensively validate our framework using

existing computational tools from the literature. Furthermore, we implement our

framework on a comprehensive miRNA expression data set for alcohol dependence and

identify the causal miRNAs for alcohol-dependency in patients which were validated

by the phase-shift in their expression scores towards the early stages of the disease.

Finally, our computational framework for identifying causal miRNAs implicated in

diseases is available as a free online tool for the greater scientific community.

6.1 Motivation

Although many studies have identified miRNAs associated with diseases, only

a few of those have investigated the (signal) cascading influence/effect of miRNA

(de)regulations onto other miRNAs or molecular participants. Despite the wide

availability of data regarding a miRNA’s direct/indirect effect on various biologi-

cal processes, identifying or quantifying their influence remains a challenge. To the

best of our knowledge, there has not been any model that simulates the time or an

event-driven progression of miRNA (de)regulations leading up to a pathophysiolog-

ical disorder. It is still unknown how (de)regulations of a miRNA impact a disease
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progression and/or their repression. Understanding the progression of such miRNA-

driven signaling cascade in the context of diseases is extremely crucial for identifying

(i) the critical miRNAs (as potential biomarkers and directors of global expression

patterns); and (ii) the key stages in the progression of a disease-state under the in-

fluence of miRNAs’ expression.

In this work, we model the passage of miRNA-based influence propagation among

other miRNAs as a network diffusion model. We use social behavioral/network prin-

ciples to model a miRNA’s cascading influence or flow of information in and among

disease-specific miRNA interaction networks (DMIN) (elaborated in the Methodology

section). Essentially, a DMIN is a (predicted) miRNA-miRNA interaction network

pertaining to a specific disease. These networks often resemble the behavioral char-

acteristics of a social network, such as homophily, [110] wherein participants tend to

have positive ties with participants that are similar to themselves; this has already

been evidenced in the case of miRNAs[20]. Hence, the application of social network

algorithms is apt for modeling the progression of a miRNA’s activity and its signal

cascading effect in the context of a disease-state. We explore the property of informa-

tion diffusion through miRNAs which is a crucial characteristic of a DMIN network

and study the aspect of information flow in DMIN s. Consider a network of miRNA

nodes as shown in Figure 29. At time point T1, only miRNA-1 is activated (in green

color). At time point T2, miRNA-1 attempts to activate its neighbors, miRNA-2 and

miRNA-3. While, miRNA-2 is not activated (shown by a red arrow), miRNA-1 suc-

cessfully activates miRNA-3 (shown by a green arrow). At time point T3, miRNA-3

tries to activate miRNA-4 and miRNA-5, out of which only miRNA-5 gets acti-

vated (shown by a green arrow) while activation of miRNA-4 is unsuccessful (shown

by a red arrow). And at time point T4, miRNA-5 successfully activates miRNA-4.

A particular disease-state is assumed to be highly probable once a required set of
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crucial miRNA nodes in a network are activated. In this work, we refer to activat-

ing/influencing a miRNA as a function of time and analogous to affecting a miRNA’s

expression and activity. Note that miRNAs implicated in a particular disease may

either be up- or down-regulated; our notion of activating/influencing a miRNA is ab-

stract and encompasses both cases. In other words, the nodes in a DMIN sequentially

activate/influence others where such activation pertains to a significant differential

expression of a miRNA over its corresponding expression at control. In this work,

we devise a modeling framework to identify the signaling cascade of miRNAs that

have already been implicated in particular diseases; our framework can distinguish

between causal miRNAs and the affected ones from the global pool of miRNAs that

were implicated in a disease. We also present this framework in the form of an online

web tool, miRfluence that can be readily used by the scientific community. Once the

passage of influence between miRNAs is decoded based on the software tool presented

here, it will motivate a wide variety of applications ranging from predicting disease

progression, disease outcomes and designing drug therapeutics.

Fig. 29.: Cascading flow of influence in a DMIN

6.2 Background

The concept of information diffusion in a network has been widely deployed

in the field of social network theory to study spread of ideas, rumors and product
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adoption between the individuals in the network via the word of mouth effect [45–

47]. There are essentially two fundamental models of information propagation in

social networks - linear threshold (LT) and independent cascade (IC) model. Every

other model proposed in the literature is a derivative of these canonical models.

Although, this concept has been applied in the field of sociology to study the various

behavioral phenomena, such as the spread of a new concept[48], it has also been

extended to understand the dynamics of spreading of diseases[111–113]. However,

understanding influence diffusion in a complex network of miRNAs has never been

attempted before and is challenging due to the multi-level nature of interactions. In

this work, considering that miRNAs of similar diseases tend to act cooperatively[20],

we focus on the social nature of miRNAs related to a class of diseases. We deploy an

information diffusion model, through which a miRNA’s influence on its neighboring

miRNAs is analyzed and quantified. Social influence can affect a range of behaviors in

networks such as dissemination of information/influence, communication and in this

case, even mutation. In both the LT and IC model, the nodes (i.e. the miRNAs)

in the network can be in one of the two states - active or inactive. The activated

nodes spread their influence by activating their neighboring inactive nodes based

on a certain criteria or effect. Garnovetter et al. [49] proposed the LT model by

applying a specific threshold in each of the nodes of the network. Therein, each

node is activated only by its neighbor(s) depending upon the cumulative weight of

the incoming edges to the node. The node becomes active when the cumulative

sum of the weight of the incoming edges from an active neighboring node crosses its

threshold value. Once activated, the node remains active and tries to activate its

neighbor, thereby propagating its influence. On the contrary, the IC model uses edge

probability to determine the information diffusion. In this model, an active node

has a single opportunity to activate its neighbors. The edge weights represent the
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activation probability or likelihood of information propagation in between two nodes.

Hence, upon activation, an active neighbor is likely to choose a neighbor with the

highest edge weight to activate next.

The miRNA-miRNA interaction network in DMIN s used in this study have prob-

ability scores as edge weights. These scores act as activation probabilities. Using the

IC model, upon an activation of a certain miRNA, based on the edge weights between

its neighbors, we can determine the next miRNA that is likely to be activated. In this

context, activation implies having a causative effect on another miRNA’s expression

level. This effect may be direct (when a miRNA directly controls the expression of

another one) or indirect (when such regulation can be due to intermediate genes/pro-

teins that these miRNAs regulate). Following this pattern, the information flow or

the spread of influence across the miRNAs can be detected. Hence, the pattern of

influence across miRNAs in a disease can be identified and studied. Further, we inte-

grate different DMIN s belonging to the same category profile, (e.g. ‘gastrointestinal

cancers’) and detect the spread of influence among miRNA-miRNA interaction net-

works belonging to this profile. Subsequently, we determine the key miRNAs playing

an influential role among all the diseases within a certain profile.

6.3 Methodology

6.3.1 Disease-specific miRNA-miRNA interaction networks (DMIN)

PhenomiR 2.0 database[68] is a manually curated comprehensive data set of

differentially regulated miRNA expressions in diseases. It contains 632 database en-

tries collated from 345 articles pertaining to 675 unique miRNAs and 145 diseases.

The data curated in PhenomiR is not normalized and is available for download as is.

An example of miRNA’s foldchange values and their corresponding regulations in a
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disease is shown in Figure 30(i), where miRNAs are denoted by M1 −M5 and dis-

ease is denoted by D1. Nalluri et al, developed a consensus-based network inference

pipeline from the PhenomiR dataset to predict key miRNA signatures (i.e., groups)

across several categories of diseases in Chapter 5. To briefly summarize this work,

they considered a pair of miRNA and disease as a single miRNA-disease (MD) en-

tity (or node) which conceptually signifies a disease-specific miRNA. Therefore, the

expression score of MiDj would mean the expression score of miRNA i in disease j.

Next, they created a miRNA-disease expression matrix, in which the rows represented

the various samples/studies and columns represented MD nodes. Next, they used

six network inference algorithms on the expression matrix and a consensus-based

aggregation approach to derive the probabilistic MD − MD interaction network.

From this MD − MD interaction network, they further extracted disease-specific

miRNA-miRNA interaction networks (DMIN )s and made them available in the tool,

miRsig(mentioned in Chapter 5). DMIN s are directed graphs G(V,E) where V is

the set of miRNAs being regulated in a specific disease and E is the set of weighted

edges between them denoting the probability of an interaction. We downloaded the

DMINs from miRsig as is, and further developed an optimization-based methodol-

ogy (detailed in the next section) to generate a modified DMIN which would serve as

the input network for the influence diffusion based strategy (Figure 30(iv)). miRsig

hosts DMIN s for 66 specific diseases. However, to pursue a defined cancer-specific

analysis, only 17 DMIN s were considered. Based on their tissue-specificity, DMIN s

were grouped into four categories, namely cancer of the gastrointestinal, endocrine,

brain systems and leukemia resulting in four DMIN s corresponding to each category.
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Fig. 30.: Overview of network generation via optimization of expression scores in a

DMIN.
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Network generation via optimization of expression scores

DMINs are directed miRNA-miRNA interaction networks with probability scores

as edge weights. To have a network with highest confidence, we extracted DMIN s

having edge weights of 0.90 score and above. Selecting a high cut-off of 0.9 on the

edge scores is a standard practice in such reverse engineering algorithms to ensure

confidence in the results. Such algorithms generally suffer from low accuracy due

to the noisy expression datasets, non-linearity in the miRNA interactions as well as

the high complexity of the inverse problem of inferring N2 edges in a network of N

nodes. Hence, it is customary to work with only the high-confidence edges signified

by a 0.9 cut-off on the edge scores. Additionally, the very nature of the influence

diffusion set-up works better for sparse graphs; for more dense graphs, most nodes

in the network will end up having a high influence score for activating the entire

network just because of the availability of more paths to destination nodes. To avoid

this possibility, we chose a edge score cut-off of 0.9 in this paper. After deriving these

DMIN s, we discarded the edge weights (Figure 30(ii)). We term this network as

DMINHC (DMIN of high-confidence). Although, DMINHC captures the miRNA-

miRNA interaction topology, it does not take into consideration the expression scores

of the individual miRNAs within their corresponding diseases (Figure 30(i)). Expres-

sion scores are a vital part of the miRNA-disease regulatory mechanism. Hence, we

append DMINHC with expression scores for every node (i.e., miRNA), as shown in

Figure 30(iii) resulting in our final network, DMINHCE(DMIN of high-confidence

and expression score). The expression scores of miRNAs were converted to their log2

scores before being incorporated. While incorporating miRNA’s expression scores

into DMIN, some miRNAs had multiple expression scores for a particular disease

(e.g., row #1 and #3 in Figure 30(i)). In such instances, these multiple scores were

74



averaged to get the best possible estimated expression score to be incorporated into

the DMIN (e.g., node M1 in Figure 30(iii)). Nalluri et. al., demonstrated that aver-

aging of the multiple expression scores yielded the best estimate for DMINs (Average

Scoring, under Methods), Chapter 5.

It is important to note that, in our network-building methodology of DMINHCE,

we justify the underlying biological implications of a miRNA’s regulatory behavior.

We assume that expression changes in a particular miRNA will have consequential

effect on another miRNA’s expression behavior. Hence, if a miRNA has a very high

expression score (i.e. degree of fold-change) and is connected to its neighboring miR-

NAs then it would have a corresponding degree of influence or propagating effect on

its neighboring miRNAs. Hence, in order to build a network model which is as close to

the underlying biological activity, we design the following optimization-based strategy

which provides us with DMINHCE with edge-weights, i.e., a weighted DMINHCE

(see Figure 30(iv)). These edge-weights would quantify influence of one miRNA onto

another, thereby modeling the behavior of miRNA’s regulatory activity based on their

expression scores.

Optimization formulation for generating edge weights

In order to derive the edge weights for DMINHCE, the following assumptions

were postulated.

1. The direction implies regulatory influence.

2. Each miRNA’s expression score is a cumulative result of its neighboring miR-

NAs’ expression scores. Hence, the cumulative sum of incoming edge-weights

would equal to the expression score of the miRNA. This is denoted by the

Incoming constraint in the optimization function.
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3. Each miRNA’s outgoing edge-weights would not exceed its expression score. A

miRNA’s expression score corresponds to its outgoing edge-activity implying

that the consequential effect a miRNA has on its neighboring miRNAs is di-

rectly correlated to its expression score. However, in this case we introduce a

slack quantity to make the model more relaxed and feasible for solutions. With-

out the slack variable, the model becomes too restrictive and would not yield

any solutions. This is denoted by the Outgoing constraint in the optimization

function.

The formulation is as follows,

Objective: To achieve the most optimal regulatory network flow (i.e., edge

weights) characterized by expression scores of each node. This is achieved by obtain-

ing minimum slack (denoted by si) throughout the network; subject to constraints

that (i) the cumulative sum of products of incoming edge-weights and corresponding

expression scores of parent nodes would equal the expression score of the target node

and (ii) sum of every node’s outgoing edge-weights can exceed its expression score

within a slack amount.

Variables: Let Xi,j be the flow of influence from node i to node j, where i, j ∈ n,

and n is the total number of nodes in the network, e be the fold-change expression of

a node, and s be the slack quantity for ∀i, j
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Optimization function:

minimize
n∑
i=1

| si |

subject to constraints: Incomingexpression−flow

n∑
j=1

ej ∗Xj,i = ei(i = 1, 2, ..., n)

Outgoingexpression−flow

n∑
j=1

ei ∗Xi,j + si = ei(i = 1, 2, ..., n)

where

0 ≤ Xi,j; i 6= j

(6.1)

The above methodology provided an optimally-weighted DMINHCE (Figure

30(iv)) which was used as the input network for the subsequent influence diffusion

algorithm.

The goal of the optimization step is to derive as good an input for the subsequent

analysis for influence diffusion based on the expression behavior of miRNAs. Note

that ideally for the influence diffusion analysis, the edges should signify the influence

of the source node onto the target node. In terms of chemical kinetics of the A→ B

edge, such influence is determined by [concentration of the source node A]×[rate

constant]; since such rate constants of the miRNA interaction network are unknown

(and very difficult to validate experimentally as they comprise indirect interactions

of possibly multiple components), we simply considered the influence of an edge to

be governed by the concentration of the source node exclusively. Also, considering

the steady-state concentrations of the source nodes only signify the equilibrium edge

weights and hence the static influence of the source onto the target; this does not

capture the time varying influence on the edges as the source node concentration

should ideally vary with time.
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In addition to the optimization-based network generation method, we also imple-

mented another network generation method - ‘Rescoring all edges to constant weight’,

wherein we assign a constant weight on all the edges of the network. The goal of the

more simplistic constant edge weights is to further disregard the steady state source

node concentrations and assign equal weightage to all edges in terms of their influence.

This formulation can only identify the topological pressure points and should be less

accurate. However, due to limitations on the availability of such detailed time-series

datasets on miRNA expression levels in specific diseases, it is currently not possible

to quantitatively show the difference in accuracy of identifying the influential miR-

NAs from the two approaches. Perhaps, the common miRNAs that show up to be

influential from both approaches will be a better option to consider.

Influence Diffusion analysis

Upon deriving the weighted DMINHCE for 17 diseases and four disease cate-

gories, we implemented the influence diffusion algorithms to derive a list of miRNAs

ranked according to their highest influence in a disease category (see Section Com-

pute Influence and Algorithm 1 ). This algorithm was implemented using the influence

maximization code freely distributed[114].

In a DMINHCE of a disease category, there may be multiple occurrences of the

same miRNA-miRNA interacting edge due to its presence among several diseases of

the category. Here, two approaches are further adopted to calculate their single edge

prediction score. As seen in Figure 31(a), two weighted DMINHCEs belonging to

disease D1 and D2 are under the same disease category. The edge m1-m2 is present

in both networks with different edge-weights. To address these scenarios, we devised

the following two approaches.

i) Logical AND/ Intersection operation
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Fig. 31.: Overview of the work flow of the methodology. Consider two weighted

DMINHCEs belonging to disease D1 and D2 which are under the same disease cat-

egory. The edge m1 − m2 is present in both the networks. In the final updated

network, the edge weight of m1 − m2 is recalculated accordingly using the Logical

AND operation and upon this updated network, the Compute Influence algorithm is

implemented.
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Under this operation, only the edges which were present in all the diseases of

a category were retained in the final disease category network. The edge weights

for these common miRNA-miRNA interaction edges were calculated by the following

formula,

Pnew = P1 × P2 × ...× Pn (6.2)

where P1, P2, and Pn are prediction scores of the same edge in individual disease

networks.

This operation was implemented on the following four categories consisting of

the subsequent diseases:

Gastrointestinal category: esophageal carcinoma, gastroesophageal carcinoma, gas-

trointestinal cancer, gastric cancer, colorectal cancer.

Leukemia category: hematological tumors, acute myeloid leukemia (AML), suscepti-

bility to chronic lymphatic leukemia, acute myelogenous leukemia.

Endocrine category: pancreatic cancer, hepatocellular carcinoma (HCC), thyroid car-

cinoma (follicular), thyroid carcinoma (papillary).

Brain systems : neuroblastoma, medulloblastoma, glioblastoma.

ii) Cumulative Union:

Under this approach, firstly, for every weighted DMINHCE in the category, each

miRNA’s coverage was determined using Algorithm 1. The coverage value of each

miRNA was mapped into a coverage-percentage (e.g., a node having coverage-percentage

score of 70 would imply its influence over 70% of the nodes in the network). Next,

for the miRNAs which were repeated in multiple diseases within the category - their

coverage-percentages were averaged. Finally, the miRNAs are ranked as per their

coverage-percentage in the disease category. An explanation of the coverage compu-
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tation algorithm is provided in the next section.

Compute Influence (coverage)

This algorithm (i.e., Algorithm 1 ) is based off of the IC model of information

diffusion. Let COV (u) denote the coverage/influence of a miRNA node u in the

network. Upon the execution of the algorithm, all miRNAs are ranked as per their

highest coverage/influence. The coverage of each node has been calculated after 10000

monte carlo simulation cycles to achieve the optimal value of coverage.

The algorithmic details of computing the COV function are described in the

theory of Independent Cascade model stated in Kempe et al’s work[115]; however the

following is the summary of its working.

1. Select a node in the network, e.g. consider node 1 in Figure 32(T1).

2. Along its every outgoing edge, perform a biased coin toss, where bias is the edge-

probability. In Figure 32(T2), this operation is performed along edges 1→2 and

1→3 having edge weights 0.5 and 0.9, respectively.

3. If the coin toss operation is successful, then activate the node, and perform

step (2) on the newly activated node. In Figure 32(T3), node 2 is not activated

(denoted by a red edge, 1→2) while node 3 is activated (denoted by a green node

3 and edge 1→3). Next, a biased coin toss is performed on node 3 along its edges

3→4 and 3→5 which results in activation of node 5 and a failed activation of

node 4. Subsequently, step (2) is performed on node 5 which results in activation

of node 4.

4. Stop when there are no more new activations possible. In Figure 32(T4), no

more new activations are possible. Hence, the nodes which can be influenced

by node 1 are nodes 3, 5, and 4. Coverage score of node 1 is three.
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5. Perform steps (2-4) for the initially selected node (i.e., node 1 in Figure 32)

10,000 times and finally, average the coverage scores.

6. Repeat steps (1-5) for next node.

Fig. 32.: Computation of coverage of influence for node 1. Node 1 activates node 3,

node 5 and node 4 based on a series of biased coin-toss operations along its edges

// Algorithm : Computing coverage o f every node in the network

//No . o f Monte Carlo c y c l e s

N=10000

//For every miRNA node

f o r u = 1 to V

I = 0 ;

f o r i = 1 to N

// Ca lcu la te coverage o f Node u

I (u)+= COV(u)

end f o r

// Normalize the r e s u l t

I (u) = I (u)/N

end f o r
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// Sort the miRNA nodes as per t h e i r i n f l u e n c e

Sort (V, I )

// Algorithm runtime = O(vRm) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−

v = number o f nodes

R = number o f repeated s imu la t i on s

m = number o f edges

Results

The above methodology was implemented on DMINHCEs of four disease cat-

egories and on individual diseases as well. However, to maintain the emphasis on

pan-cancer diseases, we discuss the results of this methodology on the aforemen-

tioned disease categories. The results of individual diseases are available and can

be downloaded for study and research from the tool miRfluence. We implemented

the two approaches, i.e., Intersection/Logical AND and Cumulative Union for the

DMINHCEs of these four disease categories, and the results are labeled under In-

fluence Maximization in Table 7. Under the Cumulative Union approach, since all

the miRNAs (belonging to a category) are ranked as per their coverage percentage,

we have selected top 10 miRNAs to be displayed as most influential miRNAs. The

results obtained were compared with two other approaches - miRsig(Chapter 5) and

tool for annotations of miRNAs (TAM) [116]. miRsig uses a consensus-based network

inference pipeline to predict the crucial miRNAs among the disease categories. The

TAM method uses a prediction model to identify novel miRNA interactions and the

most likely diseases to be affected (noted with p-values) for the input set of miRNAs.
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It is also important to note that there are hardly any tools which predict/deter-

mine a list of crucial miRNAs based on an input set of diseases. The availability of

tools which predict a set of diseases based on an input set of miRNAs are also scarce

(like tool for annotations of miRNAs(TAM )). Many tools provide individual miRNA-

disease associations and prediction scores but not set-onto-set analysis. These factors

make one-on-one comparison of the proposed methodology very challenging. Hence,

we have used the only tools that are available for comparison. The results are pre-

sented in Table 7.

1. Endocrine cancers (see row Endocrine cancers in Table 7)

As per Logical AND/ Intersection approach, the miRNAs hsa-mir-181b-1, hsa-

mir-181a-1, hsa-mir-224, hsa-mir-221 and hsa-mir-222 are key influential miR-

NAs and they were also predicted as crucial miRNAs as per the tool, miRsig.

These same miRNAs are also present in the list of top ten miRNAs under the

Cumulative Union approach. As per the tool TAM, all the diseases of this cat-

egory, i.e., thyroid neoplasms, pancreatic cancer and HCC are very likely to be

associated with the aforementioned list of miRNAs. The reported PubMed IDs

report the occurrence/expression of all the resultant miRNAs within the same

PubMed ID.

2. Leukemia (see row Leukemia cancers in Table 7)

Under this category, all the miRNAs determined by the Logical AND/ Intersec-

tion were identified as crucial by the tool miRsig. Seven miRNAs predicted by

the Cumulative Union approach are confirmed by miRsig, as well. Among the

diseases, acute myeloid leukemia (AML), chronic lymphatic leukemia (CLL) and

hematological disorders, were determined as most likely diseases as per TAM.

The reported PubMed IDs report the occurrence/expression of all the resultant
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miRNAs within the same PubMed ID.

3. Gastrointestinal cancers (see row Gastrointestinal cancers in Table 7)

The miRNAs predicted as influential (by Logical AND/ Intersection) under this

category were also predicted to be critical miRNAs by the tool, miRsig. The

top ten miRNAs predicted by the Cumulative Union approach had three of

them confirmed by miRsig as well. In the gastrointestinal category, colorectal

cancer is listed in TAM with a p-value of 2.03e-3. The reported PubMed IDs

report the occurrence/expression of all the resultant miRNAs within the same

PubMed ID.

4. Brain systems (see row Brain systems in Table 7)

Under this category, all the miRNAs determined by the Logical AND/Inter-

section appraoch were predicted to be crucial by miRsig. Eight out of then

reported miRNAs under the Cumulative Union approach were corroborated by

miRsig. TAM ’s prediction scores for the two diseases (glioblastoma and medul-

loblastoma) are not in the confidence margin. However, the reported PubMed

IDs report the occurrence/expression of all the resultant miRNAs within the

same PubMed ID.

Case Study and Proof-of-concept

Our proposed methodology is able to identify influential miRNAs in disease-

specific networks as demonstrated in the previous section. Furthermore, since the

dynamics of miRNA-mediated regulations are similar in biological networks, this

methodology has broad applications ranging from networks pertaining to cancers

to other pathophysiological conditions, as well. We further demonstrate the applica-

tion of our proposed methodology on a miRNA expression data set generated from a
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postmortem brain tissue from patients diagnosed with alcohol dependence (AD).

Tissues for 18 AD patients and matched controls were obtained from a larger

sample of 41 AD cases and 41 controls. The postmortem brain sample was received

from the Australian Brain Donor Program, New South Wales Tissue Resource Centre,

at the University of Sydney, (http://sydney.edu.au/medicine/pathology/trc/). The

demographic characteristics of the sample are described elsewhere[117].

The miRNA expression data were generated using the Affymetrix GeneChip

miRNA 3.0 array and normalized using log2 transformation, followed by quantile

normalization, and median-polish probe-set summarization. The final miRNA ex-

pression data had 1733 miRNAs and 35 sample tissues (AD- 18, control-17). This

expression data is provided in the Supplementary material.

The implementation of our proposed methodology on this data set consisted of

the following steps:

1. Construction of a probabilistic miRNA-miRNA interaction network from the

miRNA expression matrix based on the miRsig pipeline(Chapter 5). This net-

work had 1733 miRNAs.

2. From this network, in order to generate a high-fidelity network, we consider

only the edges which have a probability score of 0.9 and above.

3. Next, we determine 115 AD-related miRNAs. These miRNAs were derived from

a brief literature survey mentioned in Ponomarev’s work[118] which included

miRNAs identified by Sathyan et. al.(2007)[119], Wang et. al. (2011)[120],

Yadav et. al.(2011)[121], Lewohl et. al.(2011)[122] and Nunez et. al.(2012)[123].

We extract a sub-network consisting of 115 miRNAs and the edges among them

from the larger network of 1733 miRNAs. This sub-network is a DMIN for the

disease condition - alcoholic dependency.
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4. Next, we choose the option of re-scoring the edges of this network with a fixed

edge score of 0.01. Note that since this AD dataset involves multiple expres-

sion values of each miRNA pertaining to each sample (18 AD and 17 control

samples), it is not possible to directly use the optimization formulation for

generating edge weights as discussed before; averaging the miRNA expression

scores across both control and AD samples will not work here as the AD samples

showed significantly different expression levels based on the number of years of

alcohol consumption of the patients. Additionally, we did not directly use the

edge probabilities from the consensus methodology for generating the miRNA

network as such probabilities quantify the feasibility of an edge between two

miRNAs and not the actual influence one miRNA has on the other one. Also,

the DMINHC is a highly dense and inter-connected network and hence having

higher scores of edge weights will cause all the miRNAs to activate its neigh-

bors, thereby labeling all the miRNAs as influential. Moreover, since these edge

weights model regulatory influence and flux phenomena, lower values are more

close to actual biological notion of flux dynamics; note that our goal here is

to really understand the topological pressure points in this miRNA interaction

network with a constant edge weight of 0.01 on all edges using the influence dif-

fusion model. We tried other (constant) low edge scores as well and the rankings

of the miRNAs based on coverage were very similar to the ones obtained here.

5. This DMIN is provided as input to the influence diffusion model (see Algo-

rithm).

The result of the above implementation is a ranked list of miRNAs along with

their coverage scores. Here, the coverage score implies the number of miRNA nodes

that can be activated. For our further comparative analysis we consider the top five
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Category miRNAs

Top 5 miRs with highest influence

hsa-miR-376c

hsa-miR-27a

hsa-miR-30e

hsa-miR-194

hsa-miR-9

Bottom 5 miRs with least influence

hsa-miR-196a*

hsa-miR-606

hsa-miR-7b*

hsa-miR-302b*

hsa-miR-302c*

Table 8.: miRNAs with the highest and lowest coverage scores after the implementa-

tion of Algorithm 1

miRNAs with highest coverage and bottom five miRNAs with lowest coverage scores.

This ranked list of miRNAs is provided in the Supplementary material.

Comparative analysis

The influence diffusion phenomena within a miRNA-miRNA interaction network

is a time/event-driven progression, characterized by a series of (un)successful activa-

tions of miRNA nodes, as explained in Figure 32. However, the miRNA expression

data set of alcohol-dependent patients used in this case study is not a time-series data

set. The samples record the Total years of drinking alcohol for each patient. The

Total years of drinking for these 18 samples are - 14, 20, 20, 24, 26, 27, 28, 29, 31,

31, 31, 32, 34, 36, 37, 39, 48 and 48. For the purposes of our modeling and in order
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to introduce an element of time/event-driven series of progression to the miRNA-

miRNA interaction network, we presume these individual samples as time points and

observe the expression profiles of the miRNAs in Table 8, across these samples. Our

hypothesis is that, these influential miRNAs would have undergone a phase-shift or a

distinct change in their expression trend in the beginning stages of the time-points so

as to signify an activation moment. This change may correspond to the triggering of

the influence diffusion cascade process by the influential miRNAs. On the contrary,

the least influential miRNAs would exhibit a similar trend to their control trend with

possible phase-shifts occurring only in the later time points.

We plot the expression scores of these miRNAs (listed in Table 8) against the

samples with number of Total years of drinking. For same sample time points (such

as 20, 31 and 48), we average the expression scores of the miRNAs across AD and

control samples in order to derive a single time point expression score. The expression

trends (AD vs control) of top five miRNAs are displayed in Figure 33- a, c, e, g, i (left

side) and those of bottom five miRNAs are displayed in Figure 33- b, d, f, h, j (right

side). The expression trends demonstrate that the top 5 miRNAs in AD-samples

underwent a phase-shift in the beginning stages (especially around year 26) of the

time-line when compared to their control trend, signifying a triggering of influence

diffusion activity within the network. Conversely, the expression trends of the bottom

5 miRNAs in AD-samples align quite well with their control trend exhibiting slight

fluctuations at later time points. The results corroborate our earlier stated hypothesis.

The expression trends of the top 5 miRNAs also demonstrate that the miRNAs in

the AD-samples were operating at a higher expression score from the start, signifying

that they were already activated and were on an ON state. In order to better quantify

the differences in their expression trends before and after the phase-shift with respect

to the control, we conducted differential expression analysis of these miRNAs using
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Fig. 33.: Trendlines of expression scores (AD vs control samples) of miRNAs with

highest influence (a, c, e, g, i) and of miRNAs with lowest influence (b, d, f, h, j)

across sample time points
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miRNA
Differential expression (p-values)

Pre-phase shift Post-phase shift

hsa-miR-376c 9.97e-07 0.539

hsa-miR-27a 5.13e-08 0.573

hsa-miR-30e 2.93e-07 0.503

hsa-miR-194 4.62e-06 0.523

hsa-miR-9 1.34e-06 0.829

Table 9.: Significance of differential expression of top 5 miRNAs before and after

undergoing a phase-shift. Pre-phase shift p-values indicate there was a significant

difference in the expression of their trends while post-phase shift p-values indicate

that the expression trends did not differ significantly, as noted from Figure 33.

the limma package [124] from R-Bioconductor. We performed this analysis across

two groups of data set: pre-phase shift and post-phase shift. For the purposes of

this analysis, we chose the time-point of year 26, as the dividing time-point. The

differences in the significance of the expression trends are shown in Table 9. Table 9

demonstrates that the difference in the expression trends of these miRNAs were very

significant during the pre-phase shift period with respect to control in comparison

to the post-phase shift period. This further emphasizes our hypothesis that the

miRNAs underwent a phase-shift signifying the triggering of the influence diffusion

cascade process towards the beginning stages of AD.

A point to note is that conventional differential expression analysis along with

in-vivo strategies implicated all 115 miRNAs considered here to play a role in alcohol

dependence; so the bottom 5 miRNAs from our list were also implicated in alcohol
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dependence, albeit we argue that they were more of an effect of the signaling cascade,

while the top 5 miRNAs exhibit more of a causal role.

The expression trends displayed in Figure 33 of the miRNAs (listed in Table

8) demonstrate that the influence diffusion based methodology is able to identify

top influential miRNAs playing a causal role in the miRNA interaction network,

corroborated quantitatively by the expression trends of these miRNAs across the

samples.

miRfluence - an influence diffusion implementation framework

In order for researchers to implement the proposed influence diffusion method-

ology on various disease-specific miRNA-miRNA networks or on miRNA networks

pertaining to diseases of their interest, we have developed miRfluence, an online

platform. Using this platform, users can view the influential miRNAs in the miRNA-

miRNA networks of existing categories and diseases (Figure 34-a). Users can also

implement this methodology on a miRNA interaction network pertaining to any dis-

ease of their choice or can also create their own disease category with a combination

of up to five diseases (Figure 34-b) from the existing set. Users can view the miRNAs

and the topological placement of these miRNAs in the disease network. miRfluence

also includes two options for identifying the edge weights of the miRNA interaction

networks under the Network generation method option; these are the (i) optimized

network based on expression scores and (ii) rescoring to 0.01 for all the edges consid-

ered above the 0.9 cut-off. Users can also choose the two types of influence diffusion

implementations described in this work, namely Logical AND/Intersection and Cumu-

lative Union approach. This tool will help researchers compare/contrast the influence

of various miRNAs in similar/contrasting diseases and provide them an insight into

the working and grouping of communities of miRNAs in an interactive visualization
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making comprehension intuitive. The miRNA-miRNA interaction networks can also

be downloaded in CSV format which can be easily imported into various network

analysis tools for further study and analysis.

miRfluence is freely available for research purposes at http://bnet.egr.vcu.edu/mirfluence

and has been developed using MySQL as the back-end database and Javascript, PHP,

d3.js, AJAX and HTML/CSS for front-end design and visualization.

Fig. 34.: miRfluence - an influence diffusion implementation framework

In this work, we have implemented the information diffusion concept from social

networks to identify a crucial set of ranked miRNAs playing an influential role in

diseases of a specific profile. Using this methodology, we were able to detect key

influential miRNAs in the categories of Gastrointestinal cancers, Leukemia, Brain

cancers and Endocrine cancers. These results were observed to be significant and

were further validated by miRsig and TAM based analysis. For further validation,

we used a miRNA expression data set of patients with alcohol-dependency; our top-

ranked miRNAs indeed showed up to have possible causal effects in the miRNA
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signaling cascade by showing phase-shifts in their expression towards the beginning

stages of alcohol consumption in patients.

In our analysis, both the approaches used, i.e., Logical AND/Intersection and

Cumulative Union produced similar results. Among the four categories, with the

exception of Brain cancers all the miRNAs listed under the Logical AND/Intersection

approach were included in the top ten ranks of the Cumulative Union approach which

listed the miRNAs based on highest coverage scores. Hence, a more clear consensus

as to which method fared better would emerge by testing these approaches on more

comprehensive data sets in the future.

A preliminary version of this work was published in Nalluri et. al, 2013[53] and

thereafter a secondary version in Nalluri et. al, 2017[125]
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CHAPTER 7

MIRNA-SNP INTERACTIONS IN DISEASES

7.1 Motivation

The pathogenesis of many diseases are often linked to genetic factors. Under-

standing these genetic factors are crucial for diagnosis and treatment of these diseases;

especially those which are multifactoral in nature and arising out of multiple culpable

interactions. Single-nucleotide polymorphism (SNP) is defined as a variation in a sin-

gle nucleotide that occurs at a specific location(position) in a DNA sequence/genome.

They are the most common form of DNA sequence variation, and are responsible for

genetic differences between individuals. These SNPs occur in genes, non-coding re-

gions of genes or in regions between the genes. SNPs occuring in the coding regions

are classified as synonymous and non-synonymous. Non-synonymous SNPs are known

to cause a change in the amino acid sequences which result in the alteration of the

structure or function of a protein. Genome-wide studies (GWAS) and expression

quantitative trait loci (eQTLs) studies have identified several SNPs associated with

complex diseases.

miRNAs are known to be key regulators of gene expression via miRNA-mRNA

binding. SNPs in the miRNA gene or in the binding site of a target mRNA can

derail the gene’s regulatory mechanism by either destroying or creating a new binding

site. If a new miRNA target site is created, it decreases the mRNA translation

and if an existing miRNA target site is destroyed, there is an increase in mRNA

translation. Hence, exploring the role of SNPs in a miRNA regulatory network is

crucial to understand its consequential effects in diseases.
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7.2 Materials and Methods

In this work, we aim to study the impact SNPs have in the miRNA’s regulatory

network, pertaining to diseases. In Chapter 5, we created disease-specific miRNA-

miRNA interaction networks (DMINs) pertaining to several diseases. In Chapter 6,

we determined the causal miRNAs among four categories of tissue-specific cancers.

In this work, we augment the existing DMINs, with the regulatory role initiated by

SNPs and SNP-related miRNAs.

An overview of the methodology is shown in Figure 35.

Fig. 35.: Overview of the miRNA-SNP methodology

1. Step 1:
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(A) : To map the associations between SNPs and their associated dis-

eases. Several databases like SNPedia[126], GWAS catalog[127] have docu-

mented these associations. These associations are manually curated and have

high degree of confidence scores. SNPedia provides a structured and curated

form of available literature citing the SNP based associations. It summarizes

the medical, phenotypic and genealogical associations of these DNA varia-

tions. Many DNA testing services, such as 23andMe[128], Ancestry [129], Fami-

lyTreeDNA[130] use SNPedia based services to learn more about their DNA vari-

ants. GWAS catalog is a collection of more than 100,000 SNPs and their trait

associations with high confidence scores and p-values of likelihood, published

by the National Human Genome Research Institute-EBI. The GWAS catalog

contains data on about 11,912 SNPs curated from 1751 publications[127]. Using

these resources, we map/determine the SNPs associated to risks in diseases, via

genes. (see Figure 35, Step 1)

(B): Here, we map the associations between the discovered SNPs (from the

previous step) and miRNAs. We use miRSNP [131] to map these associations.

miRSNP is a database of SNPs altering miRNA-target sites and miRNA genes.

miRSNP has 414,510 SNPs that affect miRNA-mRNA binding. These associa-

tions are further annotated with information whether a SNP in the mRNA tar-

get site would decrease/break or increase/create affinity. It identifies miRNA-

related SNPs. We use this dataset to determine the SNP-related miRNAs.

The data was curated from miRBase[8] and dbSNP [132] for miRNAs and SNPs

respectively.

(C) : Here, we map the associations between TFs and miRNAs. We use

databases miRegulome[51] (Chapter 3), miRSNP [131] to map these associa-
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tions. miRSNP is a database of SNPs altering miRNA-target sites and miRNA

genes. It also identifies miRNA-related SNPs. This information supplements

the data from SNP2TBFS s. We use these datasets to determine the SNP-

related miRNAs and TF-regulated miRNAs.

2. Step 2: The miRNAs identified by Steps 1(A-B) are appended to the exist-

ing disease-specific miRNA interaction network (DMIN), Figure 35, Step 2).

These new miRNAs are embedded with the information from SNP based in-

teractions pertaining to the diseases, and hence are crucial in supplementing

the existing miRNAs in DMIN s. The challenge however, is in determining the

edge interactions among the newly discovered SNP-related miRNAs and exist-

ing disease-specific miRNAs in the DMIN.

As miRNAs regulate target genes, we determine the target genes which are

specifically regulated by SNP-related miRNAs. Many of the target genes also

act as transcription factors (TFs). Therefore, we identify the target genes under

the regulatory control of SNP-related miRNAs which are also acting as TFs to

the existing disease-specific miRNAs in the DMIN. This is demonstrated in

Figure 35, Step II. Hence, if there is an interaction found, such that a SNP-

related miRNA is regulating a target gene, which in turn is acting as a TF and

regulating a disease-specific miRNA, we consider this interaction as an edge

between the SNP-related miRNA and the existing disease-specific miRNA.

We perform this querying among all the SNP-related miRNAs and disease-

specific miRNAs and add the new list of interactions (edges) into the existing

DMIN, thereby, augmenting it with SNP-related information.

3. Step 3: After Step 2, the newly created DMIN s contain information about

miRNA-miRNA interactions emerging from both — fold change values and

99



SNP-initiated ramifications, and hence provide a richer sense of the data. We

implement the influence diffusion model (created in Chapter 6) to determine the

causal miRNA nodes in the newly created DMIN for every disease and across

other disease categories by combining the DMINs of similar diseases.

7.3 Results

We implemented this methodology on two disease datasets - chronic lymphatic

leukemia (CLL) and hematological tumors. In order to compare the efficacy of the

proposed methodology, we deployed the influence diffusion model on the DMIN, before

and after adding the the SNP-related miRNA-miRNA edges.

1. Chronic Lymphatic Leukemia (CLL)

In Table 10, the left-side table represents the causal miRNAs in the orig-

inal existing DMIN and the right-side table represents the causal miRNAs in

the DMIN integrated with SNP-related edges. As demonstrated in Table 10,

after adding the SNP-based interactions into the existing DMIN, a SNP-related

miRNA was implicated to be causal for CLL.

2. Hematological tumors

In Table 11, the left-side table represents the causal miRNAs in the orig-

inal existing DMIN and the right-side table represents the causal miRNAs in

the DMIN integrated with SNP-related edges. As demonstrated in Table 10,

after adding the SNP-based interactions into the existing DMIN, a SNP-related

miRNA was implicated to be causal for hematological tumors.

In this work, as demonstrated in the Results, we incorporate the SNP-based

interactions and information into the existing disease-specific miRNA-miRNA inter-

action networks and are able to identify SNP-related miRNAs which play a causal
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role in the pathogenesis of chronic lymphatic leukemia and hematological tumors.

The novel contribution lies in the construction of the DMIN with SNP-information

embedded into the miRNAs and also the introduction of SNP-based miRNA-miRNA

interactions. SNPs have most often led to causal roles in the genesis of diseases. Us-

ing our influence diffusion model in these enhanced DMIN s, we are able to identify

causal miRNAs for the diseases of chronic lymphatic leukemia and hematological tu-

mors. It should be noted that, due to the unavailability of common diseases between

the GWAS catalog and our datasets, the results were limited to the aforementioned

diseases.
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Table 10.: Left : Top 10 causal miRNAs in DMIN of Chronic Lymphatic Leukemia,

without the SNP-related miRNAs added. Right: Causal miRNAs in DMIN of

Chronic Lymphatic Leukemia, with the SNP-related miRNAs added. The results

showed an implication of a SNP-related miRNA to be causal (highlighted in blue)

Rank Causal miRNAs

1 hsa-mir-181c

2 hsa-mir-130b

3 hsa-mir-130a

4 hsa-mir-128-2

5 hsa-mir-125b-1

6 hsa-mir-92a-1

7 hsa-mir-126

8 hsa-mir-100

9 hsa-mir-7b

10 hsa-mir-99a

Rank Causal miRNAs

1 hsa-mir-181c

2 hsa-mir-130b

3 hsa-mir-126

4 hsa-mir-130a

5 hsa-mir-27a

6 hsa-mir-125b-1

7 hsa-mir-92a-1

8 hsa-mir-128-2

9 hsa-mir-100

10 hsa-mir-7b
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Table 11.: Left : Top 10 causal miRNAs in DMIN of hematological tumors, without

the SNP-related miRNAs added. Right: Causal miRNAs in DMIN of hematological

tumors, with the SNP-related miRNAs added. The results showed an implication of

two SNP-related miRNAs to be causal (highlighted in blue) among the top 10.

Rank Causal miRNAs

1 hsa-mir-219-2

2 hsa-mir-200a

3 hsa-mir-23a

4 hsa-mir-379

5 hsa-mir-212

6 hsa-mir-338

7 hsa-mir-125b-1

8 hsa-mir-370

9 hsa-mir-190

10 hsa-mir-24-1

Rank Causal miRNAs

1 hsa-mir-23a

2 hsa-mir-200a

3 hsa-mir-379

4 hsa-mir-149

5 hsa-mir-219-2

6 hsa-mir-133b

7 hsa-mir-92a-1

8 hsa-mir-125b-1

9 hsa-mir-30b

10 hsa-mir-212
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we reported several computational methodologies conceived and

implemented incrementally and applied to determine the patterns of miRNA regu-

lomic behavior and also show-case the interactions in miRNA-disease networks. We

study these interaction patterns and regulatory behavior especially in the context of

diseases. Each of the reported methodologies has been made available to the broader

research community via online softwares and web-tools. Our future work involves in-

tegrating newer components of the miRNA regulome as they become available into our

integrated framework; equally important is the design of integrated analytical tools

that can enable systems level hypothesis making. Moreover, our integrated miRNA

regulomics platform can be used to drive future research in several new directions as

follows:

• Synthetic biology: Due to the efficient communication properties of feed-forward

loops (FFLs), specifically in terms of noise filtering and robust signal transport,

they make great candidates for the emerging domain of synthetic biology where

larger engineered TRN circuits can be built that are resilient to external pertur-

bations[133, 134]. Early efforts in this direction have shown great promise and

the importance of integrated miRNA-TF-gene regulatory networks (that form

individual FFLs) as investigated here can motivate the construction of more

efficient genetic circuits in the future.

• Biological network growing algorithms: Another popular area of research in-

cludes the transcriptional network growing algorithms primarily based on the
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preferential attachment model [135] or its variations [136]. Currently, only the

TRNs of Escherichia coli (E. coli) and Saccharomyces cerevisiae (Yeast) have

been validated experimentally; hence such network growing algorithms are es-

sential to allow the community to study the properties of such TRNs for de-

signing robust networks [137], as well as to predict the TRNs of higher-level

organisms. Future studies on the topologies of the integrated miRNA-TF-gene

regulatory networks can provide new directions in this line of research.

• Bio-inspired Wireless Sensor Networking: Wireless sensor networks form a spe-

cial class of engineered systems wherein sensor nodes forward data packets that

are routed through adjacent sensors to a sink capable of processing the sensed

information. Resemblance between gene regulation systems and wireless sensor

networks (herein WSNs) can be described through transcription, where genes

process signals from adjacent neighbors in the form of transcription factors that

excite/repress other genes by generating mRNA molecules. Nodes in a TRN

interface by conveying signals (transcription factors), that are then processed

into output signals (mRNAs). WSNs operate in a similar manner, where sensor

nodes send signals to others in the form of data packets. Packets at destina-

tion nodes convey forwarding instructions, which in return relays such packets

to other sensors. Recent studies show that wireless sensor networks adopting

the transcriptional regulatory topologies (of E. coli), designated as bio-inspired

WSNs, are more efficient than those adopting random network topologies of the

same size in terms of conveying packets to sink nodes [137–150]. This thesis will

motivate the design of new smart WSN topologies by exploiting the integrated

regulatory networks reported here that may exhibit better efficiency in terms of

their average packet receipt rates under node/link failures and channel noise.
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Appendix A

DETAILS OF NETWORK INFERENCE ALGORITHMS

These network inference algorithms were used in Chapter 5.

1. CLR

Context likelihood of relatedness (CLR)[71] algorithm belongs to the class of

relevance networks. Relevance network algorithms use mutual information (MI)

based Z scores between a regulator-target pair to identify and determine po-

tential interactions between them. If the MI score is above a certain threshold

among the expression dataset, the interaction between the pair is highly likely.

In the past, CLR method has been proven to be effective in learning novel tran-

scriptional interactions in E. coli[71]. CLR uses the metric of MI to gauge the

similarity between the expression profiles of two entities, in our case, disease-

specific miRNAs. The MI is calculated as below:

I(X, Y ) =
∑
i,j

P (xi, yi)log
p(xi, yi)

p(xi)p(yi)
(A.1)

where, X and Y are random variables i.e. two miRNAs in this case. P (xi)

denotes the probability of X = xi. MI values between a miRNAi and miRNAj

are calculated and thereafter estimated with regards to the likelihood of their

occurrence by comparing that score with a background null model, which is the

distribution of MI values. The null model incorporates two sets of MI values:

MIi which is a set of all miRNAi’s MI values and MIj, a set of all MI values of

miRNAj. These two sets, MIi and MIj are two independent variables used in
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the computation of the joint distribution of the null-model, i.e. the background

MI. Thus the MI score of the pair (miRNAi,miRNAj) is compared with two

Z scores resulting from MIi and MIj. Further in-depth explanation of the

algorithm can be found in[71]. However, CLR predominantly relies on the MI

matrix for its scores, and cannot ascertain for causality between the regulators

which is more often based on the regulatory kinetics exhibited in the time-series

data. The CLR algorithm, available in the ’minet’ R Bioconductor package was

used in this work.

2. GENIE3

Gene Network Inference with Ensemble of Trees (GENIE3)[74] algorithm was

the top performing algorithm in the ’DREAM4- In Silico Network Challenge’

of inferring gene regulatory network. GENIE3 has a different approach of in-

ferring the associations by taking into account, feature selection as compared

to CLR, which is mutual-information based. In GENIE3, a regression problem

is formulated for each individual miRNA. Hence in our case, 4343 regression

problems were solved for each disease-specific miRNAs. In this regression anal-

ysis, each disease-specific miRNA’s expression pattern is predicted from every

other miRNA’s expression pattern by the application of ’Random Forests’ model

which is a tree-based ensemble model. Thus, based on the significance of the

expression patterns between two disease-specific miRNAs and the least output

variance between the target miRNA and the considered miRNA, a regulatory

link between them is predicted. In this way, the algorithm ranks all the inter-

actions between the miRNAs based on their aggregated scores from regression

analysis. GENIE3 is adaptable to other categories of expression data involving

interactions. The GENIE algorithm hosted on GenePattern website was exe-
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cuted with standard run conditions - tree-based method as Random Forests’

and the number of trees grown in an ensemble as 500.

3. Basic Correlation

The Basic Correlation method ranks every disease-specific miRNA-miRNA pair

according to the correlation between them. This algorithm uses the Pearsons

and Spearmans coefficient to calculate their correlation score,

Pearsons coefficient:

ρX,Y = corr(X, Y ) =
cov(X, Y )

ρXρY
=
E[(X − µX)(Y − µY )]

ρXρY
(A.2)

where, X and Y are random variables, with µX and µY being the expected

values and ρX and ρY being the standard deviations. The Spearman correlation

coefficient

ρ = 1− 6
∑

(di)
2

n(n2 − 1)
(A.3)

where, di is the difference between the ranks of corresponding values Xi and

Yi and n is the number of points in dataset. While running the Basic Correla-

tion algorithm hosted on the tool GenePattern the ranks of the disease-specific

miRNA-miRNA were derived using Pearson’s correlation coefficient and Spear-

man’s correlation. Note that, there are two resultant files - one with Pearson’s

correlation coefficient and the other with Spearman’s correlation coefficient,

under this approach.

4. MRNETB

MRNETB[72] is a mutual information based network inference algorithm which
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is an improved version of its predecessor MRNET. MRNET performs net-

work inference using the method ‘Maximum Relevance Minimum Redundancy

(MRMR)’. For every random variable Xi, a set of predictor variables are cho-

sen based on the difference of mutual information between Xi and the set of

variables Xi ∈ XSj
. This method follows forward selection, i.e. a variable Xi

with highest MI score with the target variable XSj
is chosen at first. Hence, the

general idea behind the algorithm is identification of subsets of XSj
for every

variable with which the variable in the set has maximum pairwise relevance and

maximum pairwise independence. While previous methods recursively select

a subset of variables and compute the mutual information scores, MRNETB

performs backward elimination with sequential search. Further, in-depth expla-

nation can be found at[72].

This algorithm was run from the Bioconductor package minet with Spearman

entropy estimator and the number of bins used for discretization was
√
N , where

N=number of samples, i.e. 267 in our expression dataset.

5. Distance Correlation

This algorithm is described in[73] which uses a novel measurement of depen-

dence called distance correlation (DC) to derive non-linear dependencies from

the gene expression dataset. This metric uses a different approach as compared

to some of the previous MI based methods. MI based methods rely on density

estimator of certain patterns which can be challenging for multivariate data, it

cab be challenging. Also, in the case of continuous data, it has to be discretized

before MI based methods are applied. The algorithm details can be found in

their work[73] and are beyond the scope of this work.
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