4,328 research outputs found

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Modeling sparse connectivity between underlying brain sources for EEG/MEG

    Full text link
    We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.Comment: 9 pages, 6 figure

    Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data

    Full text link
    Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g., trajectories of activation propagating across cortex. This leads to a model of convolutive signal superposition, in contrast with the commonly used instantaneous mixing model. In the frequency-domain, convolutive mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded spectral-domain signals into independent components by a complex infomax ICA algorithm. First results from a visual attention EEG experiment exhibit (1) sources of spatio-temporal dynamics in the data, (2) links to subject behavior, (3) sources with a limited spectral extent, and (4) a higher degree of independence compared to sources derived by standard ICA.Comment: 21 pages, 11 figures. Added final journal reference, fixed minor typo

    Of `Cocktail Parties' and Exoplanets

    Full text link
    The characterisation of ever smaller and fainter extrasolar planets requires an intricate understanding of one's data and the analysis techniques used. Correcting the raw data at the 10^-4 level of accuracy in flux is one of the central challenges. This can be difficult for instruments that do not feature a calibration plan for such high precision measurements. Here, it is not always obvious how to de-correlate the data using auxiliary information of the instrument and it becomes paramount to know how well one can disentangle instrument systematics from one's data, given nothing but the data itself. We propose a non-parametric machine learning algorithm, based on the concept of independent component analysis, to de-convolve the systematic noise and all non-Gaussian signals from the desired astrophysical signal. Such a `blind' signal de-mixing is commonly known as the `Cocktail Party problem' in signal-processing. Given multiple simultaneous observations of the same exoplanetary eclipse, as in the case of spectrophotometry, we show that we can often disentangle systematic noise from the original light curve signal without the use of any complementary information of the instrument. In this paper, we explore these signal extraction techniques using simulated data and two data sets observed with the Hubble-NICMOS instrument. Another important application is the de-correlation of the exoplanetary signal from time-correlated stellar variability. Using data obtained by the Kepler mission we show that the desired signal can be de-convolved from the stellar noise using a single time series spanning several eclipse events. Such non-parametric techniques can provide important confirmations of the existent parametric corrections reported in the literature, and their associated results. Additionally they can substantially improve the precision exoplanetary light curve analysis in the future.Comment: ApJ accepte

    Improved physiological noise regression in fNIRS: a multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis

    Get PDF
    For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.Published versio

    Underdetermined Blind Identification for kk-Sparse Component Analysis using RANSAC-based Orthogonal Subspace Search

    Full text link
    Sparse component analysis is very popular in solving underdetermined blind source separation (UBSS) problem. Here, we propose a new underdetermined blind identification (UBI) approach for estimation of the mixing matrix in UBSS. Previous approaches either rely on single dominant component or consider k≤m−1k \leq m-1 active sources at each time instant, where mm is the number of mixtures, but impose constraint on the level of noise replacing inactive sources. Here, we propose an effective, computationally less complex, and more robust to noise UBI approach to tackle such restrictions when k=m−1k = m-1 based on a two-step scenario: (1) estimating the orthogonal complement subspaces of the overall space and (2) identifying the mixing vectors. For this purpose, an integrated algorithm is presented to solve both steps based on Gram-Schmidt process and random sample consensus method. Experimental results using simulated data show more effectiveness of the proposed method compared with the existing algorithms
    • …
    corecore