We propose a novel technique to assess functional brain connectivity in
EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA),
can overcome the problem of volume conduction by modeling neural data
innovatively with the following ingredients: (a) the EEG is assumed to be a
linear mixture of correlated sources following a multivariate autoregressive
(MVAR) model, (b) the demixing is estimated jointly with the source MVAR
parameters, (c) overfitting is avoided by using the Group Lasso penalty. This
approach allows to extract the appropriate level cross-talk between the
extracted sources and in this manner we obtain a sparse data-driven model of
functional connectivity. We demonstrate the usefulness of SCSA with simulated
data, and compare to a number of existing algorithms with excellent results.Comment: 9 pages, 6 figure