104,636 research outputs found

    Solar stereoscopy - where are we and what developments do we require to progress?

    Get PDF
    Observations from the two STEREO-spacecraft give us for the first time the possibility to use stereoscopic methods to reconstruct the 3D solar corona. Classical stereoscopy works best for solid objects with clear edges. Consequently an application of classical stereoscopic methods to the faint structures visible in the optically thin coronal plasma is by no means straight forward and several problems have to be treated adequately: 1.)First there is the problem of identifying one dimensional structures -e.g. active region coronal loops or polar plumes- from the two individual EUV-images observed with STEREO/EUVI. 2.) As a next step one has the association problem to find corresponding structures in both images. 3.) Within the reconstruction problem stereoscopic methods are used to compute the 3D-geometry of the identified structures. Without any prior assumptions, e.g., regarding the footpoints of coronal loops, the reconstruction problem has not one unique solution. 4.) One has to estimate the reconstruction error or accuracy of the reconstructed 3D-structure, which depends on the accuracy of the identified structures in 2D, the separation angle between the spacecraft, but also on the location, e.g., for east-west directed coronal loops the reconstruction error is highest close to the loop top. 5.) Eventually we are not only interested in the 3D-geometry of loops or plumes, but also in physical parameters like density, temperature, plasma flow, magnetic field strength etc. Helpful for treating some of these problems are coronal magnetic field models extrapolated from photospheric measurements, because observed EUV-loops outline the magnetic field. This feature has been used for a new method dubbed 'magnetic stereoscopy'. As examples we show recent application to active region loops.Comment: 12 Pages, 9 Figures, a Review articl

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep≈6∘,43∘,89∘,127∘\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170∘170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep≈22∘−125∘\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep≈6∘−127∘\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF≈21∘−39∘\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF≈15∘−21∘\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE≈9∘\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    Rapid algorithm for identifying backbones in the two-dimensional percolation model

    Full text link
    We present a rapid algorithm for identifying the current-carrying backbone in the percolation model. It applies to general two-dimensional graphs with open boundary conditions. Complemented by the modified Hoshen-Kopelman cluster labeling algorithm, our algorithm identifies dangling parts using their local properties. For planar graphs, it finds the backbone almost four times as fast as Tarjan's depth-first-search algorithm, and uses the memory of the same size as the modified Hoshen-Kopelman algorithm. Comparison with other algorithms for backbone identification is addressed.Comment: 5 pages with 5 eps figures. RevTeX 3.1. Clarify the origin of the hull-generating algorith

    Multi-Step Processing of Spatial Joins

    Get PDF
    Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last year’s conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by the following two steps. First of all, sophisticated approximations are used to identify answers as well as to filter out false hits from the set of candidates. For this purpose, we investigate various types of conservative and progressive approximations. In the last step, the exact geometry of the remaining candidates has to be tested against the join predicate. The time required for computing spatial join predicates can essentially be reduced when objects are adequately organized in main memory. In our approach, objects are first decomposed into simple components which are exclusively organized by a main-memory resident spatial data structure. Overall, we present a complete approach of spatial join processing on complex spatial objects. The performance of the individual steps of our approach is evaluated with data sets from real cartographic applications. The results show that our approach reduces the total execution time of the spatial join by factors

    On damping created by heterogeneous yielding in the numerical analysis of nonlinear reinforced concrete frame elements

    Full text link
    In the dynamic analysis of structural engineering systems, it is common practice to introduce damping models to reproduce experimentally observed features. These models, for instance Rayleigh damping, account for the damping sources in the system altogether and often lack physical basis. We report on an alternative path for reproducing damping coming from material nonlinear response through the consideration of the heterogeneous character of material mechanical properties. The parameterization of that heterogeneity is performed through a stochastic model. It is shown that such a variability creates the patterns in the concrete cyclic response that are classically regarded as source of damping

    Identifying the contributions of Universal Extra Dimensions in the Higgs sector at linear e+ e- colliders

    Full text link
    We study the dilepton-dijet signal in the dominant Higgs production channel at a linear e+ e- collider. We estimate the effects of Universal Extra Dimension (UED) by a simple analysis of the cross-sections. The heavy Kaluza-Klein excitations of the Standard Model fields in UED can significantly alter the decay properties of the Higgs boson to loop-driven final states. We show that by taking a simple ratio between cross-sections of two different final states this difference can be very easily highlighted.Comment: Some parts of the text modified. 1 figure added. Version to appear in IJMP
    • …
    corecore