In the dynamic analysis of structural engineering systems, it is common
practice to introduce damping models to reproduce experimentally observed
features. These models, for instance Rayleigh damping, account for the damping
sources in the system altogether and often lack physical basis. We report on an
alternative path for reproducing damping coming from material nonlinear
response through the consideration of the heterogeneous character of material
mechanical properties. The parameterization of that heterogeneity is performed
through a stochastic model. It is shown that such a variability creates the
patterns in the concrete cyclic response that are classically regarded as
source of damping