
Abstract
Spatial joins are one of the most important operations for combin-
ing spatial objects of several relations. In this paper, spatial join
processing is studied in detail for extended spatial objects in two-
dimensional data space. We present an approach for spatial join
processing that is based on three steps. First, a spatial join is per-
formed on the minimum bounding rectangles of the objects return-
ing a set of candidates. Various approaches for accelerating this
step of join processing have been examined at the last year’s con-
ference [BKS 93a]. In this paper, we focus on the problem how to
compute the answers from the set of candidates which is handled by
the following two steps. First of all, sophisticated approximations
are used to identify answers as well as to filter out false hits from
the set of candidates. For this purpose, we investigate various types
of conservative and progressive approximations. In the last step, the
exact geometry of the remaining candidates has to be tested against
the join predicate. The time required for computing spatial join
predicates can essentially be reduced when objects are adequately
organized in main memory. In our approach, objects are first de-
composed into simple components which are exclusively organized
by a main-memory resident spatial data structure. Overall, we
present a complete approach of spatial join processing on complex
spatial objects. The performance of the individual steps of our ap-
proach is evaluated with data sets from real cartographic applica-
tions. The results show that our approach reduces the total execu-
tion time of the spatial join by factors.

1 Introduction

Recently, spatial database systems have become more and more im-
portant for public administration, science and business. Several
spatial database systems (spatial DBSs), particularly designed for
organizing spatial data of a geographic information system (GIS),
have been developed for applications such as cartography, environ-
mental science and geography. For these applications, the data vol-
ume is extremely high, the spatial objects show a very complex
structure and the computation of spatial operators is time-intensive.
Therefore, the requirements on a spatial DBS are particularly re-
lated to efficient query processing.

A spatial object consists of (at least) one spatial attribute that de-
scribes the geometry of the object. This attribute contains two- or
three-dimensional data of a common type such as points, lines, rect-
angles, polygons, surfaces and even more complex types composed

from simple types. In analogy to relational DBSs, a collection of
spatial objects defined on the same attributes is called a spatial re-
lation. For example, the spatial relation Cities (CName, Postal
Code, Population, CRegion) contains the geometric attribute CRe-
gion that describes the border of the city using a two-dimensional
polygon. A spatial query is related to the geometric attribute of the
spatial object. A typical spatial query is the window query where
the response set consists of all objects whose geometric component
overlaps with a given rectilinear query rectangle.

In contrast to a window query, the spatial join is defined on two
or more relations. The spatial join computes a subset of the Carte-
sian product. It combines spatial objects from these relations ac-
cording to their geometric attributes, i.e. these attributes have to ful-
fill a spatial predicate. For example, consider the spatial relation
Forests (Id, Name, FRegion) where the geometric attribute FRe-
gion represents the borders of forests. The query “find all forests
which are in a city” is an example of a spatial join on the relations
Forests and Cities. Here, the spatial predicate is whether a forest in-
tersects a city. Since spatial joins frequently occur in a spatial DBS,
their importance is comparable to the one of traditional joins in a re-
lational DBS.

In this paper, we investigate spatial join processing for two sets
of two-dimensional spatial objects whose geometry corresponds to
polygonal areas. The geometry is assumed to be in vector represen-
tation, i.e. it is given as a sequence of two-dimensional points. We
assume that the corresponding spatial operator tests polygonal areas
for intersection. For other predicates, e.g. inclusion, a similar ap-
proach can be used as presented for intersection. In particular, our
emphasis is put on non-simple objects whose description consists
of hundreds of points. Then, for the spatial join, some of the most
expensive operations are to transfer large spatial objects from disk
into main memory and to compute the join predicate of spatial ob-
jects. In order to improve the performance of these operations, we
propose to process a spatial join in three steps. Each step uses a dif-
ferent representation of the objects.
 • First, instead of using an exact representation, the minimum

bounding rectilinear rectangle is used as an approximation for
computing an approximate spatial join. This step returns a so-
called candidate set that contains all of the answers and addition-
ally elements of the Cartesian product which do not fulfill the
join predicate. We have demonstrated that this step can be effi-
ciently supported by spatial access methods such as R*-trees
[BKS 93a].

 • In the second step, more accurate approximations are exploited
for filtering out elements (false hits) from the candidate set that
do not fulfill the join predicate. Moreover, answers can already
be identified using conservative as well as progressive approxi-
mations without accessing the exact representation of the spatial
objects.
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 • Eventually, in the third step, all remaining members of the candi-
date set are examined for being answers to the spatial join. This
step requires access to the exact representation of the spatial ob-
jects. The time required for checking objects against the join
predicate can be essentially reduced by using an appropriate rep-
resentation of the objects in main memory.

Although join processing has been studied in the literature exten-
sively, see [ME 92] for a survey, the spatial join has attracted much
less attention. Because almost all approaches for performing tradi-
tional joins cannot efficiently be applied to spatial joins, previous
approaches are based on new join algorithms that exploit spatial ac-
cess methods. Most previous work on spatial joins was done under
the assumption that spatial objects are simple. Orenstein [Ore 86]
has proposed spatial join processing for objects that can be con-
structed as a union of cells in a two-dimensional grid. Our discus-
sion of spatial joins [BKS 93a] was restricted to rectilinear rectan-
gles. This work yields the basic building block for the first of the
above mentioned three steps. Günther [Gün 93] has presented a
general model for estimating the cost of spatial joins. The work of
Blankenagel and Güting [BG 90] is an exception because they pro-
vide an algorithm for a spatial join on two sets, where the one con-
tains polygonal areas and the other consists of two-dimensional
points. Their approach is based on techniques from the area of com-
putational geometry.

Algorithms for supporting spatial joins on simple objects can be
used as an implementation for the first step of the spatial join on
more complex objects. However, the authors are not aware of a
complete approach for spatial join processing including the compu-
tation of the response set from the candidate set. In particular, this
computation may determine the response time of spatial joins. In
this paper, we address the problem how to improve the computation
of the response set.

The paper is organized as follows. In section 2, we motivate and
introduce multi-step processing and present the basic steps of the
spatial join processor. In section 3, several approximations are in-
troduced for performing the filter steps of a spatial join. The part of
the query processor dealing with the exact geometry is presented in
section 4. The total performance improvements are discussed in
section 5. Section 6 concludes the paper and gives an outlook to fu-
ture work.

2 Basic Ideas of Spatial Query Processing

Due to extremely large data volumes and also due to the high com-
plexity of objects and queries, spatial DBSs impose stringent re-
quirements on their query processing. Spatial queries, such as point
queries, window queries, nearest neighbor queries, and spatial
joins, are the basic operations in a spatial DBS. In particular, they
serve as building blocks for more complex and application-defined
operations, e.g. for the map overlay in a geographic information
system (GIS). Therefore, an efficient implementation of spatial
queries is an important requirement for good overall performance
of a spatial DBS and of applications based on it.

In this section, the basic ideas of our approach are presented.
First, we briefly introduce spatial objects and spatial joins. Then, a
first approach for spatial join processing is discussed and its most
expensive operations are identified. Eventually, we outline the ar-
chitecture of our spatial query processor that is based on multi-step
query processing.

2.1 The geometry of spatial objects
In the following, the geometry of a spatial object is assumed to be
described by a sequence of two-dimensional points. It is obvious
that this representation allows to model points, line segments and
polygons directly. In this paper, our emphasis is put on extended
spatial objects, especially on polygons and polygons with holes. A

polygon with holes consists of an outer polygon and an arbitrary
number of “internal” polygons cut out from the outer polygon. For
example, the geometry of the spatial objects from the relation For-
est can be well described using polygons with holes. The “holes”
might represent areas such as lakes.

Spatial objects exhibit a high complexity with respect to the fol-
lowing parameters [BHKS 93]: 1.) their number of points (verti-
ces), 2.) their extension, 3.) their shape, and 4.) their distribution in
data space. As a consequence of the complexity of the objects, geo-
metric operations, e.g. the test whether two objects intersect, be-
come very expensive.

2.2 Spatial join
The spatial join is one of the most frequently used operations in a
spatial DBS. The performance of a spatial DBS is likely to be af-
fected more by a spatial join rather than by window queries because
a spatial join has to access objects several times. Its execution time
is generally superlinear in the number of objects.

A relational θ-join of two relations A and B on columns i and j,
denoted by , combines those tuples where the i-th column of
A and the j-th column of B fulfill the predicate θ. The most impor-
tant join is the equijoin where θ is equality. A join  is called
spatial join if the i-th column of A and the j-th column of B are spa-
tial attributes and if θ is a spatial predicate [Gün 93]. Hence, the
spatial join computes a subset of the Cartesian product of relations
A and B. For example, instances of spatial attributes can be line seg-
ments representing rivers, railway tracks and highways or polygons
representing a part of the surface of the earth. Spatial predicates
may be intersection, containment or other proximity predicates.

The most important spatial join is the intersection join where θ is
intersection. In this paper, our discussion is restricted to the inter-
section join. However, many of the results can easily be transferred
to spatial joins using other spatial predicates. For an intersection
join, non-spatial attributes are not relevant and therefore, they are
not considered anymore in the remainder of the paper. The relations
are given as two sets A = {a1,…,an} and B = {b1,…,bm} of spatial
objects where n and m refer to the number of objects in relation A
and B, respectively.

2.3 A first approach for spatial join processing
Despite of the importance of spatial joins, most research efforts
have so far focussed on the investigation of natural joins and
equijoins. Unfortunately, almost all methods designed for process-
ing relational θ-joins cannot be used for spatial joins without mod-
ifications. Hashed-based joins are not appropriate for performing
spatial joins since spatial objects which fulfill the join predicate are
not in a common hash bucket in general. Sort-merge joins can be
applied to spatial joins, but this requires a one-dimensional ordering
of the two-dimensional objects. Orenstein [Ore 86] has proposed to
sort objects using a space-filling curve. However, his approach was
restricted to simple objects and hence, it can only be considered for
computing a candidate set, i.e. a superset of the response set. Only
the approach of nested loops can be used without any modifications
for both relational and spatial joins. Nested loops will serve as an
initial starting point. The nested loops approach is given as follows:

A Biθj

A Biθj

ALGORITHM Nested-Loops;
RS := ∅; (* initialize the response set *)
FOR i := 1 TO n DO (* outer loop *)

obj_A := Fetch(A,i); (* reading the i-th object of A *)
FOR j := 1 TO m DO (* inner loop *)

obj_B := Fetch(B,j); (* reading the j-th object of B *)
IF obj_A ∩ obj_B ≠ ∅ ΤΗΕΝ (* test the join predicate *)

RS := RS ∪ {(obj_A, obj_B)};
(* insert pair in the response set *)

END Nested-Loops;



This simple algorithm illustrates the most expensive operations of
spatial join processing. First, the transfer of an object from disk into
main memory can be a very expensive operation when the object is
large. In particular, large spatial objects might prevent keeping the
relation B resident in main memory, although m (the number of el-
ements in B) may be rather small. In the worst case, an element of
B has to be read n times. Second, the test of the join predicate can
be very expensive. In particular, this can become the bottleneck if
the description of the objects consists of a large number of points.
Third, as it is true for all nested loops, the number of loops is very
high. In the following subsection, we briefly outline the basic idea
of our approach for reducing the cost of spatial join processing.

2.4 Multi-step processing of spatial joins
Our goal is the design of a multi-step query processor that improves
the performance of spatial join processing. In former publications
([KBS 93], [BHKS 93]), we presented a spatial query processor for
spatial queries such as the point and the window query. This spatial
query processor is based on a multi-step-procedure. Its main goal is
to accelerate expensive steps by preceding filter steps which reduce
the number of spatial objects investigated in an expensive step. This
multi-step-procedure can be extended to spatial join processing.

A spatial join is abstractly executed as a sequence of steps. First,
spatial access methods (SAMs) are used for restricting the search
space. SAMs traditionally organize minimum bounding rectangles
(MBRs) as geometric keys. Thus, a SAM is not able to yield the ex-
act result of the join, but a set of candidate pairs that contains all
answers and additionally pairs of objects that do not fulfill the join
predicate. In the next step, these candidate pairs are examined using
a geometric filter. The geometric filter investigates accurate ap-
proximations of the objects in the set of candidates, i.e. pairs of ap-
proximations are tested for the join predicate. As a result, three
classes of answers are identified: hits fulfilling the join predicate,
false hits not fulfilling the join predicate and remaining pairs of
candidates possibly fulfilling the join predicate. The third step op-
erates on the exact geometry of the objects. The remaining candi-
date pairs have to be investigated whether they fulfill the join pred-
icate or not. This expensive step is handled by the exact geometry
processor and can be improved by using efficient computational ge-
ometry algorithms. This multi-step approach to spatial join process-
ing is illustrated in figure 1.

As described above, the first step computes the spatial join for the
minimum bounding rectangles (MBRs) of the objects in relations A
and B. This operation is called the MBR-join. The execution time of
the MBR-join is less than the one of the original join for the follow-
ing reasons. First, instead of fetching the exact representation of a
complex spatial object, only its MBR has to be read from disk. Sec-
ond, testing the MBRs against the join predicate is much cheaper
than testing the exact objects. However, due to the high number of
loops, the nested loops approach is still very inefficient for process-
ing MBR-joins. For efficiently scaling down the search space, spa-
tial access methods are used which are readily available in most
spatial DBSs. We showed that the R*-tree [BKSS 90] - one of the
most efficient members of the R-tree family [Gut 84] - can also be
exploited for performing spatial joins efficiently [BKS 93a]. In an
experimental performance comparison using real cartographic data,
the number of page accesses required for performing the spatial join
was shown to be close to optimal. Moreover, due to the sophisti-
cated techniques of restricting the search space and due to spatial
sorting, the number of tests of MBRs against the join predicate
could be kept very low, see [BKS 93a]. Obviously, instead of R*-
trees, any other spatial access methods such as R+-trees [SRF 87]
or approaches based on space filling curves [Fal 88, Jag 90b] might
be considered for implementing the MBR-join.

As a result of the MBR-join, we obtain a set of candidate pairs,
candidate set for short. The goal of the second step (geometric fil-

ter) is to identify hits as well as false hits in the candidate set with-
out investigating the exact representation of the objects. For spatial
joins, several approaches are discussed and compared in full detail
in section 3. The third step requires processing the exact geometry
of the remaining objects in the candidate set. In order to perform the
test against the join predicate efficiently, appropriate representa-
tions of spatial objects in main memory are presented and discussed
in section 4.

Note that the sets of candidates are not stored as intermediate re-
sults. Instead, a computed pair of candidates (or a small set of them)
is immediately given as input to the subsequent step. In conse-
quence, no additional cost arises for handling these candidates.

3 Exploiting Approximations for Spatial Joins

A spatial access method organizes the spatial objects according to
a geometric key. The minimum bounding rectangle (MBR) is the
most popular geometric key. Using the MBR, the complexity of an
object is reduced to four parameters where the most important fea-
tures of the object (position and extension) are maintained. A fur-
ther important advantage of the MBR is the fast execution of spatial
operations like the point-in-MBR test or the test for intersection.
Consequently, the MBR is widely used. Testing the MBRs of the
objects against the spatial query condition, we obtain candidates
possibly fulfilling the query (see figure 1). This set of candidates is
the starting point for the following investigations.

Using MBRs provides a fast but inaccurate filter for the set of an-
swers. The larger the area of the MBR differs from the area of the
original object, the more inaccurate is the geometric filtering, i.e.
the candidate set includes a lot of false hits. In order to quantify this
statement, we experimentally investigate the quality of MBR-ap-
proximations using real cartography data.

3.1 Evaluation of MBR-approximation
In order to get expressive and realistic results on the suitability of
the MBR-approximation for supporting point queries (not for join
processing), we investigated various real spatial data sets
[BKS 93b]. In the following, we restrict our experiments to two
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representative spatial relations with different resolutions. The first
relation Europe depicts the counties of the European Community in
1989. The second relation is BW representing some municipalities
of Baden-Württemberg, a state in Germany. Figure 2 depicts the
analyzed spatial relations and lists some characteristics. m∅, mmin
and mmax denote the average, the minimum and the maximum num-
ber of vertices occurring in the relation, respectively.

Figure 2: The analysed spatial relations

In the literature, several alternatives are proposed to evaluate ap-
proximations. In our application, we are interested in measuring the
accuracy of the geometric filter. For polygonal objects, the accu-
racy of the filter step is increased by decreasing the deviation of the
approximation from the original object. In the following, we call
the difference between the area of an object and the area of its ap-
proximation false area. For comparability, we normalize the false
area to the area of the approximated object (normalized false area).
Table 1 shows impressively that real cartography objects are only
roughly approximated by MBRs. ∅ is the average of the normal-
ized false areas; min and max denote the minimum and maximum
values occurring in the spatial relation, respectively.

Performing a point query, the fraction of false hits is proportional
to the normalized false area of the MBR. In other words, the higher
the normalized false area of the MBR is, the more often the exact
object representation is unnecessarily loaded into main memory
and tested with costly computational geometry algorithms.

Contrarily to point queries, we cannot postulate a direct depen-
dency of normalized false area and number of false hits for spatial
joins because spatial objects are tested against each other in pairs.
Therefore, the ratio of candidates, false hits and hits is determined
by empirical tests with real cartography data. As basic data to inves-
tigate the spatial join, we use the spatial relations from figure 2. In
order to obtain suitable test series, we pursue two strategies: Per-
forming strategy A, the original relation (Europe and BW, respec-
tively) is taken as first relation of the join. The second relation is
generated by shifting the objects of the first relation in x- and y-di-
rection. The test series generated following strategy A are called
Europe A and BW A. The other strategy B generates two spatial re-
lations per test series randomly shifting and rotating the objects of
the original relation. Additionally, the polygons are scaled in such
a way that the sum of the object areas is equal to the area of the data
space. Contrary to strategy A, an object of a relation generated by
strategy B may intersect other objects of the same relation. The test
series generated following strategy B are called Europe B and
BW B. Table 2 depicts the characteristics of the four test series.

∅ min max

Europe 0.91 0.25 20.13

BW 1.02 0.38 3.48

Table 1: False area of the MBR normalized to the object area

relation # objects m∅ mmin mmax

Europe 810 84 4 869

BW 374 527 6 2087

BWEurope

Table 2 demonstrates that about one third of the object pairs com-
puted by the MBR-join are false hits, i.e. although the MBRs of the
objects intersect, the objects themselves do not intersect. The rea-
son for the high number of false hits is the rough approximation of
MBRs which leads to high values for the normalized false area.
Consequently, there is a great potential to improve the processing
of spatial joins by using approximations in the geometric filter
which approximate the spatial objects more exactly than the MBR.
In the next subsection, we present a detailed investigation of such
approximations for intersection joins.

3.2 Reducing the number of false hits
In order to identify more false hits, we examine approximations
which describe the objects better than the MBR. Approximations of
objects which are used for geometric filtering should be simple to
provide a fast filter (simplicity criterion) and they should have a
good accuracy (quality criterion).

The MBR is a conservative approximation. An approximation is
called conservative iff each point inside the contour of the original
object is also in the conservative approximation. The basic idea is
to perform the test for the query condition on conservative approx-
imations with a better accuracy than the MBR. This is expected to
be much cheaper than performing the tests on the exact objects. If
the test fails, the candidate is a false hit. Otherwise, the candidate
remains in the candidate set and it has to be investigated in the fol-
lowing steps. A detailed investigation of this effect for performing
point queries has been presented in [BKS 93b].

Conservative approximations can be grouped into convex and
concave approximations. Due to the simplicity criterion, we restrict
our considerations to the class of convex approximations. First,
computational geometry algorithms for concave polygons are con-
siderably more complicated and time intensive than for convex
polygons. Second, efficient algorithms for computing a conserva-
tive approximation are well-researched.

Approximations
In order to improve the processing of spatial joins, we investigate
five convex conservative approximations. Let n denotes the number
of vertices of a spatial object.
Rotated minimum bounding rectangle (RMBR): The rotated
MBR (RMBR for short) is an MBR where additionally a rotation is
allowed. It is computed by a simple O(n2)-algorithm. Five parame-
ters are necessary to store the RMBR.
Convex hull (CH): An obvious and popular approximation for
simple polygons is the convex hull. The construction of the convex
hull is one of the best understood problems in computational geom-
etry. Graham’s simple scan-algorithm [PS 85] requires O(n log n)
time for the computation of a convex hull. The storage requirement
for the convex hull is determined by the form and complexity of the
object geometry; it varies from object to object.
Minimum bounding m-corner (m-C): To obtain a predefined
constant storage requirement, it is possible to compute the mini-
mum bounding m-corner starting from the convex hull of the poly-
gon. For the first time, an algorithm to construct the m-C-approxi-
mation was proposed by Dori and Ben-Bassat [DB 83] which has a
time complexity of O(n log n).

test series # intersecting MBRs # hits # false hits

Europe A 1858 1273 585

Europe B 4816 3203 1613

BW A 2253 1504 749

BW B 2562 1684 878

Table 2: Test data for approximation joins



Minimum bounding circle (MBC): The circle needs three de-
scribing parameters for specifying the center of the circle and the
radius. In our tests, we used a randomized algorithm with an ex-
pected linear complexity [Wel 91].
Minimum bounding ellipse (MBE): Two-dimensional ellipses are
determined by 5 parameters. We computed the MBE by a random-
ized algorithm [Wel 91] which has an expected linear complexity.

Figure 3 visualizes the selected approximations using Great Brit-
ain as an example. These approximations differ especially in their
accuracy and number of parameters which is given in brackets. The
convex hull has the highest storage requirement (and the best accu-
racy) and the circle the lowest storage requirement.

Figure 3: Different approximations of an object

Approximation quality of the different approximations
For defining a quality measure for approximations, we have to con-
sider the false area. If the approximation is stored additionally to
the MBR, we use the MBR-based false area as a measure for the ap-
proximation quality. That means, we first compute the intersection
I of the approximation and the MBR and then the false area between
the object and the intersection I. This is necessary because the MBR
is tested first and the approximation may cover parts of the data
space which are not covered by the MBR. In figure 4, the average
approximation quality is presented for different approximations
and the spatial relations BW and Europe. For comparability, the
MBR-based false areas are normalized to the object areas.

The results show that the more parameters are available for the rep-
resentation of an additional approximation, the better is its approx-
imation quality. The area of the 5-corner is nearly as accurate as the
area of the convex hull. The storage requirements of convex hulls
vary extremely, in our comparisons between 4 and 80 parameters.
The convex hull needs on the average 26 parameters for Europe and
46 for BW whereas the 5-corner requires only 10 parameters. The
MBR-based false area of a RMBR is also considerably less than the
one of the MBR requiring only one additional parameter.

As mentioned before, if conservative approximations of two ob-
jects do not intersect, it follows that also the objects do not intersect.
For spatial joins we expect - in correspondence to the point query -

MBR RMBR CH 4-C

5-C MBEMBC

(4) (5) (8)

(10) (3) (5)

(var.)

C
H

5-
C

4-
C

R
M

B
R

M
B

E

M
B

C

on
ly

 M
B

R

0.00

0.25

0.50

0.75

1.00

1.25

Figure 4: MBR-based false area normalized to the object area

Europe BW

to identify considerably more false hits by additional approxima-
tions. This expectation is confirmed by our test results depicted in
table 3.

The columns give the percentage of identified false hits when the
specified approximation is used in the geometric filter after first
performing the MBR-join. The results demonstrate that a high per-
centage of false hits can be identified by using these approxima-
tions. For example, the 5-C detects 68% of the false hits. Thus, only
32% of the non-intersecting objects whose MBRs intersect, must be
transferred into main memory and investigated in the exact geome-
try test.

In figure 5, we depict the dependency between MBR-based false
area and identified false hits for the Europe B test series and for var-
ious approximations. Considering in figure 5 the MBR, the MBC,
the RMBR, the 4-C, and the object itself, we recognize that the de-
pendency is almost linear. However, the deviation of the 5-C, MBE,
and the convex hull demonstrates that not only the false area, but
also the adaptability to the object is an important property of an ap-
proximation for identifying non-intersecting objects.

Figure 5: Dependency between MBR-based false area and
percentage of identified false hits

Because of its good approximation quality, the convex hull shows
the best results. But its number of vertices varies extremely and its
average storage requirements are by factors higher than the require-
ments of the other approximations. Therefore, convex hulls are not
suitable to be stored in the data pages of a spatial access method
which needs high numbers of entries within its data pages in order
to achieve a good query performance. Overall, the 5-corner is a
good compromise: it needs much less storage, but it has a very good
approximation quality and detects about two thirds of the non-inter-
secting object pairs delivered from the MBR-join. The investiga-
tion in section 3.4 demonstrates the gains obtained by using the
RMBR and the 5-C.

test series
Percentage of identified false hits using

MBC MBE RMBR 4-C 5-C CH

Europe A 17.9 42.1 35.7 50.9 66.3 80.7

Europe B 19.2 44.0 45.2 58.6 69.1 82.8

BW A 17.6 43.7 45.3 59.1 70.2 82.1

BW B 16.2 44.1 37.2 52.4 64.7 79.7

Table 3: False hits identified by approximations
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3.3 Identifying hits in geometric filtering
In the previous subsection, we strived for reducing the number of
false hits. As depicted in table 2, the number of hits clearly exceeds
the number of false hits. After avoiding a large percentage of false
hits, the ratio false hits to hits approaches 1 to 5. Therefore, it is not
reasonable to invest more time in identifying further false hits. In-
stead, we examine techniques which identify intersecting objects
(hits) without inspecting the exact geometry. In this subsection, two
techniques are presented: 1.) the false-area test and 2.) progressive
approximations.

The false-area test
We call the difference between the area of an object obj and the area
of its conservative approximation the false area (denoted by
faAppr(obj)). For two intersecting polygonal objects obj1 and obj2
the following property holds:

Appr(obj1) ∩ Appr(obj2) > faAppr(obj1) + faAppr(obj2)
⇒ obj1 ∩ obj2 ≠ ∅

To say it in words, if the area of the intersection of the approxima-
tions is larger than the sum of the false areas of the objects, it fol-
lows that the objects intersect. This property can be exploited for
processing spatial joins if the false area is stored additionally to the
approximation for each object. This requires only one additional
parameter. Now, the most interesting question is how many hits can
be identified by the false-area test. Table 4 gives the percentage of
identified hits in our experiments for various approximations.

Due to its bad approximation quality, the false-area test does not
pay off for the MBR: almost no hit can be identified. Performing the
test with the 5-corner - our favorite approximation from the last
subsection - identifies about 6% of the hits. These results motivate
to look for a test which identifies more hits than the false-area test.
For such a test, we allow a higher number of parameters.

Progressive approximations
In addition to conservative approximations which were discussed
before, we will now consider another type of approximations. For
identifying hits progressive approximations are adequate. A polyg-
onal object is progressively approximated if the point set of the ap-
proximation is a subset of the point set of the object. Figure 6 de-
picts examples of conservative and progressive approximations.
When the low-cost test for progressive approximations is success-
ful, we obtain a definite answer; only a failed operation triggers the
costlier operation on the exact object description. For the intersec-
tion join this implies that if two progressive approximations inter-
sect, it follows that the objects intersect.

Figure 6: Conservative and progressive approximations

test series

Percentage of identified hits
using the false-area test with

MBR RMBR 4-C 5-C CH

Europe A 0.1 0.4 3.8 8.1 12.5

Europe B 0.1 0.3 1.9 5.2 8.8

BW A 0 0.9 2.6 6.0 10.3

BW B 0 0.3 1.7 5.3 8.8

Table 4: Hits identified by false-area test

object conservative progressive

It may be intuitively clear that it is more expensive to compute pro-
gressive approximations than conservative ones. This holds espe-
cially true if a maximum enclosed approximation is computed.
Therefore, we investigate the two simplest progressive approxima-
tions: the maximum enclosed circle and the rectilinear maximum
enclosed rectangle.
Maximum enclosed circle (MEC): It can be computed for a sim-
ple polygon by using the voronoi diagram of its edges. One of the
nodes of the diagram is the center of the MEC.
Maximum enclosed rectangle (MER): In order to simplify the
computation of an enclosed rectangle, we restricted the investiga-
tion to rectangles which fulfill the following two properties:
1.) they intersect the longest enclosed horizontal connection start-
ing in a vertex of the polygon and 2.) the x- and the y-coordinates
of the rectangles are x- and y-coordinates of vertices of the polygon.
This type of enclosed rectangles is called maximum enclosed rect-
angle in the remainder of the paper.

Figure 7 depicts a Bavarian region (Oberpfalz) approximated by
an MEC and an MER.

Figure 7: MEC- and MER-approximations

For evaluating the accuracy of progressive approximations, we use
as a measure the area of the approximation normalized to the area
of the corresponding polygon. In order to get a flavor of both pre-
sented approximations for real geographic data, we computed the
normalized approximation areas for the relations Europe and BW.
Figure 8 depicts the results. The experiments show that on the av-
erage 42% of the area of a polygon is covered by the enclosed circle
and 44% by the enclosed rectangle. With respect to the three and
four parameters for representing the MEC and MER, respectively,
these values are pleasantly high.

Figure 8: Approximation quality of the progressive approximations

As mentioned before, if the progressive approximations of two ob-
jects intersect, it follows that the objects intersect, too. Considering
the processing of spatial joins, the main question is for the number
of identified hits. Table 5 shows the results of our tests. The results
in the column ‘MEC’ demonstrate that almost 32% of the hits are
identified by the MEC-approximation without accessing the exact
geometry. The MER-approximation even allows to find around
35% of the hits. These percentages are considerably higher than
those gained by the false-area test which identifies only about 6%
using the 5-corner. Storing three or four additional parameters in-
stead of one, the number of identified hits increases by a factor of 5
to 6. Because of the higher number of identified hits, the MER
seems to be the more suitable progressive approximation, although
it needs one parameter more than the MEC.

Further experiments demonstrate that a combination of progres-
sive approximations and the false-area test does practically not im-
prove the rate of identified hits. Therefore, it is not reasonable to
use the false-area test in addition to progressive approximations.
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3.4 The organization of approximations in SAMs
The last sections have demonstrated the potentials induced by using
conservative approximations with a high approximation quality and
by using progressive approximations. In this section, we discuss the
organization of such approximations in a spatial access method
(SAM).

For selective spatial queries, we need a conservative approxima-
tion as a geometric key allowing to identify a superset of the re-
sponse set and not a subset. Therefore, a progressive approximation
can only be stored additionally to a conservative approximation.

A conservative approximation such as the 5-corner can be orga-
nized by SAMs using the approximation as geometric key. Some
data structures have been designed for special types of approxima-
tions. Examples are the cell tree [Gün 89] and the polyhedra-tree
[Jag 90a] for convex polygons. From our point of view, these struc-
tures are rather complex such that the processing of queries and up-
dates is very CPU-time intensive. Such access methods have to or-
ganize complex objects in their directory. This is more difficult
than organizing simple rectangles.

Our approach is to manage the geometric key in the R*-tree, a
spatial access method originally designed for rectilinear boxes. In
several performance analyses and comparisons, the R*-tree has
proven its robustness and efficiency. In principle, there are two ap-
pealing approaches to managing conservative approximations (e.g.
the 5-corner) in the R*-tree:
 1.) Store the conservative approximation as a geometric key in-

stead of the MBR.
 2.) Store the conservative approximation in addition to the MBR.
Both approaches require more storage for the approximations; if we
store the approximation in addition to the MBR, we need 4 param-
eters more than in the first approach. The increased storage require-
ments decrease the capacity of a data page in the R*-tree, and hence
worsen its performance. Following the first approach (approxima-
tion instead of MBR), there is an additional impact: Except for the
convex hull, all of the investigated approximations have a higher x-
and y-extension than the MBR-approximation. This yields a higher
area extension which is computed by the product of the x-extension
and the y-extension. An example is depicted in figure 9.

Figure 9: Example for the area extension of an approximation

To get a flavor which area extensions occur in real applications, we
computed the area extensions of the real data presented in the
former subsections. The experiments show that on the average the
area extension of the 5-C is about 21% higher than the area exten-
sion of the MBR. The results for the 4-C, the RMBR, and the MBE
are 44%, 51%, and 22%, respectively. The area extension deter-
mines the size of the corresponding page region. A page region is

test series
Percentage of identified hits using

MEC MER

Europe A 31.4 36.2

Europe B 31.8 35.3

BW A 31.6 34.3

BW B 32.6 33.6

Table 5: Identified hits by progressive approximations
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defined by the common MBR of the approximations contained in
the associated page. The higher the area of a page region, the worse
is the performance of the R*-tree because it is more likely that a
query has to access the corresponding page.

Therefore, we observe two contrary effects: approach 1 needs
less storage than approach 2, but causes a higher area extension. In
order to investigate these impacts, we compared the two approaches
with real test data. Each spatial relation consists of about 130,000
objects. These relations were already used in [BKS 93a]. We as-
sume that each description of an object stored in an R*-tree needs
16 Byte for the MBR, 16 Byte for the MER, 20 and 40 Byte for the
RMBR and the 5-C, respectively, and 32 Byte for additional infor-
mation. Page sizes of 2 and 4 KB and an LRU-buffer of 128 KB
were used. We tested point queries, window queries, and intersec-
tion joins. The window queries were performed with quadratic win-
dows which have an x-extension of 1% and 5% compared to the x-
extension of the data space. A join computes about 86,000 pairs of
intersecting MBRs. Figure 10 depicts the percentage of page ac-
cesses required by approach 2 in comparison to approach 1. If the
bar in the diagram is less than 100%, approach 2 is superior to ap-
proach 1. Otherwise, approach 1 is superior.

Figure 10 shows only slight differences between the two ap-
proaches with small advantages for approach 1. For an interpreta-
tion of the results, we have also to consider the CPU-cost. The cost
for immediately testing a conservative approximation such as the 5-
C against a query condition is much higher than for testing the
MBR first and then the approximation. One number illustrates this
effect: for the intersection join we have to test the approximation
using approach 1 about 30 times as often than using approach 2.
Additionally, approach 2 is easier to implement and applicable to
almost all SAMs. Therefore, it is reasonable to store the conserva-
tive approximation in addition to the MBR.

3.5 The performance impact of approximations
Using the same data as in the experiment before and the results
from the two preceding subsections, we investigated the change of
the total performance of the intersection join storing conservative
and progressive approximations in addition to the MBR. Figure 11
depicts the results of our experiments when the MER is used as a
progressive approximation and the RMBR or the 5-C is used as a
conservative approximation additionally to the MBR. The value
‘loss’ corresponds to the additional page accesses of the MBR-join
which are caused by the higher storage requirements. The ‘gain’ is
computed under the very cautious assumption that each pair of ob-
jects which is identified by the geometric filter as a hit or a false hit,
saves the cost of one page access. The ‘total’ value shows the total
performance gain using the suggested approximations for the inter-
section join. The results of figure 11 demonstrate the great perfor-
mance gains which can be achieved by using adequate approxima-
tions. These gains are considerably higher than the additional cost
for the MBR-join.
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Figure 11:  Change of performance using approximations

3.6 Summary
For processing spatial joins, we can summarize that the MBR-fil-
tering can be substantially improved by storing other approxima-
tions additionally to the MBR. According to our results, we propose
to use the following two techniques: 1.) the 5-corner approximation
and 2.) the MER-approximation. For these techniques, the diagram
in figure 12 shows the division of the intersecting MBRs into hits
and false hits for the test series BW A. For the other test series, we
have obtained similar results. Altogether, for test series BW A we
can identify 46% of all intersecting pairs of MBRs as hits or false
hits. The remaining pairs are candidates for the exact investigation.
In the next section, several techniques are considered for improving
the final step of the spatial join processor.

4 Investigation of the Exact Geometry

Geometric filtering is based on the approximations of objects. It
identifies hits, false hits and candidates that may fulfill the query
condition. The exact geometry processor tests whether a candidate
actually fulfills the query condition or not. This step is very time
consuming and dominates spatial indexing and geometric filtering
in many applications [BZ 91]. In this section, we propose methods
for reducing the effort for testing the exact geometry. For the inter-
section join that means to improve the test of intersection.

In the exact geometry processor, we start off with a set of object
pairs which may intersect. The straightforward approach to com-
pute whether the exact geometry of a pair of simple polygons
(obj1,obj2) intersects or not, consists of two steps: in the first step,
we search for a pair of edges (edgei∈obj1, edgej∈obj2) which inter-
sect. If an intersecting pair of edges exists, then the objects inter-
sect, too. A brute force approach for the first step is to test each edge
of obj1 against each edge of obj2 which needs O(n1⋅n2) time where
n1 and n2 denote the number of edges of obj1 and obj2, respectively.

RMBR 5-C RMBR 5-C
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Figure 12: Identified and non-identified hits and false hits of BW A

If no pair of edges intersects, we have to perform the second step
which tests whether obj1 contains obj2 or vice versa.

This polygon-in-polygon test can be performed by two point-in-
polygon tests. Without preprocessing, such a test needs O(n1) and
O(n2) time, respectively [PS 85]. The MBR-approximation acceler-
ates the polygon-in-polygon test: Only if the MBR of a polygon
obj1 is contained in the MBR of the other polygon obj2, obj1 can be
contained by obj2. Otherwise, we need no point-in-polygon test.
For our test data, such MBR-pretests omit between 75% and 93%
of the point-in-polygon tests.

Nevertheless, the quadratic cost of the intersection test is not ac-
ceptable for real geographic database applications. Therefore, more
sophisticated algorithms are absolutely necessary to perform the
exact investigation on the object geometry. In the following, we
discuss two approaches: a plane-sweep algorithm and an algorithm
based on object decomposition.

4.1 Plane-sweep algorithm
Algorithms from the area of computational geometry are proposed
to overcome the time bottleneck of operations on the exact object
geometry. Different specialized data structures and techniques,
such as plane sweep or divide-and-conquer, are used to design effi-
cient algorithms for the different spatial queries and operations. For
intersection problems the plane-sweep technique is a widely used
method [PS 85]. Shamos and Hoey [SH 76] presented a plane-
sweep algorithm for detecting an intersection in a set of line seg-
ments in O(n log n) where n is the number of line segments. This
algorithm can be easily modified for detecting an intersection be-
tween the edges of two polygons in the same worst case time com-
plexity where n = n1 + n2 (n1 and n2 denote the number of edges of
the two polygons).

The basic idea is to sort the vertices of both polygons in a prepro-
cessing step according to their x-coordinates. Then a vertical line
(sweep line) sweeps the data space from left to right. The sweep line
stops at every vertex (event point), where the status of the plane-
sweep is updated. This sweep line status stores the edges which in-
tersect the sweep line and is recorded in a dynamic data structure
(e.g. AVL-tree). The edges in the sweep line status are sorted ac-
cording to their y-coordinate at the sweep line position. For every
event point, the corresponding edges are inserted into or deleted
from the sweep line status. While the insert operation is performed,
the considered edge is tested for intersection with its new neighbors
in the sweep line status. For a delete operation the former neighbors
of the edge are tested for intersection. If an intersection between
two edges from different polygons is detected, the algorithm stops
successfully. Otherwise (no intersection exists), the algorithm runs
until the last vertex is processed. In consequence, the plane-sweep
algorithm is - just as the quadratic algorithm - more expensive for
identifying false hits than for identifying hits. Figure 13 depicts an
example for the plane-sweep algorithm.

Figure 13: Example for the plane-sweep algorithm

We only have to check edges in the plane-sweep algorithm which
intersect the intersection rectangle of the MBRs of the two poly-
gons. In figure 13 for example, the edges e1 and e5 do not need to
be processed by the plane sweep because they cannot intersect an
edge of the other polygon. By a linear scan through each of the two
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polygons, we can exclude all edges not intersecting this rectangle.
This technique is called restricting the search space.

4.2 Object representation by decomposition
and TR*-trees

Object representation
Another technique for improving the exact geometry processing is
based on the following paradigm. In order to support query inten-
sive applications, time and storage is invested in the representation
of the spatial objects in order to shift time requirements from query
processing to update and restructuring operations. Due to the com-
plexity of the objects and due to the selectivity of spatial queries a
decomposition representation of the objects is suitable for spatial
query processing [KHS 91]. For example, spatial objects can be de-
composed into simpler components such as convex polygons
[KHS 91], triangles [PS 85], or trapezoids [AA 83] (see figure 14).
Such a decomposition approach consists of a single preprocessing
step at object insertion time. This preprocessing simplifies spatial
query processing because the decomposition substitutes the execu-
tion of one complex computational geometry algorithm by multiple
executions of fast algorithms applied to simple components. Thus,
performing a query on a single complex object is replaced by per-
forming the query on a set of simple objects [KHS 91].

In the following, we assume that an object is decomposed into trap-
ezoids. The main advantage of trapezoids is that single trapezoids
as well as sets of trapezoids can accurately be approximated by
MBRs.

TR*-tree
The success of the decomposition approach depends on the ability
to quickly narrow down the set of components that are affected by
spatial queries and operations. In order to decide which components
are relevant for a particular geometric test, we need an efficient data
structure that organizes the components of one object with respect
to their location.

We use a spatial access method for organizing the components.
For this approach, we started our investigations with the R*-tree.
However, the R*-tree was designed as a spatial access method for
secondary storage. Therefore, we developed the TR*-tree [SK 91]
which is designed to reduce main memory operations and to store
the components of one decomposed object.

The data structure and the algorithms of the R*-tree and the TR*-
tree are rather similar: A non-leaf node of a TR*-tree contains en-
tries of the form (rect, ref) where ref is the address of a child node
and rect is the minimum bounding rectangle of all trapezoids stored
in this child node. A leaf node contains trapezoids (trap) as entries.
The TR*-tree is persistently stored on secondary storage and is
completely transferred into main memory when the complete poly-
gon is required for a geometric operation. In particular, it is not re-
quired to build up the TR*-tree in main memory or to convert its
pointers.

The height of a TR*-tree grows logarithmically in the number of
objects. TR*-trees have to allow overlap in their non-leaf nodes, i.e.
rectangles of different entries may have a common intersection. For
real geometric objects, the TR*-tree permits nearly logarithmic

trianglesconvex polygons

trapezoids

Figure 14: Three decomposition techniques for simple polygons

searching for a point query, but - due to the overlap within its direc-
tory - the search is not restricted to one path and thus logarithmic
search time cannot be guaranteed. In the worst case, O(n) time is
necessary for a point query, where n denotes the number of trape-
zoids.

The main characteristic of the structure of the TR*-tree is its
small maximum number of entries per node which reduces the
number of main memory operations. The best performance is ob-
tained by a TR*-tree with a maximum node capacity M of 3 to 5.

The object representation using trapezoids and TR*-trees needs
more storage than a representation of an object by point lists. First,
the storage of the trapezoids is costlier and second, the directory of
the TR*-tree needs additional storage.

Figure 15 depicts the different levels of a TR*-tree that organizes
the trapezoids describing the state of Bavaria.

Intersection test
Using two TR*-tree representations, the intersection test between
two spatial objects determines whether there exists a pair of inter-
secting trapezoids or not. The basic idea for such a test is to use the
property that the rectangle of an entry in a non-leaf node forms the
MBR of the trapezoids in the corresponding subtree. If the rectan-
gles of two entries ER and ES do not have a common intersection,
there will be no pair (trapR, trapS) of intersecting trapezoids where
trapR is in the subtree of ER and trapS is in the subtree of ES. Oth-
erwise, there might be a pair of intersecting trapezoids in the corre-
sponding subtrees. This property guides the search through the two
TR*-trees (compare [BKS 93a]). When an intersecting pair of trap-
ezoids is found, the algorithm stops successfully. In the worst case,
the TR*-intersection test requires O(n1⋅n2) time where n1 and n2 de-
note the number of trapezoids of the involved objects.

4.3 Performance comparison
For evaluating the three presented approaches, we need a measure
of cost. However, the more sophisticated an algorithm is, the more
difficult is it to find a representative and reproducible cost measure.
We decided to count the geometric operations in the algorithms.
For this approach, two aspects must be observed: First, we have to
assign fair weights to the operations. The other aspect is that some
parts of the algorithm may not be taken into consideration because
not all operations are counted (and weighted).

The first step is to determine which operations should be taken
into account. For the quadratic intersection, this is an easy task, be-
cause for the first step only edge intersection tests and for the point-
in-polygon tests only intersection tests between edges of the poly-
gon and auxiliary horizontal lines occur (edge-line intersection
test). In the plane-sweep algorithm, two other important operations
occur: 1.) In order to determine the position of a new edge in the
sweep line status, we must compute the y-coordinate of the new
edge at plane-sweep position and compare it to the correspondingly

root level level 2 level 3

level 4 level of trapezoids

Figure 15: TR*-tree representation of Bavaria



computed y-coordinates of the other edges stored in this status (po-
sition test). 2.) When the restriction of the search space is applied,
a further important operation is the test whether an edge intersects
the intersection rectangle of the MBRs of the tested polygons
(edge-rectangle intersection test). Because the sorting of the verti-
ces according to their x-coordinates can be done in a preprocessing
step for each polygon, we neglected the cost for this sorting. Con-
trarily, the TR*-approach is based on two different operations: the
rectangle intersection test and the trapezoid intersection test.

Neither for the plane-sweep algorithm nor for the TR*-approach,
we consider the cost for preprocessing. However, the preprocessing
cost of the TR*-approach is considerably higher than the prepro-
cessing cost of the plane-sweep algorithm. In consequence, the
TR*-approach does not pay off for performing a low number of in-
tersection tests.

In order to determine weights for these operations, we measured
the time required for performing them on an HP720-workstation.
Table 6 depicts the obtained weights. For the plane-sweep algo-
rithm (without sorting of the vertices according to their x-coordi-
nates) the four counted operations need about 90% of the total com-
puting time; for the other approaches, the time represented by the
counted tests is even higher.

For our comparison, we selected the test series from section 3 as
test data. After performing the geometric filter with the 5-corner-
test and the MEC-test, we obtain a set of candidate pairs which are
transferred into main memory. In table 7, we present the cost of the
three investigated algorithms for the Europe A and the BW A test se-
ries. In this table, we present the results of the plane-sweep with re-
stricting the search space because this version saves about 40% of
the cost compared to the version without restricting the search
space. The TR*-tree algorithm is performed with a maximum node
capacity of 3 entries. For the test series Europe B and BW B, we ob-
tain similar results.
.

One result is obvious: the quadratic algorithm is - as expected - ex-
tremely inferior to the other algorithms and needs no further discus-

operation weight (in 10-6 sec)

edge intersection test 15

edge-line intersection test 18

position test 36

edge-rectangle intersection test 28

rectangle intersection test 28

trapezoid intersection test 38

Table 6: Weights for the different geometric operations

test
series algorithm

intersections
(hits)

non-inters.
(false hits) total

cost
# cost per

pair # cost per
pair

Europe
A

quadratic

867

119.6

197

154.3 164,193

plane-sweep 9.9 10.9 10,732

TR*-tree 0.7 1.0 795

BW
A

quadratic

1,026

2814.7

223

7487.8 4,557,686

plane-sweep 49.2 51.6 62,024

TR*-tree 0.9 1.3 1,263

Table 7: Cost of the exact intersection algorithms (in 10-3 sec)

sion. The first observation for the plane-sweep algorithm is that the
cost for determining a non-intersection is nearly the same as the
cost for determining an intersection. This effect results from the
fact that we restrict the search space. Without restricting the search
space, the identification of a false hit is costlier by a factor of about
2.3. In our test relations, the average number of edges per polygon
is 84 for Europe A and 527 for BW A. The higher number of edges
in BW A causes considerably higher cost for processing one object
pair in BW A than one in Europe A. The dependence between the
number of edges and the cost of the plane-sweep algorithm is rep-
resented in the upper diagram of figure 16. This diagram depicts the
cost to determine a false hit between two polygons in the BW A test
series depending on the number of edges of both polygons. The di-
agram demonstrates the strong dependency between the cost and
the number of edges.

The TR*-tree algorithm behaves quite different. The most impor-
tant observation is the low dependency between the average num-
ber of edges and the cost of the algorithm. According to table 7 the
cost per object pair differs only by a factor of 1.35 between BW A
and Europe A. This ratio is smaller than the ratio of the average
heights of the TR*-trees which is 7.6/5.0 = 1.52. Considering the
lower diagram of figure 16, we see that for an individual pair of
polygons other properties (presumably their overlap) influence the
performance of the TR*-tree algorithm. In test series BW A with
527 edges per polygon, the algorithm needs on the average 33.2
rectangle-intersection-tests and 2.2 trapezoid-intersection-tests for
identifying a hit. These are pleasantly small numbers which explain
the extremely good performance of the TR*-tree approach. In our
experiments, we achieve high performance improvements by at
least one order of magnitude compared to the plane-sweep algo-
rithm. Therefore, the TR*-tree algorithm is from our point of view
the best choice, even for objects with a lower complexity.

Another interesting result is that the TR*-tree algorithm has the
best performance with a maximum node capacity (M) of 3. If higher
node capacities are used, the number of rectangle intersection tests
as well as the number of trapezoid intersection tests is increasing.
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Figure 16: Cost of intersecting a pair of polygons (BW A)



The cost of using TR*-trees with different node capacities is shown
for test series BW A in figure 17. The fact that the number of trape-
zoid intersection tests is lowest for the smallest maximum node ca-
pacity can be expected. However, that also the number of rectangle-
intersection-tests is minimal, is a little bit surprising, because with
lower node capacities the heights of the TR*-trees are increasing
and the possibilities for an efficient space partitioning are decreas-
ing. But these effects are compensated by the lower search cost in
nodes with a very small capacity.

Figure 17: Performance of TR*-trees with different max. capacities

In spite of the problems that occur when different types of algo-
rithms are compared, we summarize that the naive quadratic ap-
proach is out of question and that the TR*-tree approach clearly
outperforms the plane-sweep algorithm. The TR*-tree achieves
high factors of performance improvement and additionally benefits
from its clear algorithmic concepts which simplify the implementa-
tion of this technique.

5 Comparison of the Total Performance Gains

In this section, we summarize the impacts of the presented tech-
niques with respect to the total execution time of an intersection
join. We tried to be as fair as possible, however, the reader should
be aware that the following results only give a tendency of the cost.

We join two spatial relations of real world objects each consist-
ing of about 130,000 objects. As a result, 86,000 pairs of MBRs in-
tersect. We assume that each description of an object stored in an
R*-tree needs 16 Byte for the MBR, 16 Byte for the MER, 40 Byte
for the 5-C, and 32 Byte for additional information. Page size is
4 KB and an LRU-buffer holds 32 pages of the R*-tree. The CPU-
time spent in the second step for testing the intersection of two ap-
proximations is neglected. Furthermore, we assume that each pair
of objects which is not identified by the geometric filter as a hit or
a false hit, causes the cost of one page access (= 10 msec) and that
the TR*-tree representation increases the access cost for an investi-
gated object by a factor of 1.5. This is because the TR*-tree repre-
sentation has a higher storage cost than a representation by simple
point lists. The cost for the exact investigation of one object is
25 msec for the plane-sweep algorithm and 1 msec for the TR*-tree
algorithm. These numbers are averages obtained from our experi-
ments in the previous section. Figure 18 depicts the results of our
investigation.

Version 1 is the starting point of our investigation. It uses no ad-
ditional approximations and it uses the plane-sweep algorithm for
the exact intersection test. The figure demonstrates that the cost for
transferring the object into main memory (object access) and for the
exact intersection test dominates the total execution time. In
version 2, the 5-C and the MER-approximation are introduced.
These additional approximations considerably decrease the cost for
the object access and the cost for the exact test, but increase the cost
for the MBR-join. However, the total execution time is roughly re-
duced by 40%. In version 3, the plane-sweep algorithm is replaced
by the TR*-tree algorithm. Now, the execution time for the exact
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investigation is practically negligeable but the cost for the object
access increases. Nevertheless, the total execution time is improved
by a factor of almost 2 compared to version 2, and by a factor of
more than 3 compared to version 1.

6 Conclusions

In this paper, we investigated the problem of efficient spatial join
processing on two spatial relations. The spatial join is one of the
most important and time consuming operations in a spatial database
system. Therefore, an efficient execution is crucial to its overall
performance. Our investigation uses the intersection predicate
which tests whether an object of the one relation intersects an object
of the other relation. The presented results are obtained from exper-
imental performance comparisons using real cartographic data. Due
to space limitations, we restricted our presentation to a few of our
experiments. Without exceptions, other experiments showed simi-
lar results and confirmed to use our approach for spatial join pro-
cessing.

Our basic idea for efficient spatial join processing is to use sev-
eral filter steps. In a filter step, so-called candidates are computed,
i.e. pairs of spatial objects which may fulfill the join predicate.
Moreover, a large number of the candidates can already be identi-
fied as answers (hits) or as false hits.

In the first step, the spatial join is performed on the minimum
bounding rectangles (MBRs) of the objects. This operation is called
MBR-join. The MBRs serve as a geometric key to support fast ac-
cess to the objects using a spatial access method (SAM). In
[BKS 93a], we have already proposed an efficient algorithm for
computing MBR-joins.

The second step of join processing is the geometric filter. The
geometric filter detects a high fraction of false hits using conserva-
tive approximations in addition to the MBR. According to a de-
tailed experimental investigation, we recommend to use the mini-
mum bounding 5-corner of objects as an additional approximation.
The 5-corner combines a high accuracy with a small storage over-
head. In our experiments, about two thirds of the false hits in the
candidate set computed by the MBR-join are identified using the 5-
corner. In order to detect hits in the candidate set (still without ac-
cessing the exact geometry), we propose to use simple progressive
approximations, e.g. enclosed circles and enclosed rectangles. A
common intersection of two progressive approximations implies a
common intersection of the corresponding objects. In our experi-
ments, about one third of the hits are detected using the enclosed
rectangle as a progressive approximation.

In the third step, the join predicate has to be checked for all re-
maining candidates using the exact geometry. A straightforward
and very inefficient solution for the intersection test of polygonal
objects is an algorithm which basically tests each pair of edges for
intersection. A more efficient approach is to use the plane-sweep
technique well-known from the area of computational geometry.
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Figure 18: Total join performance using different techniques



We suggest a new approach for join processing which decomposes
polygonal objects into sets of trapezoids. For each object, a TR*-
tree - a main-memory resident variant of the R*-tree - organizes the
corresponding trapezoids. In several experiments, we demonstrated
that the TR*-tree approach improves the computation of the join
predicate by at least one order of magnitude in comparison to the
plane-sweep approach. This effect demonstrates the importance of
an adequate main memory representation of objects for database
systems. The more complex the object, the more significant is the
quality of the object representation.

Using additional conservative and progressive approximations as
well as the TR*-tree approach, the total execution time of the spa-
tial join is improved by a factor of more than 3 for our test data. Our
results showed that the MBR-join does not much affect the total ex-
ecution time of the spatial join. In particular, this can be observed
when the third step is performed using the plane-sweep approach.
One reason is that our approach for processing MBR-joins is al-
ready very efficient. Due to our elaborated representation of objects
using TR*-trees in main memory, the time spent for testing the join
predicate also does not much influence the execution time anymore.

Since we reduced the consumption of CPU-time essentially, the
major cost factor in the final version of our join processor is the
time spent for fetching objects from disk into main memory. This
result demonstrates the necessity for supporting an efficient access
to complex spatial objects stored on secondary storage. Especially
for spatial and non-spatial joins performed on complex join at-
tributes, this will be an important area for future work [BK 94].

So far, we assume a conventional computer architecture. How-
ever, since the fast execution of spatial join processing is extremely
important, another task is to consider CPU- and I/O-parallelism in
future work.
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