20,588 research outputs found

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Forming Probably Stable Communities with Limited Interactions

    Full text link
    A community needs to be partitioned into disjoint groups; each community member has an underlying preference over the groups that they would want to be a member of. We are interested in finding a stable community structure: one where no subset of members SS wants to deviate from the current structure. We model this setting as a hedonic game, where players are connected by an underlying interaction network, and can only consider joining groups that are connected subgraphs of the underlying graph. We analyze the relation between network structure, and one's capability to infer statistically stable (also known as PAC stable) player partitions from data. We show that when the interaction network is a forest, one can efficiently infer PAC stable coalition structures. Furthermore, when the underlying interaction graph is not a forest, efficient PAC stabilizability is no longer achievable. Thus, our results completely characterize when one can leverage the underlying graph structure in order to compute PAC stable outcomes for hedonic games. Finally, given an unknown underlying interaction network, we show that it is NP-hard to decide whether there exists a forest consistent with data samples from the network.Comment: 11 pages, full version of accepted AAAI-19 pape

    Emergence of Leadership in Communication

    Full text link
    We study a neuro-inspired model that mimics a discussion (or information dissemination) process in a network of agents. During their interaction, agents redistribute activity and network weights, resulting in emergence of leader(s). The model is able to reproduce the basic scenarios of leadership known in nature and society: laissez-faire (irregular activity, weak leadership, sizable inter-follower interaction, autonomous sub-leaders); participative or democratic (strong leadership, but with feedback from followers); and autocratic (no feedback, one-way influence). Several pertinent aspects of these scenarios are found as well---e.g., hidden leadership (a hidden clique of agents driving the official autocratic leader), and successive leadership (two leaders influence followers by turns). We study how these scenarios emerge from inter-agent dynamics and how they depend on behavior rules of agents---in particular, on their inertia against state changes.Comment: 17 pages, 11 figure
    • …
    corecore