1,745 research outputs found

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates

    Semantic-free referencing in linked systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 43-45).The Web relies on the Domain Name System (DNS) to resolve the hostname portion of URLs into IP addresses. This marriage-of-convenience enabled the Web's meteoric rise, but the resulting entanglement is now hindering both infrastructures--the Web is overly constrained by the limitations of DNS, and DNS is unduly burdened by the demands of the Web. There has been much commentary on this sad state-of-affairs, but dissolving the ill-fated union between DNS and the Web requires a new way to resolve Web references. To this end, this thesis describes the design and implementation of Semantic Free Referencing (SFR), a reference resolution infrastructure based on distributed hash tables (DHTs).by Michael Walfish.S.M

    Spear Phishing Attack Detection

    Get PDF
    This thesis addresses the problem of identifying email spear phishing attacks, which are indicative of cyber espionage. Spear phishing consists of targeted emails sent to entice a victim to open a malicious file attachment or click on a malicious link that leads to a compromise of their computer. Current detection methods fail to detect emails of this kind consistently. The SPEar phishing Attack Detection system (SPEAD) is developed to analyze all incoming emails on a network for the presence of spear phishing attacks. SPEAD analyzes the following file types: Windows Portable Executable and Common Object File Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint. SPEAD\u27s malware detection accuracy is compared against five commercially-available email anti-virus solutions. Finally, this research quantifies the time required to perform this detection with email traffic loads emulating an Air Force base network. Results show that SPEAD outperforms the anti-virus products in PE/COFF malware detection with an overall accuracy of 99.68% and an accuracy of 98.2% where new malware is involved. Additionally, SPEAD is comparable to the anti-virus products when it comes to the detection of new Adobe Reader malware with a rate of 88.79%. Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new malware, which is a rare and desirable trait. Finally, after less than 4 minutes of sustained maximum email throughput, SPEAD\u27s non-optimized configuration exhibits one-hour delays in processing files and links

    The NASA Astrophysics Data System: Architecture

    Full text link
    The powerful discovery capabilities available in the ADS bibliographic services are possible thanks to the design of a flexible search and retrieval system based on a relational database model. Bibliographic records are stored as a corpus of structured documents containing fielded data and metadata, while discipline-specific knowledge is segregated in a set of files independent of the bibliographic data itself. The creation and management of links to both internal and external resources associated with each bibliography in the database is made possible by representing them as a set of document properties and their attributes. To improve global access to the ADS data holdings, a number of mirror sites have been created by cloning the database contents and software on a variety of hardware and software platforms. The procedures used to create and manage the database and its mirrors have been written as a set of scripts that can be run in either an interactive or unsupervised fashion. The ADS can be accessed at http://adswww.harvard.eduComment: 25 pages, 8 figures, 3 table

    Segurança e privacidade em terminologia de rede

    Get PDF
    Security and Privacy are now at the forefront of modern concerns, and drive a significant part of the debate on digital society. One particular aspect that holds significant bearing in these two topics is the naming of resources in the network, because it directly impacts how networks work, but also affects how security mechanisms are implemented and what are the privacy implications of metadata disclosure. This issue is further exacerbated by interoperability mechanisms that imply this information is increasingly available regardless of the intended scope. This work focuses on the implications of naming with regards to security and privacy in namespaces used in network protocols. In particular on the imple- mentation of solutions that provide additional security through naming policies or increase privacy. To achieve this, different techniques are used to either embed security information in existing namespaces or to minimise privacy ex- posure. The former allows bootstraping secure transport protocols on top of insecure discovery protocols, while the later introduces privacy policies as part of name assignment and resolution. The main vehicle for implementation of these solutions are general purpose protocols and services, however there is a strong parallel with ongoing re- search topics that leverage name resolution systems for interoperability such as the Internet of Things (IoT) and Information Centric Networks (ICN), where these approaches are also applicable.Segurança e Privacidade são dois topicos que marcam a agenda na discus- são sobre a sociedade digital. Um aspecto particularmente subtil nesta dis- cussão é a forma como atribuímos nomes a recursos na rede, uma escolha com consequências práticas no funcionamento dos diferentes protocols de rede, na forma como se implementam diferentes mecanismos de segurança e na privacidade das várias partes envolvidas. Este problema torna-se ainda mais significativo quando se considera que, para promover a interoperabili- dade entre diferentes redes, mecanismos autónomos tornam esta informação acessível em contextos que vão para lá do que era pretendido. Esta tese foca-se nas consequências de diferentes políticas de atribuição de nomes no contexto de diferentes protocols de rede, para efeitos de segurança e privacidade. Com base no estudo deste problema, são propostas soluções que, através de diferentes políticas de atribuição de nomes, permitem introdu- zir mecanismos de segurança adicionais ou mitigar problemas de privacidade em diferentes protocolos. Isto resulta na implementação de mecanismos de segurança sobre protocolos de descoberta inseguros, assim como na intro- dução de mecanismos de atribuiçao e resolução de nomes que se focam na protecçao da privacidade. O principal veículo para a implementação destas soluções é através de ser- viços e protocolos de rede de uso geral. No entanto, a aplicabilidade destas soluções extende-se também a outros tópicos de investigação que recorrem a mecanismos de resolução de nomes para implementar soluções de intero- perabilidade, nomedamente a Internet das Coisas (IoT) e redes centradas na informação (ICN).Programa Doutoral em Informátic
    corecore