
Universidade de Aveiro Departamento de Eletrónica,
2019 Telecomunicações e Informática

Rui Abreu de
Carvalho Ferreira

Segurança e Privacidade em Terminologia de Rede

Security and Privacy in Network Namespaces

Universidade de Aveiro Departamento de Eletrónica,
2019 Telecomunicações e Informática

Rui Abreu de
Carvalho Ferreira

Segurança e Privacidade em Terminologia de Rede

Security and Privacy in Network Namespaces

Tese apresentada às Universidades de Aveiro Minho e Porto para cumpri-
mento dos requisitos necessários à obtenção do grau de Doutor no âmbito do
programa doutoral MAP-i, realizada sob a orientação científica do Doutor Rui
Aguiar, Professor catedrático do Departamento de Eletrónica, Telecomunica-
ções e Informática da Universidade de Aveiro.

Este trabalho é dedicado aos meus pais. Pelos milhares de pequenas
coisas que fazem toda a diferença. Acima de tudo por me ensinarem
a curiosidade, o único requisito verdadeiramente necessário.

Obrigado.

o júri / the jury

presidente / president Doutora Maria Hermínia Deulonder Correia Amado Laurel
Professora Catedrática

Departamento de Línguas e Culturas

Universidade de Aveiro

vogais / examiners committee Doutor Jorge Miguel Matos Sousa Pinto
Professor Associado com Agregação

Departamento de Informática

Universidade do Minho

Doutor Miguel Nuno Dias Alves Pupo Correia
Professor Associado

Instituto Superior Técnico

Universidade de Lisboa

Doutor João Paulo da Silva Machado Garcia Vilela
Professor Auxiliar

Departamento de Engenharia Informática

Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Doutor Amaro Fernandes de Sousa
Professor Auxiliar

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

Doutor Rui Luis Andrade Aguiar (orientador)
Professor Catedrático

Departmento de Electrónica Telecomunicações e Informàtica

Universidade de Aveiro

agradecimentos /
acknowledgements

Ao Professor Rui Aguiar por todo o apoio e motivação que me ajudaram a
atingir este objectivo. Por todas as contribuições, ideias, o constante desafio
intelectual e sobretudo pela oportunidade que me deu para trabalhar em
ciência.

A todos os meus colegas do grupo de redes de telecomunicações do Instituto
de Telecomunicações de Aveiro, pelas muitas horas que passamos juntos
durante estes anos, e sem os quais este trabalho não seria possivel. E
também a todos os colegas investigadores que concordando ou discordando
contribuiram para a discussão nestas matérias.

Por fim uma palavra especial de apreço para o Alfredo Matos, Rodolphe Mar-
ques, e José Quevedo, que recordo com apreço por dizerem sempre o que
pensam, mas pensarem sempre no que dizem.

Palavras Chave segurança, privacidade, redes, identificadores, protocolos.

Resumo Segurança e Privacidade são dois topicos que marcam a agenda na discus-
são sobre a sociedade digital. Um aspecto particularmente subtil nesta dis-
cussão é a forma como atribuímos nomes a recursos na rede, uma escolha
com consequências práticas no funcionamento dos diferentes protocols de
rede, na forma como se implementam diferentes mecanismos de segurança
e na privacidade das várias partes envolvidas. Este problema torna-se ainda
mais significativo quando se considera que, para promover a interoperabili-
dade entre diferentes redes, mecanismos autónomos tornam esta informação
acessível em contextos que vão para lá do que era pretendido.
Esta tese foca-se nas consequências de diferentes políticas de atribuição de
nomes no contexto de diferentes protocols de rede, para efeitos de segurança
e privacidade. Com base no estudo deste problema, são propostas soluções
que, através de diferentes políticas de atribuição de nomes, permitem introdu-
zir mecanismos de segurança adicionais ou mitigar problemas de privacidade
em diferentes protocolos. Isto resulta na implementação de mecanismos de
segurança sobre protocolos de descoberta inseguros, assim como na intro-
dução de mecanismos de atribuiçao e resolução de nomes que se focam na
protecçao da privacidade.
O principal veículo para a implementação destas soluções é através de ser-
viços e protocolos de rede de uso geral. No entanto, a aplicabilidade destas
soluções extende-se também a outros tópicos de investigação que recorrem
a mecanismos de resolução de nomes para implementar soluções de intero-
perabilidade, nomedamente a Internet das Coisas (IoT) e redes centradas na
informação (ICN).

Keywords naming, security, privacy, networks, identifiers, protocols.

Abstract Security and Privacy are now at the forefront of modern concerns, and drive
a significant part of the debate on digital society. One particular aspect that
holds significant bearing in these two topics is the naming of resources in the
network, because it directly impacts how networks work, but also affects how
security mechanisms are implemented and what are the privacy implications
of metadata disclosure. This issue is further exacerbated by interoperability
mechanisms that imply this information is increasingly available regardless of
the intended scope.
This work focuses on the implications of naming with regards to security and
privacy in namespaces used in network protocols. In particular on the imple-
mentation of solutions that provide additional security through naming policies
or increase privacy. To achieve this, different techniques are used to either
embed security information in existing namespaces or to minimise privacy ex-
posure. The former allows bootstraping secure transport protocols on top of
insecure discovery protocols, while the later introduces privacy policies as part
of name assignment and resolution.
The main vehicle for implementation of these solutions are general purpose
protocols and services, however there is a strong parallel with ongoing re-
search topics that leverage name resolution systems for interoperability such
as the Internet of Things (IoT) and Information Centric Networks (ICN), where
these approaches are also applicable.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Naming Hurdles . 4

1.2.1 Leaking identifiers in network protocols 5
1.2.2 Privacy in the face of novel network semantics 7

1.3 Hypothesis and Objectives . 8
1.4 Contributions . 9
1.5 Structure . 11

2 Naming in Computer Networks 13
2.1 Introduction . 13
2.2 Name Resolution . 15
2.3 Namespace Characteristics . 16
2.4 Network expansion as namespace composition 18

2.4.1 Variable Length names . 19
2.4.2 Fixed Length names . 20

2.5 Name resolution from network routing . 21
2.6 Summary . 23

3 Name Resolution and Discovery Protocols 25
3.1 Introduction . 25
3.2 Discovery Protocols . 26

3.2.1 Bluetooth Service Discovery . 26
3.2.2 Simple Service Discovery Protocol 27
3.2.3 DNS based Service Discovery . 27
3.2.4 Physical object discovery . 28
3.2.5 HTTP based discovery . 29

3.3 Resolution Protocols . 29
3.3.1 Domain Name System . 30
3.3.2 Handle System . 31
3.3.3 Distributed Hash Tables . 32
3.3.4 Security Assertion Markup Language 35

i

3.3.5 Uniform Resource Locators . 36
3.3.6 Extensible Resource Identifiers . 37

3.4 Alternative solutions . 38
3.4.1 Data Oriented Network Architecture 38
3.4.2 Named Data Networking . 39
3.4.3 Network of Information . 40
3.4.4 Publish Subscribe Internet Technology 41
3.4.5 eXpressive Internet Architecture . 41

3.5 Implications of Naming . 42
3.5.1 Security challenges in name binding 43
3.5.2 Privacy leakage from Names . 44

3.6 Summary . 47

4 Applying secure naming to Discovery protocols 49
4.1 Introduction . 49
4.2 Establishing a common namespace over existing discovery protocols 50

4.2.1 Discovery functions . 53
4.2.2 Instantiation . 56
4.2.3 Security Considerations . 60

4.3 Building interoperable discovery gateways . 60
4.4 Embedding security information in discovery URLs 65
4.5 Conclusions . 70

5 Realising Namespace Privacy 73
5.1 Introduction . 73
5.2 Informatin leakage at the application layer 74

5.2.1 Attack strategies . 75
5.2.2 Results . 78
5.2.3 Discussion . 81

5.3 Service provider enforced privacy for URLs 82
5.3.1 Requirements . 84
5.3.2 Session Bound Namespaces . 87
5.3.3 Implementation . 91
5.3.4 Results . 94
5.3.5 Deployment Considerations . 101
5.3.6 Privacy policies and performance . 106

5.4 Pseudonymity mechanisms at the network layer 107
5.4.1 Implementation . 108
5.4.2 Alignment with upper layers . 108
5.4.3 Integration with DNS privacy . 109
5.4.4 Performance impact . 111
5.4.5 Limitations . 113

5.5 Conclusions . 114

6 Conclusions 117
6.1 Results & Achievements . 117

6.1.1 Secure binding in discovery namespaces 118
6.1.2 A global discovery namespace . 118
6.1.3 Privacy at the network layer . 119
6.1.4 Pseudonymity shift at the upper layers 119

ii

6.1.5 Revisiting Hypothesis and Objectives 120
6.2 Future Work . 121

6.2.1 Namespace composition, routing and nesting 121
6.2.2 Adversarial Privacy . 122
6.2.3 Applications outside of the scope of this thesis 122

6.3 Final Thoughts . 123

Bibliography 125

iii

List of Figures

2.1 Different types of identifiers across the TCP/IP stack 14
2.2 Namespace composition strategies . 19
2.3 Combining multiple namespaces through a new namespace 19
2.4 Different overlay topologies over the same network 22

3.1 DNS resolution . 30
3.2 Topology of a DHT overlay network . 33
3.3 XIA destination is a graph of names . 42

4.1 Discovery interaction across multiple technologies and networks. 52
4.2 Mapping between Entity Identifiers and Entity Locators 53
4.3 Discovering all entities for two protocols A and B 55
4.4 Find a locator for a known EID in a specific protocol(C) 55
4.5 Discovering devices and the associated EID . 57
4.6 Authenticating known devices . 58
4.7 Reconnecting to a service using its EID over multiple protocols (Bluetooth and

DNS-based Service Discovery (DNS-SD)) . 59
4.8 IoT scenario involving multiple services, consumers and gateways 61
4.9 Case 1: Communicate with (sub)sets of sensors 62
4.10 Case 2: Extending discovery to other protocols using gateways 62
4.11 Case 3: Gateway replication . 62
4.12 Case 4: Discovery consistency across gateways 63
4.13 Internal ticket structure for Multipass . 67
4.14 Ticket generation and consumption . 68

5.1 XMPP information disclosure attack via HTTP 76
5.2 SBN implemented at the server side . 85
5.3 Host overhead for multiple encryption schemes 88
5.4 Path segment overhead for multiple encryption schemes 90
5.5 SBN workflow for an HTTP browser . 92
5.6 Functional diagram for SBN implementation . 93
5.7 Number of HTTP requests . 95
5.8 Number of URLs in HTTP content . 95
5.9 Encryption/Decryption operations for different web pages 96
5.10 Estimated total Encryption+Decryption delay based on op-count 97
5.11 Encryption/Decryption times vs plaintext size. 98
5.12 Encryption/Decryption operations for different web pages (Same Origin Policy

content only) . 99
5.13 Encryption/Decryption operations for different web pages (SOP content only;

With caching) . 100

v

5.14 Encryption/Decryption operations for different web pages (SOP; caching; col-
lapsed path encoding) . 101

5.15 Cross layer identity contexts, establish groups of network pseudonyms. 107
5.16 Resolution hint option in DNS messages (grey fields are EDNS0 headers) 110
5.17 Authenticating DNS queries using a XMPP authentication extensions 111
5.18 Communication delay for UDP . 111
5.19 Average TCP bandwidth per flow/interface. 112
5.20 Bootstrap delay of several virtual interfaces. 113

vi

List of Tables

4.1 Signature length for multiple algorithms . 69
4.2 Key/Certificate length for multiple algorithms (base64 encoded) 69
4.3 Encoding size for a full ticket (base64 encoded) 70

5.1 Results: XMPP Client vulnerability for each attack 79
5.2 HTTP User Agent used by each XMPP client 81
5.3 Encoding examples for different URL components (K() is ECC/p256) 88
5.4 Encryption/decryption microbenchmarks for a 1000 byte plaintext (average per

operation) . 96

vii

Acronyms

4WARD Architecture and design for the
future Internet

API Application Programming Interface

AS Autonomous System

BLE Bluetooth Low Energy

CA Certificate Authority

CCN Content Centric Networks

CDN Content Distribution Network

CoaP Constrained Application Protocol

DAG Directed Acyclic Graph

DHT Distributed Hash Table

DLNA Digital Living Network Alliance

DNS Domain Name System

DNS-SD DNS-based Service Discovery

DNSSEC DNS Security

DONA Data Oriented Network
Architecture

DoS Denial of Service Attack

EDNS Extension mechanisms for DNS

EID Entity Identifier

ELOC Entity Locator

FP7 7th Framework Program

GHR Global Handle Registry

GNS GNU Name System

GPS Global Positioning System

HIP Host Identity Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

i3 Internet Indirection Infrastructure

ICANN Internet Corporation for Assigned
Names and Numbers

ICN Information Centric Networks
IdM Identity Management
IETF Internet Engineering Task Force
IM Instant Messaging
IoT Internet of Things
IP Internet Protocol
IPFS InterPlanetary File System
IPSec IP Security Protocol
ITU-T International Telecommunications

Union - Telecom
L2CAP Logical link control and adaptation

protocol
LHS Local Handle Services
LMP Link Manager Protocol
MAC Media Access Control
MIP Mobile IP
MITM Man-in-The-Middle
MQTT Message Queuing Telemetry

Transport
NDN Named Data Networking
Netinf Network of Information
NFC Near Field Communication
NPSN Named Publish Subscribe

Networking
NRS Name Resolution System
OASIS Organization for the Advancement

of Structured Information
Standards

OSI Open Systems Interconnection
P2P Peer to Peer
PLA Packet Level Authentication

ix

PKI Public Key Infrastructure
PMIP Proxy Mobile IP
PSIRP Publish Subscribe Internet Routing

Paradigm
PURSUIT Publish Subscribe Internet

Technology
QoS Quality of Service
QR Code Quick Response Code
REST Representational State Transfer
RFCOMM Radio Frequency Communication
RFID Radio-frequency identification
SAIL Scalable and Adaptive Internet

Solutions
SAML Security Assertion Markup

Language
SBN Session Bound Namespace
SDP Service Discovery Protocol
SFR Semantic Free Referencing
SMTP Simple Mail Transfer Protocol
SOP Same Origin Policy
SP Service Provider
SRVID Service Type Identifier
SSDP Simple Service Discovery Protocol
SWIFT Secure Widespread Identity for

Federated Telecommunications

TCP Transmission Control Protocol

TLD Top Level Domain

TLS Transport Layer Security

ToR The Onion Router

ToS Terms of Service

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

USN Unique Service Name

UUID Universally Unique Identifier

VDM Virtual Device Manager

VPN Virtual Private Network

W3C World Wide Web Consortium

WWW World Wide Web

XEP XMPP Extension Protocol

XIA eXpressive Internet Architecture

XMPP Extensible Messaging and Presence
Protocol

XRDS Extensible Resource Descriptor
Sequence

XRI Extensible Resource Identifier

x

Chapter 1

Introduction

Name (verb) - to give a name
to (someone or something); to
say the name of (someone or
something); to choose
(someone) to be (something)

Merriam-Webster Dictionary

As the first chapter, the introduction draws the background for the pursuit
of a PhD in this topic. It defines the goals for this work, summarises the
main contributions that it produced and pins the overall structure of this
document.

1.1 Background & Motivation

The transitive verb Name holds three distinct meanings: the assignment of an identi-
fying name to an entity, the use of the afore mentioned identifier to refer to an entity,
and the appointment of functions based on the assignment of a name. Names are one
of the key aspects of human communication. They work as pointers supported by lan-
guage. In the absence of language, the natural substitute would be to point at things
to refer to them. But hand waiving can only take us so far, and one would be hard
pressed to point at faraway or conceptual entities. Fortunately, language allows us to
name entities even if they are metaphysical, geographically distant, or no longer exist
at all.

In distributed systems[1], naming is the starting point for establishing identity for
entities in a system. Because any sufficiently complex system needs to distinguish
between multiple involved entities, the bootstrapping of a system requires discovering
existing nodes assigning them names. This holds true for many types of computer

1

systems, processes running inside a CPU, or files in a hard drive. Computer nodes in
a network are no exception: they are assigned names as they join the network, and
these assignments play a key role in their later operations as names are resolved into
other objects. In modern network stacks, different layers in the stack use different
namespaces. The purpose of name resolution is to enable discovery, resolution and
assignment functions around these namespaces. In essence, to dereference a name into
an object.

The topic of naming in computer networks is particularly interesting because it
easily breaks across the rigid boundaries of layered models. We reason about network
internals as independent layers in the OSI or IP stacks, but naming design decisions
can (and do) bleed out of their intended layer, sometimes in subtle ways that change
the behaviour of the network as a whole. Name resolution systems are often used to
facilitate the interconnection between layers, mapping between different layers, or as
a design kludge to collapse abstraction layers. Since the number of nodes and services
in a network at any given time is an unknown, this implies relying on external entities
as a source of knowledge, and as the boundaries of the network change it can result on
the reliance of transitive relations of trust.

This thesis is put forward as a study on the role of Name Resolution functions,
and its applications going forward in the face of changes to the architectural design of
computer networks. The goal is to improve the understanding of what are the future
requirements that drive this type of system, how they clash with the existing architec-
ture(s), and how to address them. In particular, this thesis, highlights compromises in
security and privacy that surround name resolution function composition.

The focus of this work are solutions that build upon existing architectures and
protocols, following an evolutionary approach, rather than a clean slate design. Over
the years, multiple industry and research initiatives have looked at designing a new
name system for the Internet [2, 3, 4, 5]. Despite significant technical and scientific
achievements, not all of these contributions have reached notoriety, or are directly
applicable in computer networks. As a rule of thumb, pragmatism is favoured over
completeness, because Computer Networks are built as a decentralised effort - solutions
that work are quickly integrated, until convergence occurs or a better solution presents
itself.

My personal motivation for this work stems from a previously existing overlap
in different research interests. Prior to starting this PhD, I was entangled with two
research topics that deal closely with names in computer networks: the first was Privacy
disclosure through network identifiers and the second Identity Management (IdM).

Privacy deals with the management of identifiers as means for controlling the dis-
closure of information, and my main goal in this context was to timely create or destroy

2

identifiers to establish efficient pseudonymity with regards to user expectations. Un-
surprisingly, the network stack knows little about human expectations of privacy, and
I realised that layered models can easily disrupt user assumptions.

Identity Management is mostly concerned with the assignment of Names, asserting
proof of ownership over them (i.e. authentication) and on building services on top of
this capability. Implicitly Identity Management requires strong properties from the
underlying name system not only in terms of security but also for flexibility. A name
is resolved differently based on contextual information, and names can refer to people,
objects, or computers alike. The notion of ownership can become fuzzy and the process
of assertion can differ for each type of entity, but ultimately it must take place as a
series of network operations.

While I grasped on the intricacies of IdM privacy, in other fields, ongoing research
topics challenge the structuring of the network stack design, making it worthwhile to
review assumptions on the role name resolution in the network and the implications of
these changes.

• Security & Privacy are now under the limelight, after recent events exposed the
fragility of the Internet with regards to the naming and trust infrastructure that
enable a variety of Man-in-The-Middle (MITM) and privacy attacks.

• The Internet of Things (IoT) proposes a vision where all devices are reachable,
using an heterogeneous mixture of protocols. How to reach them and whether
general expectations of security and privacy hold is an open research topic.

• Information Centric Networks (ICN) are a paradigm shift that reorganises the
network stack to address content rather than endpoints. This shift in function-
ality implies changing how resources are named in the network, and clashes with
notions of addressing locality.

• Naming services derive their value from from mapping names to objects, with
one particular case being to map names to other names. The World Wide
Web (WWW) is filled with such services, e.g. make Uniform Resource Loca-
tors (URLs) shorter, or provide obfuscation. These can be seen as interoper-
ability enablers, and are a common approach to the composition of services or
networks.

Interestingly all these topics touch on what Name Resolution functions are available
in the network, and intersect in several points. IoT often assumes decentralised or
ad-hoc scenarios, where device and service discovery are the only form of resolution
available. Despite being decentralised, aspects of security and trust relations still need
to hold, and are carried over from other environments. The paradigm in ICN is to
address content using meaningful context, but content is named by its creators not its

3

carriers. As names defined at the application layer find their way into the lower layers
of the network, a privacy concern is that content names hold far more information than
traditional network addresses.

However the previously mentioned research topics operate in distinct areas, or target
distinct purposes, and aligning goals across such a wide spectrum is not always possible.
As professionals in this field, we are called upon to build effective bridges between all
these aspects and technologies. As they become interconnected (as all networks do),
concepts from one will inevitably leak into the others. Convergence efforts are already
bridging these different requirements. ICN protocols [6, 7] use application names at the
network layer, and are also targeting IoT [8, 9] scenarios. Global connectivity in IoT
environments is achieved through mapping gateways that provide connectivity between
networks through resolution and adaptation services.

All these factors, as well as an interest in related problems, led to my interest in
pursuing a PhD in this area.

1.2 Naming Hurdles

Since identification is the foremost problem to solve in distributed systems, it comes
as no surprise that entities in any system must be identifiable to enable effective com-
munication.

There are compelling arguments to the establishment of a global namespace with
security properties. In practice many of the current computer networks adopt this type
of approach, because:

• consistent naming facilitates mobility across namespaces or protocols
• security functions are a fundamental requirement for globally connected systems
• global uniqueness facilitates the construction of a global network

The problem of consistent identification in IP networks is commonly referred to as a
compromise between identification and network topology. There is extensive previous
work that introduces topology independent and secure namespaces on top of existing
network protocols, most notably the Host Identity Protocol (HIP)[10]. Two fundamen-
tal concepts support this protocol, first the generation of identifiers as a cryptographic
hash of a key, and second the use of a consistent identifier over time that does not
change as the node moves. This facilitates the introduction of two features over HIP:
first the bootstrapping of secure communication protocols, such as IPSec, and second
end host mobility mechanisms [11] that do not rely on the network provider. Many
others exist, either built using name services for identifier translation [12, 13], or as
overlay networks [14].

4

Global namespaces with security properties often compromises privacy for unique-
ness and security, because names become unique across a larger scope and often include
additional extractable information. In other words, the use of a single consistent identi-
fier makes it easier for network entities to track nodes as they move across the network.
To mitigate this problem one needs to introduce additional privacy controls. One ex-
ample is the use of network layer pseudonymity[15] for Media Access Control (MAC)
and Internet Protocol (IP) addresses. Pseudonymity refers to the transient assignment
of names for specific roles or purposes, in this particular case the creation of names
that limit privacy disclosure.

Not withstanding these improvements, two main gaps remain. First, as networks
become interconnected it is unclear how these novel namespaces derive names from
old namespaces, and how security and privacy semantics can be applied here, since
pseudonymity approaches seen in existing network protocols do not apply directly
to other types of namespaces (such as ICN or Content Centric Networks (CCN)).
Second, some of the networks being interconnected lack solutions similar to HIP that
would enable binding of secure names, and facilitate convergence using a global secure
namespace. These are the topic of study for this PhD, as they become increasingly
relevant with current convergence trends in present and future networks.

1.2.1 Leaking identifiers in network protocols

The value of privacy, with regards to network identifiers, is hard to assess a-priori
without additional context about thei information meaning, assignment scope and
duration. Many network protocols would not work without disclosure of network iden-
tifiers Hypertext Transfer Protocol (HTTP) is one such protocol. Since it is based on a
point to point communication model, it requires exchanging identification about rele-
vant endpoints. Other types of identifier based information disclosure are a side-effect
of non communication features. For example, email [16] includes user IP addresses
within protocol messages for auditing purposes, while HTTP [17] leaks the URL for
the previously visited web page through the referer header.

Since some identifiers can be created through composition of existing identifiers,
they can leak unnecessary information. One particular example of this happened with
IPv6 address auto configuration [18] that includes the MAC address unique to each
network card in the local part of the IP address. Thus IPv6 addresses generated this
way could be used to identify each device, as the local part of the address never changes.
A more privacy preserving mechanism is [19] which randomises the local part of the
address, increasing address reuse over time.

Other types of privacy issues may arise from identifier leakage, depending on what
kind of information can be extracted, or cross referenced from these identifiers. Some

5

protocols are designed to reduce privacy issues, and some service providers take ad-
ditional measures to preserve user privacy, scrubbing unique identifiers from ancillary
data and acting as an intermediary.

While network addresses do not seem to reveal much information, they provide
unique identification of resources within a scope which is enough for collusion of infor-
mation. A very common example is the mapping of network addresses onto geographic
areas through existing geolocation databases [20] and from public IP registration infor-
mation[21]. The most common method is to determine geographical location from IP
address, but databases for other network identifiers such as stationary MAC addresses
and wireless network names are also available.

Construction of these databases benefit from information gathered from multiple
sources:

• the regional registries that assign IP networks to companies.
• mining of addresses in open networks, including additional information, such as

the addresses of wireless and cellular access points, used to do reverse lookups.
• cross reference device network addresses with Global Positioning System (GPS)

coordinates e.g. by using voluntary data from mobile devices.

While there is no foolproof way to associate an IP address with a location, some of
these databases can accurately associate an IP with a specific street, or even a building
[22].

This problem arises because these identifiers can be uniquely associated with an en-
tity over a significant scope, and data mining of associated information is now a feasible
operation. Since the association of an IP address to a location changes infrequently
(in particular for blocks assigned to internet service providers) it is often not possible
to simply change network addresses in a way that prevents the use of these databases.
It is also important to understand that disclosure from one user has an impact in the
surrounding users. Because addresses are organised in blocks, topological proximity
usually implies geographical proximity, at least within regional blocks and provided
there are no routing indirections in place.

Examples of services that perform large scale data mining for this type of infor-
mation include the Mozilla Location Service and Google. The former provides celular
information available for free1, however wifi access point information is not provided
in bulk, due to privacy and legal concerns.

These services gather information such as IP addresses in open networks, wireless
or celular access point identifiers, and even short range communication identifiers such
as bluetooth. This information is used in many benign services for location information

1https://location.services.mozilla.com/downloads

6

without the use of GPS, a feature commonly seen in mobile devices, for location based
services.

Generally speaking, for privacy purposes, the ability to hold multiple identifiers
at the same time and to assign new ones at will translates into increased privacy
control. Abstractly, any mechanisms that conceal network identifiers can be used for
this purpose, such as Virtual Private Network (VPN) providers or proxies. These
require some type of network support, through intermediate network nodes, or general
purpose privacy networks such as The Onion Router (ToR). Another option is to
use different addresses over time. This is sometimes referred as pseudonymity, when
a network device will hold multiple addresses, as if multiple devices were present.
However not all networks allow this type of approach, often restricting the user device
to a single IP address per device. MAC address rotation is now common practice
in mobile devices, to avoid tracking of unconnected devices, and while it is not fully
effective [15] against timing analysis, it is a welcome strategy.

1.2.2 Privacy in the face of novel network semantics

Novel network architectures based on ICN support the use of different semantics at
the network layer. One of the primary drivers for this type of approach is to enable
network caching of content to conserve bandwidth.

Some propose the use of content derived names (such as using content hashes) as
network routing addresses, increasing the number of addressable nodes in the network
[23]. The immediate benefit of this approach is to enable self verifiable names, since
content authenticity can be verified by hashing and comparing it with its name.

Another approach consists on using hierarchical identifiers as network addresses,
much like URL paths. Furthermore, since arbitrary amounts of data can be used, con-
tent hashes can also be included within the name and used for verification. This holds
true not only for standard network operations but also for constrained IoT environ-
ments where standardisation efforts use Uniform Resource Identifiers (URIs) (or part
thereof) for identification [24, 25] or location [26]. Finally ICN frameworks like CCN[6]
and Named Data Networking (NDN)[7] combine both approaches, embedding hashes
in hierarchical names.

These novel approaches contrast with traditional network layer addressing, that
tries to use short fixed length network addresses. As such, some of the mitigation
mechanisms described earlier do not apply to these protocols. Pseudonymity mecha-
nisms would have to deal with a much larger amount of identifiers, and keeping large
state mapping tables is not viable. Furthermore this type of addressing has different
privacy implications. While an IP address discloses the intended communication end-
point location. Content addressing may disclose what content is exchanged. The closest

7

example to this type of semantics usually happens at the application layer URLs. But
these convey human semantics, such as data description, purpose and state. This is not
a property of URLs, but rather the result of established practice, for human purposes.

There is a considerable amount of mechanisms at the application layer to prevent
privacy disclosure, through end-to-end encryption, and client side state scrubbing.
However those are not directly applicable to network protocols, because network ad-
dresses are clearly visible to all intermediate parties, a feature that ICN leverages for in
path caching. By definition, ICN exposes additional information (content) to a wider
scope and furthermore causes a shift in responsibility. The content consumer does not
get to choose how content is named, so it can not enforce privacy policies other than
refusing to retrieve content or resorting to network supported concealment mechanisms
such as a VPN. In ICN these could be name anonymizer services [27] or at least name
scrubbing techniques that produce names without metadata [28].

1.3 Hypothesis and Objectives

From the previous observations two aspects should now be clear. First a large num-
ber of namespaces and associated resolution protocols are currently in use throughout
different networks and environments. Second, naming plays an important role in com-
posing computer networks and services, often defining how disjoint parts of the network
are interconnected, with privacy implications beyond the network layer.

Based on empirical evidence it is expectable that network convergence will continue.
Although novel protocols and/or architectures may eventually shift the status quo,
since the Internet is the support infrastructure for the global economy, abrupt changes
are not the expectable. Economic incentives dictate that resources will eventually
be connected to the Internet, no matter how. The questions that must be answered
then, is how to assign names based on these realities, how to resolve them, what are
the consequences of our choices in the binding of names, and finally, whether this is
achievable over existing protocols.

Assuming this is possible, one is left to ascertain to what extent, at what cost, and
by what means. This work can then be structured around the following objectives, in
the context of a continuous migration trend towards novel networks:

1. Develop interoperability mechanisms that facilitate network namespace integra-
tion across different architectures.

2. Apply namespace assignment strategies that improve name privacy at the net-
work layer and beyond, in and across different architectures.

3. Apply content naming semantics to existing discovery protocols to bootstrap
security mechanisms in legacy environments.

8

1.4 Contributions

In this section, a short overview of the outcomes of this PhD is presented. Much
of my research prior to starting this PhD assumed privacy at the network layer was a
sustainable mechanism [29], with the upper layers handling these issues using protocols
such as Transport Layer Security (TLS) [30] for confidentiality or anonymity networks
such as ToR for anonymity. My initial PhD work started within the 7th Framework
Program (FP7) project Secure Widespread Identity for Federated Telecommunications
(SWIFT), with the goal of introducing resolution mechanisms over its architecture
[31, 32, 33] for interoperability with existing architectures, while exploring privacy
mechanisms at the network layer [34]. These two topics are closely related to this PhD,
and are the key lines over which one can outline the contributions done throughout
this work.

SWIFT operated under the assumption that resolution systems need to function
over pre-existing security and trust infrastructure [35]. Practice shows that outside
of heavily controlled environments this assumption does not hold, either because the
original protocols that support the Internet were not designed with security and privacy
in mind, or because services will not deploy dedicated security infrastructure.

This led to a shift from the centralised scenarios in SWIFT onto more decen-
tralised environments, where assumptions about the network tend to break. If global
connectivity is not guaranteed, and centralised resolution systems are not available,
communication still requires mechanisms to discover network entities based on trust
relations that are transparent to the protocols. These problems might appear to be
corner cases, but they are common in mobile environments where the norm is device
to device communication. This problem was initially tackled under Portugal Telecom
Inovação funding with the goal of introducing mutual authentication in mobile scenar-
ios such as machine-to-machine security and e-Ticketing [36]. Further technical details
were covered in [37], including Bluetooth and IP protocols, as well as physical discovery
of digital services based on signed QR codes to bootstrap secure transport protocols.

While this work established methods to bind high level Identity Management (IdM)
mechanisms with machine to machine communication as seen in mobile environments,
it still lacked the generality seen in shims, such as HIP. This work was then extended, in
[38], and approaches the general problem of secure naming in cross protocol discovery.
Without changing the underlying protocols it imbues data in the underlying discovery
namespace, in order to provide additional features and security semantics. Finally this
approach was also extended to support the NDN protocol. Since NDN (and CCN)
lack, in general, truly decentralised discovery protocols, the initial work included the
definition of generic mechanisms for discovery in NDN [39] followed by the extensions

9

of previously designed interoperability mechanisms to support this protocol[40, 41].
The problem of privacy leakage as part of network protocols can be understood

through the study of the relations between user information and its relation to network
concepts [42]. However the role of non explicit relations is hard to analyse without deep
knowledge of the protocol in question. For a concrete example of this aspect, [43] carries
out a study of common disclosure vectors, based on a mix of protocol vulnerability,
human error and accidental leakage of names across distinct protocols and how these
end up revealing user location.

As a starting point for privacy integration studies, the Domain Name System (DNS)
was targeted as a subject of study, with the introduction of generic mechanisms over
DNS even if sacrificing some of its legacy benefits [44]. This enabled the integration
of other authorisation mechanisms with DNS, which could in turn be used to enforce
privacy controls. But, in general, the specific case of DNS privacy has been sufficiently
addressed in both practical solutions [45, 46] and through standardisation efforts [47].
Even if these solutions are not widely adopted they do offer a clear path for migration.

When going up the network stack to the application layer, one finds that hierar-
chical namespaces are increasingly adopted, with DNS and URLs being the classical
examples. Conversely this type of naming is also adopted at the network layer by
emerging network architectures such as CCN and NDN. This further motivates the
need for privacy mechanisms on top of hierarchical namespaces, a work carried out in
[48]. Its main implementation is focused on the Hypertext Transfer Protocol (HTTP),
meaning that it is implemented for DNS hostnames and URLs metadata. This choice
was made primarily for practical reasons, since there is an abundance of existing on pri-
vacy leakage under these namespacest, and these are straightforward to demonstrate
over existing technologies. However it should be pointed out that these are equally
applicable to ICN architectures such as NDN and CCN.

For reading convenience the full list of publications carried out throughout this
PhD is now summarised:

[34] Alfredo Matos, Rui Ferreira, Susana Sargento, and Rui Aguiar. “Virtual Network Stacks: From
Theory to Practice”. In: Wiley Security and Communication Networks 5.7 (July 2012), pp. 738–
751. doi: 10.1002/sec.368.

[35] Rodolphe Marques, Rui Ferreira, and Alfredo Matos. “Cross Layer Privacy Support for Identity
Management”. In: Future Network and Mobile Summit. MS10. Florence, Italy, June 2010.

[36] Rui Ferreira, Alfredo Matos, Goncalo Morais, Rui L. Aguiar, Pedro Santos, and Ricardo Pereira
Azevedo. “Multipass: Gestão de e-Tickets em Dispositivos Móveis”. In: Revista Saber & Fazer
Telecomunicações 9 (Dec. 2011), pp. 76–81.

10

https://doi.org/10.1002/sec.368

[37] Rui Ferreira, Alfredo Matos, Susana Sargento, and Rui L. Aguiar. “Multipass: Autenticação
Mútua em Cenários Heterogéneos”. In: Proc Conf. sobre Redes de Computadores - CRC. Aveiro,
Portugal, Nov. 2012.

[38] Rui Ferreira, Alfredo Matos, and Rui Aguiar. “Recognizing Entities Across Protocols with
Unified UUID Discovery and Asymmetric Keys”. In: IEEE GLOBECOM. 2013.

[39] José Quevedo, Rui Ferreira, Carlos Guimarães, Rui L. Aguiar, and Daniel Corujo. “Inter-
net of Things discovery in interoperable Information Centric and IP networks”. In: Internet
Technology Letters 1.1 (2018). e1 ITL-17-0001.R1, e1–n/a. doi: 10.1002/itl2.1.

[40] José Quevedo, Carlos Guimarães, Rui Ferreira, Daniel Corujo, and Rui L. Aguiar. “ICN as
Network Infrastructure for Multi-Sensory Devices: Local Domain Service Discovery for ICN-
based IoT Environments”. In: Wireless Personal Communications 95.1 (July 2017), pp. 7–26.
doi: 10.1007/s11277-017-4425-7.

[41] Daniel Corujo, Carlos Guimarães, José Quevedo, Rui Ferreira, and Rui L. Aguiar. “Informa-
tion Centric Exchange Mechanisms for IoT Interoperable Deployment”. In: User-Centric and
Information-Centric Networking and Services: Access Networks and Emerging Trends. Ed. by
M.B. Krishna. Taylor & Francis Group, 2018. Chap. 3.

[43] Rui Ferreira and Rui Aguiar. “Breaching location privacy in XMPP based messaging”. In:
IEEE GLOBECOM. 2012.

[44] Rui Ferreira, Alfredo Matos, and Rui Aguiar. “Hint-driven DNS resolution”. In: IEEE sympo-
sium on Computers and Communications. ISCC’11. Corfu, Greece, 2011.

[48] Rui Ferreira and Rui L. Aguiar. “Repositioning privacy concerns: Web servers controlling URL
metadata”. In: Journal of Information Security and Applications 46 (2019), pp. 121–137. issn:
2214-2126. doi: https://doi.org/10.1016/j.jisa.2019.03.010.

1.5 Structure

The main work of this Thesis is organised around two axis in line with the objectives
defined earlier: the construction of namespaces for interconnecting computer networks,
and privacy mechanisms for network identifiers. These are treated as independent
topics, for the most part, but the unavoidable relation between them is often discussed
throughout the document.

This thesis is then structured around 6 chapters, and each intermediate chapter
starts with a brief context introduction and ends with a summary or conclusions.
Chapters 2 and 3 contextualise the topics and identify related work, with Chapter 2
outlining the main concepts and terminology to be used throughout the document, and
Chapter 3 providing an overview of the various namespaces and resolution architectures
available.

Chapters 4 and 5 discuss the main contributions of the thesis, structured around
the two topics enumerated earlier, respectively the construction of secure naming from
discovery protocols and privacy mechanisms introduced as name assignment policies.

11

https://doi.org/10.1002/itl2.1
https://doi.org/10.1007/s11277-017-4425-7
https://doi.org/https://doi.org/10.1016/j.jisa.2019.03.010

Chapter 4 deals with the embedding of security semantics in existing discovery
protocols. The focus is on overlaying additional security information over existing
namespaces used by traditional discovery protocols and deriving other benefits that go
beyond security features and can be applied in the upper layers.

In Chapter 5 a group of privacy concealing mechanisms is proposed, starting at
the network layer and going up to the concealment of private information in URLs.
For practical implementation purposes these solutions are instantiated over common
protocols, but the discussed approaches are equally applicable in other contexts.

As the closing chapter, Chapter 6 summarises the achievements of this thesis, high-
lighting the main insights from this work, discussing them within the context of net-
work privacy and network interoperability, while proposing directions for future work
in related areas.

12

Chapter 2

Naming in Computer Networks

There are only two hard things
in Computer Science: cache
invalidation and naming things

Phil Karlton

This chapter outlines the core concepts about naming that are the subject of
study, defines a terminology and identifies present uses of name resolution
that are relevant in the scope of this work. A more detailed technical
description is made in a later chapter, while the goal here is to pin some
notions into place and provide context.

2.1 Introduction

Computer networks can be seen as a graph of connected resources, where naming, much
like in human language, works as a tool for resource sharing. The primary function of
a network is to move data across individual nodes, and this would be much harder to
achieve without the means to express source or destination.

Historically names in computer networks have a strong relation to the topology
of the network, as they did in old telephone systems where line numbers were used
in phone numbers (before the advent of the digital network). This interdependency
results from the need for efficient routing in the network being dependent on route
aggregation, a limitation known as ”Rekhter’s Law” [49, 50]

Addressing can follow topology or topology can follow addressing.
Choose one.

– Yakov Rekhter

13

Even in today’s networks this remains in effect, issues such as mobility are han-
dled through indirection mechanisms, either explicitly such as Mobile IP (MIP)[51], or
implicitly such as Proxy Mobile IP (PMIP)[52] when the node itself is unaware of the
topology change. Regardless of the process, a node should not hold an address that
does match its current routing location, without some kind of indirection. Given this
topological notion of locality, the names of the nodes in the network are often called
addresses.

Before going into more detail, it is necessary to further describe what types of
objects need to be named in a computer network. A classic reference in the field
arrives from John Shoch [53] that categorises identifiers according to their purpose
inside the network into three distinct types.

The name of a resource indicates what we seek, an address indicates
where it is, and a route tells us how to get there.

This very pragmatical description fits well into a layered view of the network (Fig-
ure 2.1). We often reason about computer networks and protocols in layers of func-
tionality with well defined interfaces binding them together. From that perspective
its easy to assume addresses are always Network Layer attachment points, such as IP
addresses. And names under this definition belong to the Application Layer.

Application
URL, Email, Hostname

Transport
IPv4:Port, IPv6:Port

Network
IPv4, IPv6

Data Link
MAC

Figure 2.1: Different types of identifiers across the TCP/IP stack

However Saltzer [54] points out that names can appear at different levels of abstrac-
tion or under different representations, while reasoning about names without context
leads to little insight, and concludes one should not reason about names in isolation but
in the context of what object they bind to. In particular Saltzer[54] considers the def-
inition from Shoch [53] leaves room for interpretation, as notions of what/how/where
depend on external definitions of resources and the networking functions, that may or
may not overlap.

Practice shows that nothing prevents the use of an address as a name, or a name
as an address or as route, provided the necessary operational conditions hold - in fact
this often simplifies the inner working of different layers. For example IPv6 addresses
can be defined based on unique link layer identifiers [18], but this makes the device

14

globally identifiable [19]. Similarly the URL syntax [55] allows both DNS hostnames
and IP addresses as part of the host segment, otherwise it would be impossible to refer
to a resource without an existing DNS binding. This concept is straightforward from
a natural language perspective and pragmatical from a network design perspective -
i.e. we point at things we cannot name. When lacking a registered name for a host,
rely on the network’s forwarding functions. The consequence of this approach is that
identifiers often bleed out of their intended design layer. As such, [56] insists on names
being considered as opaque outside their own namespace, but this is often not the
case as concepts from different layers get pushed up or down the stack. The Host
Identity Protocol (HIP) [10] is one such case, where IPv6 addresses are generated from
cryptographic keys, but more generally the concept can be applied to other types of
data [57].

This chapter takes us through what name resolution is (Section 2.2), the charac-
teristics of names in computer networks (Section 2.3) and finally how this relates to
network functions (Section 2.4 and Section 2.5).

2.2 Name Resolution

Before defining what name resolution concepts are relevant for this work, some common
terminology is required. To avoid confusion this text will follow the definitions from
[58] loosely transcribed as follows:

• A Namespace is a set of names from which all names for a given collection of
objects are taken.

• A Name is a unique string, in some alphabet, that unambiguously denotes some
object.

• The Scope of the namespace is a function which defines the class of objects that
can be named with elements from that namespace.

• The operation Assignment allocates a name in the namespace for later use.
• The operation Binding binds a name to an object. More than one name may be

bound to an object.
• A resolution function defines the mapping of elements in the namespace, to the

objects in the scope.

Name Resolution is the process used to determine the object a name binds to. In
a computer network this is a distributed process that may span multiple systems until
it is completed. This is sometimes referred as looking up a name, because generally
there are two strategies for resolving a name into the corresponding object [58]:

1. exhaustive search across all objects (or discovery)

15

2. the name holds information that narrows the search

Notice that [56] takes this a step further when referring to computer networks, and
states that ‘Name resolution is always neighbour discovery’. This is not the case for
all name resolution systems, but it seems to be the case for systems where names are
strictly network addresses because resolving a name implies reaching the correspondent
network element. What a name addresses defines the resolution function that is used.
When resolving IP addresses, the network routing functions can be used to obtain
more information about the owner of the IP. If routing is not available, less efficient
methods, such as broadcast or multicast messages are used. In other contexts, such as
databases or filesystems, the namespace might be the same but the resolution function
or the scope are different.

Most complex name resolution systems support some form of indirection where a
name resolves to another name through an intermediate object, but the end result is
still an object. This facilitates the management of the namespace, through recursion
relationships between objects, but sometimes obscures the real relation between the
namespace and the scope.

A quick remark about language: depending on the reader background the terms
’name’ and ’address’ may hold different meanings. In some contexts ’name’ refers to a
human memorable representation, while ’address’ refers to a binary representation of
the same information. No such distinction is made in this text, ’name’ is used in the
broader sense of the word with no distinction.

2.3 Namespace Characteristics

The previous definitions have covered the functions and characteristics of name resolu-
tion systems, but have not covered the characteristics of the names in the namespace.
When concerning the assignment, binding and resolution of names a number of char-
acteristics of the names in the namespace are involved in these processes:

• Hierarchical vs Flat A flat namespace holds no structure with regards to the
resolution, assignment or binding of the name, all these processes are identical
for all names in the namespace. Hierarchical namespaces have internal structure
that affects these processes. Hierarchy within a namespace is often used during
resolution to delegate parts of the resolution process to different entities (e.g.
for scalability). It can also be part of the binding and assignment of names,
to delegate responsibility for resolution of the namespace. For example in DNS
assignment of a name will differ under each Top Level Domain (TLD), with
distinct rules and limitations.

16

• Uniqueness: Is a name bound to a single object? Or can a binding change
over time. Uniqueness depends on the binding function to define which objects
are bound to a name and how the binding can be changed. For example in a
namespace where names are hashes [59], the binding function restricts the use of
the name to a specific object (or set of objects) that match that hash, and no
other binding can occur.

• Fixed or Variable length: Is the length of a name bound by a limit, or is
there no limit to the size of the namespace? In some network protocols (such as
IP) names are limited in size to conform with protocol message size limitations
or resource limitations. In other namespaces (like URLs) the length is highly
variable. The later case means that potentially the namespace could have an
infinite amount of names, but in practice it is limited by protocol message sizes,
or other constraints.

A conjecture put forth by Zooko Wilcox-O’Hearn (and often called Zooko’s triangle
[60]) is that names in a namespace can only have two out of the following three desirable
characteristics:

• Decentralised: No need for a centralised trust authority to operate the alloca-
tion, binding and resolution of names.

• Secure: An attacker cannot subvert the resolution process to return an incorrect
value.

• Human-meaningful: some namespaces are designed for human use, in the sense
that names can be assigned based on user criteria, and are easy to memorise and
compare because they convey meaning.

It can be seen that no traditional namespace currently holds all these three char-
acteristics at the same time, and any system falls into one of three combinations:

1. A namespace that is both secure and human meaningful requires trust in a cen-
tralised authority (or multiple authorities under the same root). The fact that
names are meaningful means they are subject to market notions of value, scarcity,
speculation and trademark arbitration.

2. In a namespace that is decentralised and human meaningful, but not secure, any
entity can claim any name it wants. This is the type of system seen in very basic
computer networks, where any node can use any IP or MAC address with no
enforcement. Naming collisions can occur.

3. In a namespace of decentralised and secure names, the name must be self au-
thenticating (e.g. a hash of a public key used to sign bindings) such as [59], but
these are not human-meaningful.

17

Some systems forgo human-meaningful names and settle for human-memorable
names, that are short enough to be memorable, but the assignment of meaningful
names is not provided. For example, proquints [61] represent any name as a spellable
expression, and petnames [62] use a similar approach with dictionary words. But these
forms of representation do not alter the assignment and binding operations, and despite
being useful they are not applicable across cultures or languages. Other approaches rely
on alternative notions of trust, or decentralisation models like the distributed ledger
technologies [63]. While the later appears to achieve all characteristics from Zooko’s
triangle, this is still a matter of contention, as the notion of blockhain decentralisation
might not match cleanly with Zooko’s model [64, 65], and consensus problems have
been observed in Namecoin [66] that support this limitation.

The ITU-T recommendations for future network identifiers [67, 68] defines the
following set of characteristics as being desirable in future networks:

1. scope should be embedded in the name
2. the object category may be embedded in the name
3. a name must be unique under a given scope
4. the resolution function must be accompanied by security functions
5. names can be persistent or temporary

The previous list of characteristics also offers a good framework to reason about the
limitations of existing identifiers, which ones lack these characteristics and how this
affects their use going forward. However this list is orthogonal to Zooko’s model. While
the first two characteristics relate to the practice of embedding resolution information
in names, the remaining three are not characteristics of any specific namespace but
rather characteristics of specific binding or assignment functions.

2.4 Network expansion as namespace composition

Sharing of resources in a network works through the routing of data across addressable
(i.e. named) nodes. Previously, network addresses were used to identify individual
computer links, but this view is not entirely accurate since some computer could have
multiple links (i.e. multihoming). Furthermore, network virtualization mixes real
computer networks with digital constructs that emulate them. As such, a network is a
logical resource which may not map directly to the physical hardware organisation.

As the network grows, one needs to add more names for the new nodes, or rebind
unused ones. Generally, any novel network protocol that targets interoperability with
existing protocols will eventually attempt to interoperate with existing networks. Ide-
ally all names from a network would be available in another (Figure 2.2a), but this is

18

not always possible and some intermediate namespace may be used as an intermediate
resolution namespace (Figure 2.2b).

N0
N1

N2
N3

(a) Fully connected

N0

N1

N2
N3

N?

(b) A super namespace

Figure 2.2: Namespace composition strategies

This problem can be reduced to the unidirectional connection of two different net-
works, i.e. both scopes are reachable from a single namespace. The techniques that can
be applied to achieve this depend on the characteristics of the namespace in particular
on the size of the namespaces being connected.

2.4.1 Variable Length names

Looking back at early telephone networks, different areas operated independently be-
fore they became interconnected, as did different countries before international country
codes were assigned [69]. One of the challenges faced then was how to interconnect
different networks, and defining rules to avoid ambiguity when routing calls. To solve
this problem a new namespace was created (Figure 2.3) from the local namespaces,
assigning each a different prefix code, while keeping the remaining number unchanged.

Area0
Area1

Region234 Region244

Country351

namespace

namespace

namespace namespace

namespace

Figure 2.3: Combining multiple namespaces through a new namespace

There are two characteristics of the telephone number namespace that enable this
solution: first, phone numbers are variable length names; and second, the hierarchical

19

organisation of the phone network matches the hierarchical assignment of numbers
(phone numbers are routes across the network). Provided these assumptions hold,
this same approach can be used recursively, and historically this is what happened
as multiple areas and later multiple countries became interconnected. The previous
approach also provides a benefit for users, in that they get to ”keep” the same phone
numbers, because the number assigned under the new namespace is based on the
previous number.

This facilitates resolution of a number into its local counterpart, because it is al-
ready part of the full number. More generally, for each name in one namespace there is
one corresponding name in another namespace thus transitive resolution from the first
namespace to the scope of the second is possible. However the reverse is not possible
without additional context: resolving a local area phone number into a full number
that can be used in international calls requires knowing the relevant country code.

Because computer networks are not static constructs, they grow with time as more
nodes become available. In telephone networks, the naming of the nodes followed the
topology of the network, and growing the network was done through the addition of
nodes that were assigned a new prefix. Creating this composite namespace was made
easier because the names from the original namespaces where admissible as part of
the names in the new namespace. Composition of hierarchical namespaces is well
understood and is a common form of organisation not only in computer networks, but
also in file systems [70]. URLs are composed from DNS names, filesystem paths and
protocol names; UNIX filesystem paths can be routes in a local filesystem or onto
remote machines; and IPFS [71] composes paths from other namespaces.

Assuming an infinite length, such names can include names from any other names-
pace. In practice size limitations constrict this ability, either due to protocol imple-
mentation or resource availability and as such one needs to consider interoperability
with fixed length namespaces. However, by including the first name within the second,
this approach reveals information which was previously only available under a more
reduced scope i.e. any private information that was part of the name bleeds out of its
intended scope.

2.4.2 Fixed Length names

For historical and performance reasons, many of the addresses used in the lower layers
of the network are flat fixed length names. In the IP network stack all network iden-
tifiers from the link to the transport layer are designed this way (MAC addresses, IP
addresses and TCP/UDP ports). At the application layer, namespaces such as DNS
hostnames and URLs are variable length hierarchical names. Other types of flat fixed
length identifiers can also be seen at the upper layers due to their unique binding char-

20

acteristics. For example UUIDs and cryptographic hashes are bound to certain objects,
and this makes them ideal for some applications.

Thus composition of namespaces with fixed length names follows different strategies.
With two namespaces of different sizes, the smaller namespace cannot possibly define
a resolution function for each name in the larger namespace at the same time. The
solution to this problem is often to have the binding between namespaces to be partial,
temporary or based on context. For example, during the specification of the IPv6
protocol, a number of mechanisms were created to allow interoperability with IPv4
networks, that demonstrate this constraint. Because IPv6 addresses are larger than
IPv4 addresses, one of the solutions is to include the full IPv4 address as part of the
IPv6 address using a well known prefix for IPv4 hosts [72, 73]. This facilitates the
implementation of interoperability gateways used to connect both networks, because
the binding is stored as part of the IPv6 address. The reverse process is not possible
due to size constraints, as an IPv6 address cannot fit in an IPv4 address. This requires
gateways to retain state in the form of bindings between the names in IPv4 to names
in IPv6, and handle these translation [74, 75]. Since this type of approach is known
to cause problems [76] with application layer protocols that use addresses directly in
their payloads, other solutions based on protocol encapsulation [77] are used to avoid
them (i.e. through the use of routing overlays).

2.5 Name resolution from network routing

This chapter started with ”Rekhter’s Law”, stating that topology must follow address-
ing or vice-versa. Routing in computer networks can be used to trivially implement
name resolution for the namespace of node names, because one can query the owner
of a name by sending a message and waiting for a response from the node with the
resolved object. In this way, routing functions are used as an implicit mechanism to
verify ownership of a name and perform name resolution. When routing is not avail-
able, discovery mechanisms can be used instead. In other words advertisement fulfil the
role of the binding operation, and message forwarding works as part of the resolution
mechanisms.

However, what happens when the namespace provided by the network does not
hold the necessary characteristics? The namespace is not human memorable, or not
large enough, or the network topology does not correspond to the intended meaning of
the desired namespace.

The solution to this problem is to build a new network, with a new topology that
matches the intended features. But throwing away the old network may also discard
its infrastructure and desirable features, which is likely impractical from an economic

21

point of view. A more realistic approach is to build an overlay network, a group of
nodes inside the network that establish logical links between them and route messages
using a new namespace. Since the links in the overlay network are logical links, its
topology is also logical and may or may not be similar to the topology of the underlying
network (Figure 2.4).

Physical topology

Logical topology

Figure 2.4: Different overlay topologies over the same network

Nodes is this new network need to agree on a common protocol for advertising
availability and propagate routing information. For small networks networks, discovery
protocols can be used for this purpose. In larger networks, nodes can use bootstrap
nodes (well known nodes with high redundancy) to attach into the network.

When the underlying network lacks the desired characteristics a specialised over-
lay network for name resolution can be constructed to resolve a new namespace into
network locators. This was what happened with IP network since IP addresses lacked
human meaningful names, DNS emerged as a hierarchical network of servers that man-
age a centralised human meaningful namespace.

The recent trend of ICN networks introduces, again, a new resolution namespace.
In the past, Distributed Hash Tables (DHTs) were often used for the construction of
name resolution overlay networks for ICN names. Novel network architectures such as
NDN, Data Oriented Network Architecture (DONA), eXpressive Internet Architecture
(XIA) or Publish Subscribe Internet Technology (PURSUIT) introduce general purpose
packet switching architectures that also introduce new types of namespaces. For now it
is still unclear if routing in these architectures is sufficient to provide all the necessary
features expected of a namespace, and one can find proposals in the literature for both
routing independent name resolution protocols as well the inclusion of name resolution
mechanisms as part of routing signalling for these architectures.

22

2.6 Summary

This chapter covered basic terminology and high level concepts on how namespaces
are defined from the network or, conversely, how the network can be defined from a
namespace.

Resolution is the process of determining which object a name binds to. In a dis-
tributed computer network this involves matching the name being resolved with a
mixture of discovery information that defines the network topology.

Not all network addressing namespaces are identical. Some use variable length
names, which could (in theory) hold an infinite amount of names, others are limited
in size which means assignment of names is temporary and global uniqueness is not
possible. Furthermore, the information placed in names influences the utility of the
namespace, whether because it assists in the resolution process or because it provides
external value such as human usability or security functions.

At this point it should be clear that network composition and naming are closely
related. Because name resolution can be partially modeled as network routing, then
network overlays can be used to implement name resolution systems that use a different
namespace from the underlying network. Likewise, extending the network with the
addition of new nodes can alter the resolution of names in the network, and can be
seen as a particular case of composition.

Variable length hierarchical namespaces can be used for composition of multiple
namespaces, and in fact express routes across a network. Fixed length namespaces
need to resort to other approaches, such as restricting uniqueness in time or based on
other implicit context from other sources. Regardless of the network, the fundamental
limitations for resource exhaustion and extension still apply. Recursion can conceal
the complexity of the network but it does not eliminate it.

Based on these principles, the upcoming chapter tackles the more technical aspects
of existing naming systems as the groundwork for the main contributions in the later
chapters. Some are based on discovery protocols, others use network independent
name resolution services and others are part of routing in ICN network architectures.
Notwithstanding all should fall comfortably onto the characteristics discussed in this
chapter.

23

Chapter 3

Name Resolution and Discovery
Protocols

Anyone who considers protocol
unimportant has never dealt
with a cat

Robert A. Heinlein

Now that the core concepts were discussed, one can look into the existing
state-of-the-art. The different protocols, namespaces how they fit into the
earlier discussion and their relevance going forward.

3.1 Introduction

In the previous chapter, the main characteristics of a namespace and its resolution func-
tions were identified. One can now look at the existing state of the art in protocols for
discovery and name resolution architectures, and how they match these characteristics.

Name resolution protocols build upon the discovery or routing functions provided
by the underlying network. The end result is always a namespace of names with a
corresponding scope of resolvable objects. To begin, this chapter looks into general
purpose protocols for name resolution, in particular those that establish their own
namespace, rather than those that derive it from the underlying network protocols and
what are their properties or limitations.

For clarity these protocols are divided into separate sections, based in which proto-
cols they build on. Section 3.2 looks into what are commonly called discovery protocols,
that work primarily through network broadcast and multicast functions. Section 3.3
covers full fledged name resolution protocols that are built as overlays over existing
computer networks.

25

New namespaces, as introduced by alternative network architectures that borrow
concepts from ICN are covered separately in Section 3.4. These architectures introduce
new types of name assignment and binding, however it is still unclear which role they
play for the future of networking. While they currently position themselves at the
network layer they take advantage of data naming information to improve network
efficiency while exposing this information to a much larger scope.

Finally, Section 3.5 discusses some of the implications of these namespaces, Sec-
tion 3.6 summarises the contents of this chapter before moving forward into the main
contributions of this thesis.

3.2 Discovery Protocols

For any network, discovery is the first step to determine the availability of other node.
There are multiple protocols for this purpose [78]. Some protocols provide simple
mechanisms to enumerate all nodes, others offer more complex mechanisms to retrieve
information based on filters.

In small networks, nodes can rely on mechanisms such as broadcast or multicast
messages to enumerate available nodes. For larger networks, other mechanisms can be
used to simulate a broadcast medium, e.g. a central point of contact can be used to
publish discovery information and handle discovery queries.

Naturally not all discovery protocols are meant for the same purpose and define
distinct namespaces and scopes accordingly. Some are concerned with device enumer-
ation, and to provide a simple list human memorable names and associated network
locators. Others provide additional service metadata, such as a list of all services
provided by a specific node in the network.

This section covers a cross layer selection of discovery protocols, it starts with
general purpose broadcast/multicast advertisement protocols, and moves up the stack
onto scopes that employ general purpose URLs and are used in web based services.

3.2.1 Bluetooth Service Discovery

Bluetooth [79] is a wireless protocol for communications over short distances. Each
device is allocated a 48bit device address. On top of the wireless communication
channel, it specifies a number of profiles and services for various purposes.

At the link layer, the Link Manager Protocol (LMP) provides two messages for
devices to exchange human meaningful device names (up to 248 bytes). This enables
a form of decentralised device naming where each device can claim any name.

For service discovery, the Service Discovery Protocol (SDP), enables devices to
query their neighbours for associated attributes (service records). The protocol is syn-
chronous and operates over the Logical link control and adaptation protocol (L2CAP).

26

Using this protocol, a client can query an SDP server for available attributes of dif-
ferent types. Universally Unique Identifier (UUID) attributes are used to characterise
different services and clients can filter records based on UUID queries. Attributes
can provide information about any service characteristic, most notability the channel
identifier used to connect to the service.

Bluetooth Low Energy (BLE) (introduced with Bluetooth 4.0) defines a reduced
stack for improved energy efficiency, that allows for broadcasting of data with no need
for connection establishment. One of its supported features is the introduction of
beacons, devices that wake periodically to broadcast small payloads (31 bytes).

Multiple competing protocols use this feature for device discovery under some
namespace. iBeacon [80] advertises UUIDs that identify application types. The [81]
protocol serves a similar purpose but can announce both UUIDs (in plaintext or en-
crypted) and URLs (up to 17 bytes).

3.2.2 Simple Service Discovery Protocol

The Simple Service Discovery Protocol (SSDP) [82] is a discovery protocol for IP
networks. It relies on IP multicast to advertise presence and service availability. Service
instances are identified by a Unique Service Name (USN) (i.e. a URI). A service
description typically includes the USN (often built from a UUID), an opaque service
type and a locator URL. Devices can query for specific service types using multicast
queries that include the intended service type.

SSDP is the basis for service discovery in the Universal Plug and Play (UPnP)
protocol stack, a common stack used in service discovery for consumer equipment that
follow the interoperability guidelines from the Digital Living Network Alliance (DLNA).

SSDP lacks any intrinsic security mechanisms, and it is entirely dependent on secu-
rity mechanisms implemented in other protocols (e.g. IPSec). Since the use case of the
UPnP protocol stack is to support unstructured scenarios (home networks and small
consumer equipment), in practice most devices do not implement additional security
mechanisms.

3.2.3 DNS based Service Discovery

The DNS-based Service Discovery DNS-SD [83, 84] specifies a protocol primarily tar-
geting local networks using IP multicast. This protocol reuses the namespace, record
formats and messages used by DNS, but it defines a special TLD .local as referring to
the local network.

This protocol is commonly used in local networks, such as home networks, by
consumer equipments. In addition DNS-SD was initially implemented to work with
IPv4 link local addresses [85], in networks that have no infrastructure to assign IP

27

addresses. This led to the adoption of this protocol in mobile environments as part
of the Wifi Direct [86] protocol stack, a Wifi based protocol stack for device to device
communication.

Clients can issue queries to look up the IP address of specific devices types (as
hostname.local), or to query for services of a certain type. The later uses DNS service
records in the form _protocol._transport to enumerate the different services available
in a host (e.g. _http._tcp designates an HTTP service).

DNS-SD provides no security mechanisms other than those available in DNS (e.g.
DNS Security (DNSSEC)). However since the protocol is commonly used in non struc-
tured scenarios such as device to device communication, with no previous trust estab-
lishment, one cannot rely on the availability of a Public Key Infrastructure (PKI).

3.2.4 Physical object discovery

Some discovery technologies are meant to associate digital information with physical
objects. Two widespread examples of this are QR codes and Near Field Communication
(NFC) tags.

QR codes are essentially bar codes that hold arbitrary information. These codes
are particularly meant for recognition using cameras, being arranged in two dimensions
with marker dots to facilitate recognition despite the orientation angle. The total
capacity of a code [87] depends on the type of data and amount of error recovery, the
maximum capacity is 4296 alphanumeric characters or 2953 bytes. In practice these
codes are used to store various types of data: URLs are used to link printed media
to web pages, bank information for money transfers [88], login credentials, or generic
text messages. Intrinsically, QR codes do not support security mechanisms. Payload
signatures or encryption is handled by the application that generates the bar code, e.g.
[89] or other approaches as the one presented in Chapter 4.

For radio communication, NFC [90] enables low data rate communication between
devices in close proximity (a few centimeters). This technology based on the Radio-
frequency identification (RFID) Security in NFC, is available based on shared key en-
cryption [91], On top of these interfaces, NFC provides three types of services: generic
point-to-point communication with other NFC devices; smart card emulation, to in-
teract with contactless smart cards e.g. for payments; and reading and writing of data
storage tags that hold arbitrary records [90]. Much like in bar codes, the later capa-
bility is often used to store text and URLs, but NFC supports the inclusion of record
signatures [92] to verify payload integrity based on included signatures and certificate
chains.

For other communication mediums, similar mechanisms are also available, such as
acoustic [93] or optical communication.

28

Since many of these solutions make use of passive equipment (printed barcodes, or
passive NFC tags) that always produces the same payload, it is always possible for
an attacker to engage in a replay attack, using another valid tag even if the payload
is signed . For example, [94] takes advantage of this in vending machines to redirect
users to the wrong endpoint, causing them to buy the correct products in a different
vending machine.

3.2.5 HTTP based discovery

Given the popularity of the World Wide Web, there are several formats for discovery
that leverage the URI namespace and operate on top of the HTTP protocol.

The Extensible Resource Descriptor Sequence (XRDS) is a format for describing
resources associated to an URL. Typically this format is used to describe service
endpoints associated with a URL, such as OAuth [95], OpenID [96] or Extensible
Resource Identifier (XRI) [2]. Each service is characterised by a locator/identifier and
a type which can be either a URI or XRI (Section 3.3.6). For security purposes XRDS
documents may be signed with embedded XML signatures.

WebFinger [97] is a protocol for discovery of arbitrary information associated with
a URI. A client queries a well known server for information about a resource URI,
the server responds with a list of typed links. A link associates a locator to a piece of
information of certain type [98]. This protocol is used as a service discovery mechanism
for other protocols, for example to discovery a message inbox or identity provider from
a user webpage or email address.

Both XRDS and WebFinger provide service discovery under a certain scope iden-
tified by a URI. This URI can be a URL for a webpage, an email or any other URI
scheme. However this URI might not be sufficient to define how to reach a discovery
server. Different applications employ a mixture of static rules and metadata embedded
in other protocols. OpenID[96] uses metadata in Hypertext Markup Language (HTML)
documents or HTTP headers to determine the location of a XRDS document. WebFin-
ger constructs a well known URL from the hostname used in other URLs or email
addresses.

3.3 Resolution Protocols

The previous section introduced several protocol and namespaces based on discovery
mechanisms. However as the network grows, it can no longer rely on local network
functions to perform name resolution. In order to scale, an efficient overlay for name
resolution must be constructed.

Consequently, this section covers protocols that require some kind of overlay to
perform name resolution. Following a similar structure to the previous section, this

29

starts with traditional architectures for network based name resolution and then moves
on to DHTs and web based resolution systems that generically apply to URLs. This
provides the needed context before moving on to the next section.

3.3.1 Domain Name System

The Domain Name System (DNS)[99, 100] provides a namespace of hierarchically or-
ganised, human-meaningful names. Initially it was intended as means to lookup IP
addresses from names, but as the Internet grew it was expanded to support other
types of objects.

Names in the DNS namespace are composed of segments, separated by dots, where
each segment corresponds to administrative zone managed by a server that resolves
into type records. Resolving a name yields a record of some type, the most popular
ones being IP addresses, but it is also used to store small text records and public keys.

Administratively the namespace is managed as a tree of zones, where each zone
is managed by a different entity The Internet Corporation for Assigned Names and
Numbers (ICANN) oversees the registration of domain names in the internet, that is
it controls the root of the tree and delegates the various zones to different entities.
Each zone can delegate sections of its namespace to other entities that in turn can also
delegate further. At the top of the tree there are general purpose TLDs such as .com,
.net or .org but also TLDs assigned to countries such as .pt.

Names are read left to right, from the smallest zone up to the top of the tree,
so atnog.av.it.pt is read as atnog under .av under .it under .pt, under the root zone
(represented either as an empty string or a dot). The resolution process consists in going
through all the segments from the right to the left, querying the responsible servers
until it reaches the authoritative server, and queries for the intended type (Figure 3.1).
Most IP access networks provide a local caching name server that will cache DNS
records from previous queries, avoiding repeated queries to the various name servers,
thus most terminals only need to query their local network caches to lookup a name.

.pt authoritative
name server

.it authoritative
name server

.av authoritative
name server

.atnog authoritative
name server

local caching
name server

1. atnog.av.it.pt A?

192.136.92.123

2. it NS?

3. av NS?
4. atnog NS? 4. A?

Figure 3.1: DNS resolution

30

In general DNS is considered to be a public database[101] in that it not does
specify mechanisms for access control. Some implementations do provide access control
mechanisms based on ancillary data (e.g. [102] based on the source IP address), however
all data is sent in the clear using either User Datagram Protocol (UDP) or Transmission
Control Protocol (TCP) [103]. DNSSEC[104] was introduced to add signatures to DNS
responses, avoiding forged messages or MITM attacks, however it does not address
confidentiality.

DNS often clashes with privacy requirements, because its queries are sent in the
clear [103]. DNS queries observed in the network disclose the hosts one interacts with,
and possibly some additional information. The work in [105] demonstrates that aggres-
sive DNS prefetching may even disclose user input, because it is erroneously interpreted
as a hostname and immediately triggers a DNS requests of what the user is typing.
The focus of the study conducted in [105] targets web browsers, but in fact a more gen-
eral argument can be made for any software that may parse user input into network
names. For example, [106] leaks all user input to the network, including passwords. As
a consequence a number of privacy mechanisms to protect DNS information visibility
have emerged, at different network elements.

To minimise this issue, [107] proposes that some DNS queries do not need to forward
the full name in the query during iterative resolution, but should instead restrict it to
the necessary labels. As an example, the root DNS servers do not need to know that a
request refers to a specific web site, only that it refers to the .com TLD. This minimises
information disclosure between the local resolver and upstream DNS servers.

DNSCrypt [46] is an encrypted transport protocol for DNS traffic, meant to con-
ceal DNS information between the client and the resolver. While the protocol was
never standardised, it is officially supported by several public DNS resolvers, includ-
ing the OpenDNS[45]. More recently the Internet Engineering Task Force (IETF)
drafted a similar alternative using TLS as transport protocol in [108], and HTTP Se-
cure (HTTPS) [109] as a way to circumvent untrusted local caches. This has yet to
pick up significant adoption by client or server implementations. Both these mecha-
nisms increase privacy between the resolver and the DNS server, with regards to an
eavesdropper.

3.3.2 Handle System

The Handle System [110, 111, 112] is a general purpose global name service. It defines a
new namespace, as well as resolution protocol with security and management functions.

Names in this namespace are composed of two parts, separated by a slash (/).
The first part, or prefix, is the naming authority and the second part, or suffix, is a
unique name within the scope of the named authority. The naming authority consists

31

of multiple segments, separated by dots, where the leftmost segment is the top naming
authority. For example 100.1002/atnog is a valid handle, where the naming authority
is 100.1002 and the local name is atnog. The naming authority prefix is itself a hier-
archical namespace. In the previous example the naming authority 100 defines a child
naming authority 1002.

The architecture for the handle systems consists of a hierarchical tree of handle ser-
vices. At the top level is the Global Handle Registry (GHR) that manages the handles
assigned to other naming authorities or Local Handle Services (LHS). For bootstrap-
ping, a client must always know how to reach the GHR, from which it can reach all
other naming authorities. This information is usually included in implementations and
signed updates can be retrieved from the GHR.

For security, the resolution protocol provides two way authentication between the
client and the server as well as data integrity and confidentiality. Client authentication
can use either passwords or public key cryptography.

In addition to the namespace, the Handle system also defines a data model that
includes access control policies for each object associated to a handle, for fine grained
access control. Objects associated to an handle are characterised by an index and a data
type, and new data types can be added to support new types of data. A management
protocol to manipulate this data model (e.g. update objects or access control policies),
is also defined as part of the specification.

3.3.3 Distributed Hash Tables

Distributed Hash Tables (DHTs) are a type of distributed system where looking up
of names resembles that of a local hash table which provides the ability to store and
retrieve a value associated with a key.

Names are large integers with a pre defined size. Since names are flat, with no
global notion of internal structure, the network topology follows from the namespace,
and usually one can consider the name space to be circular (fig. 3.2). Each node
divides the namespace into segments, based on the notion of distance to its own name
(distance functions vary with implementations, some consider euclidean distance while
others use XOR metric [14]). For each segment the node holds references (i.e. routes
using the underlying transport protocol) to nodes within the segment that are used to
route messages. Segments that are closer have more references than those more distant
from the node.

Because the routing topology in the DHT may be unrelated to the network topology,
and nodes are often at the edge of the network, routing is not optimal. The more general
approach is for routing to require at most O(log(n)) nodes (where n is the number of
nodes) [113, 114]. Other compromises can be achieved for better routing performance,

32

16

2

10

15

13

5

Figure 3.2: Topology of a DHT overlay network

either through the use of large routing tables [115], aggressive caching [116] or the
introduction of an internal routing hierarchy within the DHT [113], and these can
reduce the average time to amortised O(1). Delay within the DHT, is hard to predict
since routing may not follow the shortest path. Some implementations compensate
this by weighting the choice of next hop of based on the previous round trip time [14].

Names in this type of namespace are not human memorable, but they are well
suited for multiple applications:

• New nodes can choose their name using a random number generator (for long
integers the collision probability is very low)

• Names can be the result of hashing a name in some other name space
• If the DHT is meant to store data, names can be hashes of the content

In addition, using a hash of public key as a name provides a trivial way to add
security functions. The name can be used to retrieve the public key which is verified
using the hash, and further communications can be encrypted using that key.

Multiple services make use of DHTs. In particular Peer to Peer (P2P) applications
explore DHTs [117, 118], because they are decentralised and hold no single point of
failure and generally all nodes are considered equal since any node can join the network.

For the purposes of network services, several solutions exist that are based on
DHTs. The Internet Indirection Infrastructure (i3) [119] uses DHTs to provide traffic
indirection services (e.g. anycast, multicast and application layer routing). Names

33

in i3 are hashes of DNS names, URLs or public keys depending on their purpose.
Other proposals attempt to create an alternative to DNS using DHTs [120, 121, 3,
122]. However, DNS holds hundreds of millions [123] of top level domains, making it
hard to support in a regular DHT without running into routing performance issues
[124], requiring some stable nodes to expend bandwidth and storage to support active
caching. Furthermore, the DHT namespace is not human-meaningful, although [122]
avoids this issue by offloading the matching of human meaningful strings onto other
tools (e.g. indexers or search engines)

It also stands to attention that despite their distributed nature, DHTs may not
wield such resilience gains as expected, as pointed out by a study conducted in [124]
DHT alternatives to DNS only outperform regular DNS when considering resilience
to orchestrated attacks. If one assumes random failures them DNS still outperforms
a DHT based solution. This comes from the fact that DNS has a very high level of
replication for some of its nodes (closer to the root) in practise.

Some implementations combine existing namespaces with the namespace from a
DHT. To replace the use of DNS hostnames in web URLs, [122] introduces Semantic
Free Referencing (SFR) a new resolution system that resolves hashes of public keys
into locators (IP, DNS, or another SFR hash). Its primary goal is to replace the use
of DNS based URLs in web pages with URLs with a hash as in the authority e.g.
sfr : //f01212099abcab678ac345ba4d.../path.

Similarly to URLs the InterPlanetary File System (IPFS) [71] combines public key
hashes with local file names, resembling a path of labels e.g.

/ipfs/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/docs/ipfs

The ipfs prefix identifies the scheme and the second label (a hash of a public key)
can be used to route requests in a DHT; the later labels are assigned by the holder of
the key. To express content without going through the DHT, names are prefixed with
IP addresses and TCP ports (or alternatively with DNS names) i.e. names are routes
and each pair of path labels defines the scope and the name to be used next.

/ip4/104.131.131.82/tcp/4001/ipfs
/QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ

Since no DHT could be used to resolve it into a locator, the key hash used for
verification is placed at the end of the path.

Likewise, the GNU Name System (GNS) [125] is a decentralised naming system,
with two different namespaces: a local namespace (.gnu) is meant for user specific

34

names, only meaningful to the local user; a second namespace (.zkey) holds globally
unique, cryptographically verifiable names (key hashes). A local process resolves be-
tween user names to global names and a DHT resolves global names.

alice.gnu
HEK9TEBUQ5AT5V3FLL0HHNDA12HGH6BIM04TN7RDVOQ5B7TIEU80.zkey

Names adopt the same format as DNS names, but some name segments are base32
hex encoded key fingerprints, used to verify if a zone is authentic. To enable interop-
erability with DNS, GNS provides DNS proxies that can be used with regular DNS
clients. This is possible because GNS name and record formats are the same as used
by DNS.

3.3.4 Security Assertion Markup Language

The Security Assertion Markup Language(SAML) is an OASIS standard for commu-
nication of user authentication and attributes. It is mostly used within the context of
Identity Management, as means to provide Single Sign On.

SAML itself is not devoted to name resolution, but it must deal with entity iden-
tifiers in an appropriate manner and thus must provide some relevant semantics for
name resolution. The SAML specification[126, 127, 128] provides three internal proto-
cols that are relevant in the context of name resolution:

• Artifact Resolution Protocol
• Name Identifier Management
• Identifier Mapping Protocol

Being part of SAML these protocols can benefit from integrity, confidentiality and
two-way authentication, properties inherently ensured by SAML.

The Artifact Resolution Protocol is provided in SAML as means to place references
within messages, that can later be resolved into actual meaningful objects, mimicking
the concept of “passing by reference”. This is useful to prevent sending sensitive in-
formation over an insecure channel, postponing transmission of the actual content for
a later time through a more secure channel. In SAML, references used in messages
with this purpose are called artifacts and the Artifact Resolution Protocol handles the
resolution of Artifacts into objects. Artifacts are by definition one-time-use identifiers.

The Name Identifier Mapping Protocol is used to renegotiate the use of an identifier
between two entities. In the context of SAML, it is used for an Identity Provider to
change the value of an user identifier used by one Service Provider or to deprecate
the use of an identifier altogether. The protocol currently support two operations:

35

change the identifier associated with one entity, or terminate the use of the identifier
completely.

The Identifier Mapping protocol is used to map identifiers between different names-
paces. In the context of SAML, this allows two Service Providers to refer to the same
user by mapping the different identifiers in the service providers that refer to the same
user. The use of distinct namespaces for different Service Providers is a privacy pro-
tection feature, used to prevent user information disclosure.

3.3.5 Uniform Resource Locators

Uniform Resource Locator (URL) are a common locator format, most commonly as-
sociated with HTTP web pages. Their format is actually a composite from multiple
other namespaces. As defined in RFC3986[55] an URL is composed as

Scheme : //Authority/Path?Query#Fragment

Scheme: used by the client terminal to determine the protocol to be used.
Authority: a tuple [User:Password@]Host[:Port] that holds a server hostname,

and optionally a port and user information. The User and Password are used for
identification and authentication according to the service provider. The Host and Port
are used to reach the server, and must refer to a valid network node (DNS hostname
or IP).

Path: a set of segments separated by a slash. Segments “.” and “..” denote relative
references in the path.

Query: represents key/value pairs that further identify a resource.
Fragment: is used for client-side indirect referencing in resources associated with

a URL. This means they are normally not seen as part of a request, and are used solely
by the client implementation.

While RFC specifications do not impose strict limits on URL lengths, practical
limits must be considered, based on common implementation practices, tools and pro-
tocols. A common denominator for an upper limit to URL length in various browsers
and web indexing engines is 2000 bytes. This value is based on empirical observation
of web browsers and HTTP server implementations, and while some implementations
allow longer URLs (e.g. 100.000 bytes) this value remains a reasonable assumption
for practical purposes1. An analysis of the Common Crawl2 dataset that contains
1.603.205.557 unique URLs collected from web pages, only contained 299 URLs that
exceeded 2000 bytes.

1So far the most up to date (2015) compilation of data on this subject can be found at
http://www.boutell.com/newfaq/misc/urllength.html

2http://commoncrawl.org as of July 2015

36

Additional restrictions apply to the host name inside the Authority component.
The total size for a DNS hostname must not exceed 253 bytes and in addition each
label (between “.”) is limited to 63 bytes. Furthermore domain names only accept a
restricted set of characters and would require encoding schemes such as base32 [129]
in order to represent arbitrary data.

Similarly the Path, Query and Fragment are also restricted in the the character set
they can hold, each component has a different set of restricted characters. A one size
fits all approach seen in several applications is the use of base64 [130], with a URL safe
alphabet, to encode arbitrary data inside these components.

There are a couple of abstract specifications for name resolution over HTTP URLs.
The World Wide Web Consortium (W3C) defines good practices for this type of sys-
tems[131], while the IETF specified the formats and functions [132] that such a system
should provide. But no single standard resolution mechanism exists in practice and
instead different services often implement HTTP applications that resemble name res-
olution services. Over the years, a number of online services have been created with
the sole purpose of mapping single URLs into URLs managed by a different authority.
These services are named “URL shortners”, because their focus is to generate very
short URLs for distribution over restricted medium such as SMS and Twitter. How-
ever there are similar services that focus on other properties, such as temporary URLs
(both HTTP and email addresses) and on enforcing access control (e.g. link/address
protectors that enforce password or captcha verification). Due to URL obfuscation,
these are a viable mechanism for both privacy protection and a source of security is-
sues [133]. Such services work well for distributing individual HTTP links but cannot
be used for the general case, because redirecting an entire website domain would be
the equivalent to an HTTP binding attack [134].

While URLs do not provide intrinsic security mechanisms, several applications em-
bed information in URLs to perform security verifications. For example, [135] encodes
signatures in URLs, and [136, 59] include hashes in URLs used to verify the resolution
process.

3.3.6 Extensible Resource Identifiers

XRI is an OASIS standard for abstract digital identifiers syntax [2] and resolution.
XDI.ORG, an international non-profit public trust organisation, provides a global reg-
istry for XRI identifiers enabling individuals or companies to register pairs of persistent
and reassignable identifiers. Technically, XRIs are an extension of URIs, and share with
them a similar syntax. XRI specifies the concept of persistent identifiers, that can never
be reassigned. This is one of the main features that led to the adoption of XRI for user
identification in OpenID [96, 137], because it provides both human-meaningful (but

37

temporary) identifiers as well as persistent identifiers that never expire.
XRI resolution is similar to DNS resolution, in the sense that both adopt a hier-

archical architecture, although at different levels of abstraction. The XDI.org registry
delegates the management of groups of identifiers to XRI brokers that in turn refer to
other naming authorities. In addition XRI allow for nesting of identifiers, an XRI can
include another XRI or an URL even at the authority level. This is used to express
authorities which which are not registered (for example using an URL).

Since XRIs are designed as an extension of URIs, and the body of work regarding
URIs is usually handled by the W3C, there has been some overlap of work between
the two, in particular within the W3C TAG group in [131]. The current focus of W3C
work seems to be on metadata retrieval rather than on name resolution.

XRI uses HTTP as transport protocol, enabling XRI to benefit from HTTP security
standards like HTTPS or even to use Security Assertion Markup Language (SAML)
[126] to provide confidentiality, integrity and authentication.

3.4 Alternative solutions

The paradigm shift brought by Information Centric Networks (ICN) is that network
supported names are partially or completely independent of location and can be used
to identify individual content in order to enable network caching. This shift is mo-
tivated by benefits to network infrastructure, such as lower latency, energy efficiency
and mobility [138], features that benefit highly from network caching. Another side
effect is that it becomes possible to verify content earlier as it is forwarded across the
network, using naming schemes that include data hashes or provenance signature.

If the public World Wide Web is any indication, the number of existing webpages is
over 3 billion web pages 3. This challenge resulted in the emergence of multiple propos-
als for scalable Internet architectures, many which significantly modify the namespace
of network names.

The focus of this section is the naming aspects of said architectures. A good survey
on other aspects such caching, mobility and routing can be found in [23].

3.4.1 Data Oriented Network Architecture

In DONA, [4] names are made of two components P:L, a principal P and a label L,
where P is a hash of a public key owned by the content publisher. The label L is
arbitrary, provided they uniquely identify a piece of content; they can be hashes of the
content for immutable data or some other name as defined by the publisher.

3According to the Common Crawl dataset from March 2018 http://commoncrawl.org/2018/03/
february-2018-crawl-archive-now-available/

38

http://commoncrawl.org/2018/03/february-2018-crawl-archive-now-available/
http://commoncrawl.org/2018/03/february-2018-crawl-archive-now-available/

Each retrieved data includes the public key that generated P and is signed with
the corresponding private key. As such, names can be said to be self-certifying, since
these three pieces of information suffice to verify data integrity.

For name resolution, DONA relies on a hierarchical network of resolution handlers.
Content publishers register the names they host with the closest handler, that then
propagates this information up to the top tier handlers. The tier-1 resolution handlers
have full knowledge of all registration in the network. Registration allows for wildcards
to support aggregation of entries that point to the same handler. Resolving a name
then requires going down the handler hierarchy until it can reach an handler that
reaches the principal key holder.

The principal key is also used for security verification when registering new content,
i.e. a registration for a name P:L must be signed by P, preventing the injection of fake
entries in the resolution handlers.

Since in DONA names are not human memorable, users are expected to rely on
third party search engine services to provide them with some type of mapping into
human meaningful information.

3.4.2 Named Data Networking

The CCN [6] and NDN [7] architecture proposes a replacement for IP routing based on
the Interest based routing, where a consumer sends an Interest message to a publisher
(or intermediate cache) and receives a Data message routed via the reverse path. As
such, data consumers of data do not need a routable address, and messages do not
have source addresses, only a name and type that specifies their direction.

Names in NDN are hierarchical, often represented as paths or URLs (e.g.
/atnog/av/it/pt). However they are not required to be human readable, and any seg-
ment may include an arbitrary sequence of bytes. Individual name component have a
type, either a free form sequence of bytes, a hash of the content, or typed numbers.
The later type is meant for naming conventions already in use [139] in NDN, such as
data segment numbers, content version numbers, timestamps and data sequencing.

Because routing is based on variable length names, name resolution can be imple-
mented directly as routing of Interest and Data messages, with no need for dedicated
name resolution infrastructure other than the implicit caching NDN already provides.
However it is not clear if this approach is sustainable for two reasons: first NDN
routers would need to hold routes for a very large number of routing prefixes, mak-
ing global scale routing unsustainable; second a resolution overlay from the network
enables mobility without the need to advertise routes (i.e. mobile clients without net-
work supported mobility) and it is not clear if NDN names are truly independent of
topology.

39

Despite the technical achievements of NDN, it is still unclear how top level pre-
fix assignment would take place. In principle top level prefixes could mimic human
organisations as seen in DNS top level domains, but this would mean hundreds of
millions[123] of prefixes. As the debate over this topic progresses, one can already
find proposals such as [140] that supports the name prefix in CCN should identify the
Autonomous System (AS); this would reduce the number of prefixes to 60.000 [141],
but would mean the name prefix is topology dependent.

Similarly, [142] supports that efficient routing cannot happen in CCN, due to long
variable length name segments. It proposes such names should be transformed at the
edge of the network into more efficient routing names, a transformation which is then
reversed at the destination using reverse mapping functions. In this case, there is no
clear separation of namespaces from the point of view of the consumer, as the access
network handles the transformation of names transparently.

Both [140] and [143] design a name resolution system for CCN and NDN respectively
that resembles DNS (maps names to records of a given type). The later uses a non
routable prefix /NDNS to reach local resolvers, i.e. like in DNS the access network
provides a local cache for the name resolution service.

Concerning security, NDN relies on message signatures for security, assuming that
some form of trust infrastructure is available to the communicating parties. Since name
components can be content hashes, these can also be used to verify the validity of the
data.

3.4.3 Network of Information

The European research project Scalable and Adaptive Internet Solutions (SAIL) [144]
(following the Architecture and design for the future Internet (4WARD) project [5])
covered a wide range of services for future network including the design of an ICN
architecture called Network of Information (Netinf) [138, 145].

In Netinf, names are represented as URIs in the form ni://Authority/Local [146,
147] where the optional Authority defines the scope for a Local part. Either part may
be an arbitrary string or an hash, that includes a hash function identifier, a function
id for data canonicalisation and a mimetype for the hashed content, e.g.

ni://tcd.ie/sha256:NDVmZTMzOGVkY2JjZGQ0ZmNmZGFlODQ
5MjkyZDM0ZTg2ZDI5YzllMmU5OTFlNmE2Mjc3ZTFhN2JhNmE4Z
jVmMwo:signeddata:application\%2Fjpeg

Netinf supports a Name Resolution System (NRS) based on an hierarchical DHT.
A global NRS resolves the Authority component, while a local NRS handles resolution

40

for the Local part of the name. In addition Netinf also supports backends that use
routing by name (e.g. NDN) as a replacement for the DHT based NRS. Instead of
resolving names into locators, routing can take advantage of a different underlying
architecture to route messages using these names.

The primary security mechanisms for Netinf are basic name data integrity with the
use of data hashes as part of the name, and signature based integrity where the name
includes a hash of a public and the data is signed with the corresponding private key.

3.4.4 Publish Subscribe Internet Technology

The EU FP7 project Publish Subscribe Internet Technology (PURSUIT) [148, 149,
150] and its predecessor Publish Subscribe Internet Routing Paradigm (PSIRP) [151]
use a clean slate architecture for the Internet that completely replaces IP with a pub-
lish subscribe stack. In this architecture names are composed of multiple statistically
unique identifiers, one Rendezvous ID and one (or more) Scope ID. The Rendezvous
ID uniquely identifies a piece of data, while one or more Scope ID aggregate pieces of
data under a scope with certain permissions.

Resolution in PURSUIT is done through a network of rendezvous nodes, imple-
mented as an hierarchical DHT [152], where certain nodes are responsible for specific
scopes. The Scope ID is used for internal routing in the DHT when subscribing and
resolving a name. However data delivery is not routed over the DHT. Instead the
rendezvous nodes involved in the process establish a route from the subscriber to the
publisher to avoid the DHT routing overhead in the following exchanges.

Security may rely on content hashes as the rendezvous ID, but more generally it
supports Packet Level Authentication (PLA) [153], that includes a signature with every
exchanged packet.

3.4.5 eXpressive Internet Architecture

The eXpressive Internet Architecture (XIA) [154, 155], proposes an evolvable network
architecture for the Internet. Not unlike other network protocols, it uses cryptographic
hashes as network identifiers, which can be generated from either arbitrary content or
user public keys.

In addition XIA provides two characteristics in its identifiers: support for prin-
cipal types in the identifier and the inclusion of fallback addresses when forwarding
traffic. Principal types enable the extension of addressable elements with new types,
with different forwarding and addressing for the different types. To address evolution
scenarios, where a new principal type is not supported by intermediate routers, XIA
supports the notion of a fallback address that can be used to reach unsupported (i.e.
unroutable) address types.

41

This means in XIA, source and destination addresses are actually graphs of different
names (Figure 3.3) that express one or more ways to forward the packet. This concept
of graphs as addresses is not entirely new, as it resembles source based routing, but the
notion of multiple possible routes (fallback routes in dotted lines) is less common. To
avoid extreme complexity the amount of fallback edges is limited. Routers can choose
a path composed of the types they support to reach the destination, and the sender
can include name types that are not supported by intermediate routers.

Domain Host Service Content

Figure 3.3: XIA destination is a graph of names

The names used inside the Directed Acyclic Graph (DAG) for (content, host, ser-
vice, domain) are hashes generated from either public keys or a piece of data. XIA
itself does not support mechanisms for name resolution, and it either uses an exter-
nal resolution server to provide a DAG based on human input, or it relies on already
existing name resolution systems like DNS. The full DAG can be seen as a list of pos-
sible names, where each full path in the DAG constitutes a variable length hierarchical
name.

3.5 Implications of Naming

After an overview on existing protocols and namespaces, the implications of different
namespace choices can be summarised. Along the main topics of study in this thesis,
the main concern is on the security features introduced as name binding policies, and
on the privacy implications of naming.

Many of the namespaces introduced previously support some form of distributed
namespace that relies on cryptographic hashes of data. This is motivated for the need to
introduce security functions that match the scope of the resolution system, particularly
in highly distributed systems where no source of trust is available. However not all
protocols support this, in particular when concerning discovery protocols. There is
thus room for improvement in this context.

Concerning privacy, two forms of privacy disclosure are considered in this thesis.
First the observation of network traffic and the information that can be extracted by
such an observer from the names that are uncovered. And second, the ability to asso-
ciate a name to a particular context through side channel attacks using other protocols

42

that may not even be related to name resolution, but whose subject of disclosure is a
name under one of these namespaces.

3.5.1 Security challenges in name binding

A significant number of resolution systems introduce new namespaces based on some
type of decentralised security mechanism to verify the resolution process [71, 125]. This
is done when the resolution scope is either data that can be verified by a hash, or more
specifically when it is a public key that can be used for signing the following steps.

Alternatively DNS tightens its security through the use of DNSSEC, a DNS spe-
cific PKI solution that follows the already existing hierarchy seen in DNS. Absolute
confidentiality is still an issue but at least it can be addressed in some contexts.

More importantly several namespaces are actually composed from multiple other
namespaces. This was already the case for URLs, but some namespaces now attempt
to generalise these concepts even further.

It should be noted that among the discovery protocols that were described, com-
posite namespaces have yet to emerge in full. Most of the described discovery systems
fall under the category of insecure decentralised names, which is not surprising since in
local discovery scenarios there is no central source of trust to rely on (even if some of
them could in theory support this). For example, DNS-SD could reuse the techniques
in GNS to include public key hashes in DNS hostnames to uniquely identify public key
holders, since both use a similar namespace.

Concurrently novel netwok architectures also introduced new types of complex
global namespaces. Led by ICN concepts, they propose that global namespaces should
expose data identification and other types of relations by composing namespaces to-
gether. XRI allows recursive nesting of other XRI names, and the inclusion of URLs as
part of a name, and IPFS also includes strategies to embed various other namespaces
as part of a path. XIA introduces names as being DAGs or rather a list of possible
routes.

A number of research questions are still unanswered. The primary topic of study
has been routing efficiency, and the general consensus seems to be that efficient routing
in these namespaces is feasible, provided routing follows network topology For exam-
ple [156, 157] compares the effectiveness and costs of DONA, [158]) and one popular
DHT scheme. DONA produces better results, provided the top tier routers supply
significant capacity. DHTs based solutions were originally designed assuming low re-
source availability and high churn, where most nodes were located at the edges of the
network. However DHTs with network topology awareness [159] or hierarchical DHTs
with considerable resources devoted to caching can also achieve positive results [5].

43

For NDN, a similar approach can be followed that restricts the globally routable
path labels, [140] suggests that globally routable names in NDN (i.e. the first label in
a name) should be equivalent to the Autonomous System (AS), leaving the rest of the
name to be handled inside the AS. As a consequence NDN names would reflect network
topology, which further motivates the introduction of a separate naming system that
provides topology independent names [143].

In most of these systems, message integrity is verified either through some external
PKI or using hashes embedded in names to verify the associated data. However because
these are routing protocols, messages are still exchanged in the clear, and visible to all
entities in the routing path.

Since the trend seems to be towards variable length hierarchical namespaces com-
posed from multiple other namespaces, names in ICN may reveal significantly more
metadata about content than traditional protocols (e.g. TCP/IP headers, DNS
records). In fact these namespaces have more in common with URLs than with network
addresses.

The privacy implications are a consequence of the addition of more information to
a global namespace. [160] points out that this has positive effects on routing efficiency
(routers can apply Quality of Service (QoS) policies based on additional context) and
negative effects on privacy and net neutrality (operators can throttle or sell metadata).
In general ICN seems to tradeoff privacy for network efficiency [161], by providing a
global namespace for content identification, with the potential side effect that it may
expose more information that actually required because the name characterises content
and data relations rather than hosts or services in the network. Countermeasures
for these problems have been studied for in [28] and [162], and support that name
privacy can be achieved in various degrees, deriving names from either a cryptographic
pseudorandom function for weak privacy or encryption for strong privacy.

Notwithstanding, under these changes, it now falls onto the content producer to
name content in a privacy conscious way, and consequently implement this type of
solutions.

3.5.2 Privacy leakage from Names

At the network layer, privacy is often considered as a problem of data confidentiality,
where a passive or active eavesdropper can inspect the packets sent by the user terminal.
Such an attacker may be another user attached to the same broadcast medium, or the
network service provider that routes traffic.

Historically, DNS messages are sent in the clear, and an eavesdropper can extract
significant information by observing DNS messages. From the hostnames of websites

44

the user visits, to spurious DNS requests that accidentally disclose user web searches
[105] and input commands [106].

Likewise, discovery protocols reveal information about the advertising nodes, the
service it runs, or the user. This is often minimised through terminal policies that
disable service discovery protocols in untrusted networks, or through specialised dis-
covery protocols [163] that either encrypt different messages for all known recipients
or through multi-party encryption for a known group.

Even so, this type of privacy leakage is restricted to eavesdroppers in the scope of
the local network. The problem is exacerbated when the leaked information is globally
unique, and can be used to correlate data from multiple networks. For example, termi-
nal MAC addresses are globally unique, and can be used to track terminal movement.
Conversely, very specific content names can be used infer relation between two distinct
activities.

To mitigate this, pseudonymity approaches attempt to carefully manage the names
leaked by network protocols and binding policies that regularly bind new names. These
techniques are fairly common in user terminals for names fully or partially managed
by the terminal such as IP and MAC addresses, if the terminal can bind to new names.
Alternatively, privacy indirection services like a VPN or ToR can be used.

It is important to note here that naming practices similar to those seen in ICN
also made their way into other architectures. For example [164] suggests the use of
DNS to store named data objects. Meaning a DNS name can be resolved into a content
record that includes content hashes as well as replica locations under different transport
protocols. In [165] this concept is extended, allowing caching name servers to identify
content names resolved by the client and provide local copies for retrieval. Conducting
a search for identifiers embedded in URLs in the Common Crawl dataset 4 revealed that
112 hostnames included embedded UUIDs, and 236 included some kind of data that
resembled a hash5. Furthermore, motivated by interoperability with DNS both GNS
and IPFS (Section 3.3.3) generate DNS names and records with embedded hashes.

These issues can be partially addressed through mechanisms for DNS privacy, or
through different confidentiality mechanisms such as IPSec.

In upper layers, names tend to have global scope, and carry even more data. This is
widely recognised in HTTP, where the adoption of TLS has been increasing every year
[166]. It is also a consequence of the widespread use of URLs to carry state information
as part of their query [167]. For example, surveying URL in the Common Crawl data
set for data in the various segments reveals:

4http://commoncrawl.org as of July 2015
5The search looked for known hash lengths encoded as either base32 or base16 with a minimal

distribution of symbols in the target alphabeth.

45

• 241679 email addresses embedded in URL
• In the query component: 7397147 UUIDs and 14913196 hashes6

• In the path component: 2241563 UUIDs and 5106553 hashes

While introducing confidentiality addresses these problems, this is not possible for
all protocols. Even when it is, alternative methods for privacy disclosure are still
available, through side channels, which will be described next.

When one cannot observe the desired private information, it may still be possible
to extract it from other contexts where it is used and is accidentally revealed. For this
thesis in particular, the intended scope is for attacks that either exploit the handling
of names, or whose result is the disclosure of a name associated with a private context.

Different protocols supply different privacy models. HTTP has a weak model with
regards to client location privacy: the client network addresses must be revealed for
the protocol to work, unless some indirection is introduced to prevent disclosure of
this information. Other protocols boast stronger models, for example both Simple
Mail Transfer Protocol (SMTP) and the Extensible Messaging and Presence Protocol
(XMPP) use distributed models where intermediate servers are always used to forward
messages, and in theory should conceal this type of information from the receiving
party.

Either through protocol extensions or from established practices a protocol may
end up disclosing information that is not strictly required for operations. Likewise the
introduction of interoperability mechanisms may break privacy assumptions from one
protocol as it is bridged onto another.

HTTP clients disclose the URL of the previously visited web site in the referer
header [17], and SMTP servers [16]. Strictly speaking this information is not required
to operate these protocols, but it was added as a feature for some parties and now
a different set of stakeholders enact implementation changes to disable this type of
disclosure (in browsers or SMTP servers).

Browsers in particular are susceptible to multiple types of attacks that attempt to
probe the local data cache or history [168, 169, 170] to determine which URLs have
been visited in the past. This in turn can be used for the purposes of user profiling
[171, 172]. These issues are usually mitigated through client side mechanisms for cache
segmentation. Some notable exceptions implement URL privacy policies as a service
feature, are: [173] that introduces a pseudonym suffix to URLs; and [174] which studies
the privacy value of URL queries over a large data set, and proposes automated methods
for sanitising URLs that remove unnecessary content the query. The scheme in [135]

6The search looks for known hash lengths encoded as either base64, base32 or base16 with a
minimal distribution of symbols in the target alphabeths.

46

stores user agent as part of a URL and appends signature elements as attributes in the
URL query, and for privacy protection it specifically encrypts the user IP address.

3.6 Summary

This chapter went through a number of common discovery and resolution protocols,
along with their associated namespaces and architectures. First, it considered discov-
ery protocols, whose main main purpose is to provide identification within the scope
of a local network. Following this, multiple name resolution protocols were covered
with multiple types of security and privacy mechanisms. Finally, some novel network
architectures are considered, where names offer a combination of what was seen in the
previous cases, but since the namespace is also used for general purpose routing of
packets its privacy exposure is even more significant.

Borrowing from the initial analogy, we point at things we cannot name, and some
of these namespaces are composed from multiple namespaces. So a name becomes a
mixture of a route that points to a destination, along with a number of assertions about
the object to be resolved or one of the elements in this path. Hashes can be used to
verify assertions about the resolved object, or about key holder in the path to getting
the object.

The previous chapter introduced Zooko’s triangle, a conjecture that states no
namespace can hold all three desirable properties (security, human meaning, and de-
centralisation). Composition of namespaces is used to work around this limitation, by
combining namespaces that hold different properties. This is not sufficient to overcome
the lack of decentralised resolution (if one of the namespaces does not support it) but
multiple namespaces introduce security through the addition of key or data hashes
within names.

It is yet unclear how hierarchical ICN namespaces will be constructed in practice.
The namespaces in NDN and CCN are a combination of globally routable prefixes and
content producer defined names. A parallel can be made with URLs which follow a
similar name binding procedure.

From this chapter, this thesis moves on to its main contributions towards two
distinct paths. First, Chapter 4, introduces security properties into discovery protocol
namespaces. These follows strategies similar to those seen in the state of the art,
but then derives some additional features from consistent identification in discovery
protocols. Later, Chapter 5, goes into privacy issues with different namespaces and
introduces mechanisms for privacy protection with different strategies across the stack.

47

Chapter 4

Applying secure naming to
Discovery protocols

No great discovery was ever
made without a bold guess

Sir Isaac Newton

This chapter is concerned with the introduction of security semantics in ex-
isting discovery protocols. The purpose of such change is threefold. First the
introduction of security semantics (as seen in HIP), provides security ben-
efits even if the underlying transport protocol could not support it. Second,
if one can embed a consistent naming scheme in different protocols, then
mobility across network protocols become possible. Finally more malleable
namespaces could include additional security information, including one or
multiple signatures to convey trust information. These mechanisms can be
leveraged further for the purposes of security, mobility and interoperability.

4.1 Introduction

Another type of device namespace commonly seen in computer networks is defined
around discovery protocols. Discovery protocols provide a mechanism to advertise
devices or services under a specific name. Since they rely mostly on broadcast or
multicast communication as provided by the underlying network, the scope of the
name assignment is only meaningful to nearby devices.

Discovery protocols are common in unstructured or ad-hoc scenarios where a cen-
tral source for identification is not available. They also provide bindings between a
name and other objects such as service metadata or device description. In structured

49

networks, the network may provide a discovery service to store and cache discovery
information so the nodes are relieved from this task. This can be seen in IoT environ-
ments where nodes need to reduce power consumption.

The Host Identity Protocol (HIP)[10] introduced the notion of verifiable names to
the network layer. In fact the use of a cryptographic namespace is a common solution
for host mobility and security [175]. But it is most commonly seen at the network
layer, to address the locator/id split in the IP protocol, or in upper layers to construct
overlay networks (Section 3.3.3). However many network protocols do not have the
naming flexibility necessary to use this type of approach.

Since the network address namespace will not allow for this type of approach, then
perhaps going up the stack provides a namespace that does not have this limitation.
In many scenarios, the next available network namespace is provided by some type
of discovery protocol. This is certainly the case in IoT environments and point to
point communication between mobile devices [86], where no central naming authority
is available.

Expanding on this notion of embedding information within names for the purposes
of security verification, it is worth considering embedding additional data within names.
Hashes can bind names to a public key, but the inclusion of signatures would allow
express relations of trust, or even transitive trust chains.

This chapter first approaches the use of hash based identifiers, as is common in
ICN or HIP, but instead of targeting the namespace of existing or future network
architectures it leverages multiple discovery protocols. From there it takes a detour to
propose methods to include security information in URLs, which are a common target
for proximity discovery. Since hash based URLs are already covered by existing state of
the art, a more ambitious target is to include signature information in this namespace,
or possibly certificates that enclose trust chains. Finally, it discusses its applications
for the purposes of interoperability IoT scenarios and discusses future applications.

4.2 Establishing a common namespace over existing discovery
protocols

There is a vast array of discovery protocols dedicated to enumerating network devices
or services. Because such protocols cannot rely on structured networks to provide this
information each network technology proposes their own, incompatible, solutions. This
results in an heterogeneous environment where different discovery solutions are used for
each network stack. Some of the more common discovery protocols seen in consumer
equipment are the following (as discussed in Section 3.2):

50

• Bluetooth Service Discovery Protocol (SDP) uses its own service discovery pro-
tocol to discover nearby devices and associated services.

• Universal Plug and Play (UPnP) [176] is used in multimedia systems and home
entertainment systems.

• DNS-based Service Discovery (DNS-SD) [83] is a general purpose protocol, based
on multicast DNS, commonly used in consumer equipment and used in the Wifi
Direct protocol stack for point to point communication between mobile devices.

• Physical systems such as QR codes, NFC, or Bluetooth Eddystone that attach
digital information to an object, usually a URL to a network location.

As discussed, besides using distinct protocols, each solution employs different
namespaces and scopes, some are meant for naming devices others for service iden-
tification.

• Bluetooth identifies service types using UUIDs, that are resolved into device
MAC addresses/port.

• DLNA/UPnP[176] uses UUIDs formatted as URLs for service identification, these
can be resolved to IP addresses/ports for each device.

• DNS-SD uses hostnames in the .local TLD[83], to identify both services and
devices.

• QR codes, NFC, Eddystone usually store a URL that can be used to retrieve
additional information from a third-party, or store application specific data as
part of the URL.

Concerning their namespaces, Bluetooth and UPnP are the least flexible since they
use UUIDs [177]. DNS-SD is based on multicast DNS and allows the inclusion of
additional data records, such as TXT records. QR codes, NFC and custom solutions
on top of existing protocols (e.g. Eddystone over BLE) identify resources using URLs
with a limited size.

Like in HIP[10], the introduction of a common namespace over these protocols
would enable similar features:

1. Mobility across different discovery protocols provided the terminal is multi tech-
nology (or multihomed).

2. Bootstrapping of secure transport protocols over these networks, based on hashes
of public keys.

Mobility over different network architectures is a common occurrence in mobile
environments. Services tend to adopt different technologies to maximise coverage over
different devices and users, and likewise modern mobile devices attempt to support the
features required by different services and applications (Figure 4.1). In some cases, even

51

IP(Wifi)
UPNP

DNS-SD

Bluetooth

Figure 4.1: Discovery interaction across multiple technologies and networks.

if the device does not support the required stack, support can be added via upgrades
or third-party applications.

Security features were not always considered when developing these discovery pro-
tocols. They defer this problem to the transport protocols, leverage models that are
not always applicable (e.g. Bluetooth PIN based association), or are not always avail-
able due to device manufacturer constraints. However since all underlying network
protocols provide some form of stream based communication, it should be possible to
devise a transport agnostic protocol that supports public key cryptography.

To achieve the aforementioned features, the approach proposed in this thesis is to
create a common namespace across all these protocols, and to define discovery functions
that enable resolution of this namespace over these different protocols. An opposite
approach would be to introduce a new discovery protocol that operates over all these
networks, but this type of approach is not backward compatible with existing protocols.
To maintain backward compatibility the proposed namespace must be representable
within the namespaces for each of these protocols, that is a common subset of the
namespaces for each of these protocols.

Protocols such as Bluetooth and UPnP use UUIDs as names. These have a limited
size of 128 bits, with certain bits assigned specific meanings [177]. Note that Bluetooth
LMP, while feasible, is not being considered here since it is mostly used for user defined
names. In contrast protocols like DNS-SD, are more amenable to embedding variable
length information as part of the identifier

As such one can consider UUIDs as the least common denominator. Despite their
size limitations, [177] foresees the generation of an UUID from a truncated hash
(UUIDv5). More generally, this approach can be applied to generate a UUID from
a name in another namespace.

For this purpose a new namespace can be defined, as any UUID generated from a

52

EID (Secure) Namespace

Device 1Ka⁻¹ Ka

ELOCa1: bluetooth/00:03:74:AC:FF:3A

ELOCa2: dns-sd/printer.local

EIDa: UUID(SHA1(Ka))

Device 2

ELOCb1: bluetooth/00:03:74:AC:DD:A1

ELOCb2: dns-sd/printer2.local

EIDb: UUID(SHA1(Kb))

Kb⁻¹ Kb

Figure 4.2: Mapping between Entity Identifiers and Entity Locators

public key. This type of UUID is referred to as an Entity Identifier (EID).

EID = UUID(SHA1(K)) (4.1)

Here K is the public key in an asymmetric key pair (K, K−1). According to [177],
to minimise collisions with other UUIDs generated using the same method, the binding
function uses a different namespace identifier for each namespace. The EID namespace
identifier is 166266d3-a4b9-4886-9cb3-6d53d3928d68 (a random UUID generated for
this purpose).

Each name in this context can refer to one or more devices, so the resolved objects
are denominated ”Entities”. More generally the named entity corresponds to the holder
of the private key K−1, which can be one or multiple devices.

In practice, since the namespace is being resolved using network discovery pro-
tocols, the resolved objects are in fact network locators (Figure 4.2) or Entity Loca-
tors (ELOCs). Regardless of the wire format, the resolved ELOC always includes a
protocol family that identifies the protocol in use and a locator address:

ELOC = ProtocolFamily/ProtocolLocator (4.2)

4.2.1 Discovery functions

Around the EID namespace, one can define a protocol agnostic discovery frame-
work that applications can call upon. The goal is not to replace existing discovery
Application Programming Interfaces (APIs), but rather to complement them with ad-
ditional functions. This framework does not impose a particular model on the under-
lying discovery protocol. Both centralised or distributed discovery protocols can be
supported, provided an UUID namespace can be represented in the underlying names-
pace.

Four core functions define this framework, and correspond to the API made avail-
able to the applications that use the framework:

53

Publish Entity(EID, [ProtocolFamily ...]). Create the protocol specific identi-
fiers, and advertise our own entities, by publishing EID information to the network,
allowing other devices to discover them.

Discover Entities([ProtocolFamily ...]) → [(EID, ELOC)] . This function is
the general enumeration function, that discovers nearby entities and maps them to the
appropriate locators. Each discovery result take the form of a tuple (EID, ELOC),
that maps the discovered entities to locators in specific protocol families.

Entity-to-Locator(EID, [ProtocolFamily ...]) → [ELOC]. Returns the loca-
tors for the entity that advertises a specific EID. This can be used to find locators for
entities that have been encountered previously, and are known to hold a specific EID.

Locator-to-Entity(ELOC) → [EID]. Translates a locator from a specific discov-
ery protocol, to an EID. For example this is used to translate between a device identifier
(such as a MAC address), to an EID. A locator may have multiple associated EIDs.

From these functions one can quickly support two use cases: first aggregation of
discovery result from multiple protocols; and second mobility across protocols. The
optional ProtocolFamily argument enables the caller to specify which protocol should
be used when calling protocol independent functions.

Discovery aggregation (fig. 4.3) allows an application to discovery the same entity
over multiple protocols, with each discovery protocol in handled internally by the dis-
covery framework. Based on this information the application can then decide which
protocol is more suitable. For example, Bluetooth might be more energy efficient for
small payloads, but for transferring larger payloads WiFi may be preferable due to
higher throughput. After finding the desired EID, the application can connect over the
chosen protocol and start service authentication based on the EID.

At a later time, if a new discovery protocol (C) becomes available, then the applica-
tion can re-discover the previous EID in this new protocol (fig. 4.4). Afterwards a new
session can be established over the new protocol, requiring a reauthentication for that
particular EID. If the underlying transport protocol supports it, then techniques for
session resumption (e.g. [178]) can be applied to avoid a full reauthentication exchange.

From a different perspective, this is essentially mobility across different transport
protocols. The discovery framework provides the necessary information to enable this,
mapping locators from multiple network protocols, but the application (or some addi-
tional middleware) still needs to handle the choice of protocol and authentication.

54

Application Discovery Framework Protocol A Protocol B Remote Device

PublishEntity(EID)

Publish service in A

Publish service in B

1. DiscoverEntities()

2. Discover Entities for protocol
 A

3. Discover Entities for protocol B

[EID, ELOC_A] [EID, ELOC_B]

Authenticate ELOC with EID

Figure 4.3: Discovering all entities for two protocols A and B

Application Discovery Framework Protocol C

1. Entity-to-Locator(EID, C)

2. Discover Entities for
protocol C with EID

[EID,ELOC_C]

Authenticate ELOC_C with EID

Figure 4.4: Find a locator for a known EID in a specific protocol(C)

55

4.2.2 Instantiation

With the proposed framework one can reason about discovery processes as composed by
the described functions. For experimental purposes this framework was implemented
on top of four existing discovery protocols:

• Bluetooth SDP (through the Bluez bluetooth stack)
• DNS-SD (through the bonjour libraries)
• UPnP (using the Coherence implementation)
• Named Publish Subscribe Networking (NPSN), a centralised discovery protocol

for NDN

Naturally not all these protocols hold a one to one mapping with the described
functions. The purpose of this approach is to retain backward compatibility, keeping
protocol messages unchanged, while overloading existing messages to implement the
aforementioned functions. NDN is included here as an example of a non legacy sys-
tem, through NPSN, a custom publish/subscribe discovery protocol designed for IoT
environments [39].

For Bluetooth, an additional SDP service is announced (with the desired EID).
Discovery of an EID (a device, or group of devices) is carried out as searching for
a service type with a specific UUID. This corresponds to a change in semantics. In
Bluetooth SDP this process was originally meant to query for general service types
(e.g. printers, sound sinks), while for an EID aware application the same protocol
exchange means to query for the holders of an EID. A similar approach is also followed
for UPnP, by using the EID in the USN field.

In DNS-SD, discovery is scoped per service types (e.g. _http._tcp for HTTP
servers), and devices are enumerated for each service type. For publishing an EID, a
record is published under the _uuid._tcp service type. Under this service type, devices
advertise with their EID as a service name, that can then be mapped to a hostname.
This is also a common approach used by other applications to advertise additional
identification information in DNS-SD.

NDN lacks intrinsic discovery mechanisms, but different discovery protocols are
already emerging on top of this stack. For example, throughout this PhD two dif-
ferent discovery protocols were proposed for NDN, one for ad-hoc scenarios [40] and
another for publish subscribe environments [39]. The later protocol, called NPSN, was
intentionally designed to include the scheme proposed in this section as a mechanism
to facilitate interoperability, with other discovery protocols. Because NDN network
identifiers are variable length hierarchical paths, a generic approach is to include the
UUID in one of the labels of the path. NPSN is centralised, in the sense that the local

56

Application Bluetooth Stack DNS-SD Stack Discovery Framework

1. find available services

2. find available services

3. Select service

4. Locator-to-Entity ('bluetooth', 00:03:74:AC:FF:3A)

5. find_service(00:03:74:AC:FF:3A)

6. EID

Figure 4.5: Discovering devices and the associated EID

network provides a rendezvous server to cache and aggregate discovery information for
local nodes. This shifts work from the clients and services onto the rendezvous server.

Initially this framework was implemented as a general purpose library 1 for cross
protocol device discovery [38] over Bluetooth, DNS-SD and UPnP. Its main purpose
was to provide a client device the ability to rediscover known services while switch-
ing the underlying communication protocol (cross protocol mobility) while minimising
service requirements other than the initial configuration. Internally, this framework is
available as an API used by applications, in combination with the regular APIs from
the supported discovery stacks.

For example, in its initial state (Figure 4.5), an application has no information
about services in the network and performs discovery using available protocols. It then
follows a series of steps to select a suitable service and determine its EID:

1. The application discovers services available using Bluetooth
2. Concurrently it also discovers services available using DNS-SD
3. The application selects one service instance e.g. 00:03:74:AC:FF:3A discovered

using Bluetooth
4. The application calls the Discovery Framework to determine the EID associated

to that particular device.
5. The discovery framework does an additional Bluetooth query to determine the

EID.
1Publicly available at https://github.com/ATNoG/python-udiscovery

57

Application Discovery Framework Bluetooth Stack 00:03:74:AC:FF:3A

7. connect to 00:03:74:AC:FF:3A

8. Establish TLS tunnel

9. Retrieve Key(K)

10. Generate EID for key K

EID

11. Compare EID(K)
 with original EID

Figure 4.6: Authenticating known devices

6. If the device has an associated EID, it is returned to the application

Upon completion the application holds both a network locator and service meta-
data, as well as an EID. With these elements the application can start a new connection
to the service, using the EID to verify the authenticity of the connection.

Now that it was established how to discover devices based on the EID, they can
be combined with other protocols to enable device authentication. Assuming the EID
is generated as a hash of a public key, one can establish a connection using protocols
such as TLS that rely on public key cryptography.

Continuing from the previous step, after discovering a specific EID and a locator
an application would (Figure 4.6):

7. Use the ELOC from the previous step, to open a connection to the remote device.
8. Negotiates a TLS tunnel with the remote party
9. When the tunnel is established, the application extracts the remote party public

key
10. Generate the EID from the public key
11. Finally the EID for the retrieved key is compared with the original EID.

If both EIDs match, the authentication succeeds i.e. the remote party is in posses-
sion of the corresponding private key, and communication can proceed.

When, at a later time, the same application attempts to reconnect to the holder
of a previously used EID (Figure 4.7) using the same or a different protocol, it can
discover the locators for that specific EID:

1. The application queries the discovery framework for a device with the given EID

58

Application Discovery Framework Bluetooth Stack DNS-SD Stack

1. Entity-to-Locator(EID)

2. find_service()

3. find_service()

4. Devices:
[00:03:..., host.local]

5. Select device

Figure 4.7: Reconnecting to a service using its EID over multiple protocols (Bluetooth
and DNS-SD)

2. The discovery framework queries for Bluetooth devices with the given EID
3. The discovery framework queries for DNS-SD devices with the given EID
4. The framework returns a list of all locators (with the given EID) found for both

protocols
5. From the returned device list, the application selects one, e.g. host.local over

DNS-SD

It is important to realise that the subtle change in semantics for some of the proto-
cols (Bluetooth, UPnP) does carry implications. Because device enumeration (i.e. EID
enumeration) is in fact service type discovery, this implementation always requires an
additional round trip time for Bluetooth SDP (step 2 in Figure 4.7 to find the EID
for a device). Likewise, for DNS-SD, an additional query might be required (or an
additional subscription at initialisation). However the additional costs can also be
amortised through caching, which is already used in various protocol stack implemen-
tations. Bluetooth stacks rely heavily on result caching, for a fixed period of time.
DNS-SD stacks use a publish/subscribe model where a background service handles up-
dates, thus exhibiting constant times (near zero), because the results are already in
cache.

In both DNS-SD and NPSN there is an additional cost for framework initialisa-
tion. DNS-SD requires an initial subscription to be made at startup, and a NPSN
session needs to be created with the rendezvous. In a Linux machine with a 1.3Ghz
processor this time averaged to 210 microseconds (for 1000 repetitions) to initialise the
library. However it should be noted that the DNS-SD libraries are most likely delaying

59

initialisation, making it hard to measure the actual time cost.
While the previous examples (Figure 4.5) represents discovery operations as sequen-

tial, the implementation does in fact take advantage of parallelisation of the different
discovery protocol backends.

4.2.3 Security Considerations

This framework ties public key cryptography authentication with existing discovery
protocols. However there are some limitations that fall out of scope of these changes
and should be made clear.

For security purposes, the EID is generated from a hash of a public key, and the
desired security capabilities are a consequence of this property. It is assumed the caller
would take advantage of the EID namespace (Equation 4.1) to authenticate public
keys used by services, for example when using transport protocols like TLS. Other
generation methods can be considered under a different security model. The input for
UUID generation is always a hash, but it could be the hash of any piece of data. For
example UUIDs could be generated from DNS domain names [179], Uniform Resource
Identifiers (URI) [55] or X509 Distinguished Names [180]. Such change would require
other mechanisms to authenticate services, one common case being the Public Key
Infrastructure (PKI) used by clients that use TLS.

The described framework introduces names whose purpose is to be used for au-
thentication after discovery. However, since the security properties of the underlying
discovery protocols remain unchanged, traditional repetition attacks against these pro-
tocols are still viable. Malicious nodes can forge messages (e.g. a replay attack for a
known EID) that would work as a Denial of Service Attack (DoS) attack.

While the EID can be used for authenticating a key holder, it cannot assert trust.
The caller should store the EIDs for services it considers trustworthy or at least for
pinning services it used previously.

Ultimately the EID is a hash of the key and collisions might occur, by coincidence
or as a generated collision, and SHA1 is known to be vulnerable to attack [181]. Other
hash functions are available as replacement, but due to size constraints the hash would
need to be truncated to fit in the UUID. Ideally the client should store the keys asso-
ciated to the EID.

4.3 Building interoperable discovery gateways

The variety of different discovery protocol, results in an interoperability problem when
attempting to interconnect these networks and devices. Even if the communication
protocols in use are the same, no communication is possible if discovery is not possible.

60

IP

UPNP

Bluetooth

DNS-SD

Other Bluetooth

gateway1

gateway2

Wifi-Direct

Figure 4.8: IoT scenario involving multiple services, consumers and gateways

One field where interoperability issues are common is IoT (Figure 4.8). The large
number of incompatible technologies and vendor specific protocols which is an impor-
tant scenario for our concerns leads to the introduction of compatibility gateways, that
provide protocol conversion services. These gateways retain the necessary state about
network devices, forward discovery information across different protocols and convert
protocol messages between devices if necessary.

The common identification scheme seen previously (in Section 4.2) establishes a
global discovery namespace. Intuitively, a global namespace would facilitate service
gateways deployment, since gateways could advertise the same identifier over multiple
discovery protocols and avoid state retention. However the namespace from Section 4.2
is only used as a global namespace that is resolved to the objects provided by the
underlying protocol. Before it can be used in IoT scenarios, additional challenges need
to be identified and addressed to build interoperability gateways that leverage this
namespace.

Within the context of IoT interoperability scenarios (Figure 4.8) challenges arise as
a consequence of the use of multiple protocols and intermediate gateways. To break
apart these challenges, the illustrated scenario can be described as four distinct basic
cases:

Case 1: When considering a simple IoT application, a representative scenario starts
as an set of sensors (Figure 4.9), that expose their services using discovery protocol
P1.(e.g. Bluetooth or Wifi Direct). The discovery protocol fulfils the role of finding the
services associated to those sensors, but it is possible the client only wants a specific
sensor (S1), or a subset of all sensors (e.g. S1+S2 but not S3).

61

P1

Client

S1

S2

S3

Figure 4.9: Case 1: Communicate with (sub)sets of sensors

P1P2

P3
Client

S1

S2

S3

Figure 4.10: Case 2: Extending discovery to other protocols using gateways

P3

S2

S3

S4

P1
Client

P2

Client

P3

S1

Figure 4.11: Case 3: Gateway replication

Case 2: To extend the previous scenario, and allow exposing the sensor(s) onto
other protocols, a gateway is added (Figure 4.10) that advertises the services over
two new protocols (P2 and P3). This opens up possibilities for clients that support
multiple protocols to take advantage of intelligent strategies, switching protocols as
they perceive to be beneficial. However this can only be achieved if they hold the
capability to identify both services being advertised as being equivalent.

Case 3: The introduction of additional gateways, will widen the coverage range for
one of the protocols or provide redundancy (Figure 4.11), but exacerbates compound
on the challenge presented in case 2. The problem of introducing multiple gateways
that map onto the same protocol (P3) is the risk of mapping the same service/sensor
multiple times, potentially confusing the clients on that protocol.

62

One solution for this issue would require gateways to communicate among them-
selves to exchange service rosters, and avoid duplication of service advertisement. How-
ever, this kind of approach creates a strong emphasis on the knowledge detained by
each gateway, and on gateway coordination. In decentralised scenarios gateways can-
not assume full connectivity between gateways or that all gateways fall under the same
administrative domain.

P1P2

P3

Client

S1

S2

S3

Figure 4.12: Case 4: Discovery consistency across gateways

Case 4: One final case (Figure 4.12), derived from Case2, is when the client sup-
ports multiple protocols (and technologies), one of those being the protocol used by
the sensors, in which case the client may bypass the gateway entirely and be presented
with a service it cannot identify as being the same. While it might seem the gateway is
unnecessary (for that particular client), P2/P3 may provide wider coverage than P1.
More importantly the client should be able to realise that the services being advertised
over protocols P2 and P3 (i.e. advertised by the gateway), are the same services being
advertised over P1.

The namespace implemented in Section 4.2 is a good fit for these features. Multiple
devices can advertise the same EID (Case1), and the client can then choose a specific
sensor or multiple sensors. Assuming the gateway publishes discovery information
while retaining the EID the remaining cases are also be covered. Since the EID

is consistent in all supported protocols, clients can identify services discovered using
distinct protocols as being the same service (Case2) and choose the preferred protocol.
Likewise, gateway replication (Case3) will cause identical services, with the same EID

to be published by multiple gateways, even if the resolved information refers to distinct
gateways. Finally Case4, can be seen as a variation from Case2, where the client
supports the same two protocols as the gateway.

An IoT gateway that bridges two protocols can be seen as a node that performs
the following actions:

1. Discovers services advertised by sensors using the source protocol
2. Advertises matching service discovery information in a target protocol

63

3. Translates data requests between the target and source protocol, i.e. conversion
of data representation from sensors in one transport protocol to another.

In [41, 39] the EID namespace is used to introduce decentralised IoT gateways,
with data conversion between Message Queuing Telemetry Transport (MQTT)[182],
Constrained Application Protocol (CoaP)[26] as well as NPSN [39] and PURSUIT [148].
Other data conversion approaches can be found in the literature for other protocols
[183, 184].

However, before this framework could be adopted for this type of scenarios two
shortcomings needed to be addressed. First the implementation lacked any considera-
tion for transport ports (as seen in UDP, TCP or Bluetooth RFCOMM) i.e. the EID
identifies one or more devices but cannot identify an upper layer protocol endpoint.

Thus the ELOC is extended from its original form (eq. (4.2)) to a three element
tuple with an optional element designated ProtocolChannel.

ELOC = ProtocolFamily/ProtocolLocator

[/ProtocolChannel] (4.3)

The ProtocolChannel holds the service information as returned by the underlying
discovery protocol. This element is optional to retain compatibility with the case where
the EID does not map into a service, or the discovery protocol does not provide one.
For Bluetooth the ProtocolChannel holds the Bluetooth channel, for IP based discovery
the TCP or UDP port. In NPSN, it is absent since the NDN name already includes
all necessary information.

A second limitation is that the EID binding always associates an EID with a public
key i.e. it always identifies the owner of the key. However clients may be looking for
opportunistic service with no expectation of trust, for example the nearest sensor with
a certain service type. In other words, it would be desirable to have a cross protocol
namespace for service type identification.

The binding method used for the EID [177] could accept an arbitrary piece of data
as argument, however the resulting name can not be authenticated when establishing
a connection. Reusing the same technique, the binding function for a Service Type
Identifier (SRVID) namespace can be defined as

SRV ID = UUID(SERV ICE_ID_STRING) (4.4)

The resulting name is still an UUID but is meant as an identifier for specific service
type. To minimise collisions with the EID namespace a new namespace identifier is
used 957d7f49-2674-4e12-ab92-4a1678d82d03. To generate an SRVID from a service

64

type, the binding function as stated previously is applied using a service type as the
content argument, e.g. for the string ”printer” the resulting identifier is

47ac0c1e − e377 − 5b5d − 92cf − 18b489835781 (4.5)

As the hashing operation is non reversible, i.e. it is impossible to get the human
readable service type from the hash, a similar requirement to other discovery protocols
that use UUIDs is to keep a mapping table of well known service types into matching
identifiers (e.g. UUIDs or ports). For now, it is left up to the caller to choose the source
material for the SRVID. Different network stacks use their own canonical centralised
namespaces for this (e.g. IANA service names for IP services, or Bluetooth known
service type UUIDs).

Since any device can advertise multiple EIDs, consequently it can also advertise as
many service types as necessary, as is the case for most service discovery protocols.
With this information in hand, a client can cross reference discovery results to find a
device that simultaneously advertises the EID for a known key and a SRVID. This
yields both a service locator and a method to verify authenticity based on the public
key. Naturally this comes at the cost of additional discovery messages. The messages
exchange from Figure 4.4 needs to be repeated from each EID/SRVID.

An alternative method would be to generate a namespace that combines both the
hash of the public key with the hash of the service type, e.g.

EID∗ = UUID(SHA1(′printer′) + SHA1(K)) (4.6)

However this approach would prevent the clients from discovering devices based on
service type alone, or the sensors would need to advertise even more services for all
possible combinations which is also undesirable in constrained scenarios.

4.4 Embedding security information in discovery URLs

The previous section discussed the construction of a verifiable namespace over UUIDs,
that worked through the introduction within the UUID of hashes constructed from a
public key. From here, the next target in this type of protocols is not the namespace
but rather the scope of the protocol which is often a URL.

Due to size limitations, URLs are not used directly in the protocols discussed earlier,
but they are commonly used in other discovery contexts (Section 3.2.4), not as names
but as objects in the resolution scopes, which are then used as locators to a service.
Because URLs are composed from multiple namespaces, it is common to use hashes
as part of an URI. Some schemes, like magnet links [136] and the named information

65

scheme [59] were designed solely for the purpose of generating location independent
URLs for pieces of data.

In proximity scenarios, service discovery can be triggered from scanning an NFC
tag, QR bar code or based on other lightweight protocols (e.g. Eddystone). These
often include a URL that locates the contact point for the service.

This type of scenarios motivated the work done in [36, 37], an electronic ticketing
service for mobiled devices, with mutual authentication between the service provider
and the ticket holder, this leverages this same approach. The primary goal was to
provide mutual authentication mechanisms in mobile scenarios, even when global con-
nectivity could not be assumed. This often involved authentication procedures that
started from unauthenticated discovery information using one of the protocols de-
scribed earlier in Section 3.2.

Given the different types of mobile devices, multiple methods mechanisms for ini-
tialising a process from proximity discovery are available. In [36] multiple types of
scenarios were supported allowing service discovery to be started from three sources:

1. QR codes
2. NFC tags
3. Bluetooth

The result of the discovery step is always a URL, used to reach the ticket con-
sumption service, through one of the supported transport protocols Ticket submission
can occur either over Bluetooth or IP (i.e. Wifi or WifiDirect [86]). Internally, ticket
generation and submission uses a Representational State Transfer (REST) webservice
over TLS.

In [36] each entity (client, seller, consumer) holds a public/private key pair. Tickets
(Figure 4.13) are signed by the seller and include the public key of the ticket holder
(BP), a seller certificate (V) and a consumer certificate (E). This is sufficient informa-
tion for the client to authenticate the ticket consumer service and vice-versa.

Ticket generation and consumption is illustrated in Figure 4.14. The user equip-
ment acquires a ticket from a seller, generated from a private key BP from the user’s
device (steps 1 − 3). Each ticket is generated from a new user key, to avoid identity
correlation from multiple sellers. For ticket consumption (steps 4 − 8), the user, starts
by discovering a nearby ticket consumption service and establish a connection. From
the discovered information the user can also determine which tickets can be used with
this service. The certificate E is used to determine if the TLS connection should be
trusted before submitting the ticket, this avoids disclosing the information in the ticket
to untrusted third parties. The ticket consumer service authenticates the client as the

66

Figure 4.13: Internal ticket structure for Multipass

correct ticket holder through the key BP (used to establish the TLS connection), and
verifies the ticket is valid through the seller signature Sig(VK) and certificate V .

To avoid the introduction of fake discovery tags in step 4 (Figure 4.14), all tag
contents are signed by the ticket consumer. The URLs inside the tag contains the
following items

1. The original URL, pointing at the intended service
2. An identifier used to identify the signing party and/or signing method
3. A cryptographic signature of the previous two fields

The original URL is separated from the remaining fields with the # character, while
the identifier and signature are separated by a question mark (?), e.g.

https://atnog.av.it.pt#keyid?XAOyG28RNDKDdZW4as3diAuiDXTXz
ZiZsyV_Znvx3b1HjA8aVHvvAbkzcVc0FDzw

Choosing # as the separator character ensures the resulting representation is itself
a valid URL, with the key identifier and signature encoded in its fragment. In HTTP,
URL fragments are used as local subresource identifiers [55, 185], and are never sent to
the remote HTTP server. This guarantees backward compatibility, in the sense that
the URLs encoded with this method can continue to be used as regular HTTP URLs.
If the application reading the tag understands the additional semantics then it can
verify the signature, otherwise it can use it as a regular HTTP URL.

Other alternatives, such as [135], encode signature attributes as part of the URL
query. This makes them more generic, since they can be applied to any URI scheme,
but will send the entire signed URL when making an HTTP request.

The signature sizes vary with different encryption algorithms, and key sizes (Ta-
ble 4.1). To include the signatures inside the URL these need to be encoded in base64
[130], which causes an overhead up to 33% additional bytes. The values presented in
Table 4.1 were obtained from the DER encoding used by the OpenSSL toolkit2. For
even shorter signatures there are variants of the DSA and ECDSA [186, 187] that can
make signatures up to 25% smaller.

2https://www.openssl.org

67

Mobile Device Ticket Seller website Ticket consumer
service

1. Trigger ticket purchase

2. Start Ticket manager and
generate keys (Bk)

3. Generate new ticket with (Bp)

4. Service discovery

5. Open TLS connection using Bk

6. Verify connection with E

7. Submit ticket

8. Verify ticket
using Sig(Vk)/V

(Ticket Generation)

(Ticket Consumption)

Figure 4.14: Ticket generation and consumption

68

Table 4.1: Signature length for multiple algorithms

Algorithm Signature length (bytes) Base64 length(bytes)
ECDSA secp256k1 71 98
ECDSA secp512r1 139 191
DSA 71 98
RSA 2048 bits 256 349
RSA 4096 bits 512 693

Table 4.2: Key/Certificate length for multiple algorithms (base64 encoded)

Algorithm Key length (bytes) Certificate length(bytes)
ECDSA secp256k1 174 420
ECDSA secp512r1 268 611
DSA 2048 bites 1198 1448
RSA 2048 bits 451 964
RSA 4096 bits 800 1655

With base64, signatures can be included in URLs as described earlier, the largest
signature (RSA 4096 with 693 bytes) would still be within the maximum size of a
QR tag (2953 bytes). However, for pragmatic reasons described in Section 3.3.5 the
maximum size of an URL, can be considered to be 2000 bytes.

Attempting to include additional information, such as a public key or certificate
may run into the maximum length. Elliptic Curve keys are much smaller in size,
and make it possible to encode certificates inside the URL, which opens the door for
delegation, as is done inside the tickets (Figure 4.13).

Table 4.2 shows the key and certificate sizes (base64 encoded) of different algo-
rithms. The certificates in this example are encoded in X.509 [188], and include only
the minimal required information. An alternative certificate representation format is
specified in [189], which is also used in NFC signed records. This can save up to 40%
(60% with optional optimisations) for the elliptic variants [190].

The elliptic curve variants are the more promising in terms of space (Table 4.3).
For example the ticket format depicted in Figure 4.13 (one key BP , two certificates E,
V and a signature) would require at least 1112 bytes to be encoded inside a URL with
the smaller curve. From the other algorithms, only the RSA 2048 is small enough to
fit in a QR code, but possibly too large to be used in an HTTP URL.

Finally, as pointed out in [94], even if data in these tags is signed by a trusted party,
it is still possible for an attacker to implement replay attacks, where the correct tag is
replaced with another valid tag.

A valid, but expired, tag can be used as a DoS attack, leading them to a service
that will never respond. When using passive tags (i.e. QR codes or passive NFC tags)

69

Table 4.3: Encoding size for a full ticket (base64 encoded)

Algorithm Ticket length (bytes)
ECDSA secp256k1 1112
ECDSA secp512r1 1681
DSA 2048 bits 4192
RSA 2048 bits 2728
RSA 4096 bits 4803

a DoS attack cannot be avoided, if the attacker can tamper with the tags.
A valid tag from a different physical terminal can be used to to deceive users into

buying the incorrect items[94]. To avoid this, full authentication requires an additional
step where the physical device in proximity with the user provides confirmation before
authentication can proceed. For example, [191] generalises this notion to incorporate
radio interference into the authentication process to determine if a MITM attack is
occurring.

4.5 Conclusions

Generally speaking, this chapter introduces techniques to embed security information
in different types of discovery namespaces, and details this for UUIDs and URLs.
UUID based namespaces are used is common discovery protocols as service identi-
fiers (Bluetooth SDP, UPnP, DLNA), and other protocols that fulfil similar roles can
accommodate the inclusion of an UUID as part of their names.

The advantage of implementing this as information embedded is discovery protocol
identifiers is that no changes to the network or even discovery stacks are required. These
approaches can be implemented on top of existing discovery protocols, for example as
part of application logic in mobile devices, with no need for low level changes to either
the network stack or the discovery stack.

In total, three name binding functions are defined in this chapter, the EID, SRVID
and URLs with embedded signatures and certificates.

The EID is a namespace for device identification based on hashed public keys. It
is heavily inspired by the HIP protocol and it is used to established authenticated
connections over multiple protocol stacks. For each of the considered protocols (SDP,
UPnP, DNS-SD, NPSN) this is achieved by compressing the desired hash as a UUID
and providing discovery functions between this UUID and the protocol specific network
addresses. In a way, the EID can be considered to be as a overlay discovery protocol.
Currently, the list of supported protocols covers the majority of consumer equipment
protocol stacks and it seems likely others could be added as well.

70

The SRVID is nearly identical to the EID, but it foregoes the authentication based
on public key for a simple identification of service types. It is used for advertising
network protocol independent services that can operate over different protocol stacks.
It does not provide authentication, but it can be combined with the EID to achieve
both these properties at the same time. However this requires a network agnostic
transport protocol that can use public key cryptography (a role fulfilled here by TLS).

With the provided discovery functions, applications can implement cross protocol
session mobility, moving over to the protocol that offers the best energy/bandwidth
efficiency or based on other strategies. Furthermore, nothing prevents the keys used
in other protocols (e.g. HIP) from being used in an EID or other similar systems, at
which point it is possible to integrate with HIP based resolution or other upper layer
protocols based on overlay networks.

The URL embedding strategies (Section 4.4) are meant for discovery operations
that use URLs as general purpose locators in discovery scenarios. In particular they
were used to increase resistance to interception attacks in a mobile ticketing service.
This is achieved through the inclusion of signatures used to validate discovery informa-
tion based on pre-stored keys, or alternatively one or more certificate to express trust
relations and delegation for signature verification. However, inclusion of certificates
quickly reaches the limitations imposed more constrained URL storage media, such as
QR codes or practical implementation limits

Ultimately these mechanisms do not alter the security properties, (or lack of secu-
rity), since they remain vulnerable to replay attacks, at least as a form of Denial of
Service Attack (DoS).

These mechanisms are partially composable, as one can include an EID as part
of a URL. However the reverse is not possible due to size constraints. A straight-
forward conclusion is that one cannot expect to rely on external signatures to detect
fake discovery information when crossing those networks, i.e. anyone can announce
any identifier. The implementation approach that was taken is heavily geared towards
backwards compatibility with existing devices and services. Section 3.2.4 already in-
troduced alternative protocols in Bluetooth that are based on URL advertisement, but
the size constraints remain. If the need arises, then new extensions would need to be
introduced into the stack of these protocols.

The following chapter will continue onto a different path, that of privacy in global
namespaces. While this topic may be claimed to be orthogonal to the work done thus
far, this chapter spent a significant amount of effort embedding different identifiers on
top of often insecure discovery protocols. This approach is not dissimilar to the one
seen in other namespaces covered in Chapter 3. However as these namespaces become
global, which is a likely consequence of the IoT mapping mechanisms introduced here,

71

then privacy becomes increasingly relevant.

72

Chapter 5

Realising Namespace Privacy

Any privacy in public is a hard
thing to negotiate

Benedict Cumberbatch

In this chapter, the main subject is that of naming privacy and the privacy
mechanisms implemented in this thesis. First it introduces pseudonymity
solutions at the network layer. Following this, it goes up the stack, first to
identify sources of privacy leakage at the upper layers and then to propose
a service enforced privacy namespace for URLs.

5.1 Introduction

Digital privacy is now a common topic. Society is presently engaged on a debate
surrounding privacy and its relation to values such as freedom of speech, security and
the role of technology. Much of this debate has been centred on user privacy, and data
disclosure, but privacy is not an absolute concept but rather dependent on context[192].

Names, in this context, are a fundamental form of metadata, a form of identifica-
tion for various types of resources in the network. In the previous chapter, as in much
of state of the art covered in Chapter 3, a general tendency towards namespace com-
position can be observed, in which new namespaces are created from previous ones. In
other words, based on ongoing research trends and empirical observation, the amount
of information placed in names seems to be increasing. Consequently disclosure of this
type of metadata becomes more revealing, and depending on the specific name it may
reveal location, user identity, relations to specific content, or trust in some authority.

Initial contributions to this topic aimed to introduce support for privacy mecha-
nisms related to network exchanges. In particular using three types of mechanisms to
achieve this goal: first on the client side (i.e. in the user terminal equipment) through

73

pseudonymity solutions, second with support from network infrastructure, and third
through the integration of IdM mechanisms that apply pseudonymity with regards to
external services. This is the work described in Section 5.4

A realisation that followed from this work is that the previous techniques can only
apply pseudonymity to those namespaces that are ”close” to the user, in the sense
that the user is involved in the assignment of names in this namespace or is directly
connected to those that are (i.e. the network provider). Steering away of from these
namespaces, and moving onto those controlled by content providers (e.g. URLs, and
partially DNS), presents a different set of privacy concerns.

Even assuming that service providers are not concerned with user privacy, since
privacy disclosure is transitive [42], user behaviour may disclose service information.
The techniques described in Section 3.5.2 are usually applied to exploit user privacy,
and mitigated as such. But they are equally applicable in determining which users
visited which services or web sites i.e. they allow a competing service to build a
costumer list for the competing services and products. As such while users might not
be aware of these issues, services should be highly motivated to hinder this type of
disclosure.

To assess this problem, Section 5.2 studies this issue within the context of location
disclosure through the use of HTTP in the XMPP protocol. This is done trough a study
of the of HTTP URLs that lead to location disclosure, either in the core protocol, in
third-party extensions or due to implementation vulnerabilities.

To address this problem, Section 5.3 introduces techniques for service providers to
conceal information in the multiple components of a URL at the application layer. This
is generalised as an implementation for HTTP applications through the creation of a
Session Bound Namespace (SBN), a transient URL namespace in which all names are
URLs generated from other URLs, with varying levels of privacy as defined by a service
policy. Similar mechanisms, for the network layer, are introduced in Section 5.4.

5.2 Informatin leakage at the application layer

Looking at the application layer it may be hard to grasp the status of privacy, for a
given application or service. As pointed out (in Section 3.5.2) confidentiality is not the
main concern, as soon as mechanisms such as TLS are in place. Side channels that
disclose private information are the main practical concern in this context.

To tackle this, a study of location privacy in the XMPP protocol was conducted
in [43]. It surveys a group of attack strategies and vulnerabilities that take advantage
of URL handling in this protocol or through associated applications and services. The

74

primary goal of this work was to survey vulnerability to location privacy attacks using
URLs, due to the use of HTTP as result of XMPP events.

The reason for choosing XMPP as a subject of study was threefold. First, because
historically Instant Messaging (IM) services are considered to have a strong privacy
model with regards to location privacy between users, messages always go through a
central server to reach the destination. By comparison, the privacy model for web
applications is weak, since each HTTP request reveals the user’s IP address to the
remote party.

Second the integration of this protocol with web services was widespread at the
time. When [43] was published, both Facebook and Google supported this protocol for
their respective IM services1, which opens the door for door to leveraging web browser
privacy attacks over this protocol and studying service provider practices in this area.
In particular, the Facebook and Google services connect users to their social network
rosters, which could open an attack vector for friends, co-workers or other types of
contacts depending on the social network. While this protocol has lost favor in this
context it is still common for internal communication, or as part of other protocol (e.g.
IoT).

Finally, it is an area where protocol extensions are common practice. The protocol
is extensible and client side implementations often take advantage of this to introduce
capabilities that go well beyond the intended feature set of the protocol. Likewise since
it is a federated protocol, different services apply different policies, to the point where
feature implementation may differ with each service provider. Multiple extensions to
the core protocol are available and published as a XMPP Extension Protocol (XEP).

5.2.1 Attack strategies

The underlying attach strategy, is to take advantage of the fact that some XMPP
clients partially behave as HTTP clients and support a subset of their capabilities.
In theory, if a client to client message could trigger an HTTP request to a resource
controlled by the attacker (Figure 5.1), then this would be enough to determine user
location based on IP address geolocation[20, 22].

Traditionally, to trigger this type of information disclosure attack in an IM protocol,
the first approach is to trigger any feature that requires direct point-to-point commu-
nication between clients. File transfer is usually the classical vector for these attacks,
but IM protocols usually prevent this information from being released without at least
requesting consent from the target user. In this regard XMPP is very conservative:
initially it only provided transfers going trough the server (in-band), and out of band
exchanges require confirmation from the receiving user before they release information.

1Facebook removed XMPP support in 2015, and Google in 2017.

75

IM/Social networking
Service

1. Message

Attacker's
Web Server

2. Message

Target
Client

3. HTTP Request
4. Relay request
information

Attacker

Figure 5.1: XMPP information disclosure attack via HTTP

As such, the primary target of work are attacks that do not require user interaction
to succeed, and if possible, the target should not realise the attack is taking place. In
particular three classes of vulnerabilities are of interest, in order of decreased generality:

1. Vulnerabilities in the XMPP protocol that can implicitly trigger HTTP requests.
2. Implementation practices that, while following protocol specification, uninten-

tionally trigger these attacks.
3. Third party extensions that enable this kind of behaviour.

Some of these attack techniques are specific to XMPP while others can be reused
with other protocols or applications that apply similar practices.

This work, illustrates the weaknesses that can be derived from three types of fea-
tures: the use HTML content within messages, the retrieval of roster metadata using
the HTTP protocol, and finally the use of client side extensions that automatically
fetch data based on URLs found in messages. Of course, other attacks can explore
different aspects of these weaknesses, but the work here should be enough to illustrate
the privacy concerns that easily appear.

5.2.1.1 HTML Formatted messages

Protocol extension XEP-0071[193] introduces the use of HTML as message data format
for XMPP messages. The original goal was to support text formatting with font sizes,
colours and the inclusion of references to external data to be loaded using HTTP, in
particular images.

The protocol draft adequately discusses the privacy implications of introducing
HTML rendering within the IM client and provides recommendations to mitigate them,

76

from policies that delay HTTP requests until the user clicks the content to outright
disable any form of data formatting and loading.

This method requires clients to support the protocol extension XEP-0071[193],
with no requirements whatsoever on the XMPP server. An attacker crafts a message
with links (either a text anchor or image) under his control. Since messages are sent to
specific users in the roster, different messages can be sent to different users, establishing
a unambiguous relation between each target and the links being retrieved.

While sending a direct message may prompt the target user to realise something
is happening, HTML formatting also provides ways to conceal content. Images can be
1 pixel wide transparent images that look invisible, and the text description for URL
links can be empty or contain invisible characters. The combination of these techniques,
means the target might associate any type of action notification to a spurious error on
the application rather than an action from the attacker.

5.2.1.2 Cross referencing HTTP and XMPP

XMPP clients exchange various metadata about the user. In particular, the proto-
col provides three extensions to exchange user icons (Avatars), XEP-0084[194], XEP-
0153[195] and XEP-0054[196]. The three extensions differ in how this data is ex-
changed, but one feature is common among the three: all support the retrieval of
avatars using HTTP.

XEP-0084 and XEP-0153 have additional requirements. Attacks targeting XEP-
0153 require client support for external URLs in the vCard format, while attacks to
XEP-0084 require server-side support.

The primary difficulty of targeting this feature is that this data is sent equally to
all contacts in the roster. As such there is no way to target an individual user with this
approach, because the server will forward the attack URL to all users. To circumvent
this issue, this attack can be combined with browser fingerprinting techniques [197,
198] in order to match eventual HTTP requests with each user in the roster.

In this regard, XMPP clients behave just like web browsers: They advertise ap-
plication specific information (application brand name, version, supported capabilities
and operating system) among users (i.e. in band through the XMPP server). Likewise
HTTP client implementations also send HTTP headers that expose similar informa-
tion. This means browser fingerprinting techniques can be used from XMPP protocol
information. Furthermore cross-fingerprinting between protocols seems to be a plausi-
ble way to overcome the main issue with this attack method, allowing us to identify
an HTTP request as belonging to a specific contact in the roster.

Even if cross referencing fingerprints between protocols is not sufficient to get an
unambiguous match, it is still possible to determine the correct HTTP fingerprint

77

from one of the other attacks to determine which contacts match the stored HTTP
fingerprint.

5.2.1.3 URL preloading extensions

A final approach is to target client side application extensions that fall outside the
scope of the protocol specification. Several client extensions automatically load URLs
sent inside messages, in order to provide in-line previews for images and videos, or
web page metadata. In practice, this is similar to the first attack method that was
described using HTML data. The main difference however, is that such mechanisms
are protocol agnostic, or are third-party components installed by the user. Earlier
similar issues were described, for unintended data leakage through DNS, for different
types of applications, in DNS hostnames in browsers [105] and in general URLs in other
applications [106].

While this type of extensions will automatically trigger an HTTP request in the
client, they also prompt user attention for the new messages. Unlike in the first case,
there is no way to conceal the interactions, since extensions require visible text for the
URL in the messages.

5.2.2 Results

There is a large number of XMPP client implementations and services, each with dis-
tinct policies, and evolving in time. This study targeted a set of representative client
implementations and service providers that exhibit diverse behaviour that illustrates
the discussion of this topic: it is easy to breach privacy in current network environ-
ments.

On the client side, 16 XMPP clients were surveyed. From this set, 8 are desktop
applications, 3 run as part of web interfaces in a web browser, and 5 in mobile devices.
The analysed desktop implementations were the following: Kopete, Gajim, Psi, Citron-
IM, Pidgin, Messages, Digsby, Google-Talk and Jappix. For mobile devices, a selection
of the top ranking clients in the application market were selected. In the Android
operating system, Xabber, Beem and Jabiru. For iOS, Talkonaut and Trillian were
used. Some popular clients are kept off the test set, to avoid clients based on the same
implementation e.g. Adium for Mac is based on the same implementation as Pidgin
and iChat client shares the same code base with the Messages client.

For the Google services, tests were conducted using both the web interface (through
GMail) and the official desktop application for Windows. In Facebook services only
the web interface was tested, since there was no officially supported XMPP client at
the time.

78

HTML Messages HTTP Avatars URL Preloading
Support Vulnerable Support Vulnerable Support Vulnerable

Kopete • XEP-0153 • • •
Gajim • • XEP-0153 • •
Psi • XEP-0153

XEP-0084
Citron-IM XEP-0153
Pidgin • XEP-0153 •
Messages • XEP-0153
Digsby • • XEP-0153 •
Xabber XEP-0153
Beem/
Jabiru
Facebook
Chat
Google Talk XEP-0153
(Web)
Google Talk XEP-0153
(Windows)
jappix.com • • XEP-0153
Talkonaut/ XEP-0153
Trillian

Table 5.1: Results: XMPP Client vulnerability for each attack

Tests were conducted on the jabber.org or jabber.cz services, since they are know to
support all the required features, and also on the Google and Facebook XMPP services
when applicable.

Table 5.1 presents the summary of the results for each attack method in the various
XMPP client implementations. From the set of 16 clients, 5 were compromised. The
only attack method that succeeded against Pidgin, was through its URL preloading
extensions, however this extension is disabled by default. The majority of web-based
and mobile clients lack support for HTML formatted messages.

Additional findings about the multiple implementations and services for each of
the aforementioned attack methods are discussed more thoroughly in the following
subsections.

5.2.2.1 HTML formatted messages

From all tested client set, only 7 supported HTML formatted messages, and only 3
were found to be vulnerable to this method. However the HTML content was handled

79

differently by different implementations. The different client behaviour can be broken
down into four distinct groups based on how this feature was implemented:

1. Kopete, Gajim and Digsby use the WebKit library2 to render HTML content,
meaning they actually run a browser engine within the XMPP client application.

2. Psi renders HTML using a Rich Text parser, thus preventing any form of remote
request from the HTML parser.

3. Pidgin uses a regular text parser that allows some HTML tags. Messages for
Mac follows a similar approach.

4. Jappix.com was the sole web interface that allowed HTML formatted messages.

All successful attack cases used image tags to trigger the HTTP requests. Other
attack payloads, such as links, CSS stylesheet references, or the inclusion of Javascript
in the HTML payload were found to be ineffective.

5.2.2.2 HTTP published avatars

On the client side, while support for avatar information in XMPP was possible through
multiple extensions (XEP-0153 and XEP-0084), only the former seems to be widely
supported by client implementations. From the 16 tested clients, only 2 (Digsby and
Kopete) were found to be vulnerable, in both cases using XEP-0153.

On the server side, the Facebook chat does not support this protocol and any
attempt to set an avatar, through one of the other extensions will cause the connection
to the server to be terminated. Likewise Google Talk does not implement server side
support for XEP-0084 at all.

Since the avatar information was sent to all contacts in the roster, the primary
limitation of this attack was that it could not target a specific user. Previously it
was assumed that browser fingerprinting techniques could be reused to assist in this
task. This proved to be true. For both the cases that succeeded in triggering an HTTP
request for the Avatar image, the clients used a User-Agent header in the request which
clearly identifies the client application (Table 5.2). While Digsby only provides a terse
application specific header, Kopete uses the regular header from the WebKit library
which is not specific to the XMPP client.

2https://webkit.org/

80

Client HTTP User Agent
Kopete(Avatar) Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/533.3 (KHTML,

like Gecko) kopete/4.8.1 Safari/533.3
Gajim Gajim 0.15
Digsby Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US)
(HTML messages) AppleWebKit/534.10 (KHTML, like Gecko) Chrome/8.0.552.5

Safari/534.10
Digsby(Avatar) Python-httplib2/digsby
Pidgin Mozilla/5.0 (X11; U; Linux x86_64; en-us) AppleWebKit/534.16+

(KHTML, like Gecko) Version/5.0 Safari/534.16+

Table 5.2: HTTP User Agent used by each XMPP client

5.2.2.3 URL preloading extensions

Concerning URL preloading extensions, only 3 of the surveyed implementations sup-
ported this type of extensions, and when enabled all of them were found to be vulnerable
(Pidgin, Gajim, Kopete). In particular they immediately triggered an HTTP request
to fetch an image, even before the receiving user takes any action.

The only observable difference between these three implementations was that Pidgin
did not use any particular revealing information in its user agent (Table 5.2), while
both the other implementations clearly identify the XMPP implementation

5.2.3 Discussion

The purpose of this work was to experimentally understand how privacy leakage can
work in practice. Lessons learned reveal different aspects: how widespread some privacy
breaches are, some fundamentally weaknesses and if these could be seen as targets to
be addressed.

Given the target test set, only a moderate number of implementations were found to
be vulnerable to the attack designed her designed here. In general, both XMPP client
implementations and services seem to be very conservative when it comes to adopting
protocol extensions that would allow this type of privacy breach, in particular in mobile
devices.

Even in services where embedded web content is common, the use of embedded
HTML content was not supported (with the exception of jabbix). This privacy feature
happens despite the fact that the web versions of these services do protect users from
this type of privacy breaches. For example, if a Facebook user posts a link to an
image (on the web site), the Facebook services fetch a copy of the image to display on
their webpages which avoids disclosure of user location to a resource controlled by an
attacker. Other services employ similar techniques, Twitter for example only displays
content from pre-approved sources (Youtube for videos or established image hosting
services for pictures) otherwise the user will only see a clickable URL.

81

Interestingly enough, these approaches are not implemented in the XMPP clients,
which either disable the feature completely or are vulnerable to attack. This would
be understandable for client implementations that do not provide their own hosting
infrastructure, but even services like Google or Facebook that already implement this
kind of privacy features in other contexts simply disable these features in XMPP.

Earlier the use of browser fingerprinting techniques was proposed to circumvent the
main limitation for one type of attack. The initial expectation was that, when issuing
an HTTP request, XMPP clients might be identifiable, much like browser users with
a unique fingerprint [197]. Some clients clearly embed the XMPP client name as part
of the HTTP User-Agent header. This is sufficient to identify the specific implementa-
tion, but it did not reveal additional information, and requests were indistinguishable
between two users with the same implementation. Knowing the implementation may
however enable more targetd privacy attacks.

It is not unusual for client implementations to reveal application information as em-
bedded metadata. HTTP browsers and mail agents both have the User-Agent header,
and XMPP advertises application name and operating system in band. What is novel
here is consistent (in some cases) cross-protocol User-Agent information.

In HTTP a similar trend has emerged as established practice where consumers
for HTTP APIs, where Terms of Service (ToS) mandate an application must use a
distinguishable User-Agent header, even when more secure forms of identification are
available. As of January 2018 similar obligations can be found in the requirements for
third-party application using popular web service APIs like Reddit, Discord, Github
or Travis CI. This suggests similar types of privacy information could be accidentally
disclosed by these applications. In fact even if this test was dated in time, the trend
towards automated data handling (e.g. IoT), suggest this problem has potential for
growth.

5.3 Service provider enforced privacy for URLs

It is now established that privacy disclosure from names may be a consequence of multi-
ple independent issues. Protocol design, implementation issues, third-party extensions
and user-behaviour can result in privacy disclosure. In some namespaces are not user
defined or controlled i.e. the namespace is partially or completely controlled by other
entities, often a service provider that handles name assignment.

There is ample previous work that mitigates URL disclosure from side channels
(Section 3.5.2) through client side implementations. HTTP browsers in particular are
a common research target on this subject, but other protocols such as SMTP also
exhibit similar issues and implementation workarounds.

82

Even outside the context of side channel attacks, it is worth considering the amount
of metadata placed in a URL. URLs hold a reasonable amount of metadata about
interactions going through the network, revealing which services where visited, or who
the user is [174, 199, 200]. Either through remote exploitation or forensic analysis [201,
202] of stolen devices, a significant amount of information can be extracted from URLs
alone.

On the service provider side there are examples of ad-hoc privacy oriented policies
in general purpose protocols. For example, both Google and Facebook apply content
specific policies in HTTP websites and XMPP endpoints, to prevent privacy disclosure
between users. Similar policies are implemented by email providers that scrub revealing
information from SMTP transactions.

It is important to remember here that, in the real world, privacy is a consequence
of mutual enforcement within a space e.g. altough privacy is the result of individual
discretion, on a day to day basis people hold different expectations of privacy from
different locations. Some spaces are more private due to physical barriers, others
due to the letter of law or agreed human behaviour. This real world notion of variable
privacy does not translate into ”online spaces”. The technical burden of privacy is often
considered to be a user problem, or part of specialised infrastructure (e.g. ToR[203]),
and the service provider rarely takes action to protect user privacy.

A comparison can be drawn to cache oriented ICN network architectures (i.e. CCN,
NDN), where a variation of this privacy problem is the ability to probe intermediate
router caches for the presence of content. This remains an open problem even in these
architectures [161].

To reduce private information exposure in URLs, this section introduces mech-
anisms for encoding URLs in a way that conceals private information, shifting the
burden of privacy to the conent provider. For implementation purposes the work pre-
sented here is focused on encoding of URLs used in HTTP applications, since these
have specific requirements regarding backwards compatibility and support for DNS
hostnames. Based on a set of requirements a new namespace (a subset of URL) is
defined that conceals information in each URL component. The example namespace
defined here is meant as a transient URL namespace, used with distinct user sessions,
i.e. a Session Bound Namespace (SBN). However the notion of session could be re-
defined based on service provider policy to have different meanings, such as a time
limited namespace, or a distinct URL namespace based on user location. Overall this
mimicks the different privacy properties of spaces of physical in reality.

83

5.3.1 Requirements

URLs are used in various network protocols to identify and locate related resources,
such as content, users, or the network attachment point for a service. These names are
assigned based on parameters such as resource availability, human recognition, brand
value or semantic meaning. While properties, such as resource availability, are directly
related to the network resources or data from the service provider, others may be
defined arbitrarily.

The main challenge to be overcome is to enable a service provider to, at will, start
providing service under a transient URL namespace, that can be converted back to
the original canonical URL namespace. Furthermore, as a practical constraint it is
desirable that this can be implemented strictly as a server component. Both clients
and other external observers in the network will see URLs belonging to that transient
namespace instead.

The mapping function that converts regular URLs into this namespace is designated
ESBN

ESBN(URL) → URL′

and conversely the reverse mapping function is DSBN

DSBN(URL′) → URL

In an HTTP interchange (Figure 5.2) DSBN decodes incoming URLs values that are
in the namespace, while URL links sent to the client in the response are encoded with
ESBN . Regular URLs can still be used to reach the service, e.g. for the initial contact,
but the service provider initiates a new session bound namespace by redirecting the
browser to the correct URL (which may also be co-located with the server for the
original URL).

Formally the goal is to map a namespace of all URLs used by a service into multiple
session specific URL namespaces which are more suitable for privacy purposes. The
three key properties of this new namespace are the following:

1. Transient: URLs in this namespace are only useful within the session that gen-
erated it, and any use outside that session will result in an error.

2. Security: unintended parties should not be able to trivially reverse the mapping.
3. Extensible: URLs can hold ancillary information, placed therein as part of the

conversion process. This may be required to uphold the previous two points.

Section 3.3.5 already described the multiple components that constitute a URL
and internal limitations of each component. However, before looking at how URLs are

84

Browser Service Provider
(sbn.atnog.org)

Service Provider
<SBN>

1. HTTP GET http://sbn.atnog.org

2. REDIRECT POST
URL'=E(http://sbn.atnog.org)

3. HTTP POST URL'

4. URL=D(URL')

5. HTML URLs
as E(URL)

6. Reply with HTML content

Figure 5.2: SBN implemented at the server side

assigned in the Session Bound Namespace (SBN), some additional constraints need to
be introduced for the purposes of keeping compatibility with HTTP applications. Only
then can a valid mapping function be defined.

5.3.1.1 HTTP Backward compatibility

To retain backwards compatibility with HTTP in a way that minimises the required
changes to existing code base, some initial requirements are defined for the functions
ESBN and DSBN . These are meant as a compromise between the intended privacy
goals and current practices. Later these will be discussed again in light of practical
results.

From the previous breakdown of URL components (Section 3.3.5) and empirical
observation in existing HTTP applications, a group of six requirements can be defined:

1. The Scheme defines the protocol handling at the client, and therefore must not
be changed. Otherwise the client implementation would not recognise the URL
scheme.

2. The Username and Password in the Authority segment, as seen in HTTP
browsers, is left unchanged. In practice, browsers discourage the use of inline
credentials in URLs.

3. URLs in the same session must not break the same origin policy, i.e. they must
use hostnames under a common domain. Otherwise, browser features like cookies
or cross domain security checks will prevent applications from working. However
different sessions can use distinct hostnames.

4. Protocols (e.g. HTTP, FTP) navigate the URL Path using relative references.
As a consequence, relative references must also work for URLs in the SBN - thus
the number of segments in a mapped path must remain unchanged.

85

5. For some HTTP based applications, the URL Query is manipulated at the client
side. Ideally the mapped query attribute names should not clash with the ones
used by the application. A less common case can be seen in JavaScript appli-
cations, where the client expects to read the Query string; in such cases the
mapping function should not alter it.

6. The Fragment is considered to be a local (client-side) reference, and can point
to protocol specific content. Moreover the URL fragment is typically not sent
as part of a request (HTTP), so there is no gain in modifying it for privacy
purposes. If the concern is that these expose content information, they can be
replaced with hashes, but this is not covered in this implementation.

Paths are frequently manipulated at the client side, using relative links and known
path segment names. In order to support compatibility with these cases, an additional
requirement is introduced for the Path component:

7. A path can include a mixture of segments encoded and non-encoded according
to the SBN.

Requirement 7 in particular is a compromise that relaxes the goal of privacy for
compatibility. It facilitates the adoption of this scheme where it would otherwise require
generating custom per session Javascript code.

Two conclusions about the desired function can be extracted from requirements 4
and 7. First, one must be able to distinguish encoded and non encoded Path segments.
And second, path segment transformations must be independent from one another i.e.

ESBN(Path) = /ESBN(Path0)/ESBN(Path1)/...

DSBN(ESBN(Pathi)) = Pathi

And naturally it follows that using the reverse mapping function in a Path that was
not encoded, returns the same Path.

DSBN(Pathi) = Pathi

For purposes other than web based applications, this set of requirements may be
unnecessary. But for now all these assumption are left in place. Later Section 5.3.4
and Section 5.3.5 will look into their consequences and strategies for relaxing them.

5.3.1.2 Viable mapping functions

Since the ESBN() function needs to be reversible for the service provider to be able to
determine the original URL, then the service provider either stores mappings between

86

all URLs, or the new URL′ contains all the original information encoded within their
new representation.

The first option is typically used by URL shortening services: they generate a
unique short URL that maps into the original URL, and then lookup the new URL.
However this approach does not fit well into this type of scenario. For a distributed
service provider it would require a synchronised method to generate new URLs, and a
distributed mechanism to resolve them. Furthermore since the namespace is transient,
multiple SBNs can be served at the same time, e.g. one for each user of the service,
which further expands the number of stored mappings

A second option is to encode the original URL information as part of the new one.
To prevent third-parties from reversing the transformation this means encrypting the
content before encoding it as part of the new URL. This is the approach followed here.

Choosing an encryption scheme for this task requires determining the best compro-
mise between the overhead and limitations of longer URLs with the performance costs
of different encryption schemes and deployment choices. Nevertheless the first step
is to cross reference the properties from the URL namespace with the requirements
defined earlier, to define this new namespace.

5.3.2 Session Bound Namespaces

Based on the requirements identified in Section 5.3.1 the mapping functions can now
be defined. When converting an URL into the SBN, the original URL components are
encrypted (designated as K(), where K is one of the encryption schemes that were
studied). The choice of encryption schemes presented here is not meant to be exhaus-
tive but illustrative: it covers some of the more popular off-the-shelf implementations
schemes available for different types of encryption.

For symmetric encryption, two schemes are used. AES-CBC-1283 and Salsa204.
The later is a stream cipher, and requires the caller to ensure non repeatable nonces
are used with the same key. For asymmetric encryption both RSA, and Elliptic Curve
Cryptography5 are considered.

The encoding scheme for each URL component is described separately, namely the
Authority, Path and Query. The remaining components Username, Password, Port and
Fragment are not described since they are left unaltered for compatibility purposes.
Table 5.3 shows an example of the output of the ESBN function for each individual
component.

3AES-CBC-128 as used by the python-cryptography module, with PKCS7 padding and HMAC256
4As used by the sodium/NaCl implementation
5Standard ECC curves in the seccure implementation

87

Table 5.3: Encoding examples for different URL components (K() is ECC/p256)

Component Input ESBN(percomponent)
Hostname sbn.atnog.org ad4cbfteczl5i5jlqdyop7ji7lb7kxsy3lgcvqzcw5i5ks3kt4kdsr

exsc5deqw.s7moiamauu7uogxhmi53dwj5b3m
y36bh2c3wkkqgfi7rf3eydqwuq.sbndomain.tk

Path /hello /@AUNuJ4C2jyxQxkWdN-
jKX689p4wLfInywtEqTiAVW
4EgazeDo4Wq1n84iXJm2JjL0A

Query ?action=42 ?sbnquery=AL8Z-RdNVJ5-41-
Oqu3K09l4xhOy8mmorBz
j3xnDNXVNI2PPjVje2cHtC0LMH3dlI8J7fw

5.3.2.1 Authority

For this component the hostname must be replaced with a new one, which is
apparently unrelated to the original and unique for each session. For example
ESBN(sbn.atnog.org) → session1.sbndomain.tk are to an observer unrelated host
names.

This means the new hostname should not be based on the original domain name,
e.g. a subdomain. But hosts for different sessions can be part of a common domain
(e.g. session1.sbndomain.tk and session2.sbndomain.tk). This problem can be subdi-
vided into the following points:

1. Efficient allocation and management of bulk DNS names as session identifiers
that point to the correct servers

0 20 40 60 80 100 120
Plaintext size (bytes)

50

100

150

200

250

C
ip

he
rt

ex
t s

iz
e+

ba
se

32
 (

by
te

s)

AESCBC128
Salsa20+Poly1305
ECC p160
ECC p256
ECC p521
RSA 1024bit

Figure 5.3: Host overhead for multiple encryption schemes

88

2. Verifying a hostname as being valid for a given SBN

As such the function must allocate a new DNS hostname for the session. Even
assuming this process could be time consuming, domain names can be acquired and
configured in bulk. The process of configuring one hostname to point to the proper
host would take at most a DNS update [204], provided the TTL for the hostname is
low. If necessary, the DNS hosts can be preconfigured, long before they are needed by
the service provider and used as needed.

Alternatively, each individual hostname doesn’t have to actually exist as a single
DNS record. A wildcard rule can be enforced at the authoritative DNS server for a
subdomain to the same set of servers.

The hostname part of the URL is converted as follow:

Host′ = base32(K(Host)).TLD

Where the TLD is a separate level domain under the control of the service provider,
and Host is the original hostname. Likewise, reverse mapping function would decrypt
the hostname to extract the original hostname.

Figure 5.3 shows a comparison of the overhead for different encryption schemes
(K). The total sizes include the overhead for base32 encoding. Even using the most
expensive scheme (ECC/p521 in Figure 5.3) would still allow us to encode 80 bytes
within the new hostname. Using a 20 byte nounce, implies the original hostname must
not exceed 60 bytes. RSA is always padded to a constant size, and a larger RSA key
cannot be used because the ciphertext would be larger than 250 bytes. The 1024 key
size implies a plaintext larger than 86 bytes cannot be encrypted (maximum plaintext
size when using RSA-OAEP).

For the example, in Table 5.3, since the encoded content is larger than 63 bytes
(the maximum size for a DNS hostname label), it was split over two labels.

5.3.2.2 Path

As outlined previously in Section 5.3.1.1, for compatibility purposes each path segment
is encoded separately in order to retain the original Path structure.

If K() is an encryption function then an individual path segment will be encoded
as @base64(K(segment)). The full path is encoded, one segment at time, as

/p0/p1/... → /@base64(K(p0))/@base64(K(p1))/...

The “at” symbol(@) is used here as a special marker to distinguish between Path
segments encoded into the namespace, and those that are not (Section 5.3.1, Require-

89

0 500 1000 1500 2000
Plaintext size (bytes)

0

500

1000

1500

2000

C
ip

he
rte

xt
 s

iz
e+

ba
se

64
 (b

yt
es

)

AES-CBC-128
Salsa20+Poly1305
RSA 1024bit
RSA 2048
RSA 4096
ECC p160
ECC p256
ECC p521

500520540560580600

700
720
740
760
780
800

Figure 5.4: Path segment overhead for multiple encryption schemes

ments 4 and 7). This marker must not appear in non-SBN URLs, which led to choice
of @, but other path marker rules may used instead.

The encoding overhead for each path segment for different encryption schemes can
be observed in Figure 5.4. As in the previous case, RSA (PKCS7) is also included, now
for larger key sizes to allow for larger payloads, but as before they are limited in the
maximum payload (RSA1024 - 86 bytes; RSA2048 - 214 bytes ; RSA4096 - 470 bytes)
and padded to a constant size.

5.3.2.3 Query

Query arguments can be concealed by encoding the original query inside a new query
argument, using a reserved query attribute name for this purpose. For example using
sbnquery as the attribute name:

Query = sbnquery = base64(K(Query))

Data encoding is identical to the Path segment case, the encrypted query is encoded
as base64 and included as the value for the sbnquery attribute in the new query.

5.3.2.4 Additional Considerations

The previous definitions suffice to setup a Session Bound Namespace (SBN). Before
proceeding to discuss how to implement it, some additional considerations can be made
concerning this namespace.

While the previous scheme conceals information through encryption it does not nec-
essarily enforce uniqueness for different sessions. The underlying encryption scheme

90

may guarantee that encrypting the same plaintext twice will result in different cipher-
texts, but if this assumption does not hold two strategies can be considered:

1. Use distinct keys for each session, and identify keys based on signed HTTP
cookies, or similar authentication strategies for HTTP.

2. If using a single key, insert a random session specific nonce (e.g. 20 byte UUID)
as part of encrypted payloads.

Relying on encryption for the various URL components implies additional overhead
when handling these URLs. From the encoding methods described in this section,
processing a URL would require a number of encoding operations that increases linearly
with the number of path segments as

K(hostname) +
N∑

i=0
K(Pathi) + K(Query)

For a detailed performance evaluation, it is best to consult with detailed bench-
marks for each implementation and performance may vary as software6 and hard-
ware implementations of these schemes become available. Another way to amortise
the cost of these operations (at the expense of memory) is through caching of en-
cryption/decryption operations. This particular approach will be covered further in
Section 5.3.4.2.

5.3.3 Implementation

After surveying the namespace limitations for the creation of a Session Bound Names-
pace (SBN), the assignment and binding functions for this namespace can be imple-
mented for a specific protocol. For implementation purposes, HTTP was selected, since
it is the one of the most widespread protocols and it can be implemented strictly at
server side without requiring changes to client implementations. In particular in the
context of web based applications.

An instance of this implementation is available for consultation at
http://sbn.atnog.org, and its source code is also publicly available as an Open Source
package7.

Let us consider an example of how an SBN is bootstrapped when using an HTTP
service (Figure 5.5). As is common is HTTP exchanges, the user starts by browsing
using a well known URL for a service (in this example sbn.atnog.org). The Service
Provider (SP), based on internal policy, decides this request should use URLs in the
Session Bound Namespace (SBN) and responds with an HTTP redirect (step 3 in

6http://www.cryptopp.com/benchmarks.html
7https://github.com/ATNoG/flask-sbn

91

HTTP Browser Service Provider
(sbn.atnog.org) DNS Service Provider-S

BN

1. HTTP GET http://sbn.atn
og.org

2. DNS Update(<E(HOST)
>.sess.atnog.org)

3. REDIRECT POST http://<
E(HOST)>.sess.atnog.org

4. DNS Query(<E(HOST)>.sess.atnog.org)

5. HTTP POST http://<E(HOST)>.sess.atnog.org

6. Response HTML [all URLs for sbn.atnog.org encoded as E(URL)]

HTTP GET

REDIRECT http://sbn.atnog.org

(LOG OUT)

Figure 5.5: SBN workflow for an HTTP browser

Figure 5.5). This decision can be made based on specific policies, e.g. if the user is
about to login into the website.

For the HTTP case in particular, some care must be taken during the redirection
step: since the hostname in the URL will change, cookies established earlier will not be
in effect due to the Same Origin Policy (SOP). The original Service Provider instance
should redirect the browser along with a signed token to establish any required session
information at the new instance, as is the case in any HTTP login procedures that
crosses over different domains,

For this instantiation, step 2 in Figure 5.5 is skipped. Instead a wildcard DNS
configuration is defined at the authoritative DNS server, as pointed out previously in
Section 5.3.2.1. This is only possible because in this instance all sessions use the same
TLD.

A relevant observation for implementation purposes is that many web development
frameworks already apply dynamic control over URL generation for links within an
HTML page that point to the page hostname. Popular web frameworks such as Django,
Ruby on Rails, or JSP, generate HTML content based on page templates, where internal
URLs are formed automatically based on dynamic settings (service hostname, path
locations or localisation settings). In practice, this matches well with the previous
requirements, and any such framework should be well suited for this purpose, since
they already implement the logic required to handle dynamic URL schemes, due to

92

HTTP
Request

HTTP
Response

1. Decrypt URLs

2. Rewrite request
headers

4. Write response

SBN
Middleware

Cache

Flask

Flask Application Code

3. url generator

Figure 5.6: Functional diagram for SBN implementation

virtual hostnames, component path discovery and contextual URL creation.
In the HTTP privacy solution described in [173], their goals are achieved through

the implementation of a transparent HTTP proxies that rewrite HTML content. In-
stead it is preferable to implement this logic as close as possible to the service provider
web framework, because the previous observation means that is where the actual web
site URLs are assigned and there is room for further optimisations. For testing and
instrumentation purposes, this thesis actually implemented both approaches. The first
is ideal because ties SBN policy to the application, but the second provides the tools
used for experimental evaluation with existing websites.

The implementation described here is based on the Flask8 web development frame-
work, and is composed by the following components: (Figure 5.6): 1) a middleware
that handles incoming HTTP requests, decrypts URLs in HTTP headers; and 2) a
middleware replaces them with the decrypted values; 3) a set of URLs generator stubs,
that replace the ones used by default in application code or as part of the template
engine and rewrite all URLs created in HTML content (encrypting URLs in the SBN);
4) a module to rewrite HTTP responses.

All components share the same SBN configuration parameters that define how
URLs are generated (encoding and encryption schemes). Communication between
components happens either through a shared context associated with each HTTP re-
quest or through a shared cache. The later is used extensively to store encryption
and decryption results for the same request, and for a single request identical URL
component encryption/decryption operations are retrieved from this cache.

By default, the application code is unaware of the real URLs being used, as it always
uses the original decrypted URLs. This is only possible because internally application
code in Flask (as is the case in other frameworks) rarely handles URLs directly, instead
it builds URLs based on internal APIs that go through the URL generators building
them one component at a time.

Mechanisms for the application logic to take over URL transformation are also
8http://flask.pocoo.org/

93

implemented. This is required not only for the redirection example described earlier in
Figure 5.5, but also in scenarios where application logic wants to enable/disable the of
SBN URLs based on a fine grained policy.

5.3.4 Results

To evaluate the impact of this solution, the HTTP traffic for a group of popular websites
was analysed, based on the top websites in the Alexa9 ranking. Some websites from
that ranking are not included, since they are optimised to display minimal content on
load, or defer content loading using Javascript, making it harder to perform automated
analysis.

The evaluation methodology consists on instantiating a transparent HTTP proxy
that performs URL transformation based on various SBN policies, and accessing the
target sites through this proxy. All requests between the HTTP client and the proxy
operate as depicted in Figure 5.5, but instead of fetching content from a local database
or disk, requests are made to the target websites and the corresponding responses are
then rewritten to enforce the Session Bound Namespace (SBN).

This type of approach will always incur in a significant delay when compared with
not using the proxy. However the primary goal is to analyse the impact caused by
these methods with relation to the amount and type of URLs on a website, such as
URL length (number of path segments due to Requirement 7 from Section 5.3.1). Real
world websites provide results on the actual practices being used composing URLs
in websites. Throughout this analysis, the primary goal is to determine the number
of encryption and decryption operations required to enable the use of SBN in these
websites and the potential delay of the these operations.

As a starting point for this analysis, the most strict scenario is considered when all
links in a web page are transformed according to the Session Bound Namespace (SBN),
including links and references to other websites (i.e. other domains). The following
subsections will expand on these preliminary results through the implementation of
different URL transformation policies that relax the requirements identified earlier and
analyse how they affect these results.

When an HTTP request arrives at the proxy, all URLs in headers that belong to
the SBN are decrypted. Conversely when handling an HTTP response, all URLs in
the headers and the HTML content (anchors, images, css links, etc) are encrypted. As
such the impact of this approach depends on the number of HTTP requests required
to load the page, and the amount of URLs included as part of HTML/CSS content.

Different web pages exhibit distinct load behaviours concerning the number of
HTTP requests (Figure 5.7) and HTML URLs (Figure 5.8) that must be encoded

9https://www.alexa.com/topsites (2015)

94

0 20 40 60 80 100 120 140

facebook.com

youtube.com

baidu.com

yahoo.com

amazon.com

wikipedia.org

linkedin.com

ebay.com

yandex.ru

nytimes.com

Same Origin Policy Requests
External Requests

Figure 5.7: Number of HTTP requests

0 100 200 300 400 500 600 700 800

facebook.com

youtube.com

baidu.com

yahoo.com

amazon.com

wikipedia.org

linkedin.com

ebay.com

yandex.ru

nytimes.com

Same Origin Policy URLs
External URLs

Figure 5.8: Number of URLs in HTTP content

according to the SBN. Both these figures distinguish between URLs that fall under
the Same Origin Policy (SOP) as the visited website (i.e. use the same domain/port).
This distinction is not relevant yet since all URLs will be encoded/decoded according
to the SBN, but in later optimisations these values will be revisited.

For reference, an existing survey on this topic10 concludes the average web page
contains 100 objects references. By comparison the values seen in this test set are
much higher. The highest value is seen for the nytimes.com web site (Figure 5.8), but
some of the other web sites engage in content loading that defer HTTP requests that
rewrite the page until the user performs some action (e.g. scroll) instead of loading it

10http://www.websiteoptimization.com/speed/tweak/average-web-page/ (2014)

95

Figure 5.9: Encryption/Decryption operations for different web pages

all at once, which may explain this discrepancy. For the presented measurements, the
amount of HTTP requests includes all requests since the page starts loading, until it
is fully visible in the browser, and the browser stops issuing new requests for content.

Figure 5.9 shows the amount of decryption and encryption operations (per URL
component) that were required to serve each of the analysed web pages. Web page
values are broken down by encryption/decryption operation and the URL component
being transformed (host, pathlabel, query). The amount of required operations is
certainly high, which is not surprising since it includes all requests involved in fetching
webpage (i.e. images, CSS, javascript, HTML, etc), and in some cases this involves a
large number of HTTP requests (Figure 5.7), e.g. amazon.com (142 requests).

For the purposes of estimating how the previous results can impact request handling
delay, a microbenchmark for encryption/decryption operations is included in Table 5.4.
Presented times (in milliseconds) are averages of 3000 executions performed on a Intel
i5-4570R CPU at 2.70GHz. The remaining ECC curves and RSA are not included,
since their execution times are always higher than the remaining schemes and RSA is
in general too expensive for these purposes.

Table 5.4: Encryption/decryption microbenchmarks for a 1000 byte plaintext (average
per operation)

Scheme Encryption(ms) Decryption(ms)
Salsa20+Poly1305 0.063 0.049
ECC 160 3.524 1.914
AES-CBC 0.235 0.238

From the initial scenario, considering the amazon.com case from Figure 5.9 (with
776 encryption and 605 decryption operations), would require a total delay of 79 ms

96

0 200 400 600 800 1000
Encryption count

0

200

400

600

800

1000
De

cr
yp

tio
n

co
un

t

0

15

30

45

60

75

90

105

120

Ti
m

e
(m

s)

(a) Salsa20+Poly1305

0 200 400 600 800 1000
Encryption count

0

200

400

600

800

1000

De
cr

yp
tio

n
co

un
t

0

800

1600

2400

3200

4000

4800

5600

Ti
m

e
(m

s)

(b) ECC 160

0 200 400 600 800 1000
Encryption count

0

200

400

600

800

1000

De
cr

yp
tio

n
co

un
t

0

60

120

180

240

300

360

420

480
Ti

m
e

(m
s)

(c) AES-CBC

Figure 5.10: Estimated total Encryption+Decryption delay based on op-count

(Salsa20), 326 ms (AES) and 3892 ms (ECC).
These estimates can expanded for variable amounts of encryption and decryption

operations to highlight the desired target delay zones. Figure 5.10 plots the time delay
(as a color bar) for a number of encryption or decryption operations. For algorithms
where the is asymetric (e.g. decryption is more time consuming than encryption)
a slope can clearly be seen. This provides a way to quickly estimate the encryp-
tion/decryption delay of SBN based on an upper limit on the amount of operations
that can be performed when serving a page.

Figure 5.11 details the data used to generate table Table 5.4, and shows the 99.999%
confidence interval for encryption and decryption times as the payload size increases.
It can be seen that the plaintext size holds little impact in the delay for each operation.
While AES has similar times for encryption and decryption operations, in the other
schemes encryption is more expensive than decryption. This is the worst case for this
data set, since encryption is more common than decryption. The same relation can be
observed as the slope in Figure 5.10.

97

0 200 400 600 800 1000 1200 1400

0.05

0.06

0.07

0.08
Ti

m
e

(m
s)

Nacl encryption
Nacl decryption

0 200 400 600 800 1000 1200 1400

2

3

Ti
m

e
(m

s)

ECC 160 encryption
ECC 160 decryption

0 200 400 600 800 1000 1200 1400
0.22

0.24

0.26

Ti
m

e
(m

s)

AES-CBC encryption
AES-CBC decryption

Plaintext length

Figure 5.11: Encryption/Decryption times vs plaintext size.

As it stands the current delay for serving the heaviest page on the test set (ama-
zon.com) with the most expensive encryption scheme seems unacceptable, at nearly
4s just for encryption/decryption of URLs. The remaining subsections will introduce
different optimisations, through various policies implemented by the service provider
with regards to which URLs should be privacy protected. First, by restricting the Ses-
sion Bound Namespace (SBN) to URLs that fall under the Same Origin Policy (SOP);
second, through the introduction of widespread caching of encryption and decryption
operations across multiple requests; and finally, through the encoding of URL paths in
a single operation.

5.3.4.1 Restrict SBN to Same Origin Policy content

Since the goal of this implementation is to introduce a privacy preserving namespace for
content served by a specific service provider, a policy more aligned with these privacy
goals would be to only encode URLs that fall into the Same Origin Policy (SOP) as
the main website. That means, URLs under a different domain would not be encoded,
and would be left unchanged or served as without changes. In particular, for the
studied group of web sites, this avoids encoding URLs in HTTP requests from Content
Distribution Network (CDN) hosts, or encoding links pointing to external domains.

98

Figure 5.12: Encryption/Decryption operations for different web pages (Same Origin
Policy content only)

By reviewing Figure 5.7, it can be seen that most websites only issue between 1 and
6 requests under the SOPs except amazon.com that performs 13 requests. Similarly
the number of HTML URLs that fall under the SOP is also smaller (Figure 5.8).

For result analysis the strict definition of the SOPs is followed, meaning that dif-
ferent domains are not encoded. However it should be noted that this distinction is
not always a clear indicator of origin. For example nytimes.com loads static content
from the nyt.com domain, and facebook.com from fbstatic-a.akamaihd.net which are not
rewritten since they fall outside the SOP. However this information is known to the
service provider itself and could be articulated correctly into the policy for determining
which URLs fall under the SBN.

Like before, Figure 5.12 shows the amount of decryption and encryption operations
(per URL component) that were required to serve each of the analysed web pages.
The most noticeable difference from the previous case (Figure 5.9) is a decrease in the
number of decryption operations for the Host and Path URL components. Decryption
of URLs happens when handling an HTTP request, and URLs in HTTP headers need
to be converted. Since the number of HTTP requests that falls under the SOP is lower,
the amount of decryption operations decreases proportionally.

Further optimisations of this nature would require internal knowledge about the
content being served. For example the service provider may consider some URLs
disclose no significant privacy information and keep them out of the SBN.

5.3.4.2 Encryption/Decryption Caching

This implementation already provides caching of encryption/decryption operations
within the same HTTP request. However as pointed out earlier in Section 5.3.2.4

99

there is room for optimisation, if the server can cache encryption/decryption opera-
tions across multiple HTTP requests, but within the same session.

Continuing from the previous scenario, now extended with a cache for encryp-
tion/decryption operations, results in the operation counts seen in Figure 5.13. Un-
surprisingly, there is a decrease in the number of encryption/decryption operations for
all sites. These results assume a cache with no eviction, so these results offer a lower
bound for this optimisation. With other caching policies, interference between different
users using the same server would come into play.

Figure 5.13: Encryption/Decryption operations for different web pages (SOP content
only; With caching)

Some cases stand out where caching does not appear to be very effective.
For example linkedin.com, generates HTML links using 238 different subdomains
(af.linkedin.com, bb.linkedin.com, etc) causing a high number of encryption operations
that cannot be cached. Similarly, Wikipedia uses 289 different subdomains. These
two cases are particular in that hostname encryption represents the majority of oper-
ations Similarly amazon.com and yahoo.com also get only a slight improvement from
caching, due to the high number of unique links in those pages. Naturally, the benefits
of caching operations are less significant in these pages where most of the URLs are
unique.

5.3.4.3 Collapsed Path encoding

From the previous results in Figure 5.13 it can be seen the majority of encryp-
tion/decryption effort is spent with URL path labels. Only in two particular sites
(linkedin.com and wikipedia.com) this is not true, due to a high number of hostname
TLDs in use. Requirement 7 (defined in Section 5.3.1) requires path labels to be en-
coded separately. If this requirement is released, and the full path of the URL is

100

Figure 5.14: Encryption/Decryption operations for different web pages (SOP; caching;
collapsed path encoding)

encoded in a single encryption operation (just like the Host and Query), the number
of Path related operations would be a fraction of the previous case.

Like before, Figure 5.14 shows the amount of decryption and encryption operations
(per URL component) that were required to serve each of the analysed web pages
under this strategy. While the Path encryption operation count still looks high for
amazon.com and yahoo.com, the number of HTML URLs in these two pages is 290 and
307 respectively. This means the results seen in Figure 5.14 are already under one path
encryption operation per URL, due to the caching introduced in the previous step.

Recalculating the earlier delay estimates for the amazon.com case (370 encryption
and 3 decryption operations) would require a delay of 11 ms (Salsa20), 59 ms (AES)
and 1410 ms (ECC), which is a significant improvement. The ECC values are still
elevated, but are less than half of the previous values.

5.3.5 Deployment Considerations

Before closing off this topic, it is important to discuss the main barriers to the gen-
eralised adoption of these techniques, in particular those encountered while deploying
the described implementation, and what approaches can be taken to address them.

The motivation for this approach is to provide service providers with mechanisms
that enable them to improve privacy for URL namespaces under their control. This is
a form of service enforced namespace privacy that mitigates attacks that target URL
information, either in transit, via cache probing attacks, or through forensic inspection
of URL caches in user devices.

However this technique has deployment requirements that need to be discussed as
well as implications that must be considered before wide deployment can be sought.

101

5.3.5.1 Relation to other privacy tools

Mechanisms for confidentiality and anonymity are orthogonal to this approach. For
example HTTPS would still be required for confidentiality as messages flow through
the network. Likewise for source or destination anonymity ToR [203] can be used,
replacing the use of regular DNS hostnames with an .onion address used to reach a
hidden service, in which case the hostname in the URL is not altered.

For transient .onion addresses the service provider would need to setup multiple
.onion addresses, much like is done here for DNS. The main disadvantage of ToR
hidden services in the context of this scenario is that it requires server side setup of
the ToR connection, as well as client side configuration (i.e. installing Tor), but the
added anonymity may be necessary. Alternatively the user can access these services
using proxy services, such as ToR2Web11, at the expense of anonymity, and assuming
such services are trustworthy. This is not surprising since the primary goal of ToR is
network anonymity, while other client side tools (e.g. ToR browser) address privacy
issues.

The Veil framework [205] implements multiple techniques for URL and page content
obfuscation, that range from hiding URL metadata to remote browser execution [206].
It does not use URL encoding schemes like those described previously, instead it injects
a javascript library in web pages to decode and fetch encrypted URLs. While it shares
much of the same motivation, server side enforced privacy, the technical approach
requires complete recompilation of all HTML/CSS/Javascript content application de-
ployment and shifts some of the performance cost onto the client side. Primarily it
is concerned with a different class of attacks, and the proposed techniques could be
combined with the ones described here.

On the client side there are multiple tools for browser privacy protection, for ex-
ample most browsers implement a private browsing mode, under which no browsing
records are stored. However these are sometimes faulty, can be undermined by third
party components [207, 208], or fail against forensic inspection [202]. The same can
be said of privacy savy habits, such as regularly cleaning the cache and history, or us-
ing specialised extensions, but these are not practices the service provider can control
or enforce on users. Finally, disk encryption tools can protect data privacy in stolen
devices, but passwords can still be obtained through coercion, or poor judgement can
lead to the use of a weak password.

5.3.5.2 URLs lose global meaning

Since URLs in the Session Bound Namespace (SBN) are transient and based on service
provider policy, they loose their global meaning since they are only valid under a

11https://www.tor2web.org

102

certain scope. It is not unusual for service providers to generate transient links (e.g.
temporary download links) but the generalised use of this approach as proposed here
is not common.

The immediate implications of this change are a result of the browser/user being
unaware of the transient nature of these URLs, as such:

1. Indexing of content (e.g. search engines) will not work
2. Bookmarking and sharing of URLs will not work

These aspects are significant usability issues that hinder user experience, but can be
addressed through additional work, and seem desirable outcomes from privacy concerns.

Indexing of content by search engines is also covered in [173], which notes that
search engines use well known user agents, and privacy mechanisms can be disabled
for these indexers, if this is desirable. Bookmarking and sharing stop working because
the URLs may have a limited life time, or worse, if they are pinned to the user session,
a shared URL will always result in an error.

To approach this issue, further extensions to the SBN concept can be proposed. An
example is sharing the encryption key with the client (e.g. as the session starts send
the key as part of a cookie) allowing the browser to decode SBN URLs; However this
potentially sacrifices the privacy of the namespace to browser implementation issues.
For practical purposes this could be implemented as a browser extension. In simpler
cases, like bookmarking or content sharing widgets, this can be implemented using
javascript served as part of the web page. In effect this is the approach adopted by
[205] for all cases.

While these usability issues may seem extreme, in a privacy dominated scenario
they may be minor considerations. For example, in its most extreme case, [205] turns
the browser into a remote client for rendering, forgoing any usability aspects.

5.3.5.3 Impact in DNS caches

Given that the SBN establishes transient DNS names for each session, the number of
entries in DNS cache increases linearly with the number of sessions used by nearby
users. In addition the size of each entry is usually large due to the base32 encoding.

In this particular instantiation, SBN URLs match user session (but other policies
can be applied) and all DNS requests arrive from the same user terminal and there is
little benefit to intermediate DNS caches outside the terminal. Assuming DNS caching
resolvers apply a ”least recently used” eviction policy, these entries are removed as soon
as the cache becomes saturated. A non optimal case occurs for alternative eviction
policies, because the cache may keep these transient entries when they are not needed
and evict other entries instead.

103

5.3.5.4 Impact in HTTP caching

Given their nature as resource identifiers, URLs are used as keys for caching content,
at various locations:

1. The client terminal, in order to reduce loading times.
2. The Service Provider, to reduce load on its infrastructure.
3. Transparently, at the network provider infrastructure, to reduce network load.
4. In leased infrastructure, close to the access network (e.g. CDN), where the service

provider can place content to minimise retrieval times.

At the client terminal, the impact of this scheme will be inversely proportional to
session duration. Short sessions can result in a cache filled with URLs that will not be
reused. In fact, privacy conscious web sites could request a cache cleanup when logging
out, minimising this issue, but so far no such mechanism is widely available in browser
implementations.

Within service provider premises, the ability to revert the namespace mapping
for incoming requests means content can be cached based on the original URL. If
the mapping function is considered to be expensive, its results can also be cached to
minimise retrieval delays as was discussed previously.

Transparent caches are those most affected by this scheme since, as a consequence,
multiple copies of the same content can exist in the same cache. In the specific case of
HTTP this is a known issue when serving user specific content that cannot be cached
as a whole. To minimise this issue, the Service Provider may choose to serve some
recurrent content outside of the SBN (sacrificing privacy for bandwidth).

Finally for service provider caches leased at the access network, the mapping can be
reversed to retrieve from the cache. But this would require distributing the necessary
keys through this infrastructure.

5.3.5.5 TLS deployment complexity

When transient hostnames are used, the necessary adjustments must be made to TLS
deployment. Registration of TLS certificates in bulk, or even through wildcard host-
name certificates, can be too expensive for some services. While free Certificate Au-
thorities (CAs), such as letsencrypt12, alleviate these costs they might not be desirable
for the more privacy conscious services.

An additional usability concern is that the change into a strange hostname as
the session start clashes with established security practices - users don’t expect the
hostname in webpages to change drastically as they log in, and look for the correct
hostname for fear of phishing or TLS attacks.

12A CA which provides free wildcard certificates based DNS validation for three month periods.

104

It is also debatable whether extending this level of protection to the hostname is
worth the cost and performance impact. Since the user always starts by using the real
service hostname (step 1 in Figure 5.2), it can be argued a capable attacker will always
be able to extract the hostname (using TLS Server Name Indication or DNS MITM
attacks), unless other privacy tools are in place, such as ToR or DNSCrypt.

Economic alternatives to these issues are also worth exploring. If one service can’t
host multiple domains for SBN, maybe multiple privacy conscious services can agree
on sharing a pool of subdomains for this purpose. One can easily imagine a .sbn-
sessions.org service, that provides pools of hostnames for privacy conscious services to
use.

5.3.5.6 Privacy caveats

While primarily motivated by privacy, there are a number of related caveats that are
worth considering when using the proposed privacy strategy. First and foremost this
type of approach is implemented by the service provider, and it is but an implementa-
tion of service provider policies. As a transitive side effect it may improve user privacy,
but it would be naive for users to assume such policies to be anything but self serving
(even if by legal requirements).

Some of the client side privacy protection mechanisms that were discussed earlier
are meant for scenarios where the service provider itself, or some third-party is colluding
to compromise user privacy. As such, SBN cannot replace these tools, as it can only
assist the service provider in augmenting its own privacy.

Under the proposed scheme, URLs retain their original structure: the number of
Path labels, presence of Hostname and Query are not changed, unless path encoding
optimisations are considered. So far no privacy study addresses the possibility of
uniquely identifying a service provider based on the structure of the URLs it generates
i.e. if one inspects a browser cache solely based on URL structure rather than data
and the URL relation graph, is there a significant probability of identifying a specific
website or user? This is left as an open question, however the proposed scheme could
be extended to randomise URL structure as a way to mitigate that possibility e.g.
through the insertion of extraneous path labels, or simply by collapsing them into a
single label.

The primary assumption is that transient URLs function as privacy preserving
mechanism, and as such a valid concern is that the uniqueness of the URL components
can be used to track the client. While the placement of unique identifiers inside URLs
for tracking purposes is not new, unique session hostnames are not common, and will
be “leaked” as the client terminal issues DNS requests. An attacker with the ability to
intercept DNS traffic and a-priori knowledge about the SBN namespace, could exploit

105

this to track user movement, albeit with reduced metadata. The service provider can
minimise this issue by forcing periodic rotation of the namespace/session, much like
other network pseudonymity approaches (Section 5.4), otherwise the issue becomes
more significant for long lived sessions.

5.3.6 Privacy policies and performance

The pros and cons of systematically applying URL transformation privacy have been
considered, ranging from performance issues to deployment consideration (transferabil-
ity, memorability, performance, setup costs).

The choice of which parts to deploy is ultimately a compromise between policy and
cost. It is worth summarising here some of the main policies that were discussed in
previous sections, and whether or not these should be adopted based on the previous
results, since it is always possible to adopt a subset of these mechanisms:

Path: Protecting the URL Path alone will not prevent an attacker from deter-
mining which websites (hostnames) a user visited, but it does hide specific resources
represented in the Path. In some cases this may be sufficient, if the Service Provider
sees no need to conceal the remainder of the URL.

Hostname: From the points already discussed in this section, assigning new host-
names for different sessions may involve additional setup costs, and the privacy benefits
are arguable without further considerations, e.g. the first contact will always disclose
the hostname, and the leakage in DNS queries may be detrimental.

Query: Concealment of Query information through this scheme is highly depen-
dent on the application, some service providers only use queries as part of client
(browser) crafted URLs. But previous work suggests [174] that in general this compo-
nent is worth concealing.

Mixed use: Using a mixture of bound and unbound URLs in the same website
is also possible, provided the limitations of the Same Origin Policy are not an issue.
It is already common behaviour for websites to offload popular website components
(e.g. Javascript, images, videos) to external CDNs. Whether or not this is privacy
leaking depends on the website.

The previous choices can be coupled with the implementation schemes and opti-
misations discussed in Section 5.3.4. In particular the following three are the most
relevant:

1. The encryption scheme used to encode URLs
2. The number of encryption/decryption operations per URL
3. The effectiveness of caching encoding operations

The microbenchmark in Table 5.4 offers some indication on the delay introduced
by different encryption schemes. In the presented example (Section 5.3.4.3), a delay of

106

10-30 ms (Salsa20) might be acceptable for websites that are not delay sensitive, but
the 1-4 s delay seen when using ECC is unacceptable for most cases.

An additional observation can be made that, for the described mapping function,
the number of encryption operations is higher than the number of decryption operations
(because the user might not open all encoded URLs). The choice of other encryption
schemes, which are not covered by this work, could take advantage of this.

5.4 Pseudonymity mechanisms at the network layer

Fundamentally network pseudonymity consists in the use of distinct identifiers in dif-
ferent contexts. The notion of context is open to interpretation. A user might not
want his actions to be correlated with what he does in his private time, which may
span across time or through different locations. But the network has no notion of
privacy, it routes packets regardless of user intent and a quick glance at the MAC or
IP addresses in a packet allows one to infer if two packets are associated.

One of the goals of this work was to enable user centric privacy models and net-
work pseudonymity was one way to achieve this. The work published in [34] is an
implementation of network layer pseudonymity that provides mechanisms for a ter-
minal to instantiate virtual wireless interfaces with distinct MAC and IP addresses.
This enacts a type of pseudonymity, where an observer cannot correlate two streams
of traffic as belonging to the same device based the source MAC and IP addresses.
These pseudonyms were grouped into manageable contexts, or identities under which
the user performed multiple activities (Section 5.4).

The core tenet of network pseudonymity is to hold distinct names for the various
network related namespaces. This can be achieved through any kind of technique that
establishes new bindings in these namespaces. First of all let us consider how this can
be implemented, and then look at solutions to integrate this with higher layers and
aligning high level concepts with a concrete implementation.

Home
<Identity>

L2

L3

Work
<Identity>

L4

MAC MAC

IP IP

... ...

Figure 5.15: Cross layer identity contexts, establish groups of network pseudonyms.

107

5.4.1 Implementation

One form of abstraction that groups network identifiers are network interfaces, as seen
in operating system resources. In essence, the solution implemented here is a Virtual
Device Manager (VDM), a system service whose purpose is to manage virtual devices
created over a physical network interface. This particular implementation targets the
Linux operating system, and provides both control function to configure these interfaces
as well as data functions to handle traffic forwarding through them. On the control
path this service provides functions to instantiate new virtual interfaces with a different
MAC and IP addresses over a physical network interface. On the data path, it handles
packet switching from the underlying physical interface to the virtual interfaces and
vice-versa.

For the control path it provides functions to create and delete new virtual network
devices. These virtual devices are TUN/TAP interfaces, as provided by the Linux
operating system. Each new interface is assigned a randomly generated MAC address,
and must go trough normal network procedures to acquire an IP address (e.g. DHCP).
Furthermore, new application processes can be bound to a specific virtual device. This
is achieved through injection of shared libraries that intercept application calls to the
socket API, and bind sockets on creation to the intended virtual interface.

Concerning the data path, the VDM acts similarly to a packet switch: it forwards
packets between the virtual interfaces and the physical interface supporting them.
Because the implementation is fully aware of MAC addresses for all the virtual devices,
flooding is not required except when handling broadcast packets. This approach is
similar to container based virtualization solutions, that have since become popular.

Physical support for this system includes both generic Ethernet devices and Atheros
Wifi interfaces supported by the Madwifi driver. For wireless links, this was imple-
mented using a modified wireless driver, through packet injection, which allows for
multiple associations through the same card, provided they use the same channel. In
effect this is the primary practical limitation to the adoption of these techniques in
Wifi, because concurrent associations require driver or hardware support, which is not
possible in all cards. The primary contributions of this thesis for this work targeted
binding of interfaces to applications in the control path, and on packet switching on
the data path. For this reason the experimental results discussed next focus on perfor-
mance over Ethernet devices.

5.4.2 Alignment with upper layers

While [34] establishes the technical means for network pseudonymity. It still lacked
the means to align this control to user notions of identity. [32] envisioned two ways to

108

do this, first for ad-hoc applications placed by the user under an identity label, and
second in conjunction with external Identity Management (IdM) solutions.

For convenience the user can define local labels for user identities, which group
applications during execution. An application under a specific identity context can
only use the network pseudonyms associated to that particular context i.e. in practice
it can only use a network interface created for that particular identity. Applications
are started through a special interface that provides an identity selector, and binds
applications to that specific interface. This context binding extends all new processes
started under the chosen identity.

In addition, [35] extends this work to integrate it with external Identity Providers
based on SAML. This means new identity contexts, and consequently network
pseudonyms, are instantiated for different SAML identities. This match fits well, be-
cause identity management models already support the notion of pseudonyms [126,
96]. SAML defines different pseudonyms in its namespace, for each service provider
the user contacts, and in turn these SAML pseudonyms are associated with a group of
network pseudonyms

In effect, upper layer identities drives the assignment of pseudonym and creation
of new virtual interfaces. This establishes a cross layer identity context that, in theory
maintains distinct names in each context. However enforcement of this rule may re-
quire changes to existing applications, so they they can be instantiated under different
identities. For example browsers executed under two different identities, used fully
separate profiles with no common caches or extensions between them.

5.4.3 Integration with DNS privacy

For integration with DNS, [44] introduces a signalling mechanism for DNS resolvers to
insert resolution hints into DNS queries. In general these resolution hints allow custom
DNS resolution between components that support this extension, whose results are
customised based on the provided hints. Specifically they are used in [209], for two
purposes: to implement DNS authentication through a side channel with push based
authentication protocols, and to apply custom name resolution on top of the DNS
protocol.

The implemented approach follows techniques similar to those of [210] or [211], in
that a nameserver specific hint is placed in DNS requests and responses as an OPT
record (Figure 5.16). Internally the hint is represented as a regular TXT record [179].
This hint can be inserted by individual applications that choose an application specific
hint, or for the shared resolver at the user terminal.

In [209], this mechanism was reused to implement access control for DNS queries,
where the resolution response depended on the identity of the user making the request.

109

...
DNS Query

Options : u_int32_t

Resolver Hint : char string

OPTION-CODE

OPTION-LENGHT

OPTION-DATA

OPT RR

Figure 5.16: Resolution hint option in DNS messages (grey fields are EDNS0 headers)

For this particular case the hint placed in the DNS query was a user identifier, or rather
a pseudonym from an IdM provider.

The implementation in [44] includes three components: a resolver library to issue
DNS queries based on the Unbound [102] library; a modified authoritative DNS name-
server based on [212], and an authentication agent to handle authenticated queries.

If the nameserver does not support this extension, the query fails, yielding a DNS
error reply, as defined in RFC2671 [213]. A new query can then be made without a
hint, to get a regular answer, this works as a feature detection mechanisms where the
resolver library caches this information. For nameservers that support the extension,
the additional header is also used to carry error conditions that relate to the hint. By
itself this extension does not address confidentiality. This is left for other solutions
such as [46, 108], that already address this problem within a limited scope.

Like in [210] this approach must be used carefully, because an intermediate resolver
would cache the responses to these queries which might lead to undesirable side effects.
Instead this is meant to be used between a client with a specialised resolver library and
a supported nameserver, or between two resolvers (during iterative resolution) that
support this extension in order to convey specialised resolution context. This is its
primary downside, since it forgoes caching in intermediate DNS caches (if they do not
support this extension), otherwise the query responses might be cached and applied to
other queries for the same name.

For experimental testing in [44] a self contained implementation that uses XMPP
for authentication signaling [214] is used instead (Figure 5.17). In this case the authen-
tication process may introduce enough delay that cases the initial resolver to consider
the query message was lost and issue a new query. Nameserver query timeout usually
implements a backoff algorithm that can go up to 45s [215]. This is more than suffi-
cient. But duplicate DNS queries may occur between the resolver and the nameserver,
in which case the nameserver identifies them as being identical.

110

NameServerResolver

ServiceTerminal

XMPP Agent

XMPP Server

1. DNS query

6. DNS answer

2. XMPP Confirm Req.

4. XMPP Confirm. Resp.

3. XMPP Confirm Req.

5. XMPP Confirm. Resp.

Figure 5.17: Authenticating DNS queries using a XMPP authentication extensions

5.4.4 Performance impact

To analyse the impact of this implementation three metrics were selected based on
impact on network operations and setup times. The first was communication delay,
which is measured using UDP traffic; the second was available bandwidth measured
using TCP flows; and the third was the necessary time to bootstrap a new interface
including normal network registration (i.e. DHCP configuration and system setup).
All presented data points are averages of 15 runs, with a 99% confidence interval.

For comparison, reference values measured without this implementation are also
provided. When testing with multiple UDP/TCP flows, the reference case uses multiple
flows over the same physical interface while the VDM uses one flow per virtual interface.

Figure 5.18, shows an average delay penalty of 36ms. The additional delay ranges
from 20% to 50% of the total delay, and as the number of interfaces/flows increases so
does the delay. This is also true for the reference case.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
y
 d

e
la

y
 f
o
r

a
ll

tr
a
ff
ic

 f
lo

w
s
(s

)

Number of flows/Virtual interfaces

Reference Average
VDM Average

99% Confidence Interval

Figure 5.18: Communication delay for UDP

111

There is room for improvements on this metric, through changes to the current
implementation. Since these interfaces are implemented as Linux TUN/TAP interfaces,
and internally with packet switching using user-space buffers, a number of memory
copies are required for moving packets through. A production grade implementation
would require moving to a kernel only implementation, that could improve this by
avoiding copying packet buffers and only sharing memory pointers.

Available TCP bandwidth (per flow/interface) is presented in Figure 5.19. In the
reference case, multiple flows (through a single interface) are also used. As expected
it can be observed that bandwidth is affected. In particular the average bandwidth
decreases as the number of network interfaces increases. For clarity, the difference
between the reference measurements and the available bandwidth when using multiple
virtual interfaces is also depicted.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 1 2 3 4 5 6 7 8 9 10
 0

 2000

 4000

 6000

 8000

 10000

A
v
e

ra
g

e
 F

lu
x
 B

a
n

d
w

id
th

(K
b

it
s
/s

)

B
a

n
d

w
id

th
 D

if
fe

re
n

c
e

(K
b

it
s
/s

)

Reference Bandwidth
VDM bandwidth

Difference

Figure 5.19: Average TCP bandwidth per flow/interface.

Bootstrapping of new interfaces, shown in Figure 5.20, takes an average time of 3
seconds. This time includes all the necessary network association procedures, since the
interface is created until connectivity is available. As can be seen, this time does not
depend on the number of previously existing interfaces.

112

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s
)

Interfaces

Average
99% Confidence Interval

Figure 5.20: Bootstrap delay of several virtual interfaces.

5.4.5 Limitations

Given that a single device may operate multiple pseudonyms simultaneously, this re-
duces the number of available names in the network. Even assuming the MAC and IPv6
namespaces support up to 248 and 264 devices respectively, and will not be exhausted
within the local network scope, it is still possible for naming collisions to occur for ran-
domly generated values. In practice, to keep the collision probability below 0.1%, the
maximum number of simultaneous virtual devices is restricted to 5. If collisions still
occur, mechanisms such as IPv6 Duplicate Address Detection [18] need to be used to
detect them, and the interface will need to be reset. Currently most operating systems
already provide similar mechanisms to detect address duplication.

As one shifts away from the scope of the local network, pseudonymity approaches
present different requirements. Since network addresses are assigned localy, the client
has some leeway with regards to the assignment of multiple addresses (pseudonyms).
If needed, the same terminal can host multiple network cards, but as previously seen
this is not strictly necessary. Once multiple real, or virtual network interfaces are in
place, then assignment of multiple IP addresses becomes possible. This is the basis
for pseudonymity solutions, and it works for the source address because the client can
influence the scope where it is assigned, provided the local network allows it. Likewise
at the upper layers, it works for IdM solutions such as SAML because the user can

113

instantiate per service pseudonyms exactly for this purpose.
However the same cannot be said for names completely outside the control of the

user. It might be impossible for a user to bind a name to use as a pseudonym in such
namespaces. Or the binding of such name could have unintended consequences. For
example binding a random DNS name to use as a pseudonym to a service could be
locally meaningful, but could never be used in HTTP, because an HTTP service will
not respond to a host name it does not own [134].

As such, to conceal information on names outside local control, the user must
still resort to solutions such as ToR or VPNs that provide confidentiality through a
third-party that provides an endpoint. Moreover all these solutions are heavily user
centric, and require the use of custom components by the user and/or support from
an intermediate party. Going forward into the next section, the assumption is that
this is not always a possibility and that privacy at the upper layers may be breached
either through application side channels that reveal too much information, or from user
action that unintentionally bridges the gap.

5.5 Conclusions

In this chapter, mechanisms for improving naming privacy were introduced in multiple
scopes, making an transversal cut through the network stack.

At the application layer, it can be seen that privacy disclosure arrives in multiple
forms. Sometimes the underlying protocols are designed in such a way that immedi-
ately discloses identifiers from some namespace, in others protocol design is undone
by implementation or poor user choices. Section 5.2 takes a glance at a particular
instance of this problem, and finds some cases of privacy disclosure that result from
the cross-over between XMPP and HTTP, in particular that some techniques used to
attack HTTP produce interesting results for XMPP.

Borrowing from the state of the art it can be seen that a significant part of names-
pace privacy work is implemented through client side extensions. This works well up to
a point, but the assignment of names in this context is not related to the user but rather
to service provider policy. As such it is worth moving to the study of mechanisms that
increase privacy in the assignment of URLs.

With regards to general concealment of information in the URL namespace (Sec-
tion 5.3), privacy comes at a cost, that needs to be carefully balanced with the intended
privacy requirements. Not all measures are equally effective. Generating alternative
DNS hostnames implies setting up DNS infrastructure and TLS certificates beforehand,
which may be be costly and not fully effective. Per label path encryption can quickly

114

become costly and the stringent requirements which were introduced for compatibility
may have to be relaxed to address this issue.

Ultimately this approach provides a range of options to find an effective compromise
for service provider enforced privacy. Some other approaches are left unexplored, but
may be worthwhile as pursuing as applied to specific cases, or as a refinement to the
discussed approaches. Alternative encryption schemes, or precomputation of parts of
the namespace prior to use instead of relying on caching on-demand.

Finally pseudonymity approaches for IP and MAC addresses were introduced in
Section 5.4. These are effective as a client side mechanism for preventing correlation
of information based the terminal addresses. For wide applicability they are some-
what dependent on feature support in wireless devices, or conversely the number of
pseudonyms that can be held in parallel is limited by device support. These mecha-
nisms can be tied to different control mechanisms, based on user control or from other
notions of pseudonymity from IdM protocols.

It is worth noting here that the high level concepts studied here do not exhaust
themselves within this context, they are equally applicable in other protocols. Some of
the techniques described in this chapter could be equally applied to some of the ICN
protocols seen earlier, and similar contributions can be seen in that context NDN[161].

115

Chapter 6

Conclusions

We’re in the endgame now

Dr. Stephen Sanders

As the final chapter of this thesis, it is time to take a step back, provide an
overlook on how what was done ties together, review the initial objectives
and point out future directions.

6.1 Results & Achievements

This thesis introduces multiple mechanisms that alter name assignment policies in
multiple namespaces as one way to achieve improvements on security and privacy. The
assignment of names can be leveraged for features which are orthogonal to unique
identification or even to name resolution. At the genesis of this PhD thesis are two
specific topics that revolve around name assignment. The first is the embedding of
information in names, and the second is privacy disclosure as a consequence of naming
policies.

For this work, the implementation targets assumed commonly used protocols and
services. This keeps us grounded in current practices while keeping an eye out for sim-
ilar trends in alternative spaces, but it takes us into a mixture of unspecified behaviour
and current practices. In other words Saltzer[54] was right, in that the meaning of a
name, even the same name, is highly dependent on context and this characteristic is
commonly exploited for all kinds of purposes.

First, this thesis sets out to introduce secure namespaces into discovery protocols.
This can be seen as a natural progression for HIP [10], as the benefits that follow
are not dissimilar. But its applications fall onto a different type of scenarios, de-
centralised networks and point to point communications. From there, other types of
security information, signatures and even certificates can be part of names in some of

117

these protocols. Unstructured networks can benefit from such a global namespace, for
implementing protocols and services that are independent of the underlying network.

Since network namespaces tend to grow in usage scope, and be composed onto
other namespaces privacy becomes increasingly important. For this reason, techniques
for increasing privacy in several namespaces are implemented and evaluated. As a
side effect of this process, additional mechanisms for privacy exploitation were also
proposed.

The sub-sections that follow derive conclusions on the main subjects of study in
this thesis. The order is similar to that of the structure of the overall document.

6.1.1 Secure binding in discovery namespaces

Chapter 3 embeds security information in different discovery namespaces. This infor-
mation is then used to bootstrap security mechanisms, based on public key cryptogra-
phy. Through this approach one can introduce security features even if the underlying
discovery protocols lacks support for then, embedding hashes and signatures that can
be used for verification in the corresponding namespaces.

Different namespaces exhibit distinct properties and the type or amount of informa-
tion that can embedded varies, as does the resulting security capabilities. But at the
very least, some namespaces can carry public key based authentication for protocols
such as Bluetooth, DLNA and DNS-SD. Presumably this can be extended for other
discovery namespaces that employ URLs as names. This also extends to namespaces
that hold similar properties. Other network architectures, (namely NDN) are targeted
in this context, but similar network architectures could also be used. A limiting factor
here is the need to announce/publish additional names, to carry this information or a
minor impact on the cost of service advertisement. Since the fundamental protocols
remain unchanged, these mechanisms cannot prevent a Denial of Service Attack (DoS)
attack, but they shift security verification procedures to the discovery process and
increase privacy protection for the initiating party.

Hash based names are in widespread use in multiple technologies. They provide a
common approach for data integrity verification. But they are also used as identifiers
for key verification. Because the identifier is derived from a public key, this results in
globally unique (with low probability of collision) names. With this property in place,
and with the derived security mechanisms, other features can be implemented on top
of these discovery protocols.

6.1.2 A global discovery namespace

From a global discovery namespace, with security capabilities, some forms of session
mobility can be achieved. In particular, this is a form of cross protocol mobility, where a

118

previously known endpoint can be reached through a different transport protocol, which
enables policies that favour power consumption or throughput according to desired
policies.

Furthermore the availability of a cross protocol discovery namespace provides other
features that do not rely on the presence of security information in its names. A
global service type namespace facilitates cross protocol scenarios. Likewise, a global
device identification namespace facilitates network interoperability. In particular this
is explored in the construction of IoT discovery gateways, since they do not have to
hold state.

However it needs to be recognised that, like in previous cases in the literature, the
creation of a global namespace entails privacy risks. In particular for the case of a
globally unique device or key names, these are prone to mobility tracking by third
parties, or from collusion of involved parties. Some of the discussed privacy techniques
are after all a reaction to this type of concerns.

6.1.3 Privacy at the network layer

The notion of protecting privacy at the network layer, through allocation of multiple
names (i.e. pseudonymity) is a straightforward reaction to avoid disclosure of informa-
tion in those namespaces, in particular to prevent identification across different scopes.
New names are allocated to limit privacy exposure.

Names in network namespaces are usually finite resources. Thus privacy through
these method has a cost in network availability since scarcity may prevent attachment
to the network. Ultimately these resources are owned by the network provider, which
may not be sympathetic to user privacy concerns, leading the user to resort to other
types of privacy solutions.

At the network layer this is usually considered to be a problem with hostile ob-
servers. But the shift proposed in ICN could change all this, leading to a privacy
scenario that is directly affected by application policy.

6.1.4 Pseudonymity shift at the upper layers

When considering upper layer protocols, the primary distinction with regards to the
network namespaces is that users hold no bearing in the assignment of names. As such
with regards to this thesis the focus is on privacy mechanisms introduced by the service
provider, in particular this is discussed in the conext of HTTP service providers.

This does not mean client side privacy solutions do not exist, or are not required.
It only implies that privacy mechanisms implemented through specialised name as-
signment fall under the operational responsibility of the operators that assign those
names.

119

The primary means to achieve this is through encryption of individual URL com-
ponents, to generate transient reversible names. Since URL components have different
types, and each its own scope, this process is split over multiple namespaces and pro-
tocols. DNS hostnames need to be allocated in the corresponding DNS nameservers,
and TLS certificates need to be generated accordingly. Path segments are encrypted
labels that are only meaningful to the service provider. But due to their structure,
clients expect to manipulate them accordingly. As such strict requirements should be
introduced to allow this.

It is arguable that the strictness of the requirements introduced in this application-
oriented implementation can be relaxed through client side support, either at the ex-
pense of some privacy or through development tools that address individual short-
comings. [205] provides an approach at the opposite end of the spectrum, with high
privacy requirements, but shifting most of the performance costs onto the client side
or additional deployment tools. But we attempt to mimic the on the digital world, the
privacy notions of the physical world, the creation of private spaces which are held as
such by its owner.

Looking at common purpose encryption implementations, this is still the bottle-
neck for practical use of this approach. As such the degree of privacy needs to be
carefully weighted against the performance penalty. Much like the current trends on
TLS adoption by service providers, it might be worth considering that this type of
privacy disclosure warrant a similar investment. But such a degree of granularity re-
quires a clear definition on which names reveal too much, and which do not. This
implies, some type of detailed data model is in place that accurately categorises names
(or perhaps the objects they bind to) into privacy labels.

6.1.5 Revisiting Hypothesis and Objectives

At the start of this thesis, there was a question on how to assign names, and the con-
sequences of doing it differently. To study this question one had to look at established
practices, because most resolution systems are (to some degree) amenable to different
policies on name assignment.

To some degree, it is possible to add security semantics in names from common
purpose discovery protocols. The primary limitation being the amount of information
that can be embedded in a name, as well as protocol specific implications on use and
performance. An interesting consequence of doing this is that a namespace can be
defined for cross protocol identification of services and devices, a powerful tool for
interoperability. A consequence of this achievement is that, as any global namespace,
it may be too privacy revealing.

For privacy purposes, the main technique covered in this thesis is that of

120

pseudonymity, the transient assignment of names. The concept is straightforward
but the implications of its implementation vary with each namespace. Going up the
stack, or rather moving from local scope to distributed services over a global scope
implies a shift in the techniques used to achieve it.

The conclusion, at this point, is that the hypothesis was validated under the pre-
sented results. Names can be bound in ways that satisfy security and privacy goals.
But not without implications, on deployment considerations and a myriad of factors
that warrant discussion and further study going forward. Rather than a yes or no
answer, what is provided here is a set of techniques to implement such approaches, and
some tools to evaluate the cost of privacy by these techniques.

With regards to privacy requirements, it is important to remember that privacy
is not a unanimous concept. Often actual privacy is a consequence of enforcement of
multiple (sometimes contradicting) privacy policies. In particular, one type of privacy
protection does not relax the need for other complementary mechanisms.

More than the individual techniques or the solutions implemented here, it is the
pinning of this recursive relation that should be kept in front of one’s mind: that as the
network grows, global namespaces tend to emerge for the purposes of identification,
but must be followed by privacy mechanisms to curve this trend.

6.2 Future Work

Based on some of the conclusions from this chapter, but also on open points from the
previous chapters it is possible to draft some upcoming topics of interest, that either
flow as a direct consequence of this thesis or reflect related areas that were studied
throughout this work.

6.2.1 Namespace composition, routing and nesting

The overview presented in Chapter 3 shows how many systems define their namespace
as a composition of names from other namespaces. URLs are perhaps the most common
example, using a DNS hostname or IP and a file path.

XRI takes a different approach that generalises the nesting of names in other names.
The primary difference in XRI is that it allows for the inclusions of names in the XRI
namespace, i.e. a name may depend on other names in the same namespace.

XIA takes another approach and extends the notion of route as a name that is
constructed as sequence of names. It does this by using a Directed Acyclic Graph
(DAG) as a name. Instead of expressing a route, a name can be considered to represent
a list of possible routes, or a list of vertices in a graph.

121

It seems likely this type of construct could be explored for purposes other than the
ones it was originally intended for. In particular DAGs are a common way to express
distributed protocols, and privacy aspects could be pinned here.

6.2.2 Adversarial Privacy

It was already seen previously that relations of privacy can be transitive. One user may
reveal another’s location, or a service may expose identifying information that reveals
user identity.

An aspect pointed at in Section 5.3.5.6 is that privacy improvements for one party
may end up decreasing privacy for another. This turns privacy into an adversarial
problem, not because an attacker attempts to compromise it, but because privacy
efforts by one party may hinder another.

While there are models for privacy exposure, it would be interesting to close in on
the characteristics of these particular cases as targets for early elimination, in particular
if the privacy goals of multiple parties are not contradictory. This would mean finding
the overlap of privacy features that are not detrimental to other parties, and eventually
this could be seen as a distributed protocol on privacy agreement.

6.2.3 Applications outside of the scope of this thesis

This thesis draws heavily from current trends in ICN namespaces, and in particular it
studied them as used in alternative network architectures (e.g. NDN). Some of the
techniques introduced in Section 5.3 could be easily implemented in those architectures.

Related work in this context is embodied by [27, 216] and shows that the similarities
between URLs and NDN names are used to facilitate interoperability in this context,
while privacy mechanisms are introduced to avoid active censorship at the network
layer, because in NDN these names are fully visible by eavesdroppers. More generally,
the techniques in Section 5.3 can be used for any URL in any protocol. However, the
requirements used in this particular implementation with regards to key distribution
might have to be revised. In other scenarios, the SBN may be defined based on keys
shared by client and service (defining a private namespace), or multiple services (a
form of transient reference passing similar to SAML).

Based on Section 5.2 the use of browser fingerprinting for breaching privacy in other
protocols seems promising, even more so considering protocols with mixed use of the
HTTP protocol.

Finally it is worth pointing out that to some extent the global namespace defined in
Section 4.2 is composable with the privacy techniques described in sections section 5.4
and section 5.3.

122

6.3 Final Thoughts

The topics of security and privacy now gather significant attention, primarily because of
the wide spreading impact they have in society. Not only are individuals more aware
of the lack of privacy and its consequences, but companies now need to weight the
value of privacy against liability and consequences of exposure. But any considerations
about the cost/benefit of security and privacy are hard to support a-priori. Either it
is considered early on as a design requirement, or often too late to be effective.

In this thesis, these two aspects are studied within the context of naming. First as
a means to provide security features, and then as a privacy challenge to be tackled. In
retrospective this process of defining namespaces for security and then redefining them
as scope increases to preserve privacy seems to repeat (over time), and will ultimately
repeat.

The naive approach is to ignore this, and assume there will always be enough
resources to continue repeating this process. But, ideally, one should aspire to keep
this notion in mind before drafting a new namespace.

Furthermore since namespaces are composed from multiple sources the properties
of names seem to be in permanent flow, as conflicting requirements clash over time.
Privacy requirements are not uniform across the various involved parties. Some will
value their other features above privacy (e.g. global uniqueness), or their privacy at
the expense of others.

123

Bibliography

[1] Andrew Tanenbaum and Maarten Van Steen. Distributed systems. Pearson Prentice Hall, 2007.

[2] Drummond Reed and Dave McAlpin. Extensible Resource Identifier (XRI) Syntax V2.0. Orga-
nization for the Advancement of Structured Information Standards (OASIS), Committee Spec-
ification. Nov. 2005. url: http://www.oasis-open.org/committees/download.php/15376.

[3] Venugopalan Ramasubramanian and Emin Gün Sirer. “The design and implementation of a
next generation name service for the internet”. In: SIGCOMM ’04: Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols for computer communi-
cations. Portland, Oregon, USA: ACM, 2004, pp. 331–342. doi: 10.1145/1015467.1015504.

[4] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim,
Scott Shenker, and Ion Stoica. “A data-oriented (and beyond) network architecture”. In: SIG-
COMM ’07: Proceedings of the 2007 conference on Applications, technologies, architectures,
and protocols for computer communications. Kyoto, Japan: ACM, 2007, pp. 181–192.

[5] The FP7 4WARD Project. url: http://www.4ward-project.eu/.

[6] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs,
and Rebecca L. Braynard. “Networking Named Content”. In: Proceedings of the 5th Inter-
national Conference on Emerging Networking Experiments and Technologies. CoNEXT ’09.
Rome, Italy: ACM, 2009, pp. 1–12. doi: 10.1145/1658939.1658941.

[7] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy kc, Patrick Crowley,
Christos Papadopoulos, Lan Wang, and Beichuan Zhang. “Named Data Networking”. In: SIG-
COMM Comput. Commun. Rev. 44.3 (July 2014), pp. 66–73. doi: 10.1145/2656877.2656887.

[8] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, and Matthias Wäh-
lisch. “Information Centric Networking in the IoT: Experiments with NDN in the Wild”. In:
Proceedings of the 1st ACM Conference on Information-Centric Networking. ACM-ICN ’14.
Paris, France: ACM, 2014, pp. 77–86. doi: 10.1145/2660129.2660144.

[9] Ravi Ravindran, Yanyong Zhang, Luigi Alfredo Grieco, Anders Lindgren, Dipankar Raychad-
huri, Emmanuel Baccelli, Jeff Burke, Guoqiang Wang, Bengt Ahlgren, and Olov Schelen. De-
sign Considerations for Applying ICN to IoT. Internet-Draft draft-irtf-icnrg-icniot-01. Work
in Progress. Internet Engineering Task Force, Feb. 2018. 50 pp. url: https://datatracker.
ietf.org/doc/html/draft-irtf-icnrg-icniot-01.

[10] R. Moskowitz, T. Heer, P. Jokela, and T. Henderson. Host Identity Protocol Version 2 (HIPv2).
RFC 7401. Apr. 2015. url: http://www.rfc-editor.org/rfc/rfc7401.txt.

[11] Thomas R. Henderson, Christian Vogt, and Jari Arkko. Host Mobility with the Host Identity
Protocol. RFC 8046. Feb. 2017. doi: 10.17487/RFC8046. url: https://rfc-editor.org/
rfc/rfc8046.txt.

[12] Pekka Nikander and Julien Laganier. Host Identity Protocol (HIP) Domain Name System
(DNS) Extensions. RFC 5205. Apr. 2008. url: https://rfc-editor.org/rfc/rfc5205.txt.

125

http://www.oasis-open.org/committees/download.php/15376
https://doi.org/10.1145/1015467.1015504
http://www.4ward-project.eu/
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2660129.2660144
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icniot-01
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icniot-01
http://www.rfc-editor.org/rfc/rfc7401.txt
https://doi.org/10.17487/RFC8046
https://rfc-editor.org/rfc/rfc8046.txt
https://rfc-editor.org/rfc/rfc8046.txt
https://rfc-editor.org/rfc/rfc5205.txt

[13] Jeff Ahrenholz. Host Identity Protocol Distributed Hash Table Interface. RFC 6537. Feb. 2012.
url: https://rfc-editor.org/rfc/rfc6537.txt.

[14] I. Baumgart and S. Mies. “S/Kademlia: A practicable approach towards secure key-based
routing”. In: 2007 International Conference on Parallel and Distributed Systems. Dec. 2007,
pp. 1–8. doi: 10.1109/ICPADS.2007.4447808.

[15] Célestin Matte, Mathieu Cunche, Franck Rousseau, and Mathy Vanhoef. “Defeating MAC
Address Randomization Through Timing Attacks”. In: Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks. WiSec ’16. Darmstadt, Germany:
ACM, 2016, pp. 15–20. doi: 10.1145/2939918.2939930.

[16] Simon Josefsson and Linus Nordberg. Improving Privacy for the email Received Header.
Internet-Draft draft-josefsson-email-received-privacy-01. Work in Progress. Internet Engineer-
ing Task Force, Nov. 2015. 5 pp. url: https://datatracker.ietf.org/doc/html/draft-
josefsson-email-received-privacy-01.

[17] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0. RFC
1945. Internet Engineering Task Force, May 1996, p. 60. url: http://www.rfc-editor.org/
rfc/rfc1945.txt.

[18] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration. RFC 4862.
Sept. 2007. url: http://www.rfc-editor.org/rfc/rfc4862.txt.

[19] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless Address Autoconfig-
uration in IPv6. RFC 4941. Sept. 2007.

[20] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba Gueye. “IP
geolocation databases: unreliable?” In: SIGCOMM Comput. Commun. Rev. 41.2 (Apr. 2011),
pp. 53–56. doi: 10.1145/1971162.1971171.

[21] Russ Housley, John Curran, Geoff Huston, and David R. Conrad. The Internet Numbers Reg-
istry System. RFC 7020. Aug. 2013. doi: 10.17487/RFC7020. url: https://rfc-editor.
org/rfc/rfc7020.txt.

[22] Chuanxiong Guo, Yunxin Liu, Wenchao Shen, H.J. Wang, Qing Yu, and Yongguang Zhang.
“Mining the Web and the Internet for Accurate IP Address Geolocations”. In: INFOCOM
2009, IEEE. Apr. 2009, pp. 2841–2845. doi: 10.1109/INFCOM.2009.5062243.

[23] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.
Katsaros, and G. C. Polyzos. “A Survey of Information-Centric Networking Research”. In:
IEEE Communications Surveys Tutorials 16.2 (Feb. 2014), pp. 1024–1049. doi: 10.1109/
SURV.2013.070813.00063.

[24] Sebastian Kaebisch and Takuki Kamiya. Web of Things (WoT) Thing Description. Tech. rep.
First Public Working Draft. W3C, Sept. 2017. url: https://www.w3.org/TR/wot-thing-
description/.

[25] IPSO Alliance, “Enabling the Internet of Things”. url: http://www.ipsoalliance.org.

[26] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol
(CoAP). RFC 7252. June 2014. doi: 10.17487/RFC7252. url: https://rfc-editor.org/
rfc/rfc7252.txt.

[27] Reza Tourani, Satyajayant Misra, Joerg Kliewer, Scott Ortegel, and Travis Mick. “Catch Me If
You Can: A Practical Framework to Evade Censorship in Information-Centric Networks”. In:
Proceedings of the 2Nd ACM Conference on Information-Centric Networking. ACM-ICN ’15.
San Francisco, California, USA: ACM, 2015, pp. 167–176. doi: 10.1145/2810156.2810171.

126

https://rfc-editor.org/rfc/rfc6537.txt
https://doi.org/10.1109/ICPADS.2007.4447808
https://doi.org/10.1145/2939918.2939930
https://datatracker.ietf.org/doc/html/draft-josefsson-email-received-privacy-01
https://datatracker.ietf.org/doc/html/draft-josefsson-email-received-privacy-01
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc4862.txt
https://doi.org/10.1145/1971162.1971171
https://doi.org/10.17487/RFC7020
https://rfc-editor.org/rfc/rfc7020.txt
https://rfc-editor.org/rfc/rfc7020.txt
https://doi.org/10.1109/INFCOM.2009.5062243
https://doi.org/10.1109/SURV.2013.070813.00063
https://doi.org/10.1109/SURV.2013.070813.00063
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
http://www.ipsoalliance.org
https://doi.org/10.17487/RFC7252
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.1145/2810156.2810171

[28] Abdelberi Chaabane, Emiliano De Cristofaro, Mohamed Ali Kaafar, and Ersin Uzun. “Pri-
vacy in Content-oriented Networking: Threats and Countermeasures”. In: SIGCOMM Comput.
Commun. Rev. 43.3 (July 2013), pp. 25–33. doi: 10.1145/2500098.2500102.

[29] Rui Ferreira, Alfredo Matos, Susana Sargento, and Rui L. Aguiar. “Enabling Identity Aware
Applications”. In: Proc Conf. sobre Redes de Computadores - CRC. Oeiras, Portugal, Oct.
2009.

[30] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246. Aug. 2008. doi: 10.17487/RFC5246. url: https://rfc-editor.org/rfc/rfc5246.txt.

[31] Azevedo, R., ed. FP7 SWIFT, Deliverable 207b, Final SWIFT architecture. Apr. 2010.

[32] Rajasekaran, H., ed. FP7 SWIFT, Deliverable 207, Final SWIFT architecture. Apr. 2010.

[33] Matos, A., ed. FP7 SWIFT, Deliverable 204, Identifiers and Name Resolution Namespaces,
Discovery and Federation. 2008.

[34] Alfredo Matos, Rui Ferreira, Susana Sargento, and Rui Aguiar. “Virtual Network Stacks: From
Theory to Practice”. In: Wiley Security and Communication Networks 5.7 (July 2012), pp. 738–
751. doi: 10.1002/sec.368.

[35] Rodolphe Marques, Rui Ferreira, and Alfredo Matos. “Cross Layer Privacy Support for Identity
Management”. In: Future Network and Mobile Summit. MS10. Florence, Italy, June 2010.

[36] Rui Ferreira, Alfredo Matos, Goncalo Morais, Rui L. Aguiar, Pedro Santos, and Ricardo Pereira
Azevedo. “Multipass: Gestão de e-Tickets em Dispositivos Móveis”. In: Revista Saber & Fazer
Telecomunicações 9 (Dec. 2011), pp. 76–81.

[37] Rui Ferreira, Alfredo Matos, Susana Sargento, and Rui L. Aguiar. “Multipass: Autenticação
Mútua em Cenários Heterogéneos”. In: Proc Conf. sobre Redes de Computadores - CRC. Aveiro,
Portugal, Nov. 2012.

[38] Rui Ferreira, Alfredo Matos, and Rui Aguiar. “Recognizing Entities Across Protocols with
Unified UUID Discovery and Asymmetric Keys”. In: IEEE GLOBECOM. 2013.

[39] José Quevedo, Rui Ferreira, Carlos Guimarães, Rui L. Aguiar, and Daniel Corujo. “Inter-
net of Things discovery in interoperable Information Centric and IP networks”. In: Internet
Technology Letters 1.1 (2018). e1 ITL-17-0001.R1, e1–n/a. doi: 10.1002/itl2.1.

[40] José Quevedo, Carlos Guimarães, Rui Ferreira, Daniel Corujo, and Rui L. Aguiar. “ICN as
Network Infrastructure for Multi-Sensory Devices: Local Domain Service Discovery for ICN-
based IoT Environments”. In: Wireless Personal Communications 95.1 (July 2017), pp. 7–26.
doi: 10.1007/s11277-017-4425-7.

[41] Daniel Corujo, Carlos Guimarães, José Quevedo, Rui Ferreira, and Rui L. Aguiar. “Informa-
tion Centric Exchange Mechanisms for IoT Interoperable Deployment”. In: User-Centric and
Information-Centric Networking and Services: Access Networks and Emerging Trends. Ed. by
M.B. Krishna. Taylor & Francis Group, 2018. Chap. 3.

[42] A. Zugenmaier. “The Freiburg privacy diamond”. In: Global Telecommunications Conference,
2003. GLOBECOM ’03. IEEE 3 (Dec. 2003), 1501–1505 vol.3. doi: 10.1109/GLOCOM.2003.
1258488.

[43] Rui Ferreira and Rui Aguiar. “Breaching location privacy in XMPP based messaging”. In:
IEEE GLOBECOM. 2012.

[44] Rui Ferreira, Alfredo Matos, and Rui Aguiar. “Hint-driven DNS resolution”. In: IEEE sympo-
sium on Computers and Communications. ISCC’11. Corfu, Greece, 2011.

[45] OpenDNS. https://www.opendns.com/about/.

127

https://doi.org/10.1145/2500098.2500102
https://doi.org/10.17487/RFC5246
https://rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.1002/sec.368
https://doi.org/10.1002/itl2.1
https://doi.org/10.1007/s11277-017-4425-7
https://doi.org/10.1109/GLOCOM.2003.1258488
https://doi.org/10.1109/GLOCOM.2003.1258488
https://www.opendns.com/about/

[46] DNS Security with DNSCrypt. https://www.opendns.com/about/innovations/dnscrypt/.

[47] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E. Hoffman.
Specification for DNS over Transport Layer Security (TLS). RFC 7858. May 2016. doi: 10.
17487/RFC7858. url: https://rfc-editor.org/rfc/rfc7858.txt.

[48] Rui Ferreira and Rui L. Aguiar. “Repositioning privacy concerns: Web servers controlling URL
metadata”. In: Journal of Information Security and Applications 46 (2019), pp. 121–137. issn:
2214-2126. doi: https://doi.org/10.1016/j.jisa.2019.03.010.

[49] Y. Rekhter and T. Li. An Architecture for IP Address Allocation with CIDR. RFC 1518.
Internet Engineering Task Force, Sept. 1993, p. 27. url: http://www.rfc-editor.org/rfc/
rfc1518.txt.

[50] Lixia Zhang, Kevin Fall, and David Meyer. Report from the IAB Workshop on Routing and
Addressing. RFC 4984. Sept. 2007. doi: 10.17487/RFC4984. url: https://rfc-editor.org/
rfc/rfc4984.txt.

[51] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed Standard). Internet
Engineering Task Force, Nov. 2010. url: http://www.ietf.org/rfc/rfc5944.txt.

[52] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil. Proxy Mobile IPv6.
RFC 5213 (Proposed Standard). Updated by RFC 6543. Internet Engineering Task Force,
Aug. 2008. url: http://www.ietf.org/rfc/rfc5213.txt.

[53] John F. Shoch. A Note on Inter-Network Naming, Addressing, and Routing. Internet Experi-
ment Note #19. Jan. 1978. url: https://www.rfc-editor.org/ien/ien19.txt.

[54] J. H. Saltzer. On the Naming and Binding of Network Destinations. RFC 1498. Internet
Engineering Task Force, Aug. 1993, p. 10. url: http://www.rfc-editor.org/rfc/rfc1498.
txt.

[55] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic
Syntax. RFC 3986. Internet Engineering Task Force, Jan. 2005. url: http : / / www . rfc -
editor.org/rfc/rfc3986.txt.

[56] Holger Karl, Thorsten Biermann, and Hagen Woesner. “Naming and Addressing”. In: Archi-
tecture and Design for the Future Internet: 4WARD Project. Ed. by M. Luis Correia, Henrik
Abramowicz, Martin Johnsson, and Klaus Wünstel. Dordrecht: Springer Netherlands, 2011,
pp. 89–113. doi: 10.1007/978-90-481-9346-2_5.

[57] P. Nikander, J. Laganier, and F. Dupont. An IPv6 Prefix for Overlay Routable Cryptographic
Hash Identifiers (ORCHID). RFC 4843. Apr. 2007.

[58] John Day. Patterns in Network Architecture: A Return to Fundamentals. Pearson Education,
2008.

[59] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, and P. Hallam-Baker. Naming
Things with Hashes. RFC 6920 (Proposed Standard). Internet Engineering Task Force, Apr.
2013. url: http://www.ietf.org/rfc/rfc6920.txt.

[60] Zooko Wilcox-O’Hearn. Names: Decentralized, Secure, Human-Meaningful: Choose Two. url:
http://web.archive.org/web/20111227083803/http://zooko.com/distnames.html.

[61] Daniel Shawcross Wilkerson. “A Proposal for Proquints: Identifiers that are Readable,
Spellable, and Pronounceable”. In: CoRR abs/0901.4016 (2009). url: http://arxiv.org/
abs/0901.4016.

[62] M. Stiegler. An Introduction to Petname Systems. Available from http://www.skyhunter.
com/marcs/petnames/IntroPetNames.html. June 2010. url: http://www.skyhunter.com/
marcs/petnames/IntroPetNames.html.

128

https://www.opendns.com/about/innovations/dnscrypt/
https://doi.org/10.17487/RFC7858
https://doi.org/10.17487/RFC7858
https://rfc-editor.org/rfc/rfc7858.txt
https://doi.org/https://doi.org/10.1016/j.jisa.2019.03.010
http://www.rfc-editor.org/rfc/rfc1518.txt
http://www.rfc-editor.org/rfc/rfc1518.txt
https://doi.org/10.17487/RFC4984
https://rfc-editor.org/rfc/rfc4984.txt
https://rfc-editor.org/rfc/rfc4984.txt
http://www.ietf.org/rfc/rfc5944.txt
http://www.ietf.org/rfc/rfc5213.txt
https://www.rfc-editor.org/ien/ien19.txt
http://www.rfc-editor.org/rfc/rfc1498.txt
http://www.rfc-editor.org/rfc/rfc1498.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://doi.org/10.1007/978-90-481-9346-2_5
http://www.ietf.org/rfc/rfc6920.txt
http://web.archive.org/web/20111227083803/http://zooko.com/distnames.html
http://arxiv.org/abs/0901.4016
http://arxiv.org/abs/0901.4016
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html

[63] Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan.
“An empirical study of Namecoin and lessons for decentralized namespace design”. In: WEIS
’15: Proceedings of the 14th Workshop on the Economics of Information Security (June 2015).

[64] Ian Grigg and Philipp Güring. Bitcoin & Gresham’s Law - the economic inevitability of Col-
lapse. 2011. url: http://iang.org/papers/BitcoinBreachesGreshamsLaw.pdf.

[65] Ben Laurie. Decentralised currencies are probably impossible (but let’s at least make them
efficient). 2011. url: http://w.fipr.org/files/decentralised-currencies.pdf.

[66] Jeremy Rand. “Case Study: Alternate Blockchains”. In: QCon Software Development Confer-
ence. London, United Kingdom, June 2017.

[67] ITU-T. Draft Recommendation Y.FNid Framework of identifiers in future networks. 2012.

[68] ITU-T. Recommendation Y.3031 Identification framework in future networks. 2012.

[69] ITU-T. Recommendation E.164, The International Public Telecommunication Numbering Plan.
2005.

[70] Robert J. Stroud. “Naming Issues in the Design of Transparently Distributed Operating Sys-
tems”. PhD thesis. The University of Newcastle, 1987.

[71] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In: CoRR abs/1407.3561
(2014). arXiv: 1407.3561. url: http://arxiv.org/abs/1407.3561.

[72] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6 Addressing of IPv4/IPv6
Translators. RFC 6052. Oct. 2010.

[73] M. Bagnulo, P. Matthews, and I. van Beijnum. Stateful NAT64: Network Address and Protocol
Translation from IPv6 Clients to IPv4 Servers. RFC 6146. Apr. 2011.

[74] G. Tsirtsis and P. Srisuresh. Network Address Translation - Protocol Translation (NAT-PT).
RFC 2766. Internet Engineering Task Force, Feb. 2000, p. 21. url: http://www.rfc-editor.
org/rfc/rfc2766.txt.

[75] Xing Li, Congxiao Bao, Wojciech Dec, Ole Troan, Satoru Matsushima, and Tetsuya Murakami.
Mapping of Address and Port using Translation (MAP-T). RFC 7599. July 2015. doi: 10.
17487/RFC7599. url: https://rfc-editor.org/rfc/rfc7599.txt.

[76] Cedric Aoun and Elwyn B. Davies. Reasons to Move the Network Address Translator - Protocol
Translator (NAT-PT) to Historic Status. RFC 4966. July 2007. doi: 10.17487/RFC4966. url:
https://rfc-editor.org/rfc/rfc4966.txt.

[77] Robert E. Gilligan and Erik Nordmark. Basic Transition Mechanisms for IPv6 Hosts and
Routers. RFC 4213. Oct. 2005. doi: 10.17487/RFC4213. url: https://rfc-editor.org/
rfc/rfc4213.txt.

[78] M. Rambold, H. Kasinger, F. Lautenbacher, and B. Bauer. “Towards Autonomic Service Dis-
covery A Survey and Comparison”. In: 2009 IEEE International Conference on Services Com-
puting. Sept. 2009, pp. 192–201. doi: 10.1109/SCC.2009.59.

[79] Bluetooth SIG. Core Specification 4.0. Tech. rep. Bluetooth SIG, June 2010. url: https:
//www.bluetooth.org/en-us/specification/adopted-specifications.

[80] iBeacon, Apple Developer. url: https://developer.apple.com/ibeacon/.

[81] The Physical Web. url: https://google.github.io/physical-web/.

[82] Shivaun Albright, Paul J. Leach, Ye Gu, Yaron Y. Goland, and Ting Cai. Simple Service
Discovery Protocol/1.0. Internet-Draft draft-cai-ssdp-v1-03. Work in Progress. Internet Engi-

129

http://iang.org/papers/BitcoinBreachesGreshamsLaw.pdf
http://w.fipr.org/files/decentralised-currencies.pdf
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
http://www.rfc-editor.org/rfc/rfc2766.txt
http://www.rfc-editor.org/rfc/rfc2766.txt
https://doi.org/10.17487/RFC7599
https://doi.org/10.17487/RFC7599
https://rfc-editor.org/rfc/rfc7599.txt
https://doi.org/10.17487/RFC4966
https://rfc-editor.org/rfc/rfc4966.txt
https://doi.org/10.17487/RFC4213
https://rfc-editor.org/rfc/rfc4213.txt
https://rfc-editor.org/rfc/rfc4213.txt
https://doi.org/10.1109/SCC.2009.59
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.apple.com/ibeacon/
https://google.github.io/physical-web/

neering Task Force, Nov. 1999. url: https://datatracker.ietf.org/doc/html/draft-
cai-ssdp-v1-03.

[83] Stuart Cheshire and Marc Krochmal. Multicast DNS. RFC 6762. Feb. 2013. doi: 10.17487/
RFC6762. url: https://rfc-editor.org/rfc/rfc6762.txt.

[84] Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery. RFC 6763. Feb. 2013.
doi: 10.17487/RFC6763. url: https://rfc-editor.org/rfc/rfc6763.txt.

[85] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local Addresses.
RFC 3927. Internet Engineering Task Force, Mar. 2005. url: http://www.rfc-editor.org/
rfc/rfc3927.txt.

[86] Wifi Alliance. Wifi direct specifications. http://www.wi-fi.org/discover-and-learn/wi-fi-direct.

[87] Information capacity and versions of QR Code. 2018. url: http://www.qrcode.com/en/
about/version.html.

[88] European Payments Council. EPC069-12 Quick Response Code: Guidelines to Enable Data
Capture for the Initiation of a SEPA Credit Transfer. Tech. rep. July 2015.

[89] S. Dey, S. Agarwal, and A. Nath. “Confidential Encrypted Data Hiding and Retrieval Using
QR Authentication System”. In: 2013 International Conference on Communication Systems
and Network Technologies. Apr. 2013, pp. 512–517. doi: 10.1109/CSNT.2013.112.

[90] Standard ECMA-340 Near Field Communication Interface and Protocol. June 2013. url:
https://www.ecma-international.org/publications/standards/Ecma-340.htm.

[91] Standard ECMA-385 NFC-SEC: NFCIP-1 Security Services and Protocol. June 2015. url:
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-385.pdf.

[92] NFC Record Type Definition (RTD), NFC Forum Technical Specification. July 2006. url:
https://nfc- forum.org/our- work/specifications- and- application- documents/
specifications/record-type-definition-technical-specifications/.

[93] Rajalakshmi Nandakumar, Krishna Kant Chintalapudi, Venkat Padmanabhan, and Rama-
rathnam Venkatesan. “Dhwani: Secure Peer-to-peer Acoustic NFC”. In: SIGCOMM Comput.
Commun. Rev. 43.4 (Aug. 2013), pp. 63–74. doi: 10.1145/2534169.2486037.

[94] M. Roland, J. Langer, and J. Scharinger. “Security Vulnerabilities of the NDEF Signature
Record Type”. In: 2011 Third International Workshop on Near Field Communication. Feb.
2011, pp. 65–70. doi: 10.1109/NFC.2011.9.

[95] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. doi: 10.17487/
RFC6749. url: https://rfc-editor.org/rfc/rfc6749.txt.

[96] David Recordon, Johnny Bufu, Josh Hoyt, Brad Fitzpatrick, and Dick Hardt. OpenID Au-
thentication 2.0. Dec. 2007. url: http://openid.net/specs/openid- authentication-
2_0.html.

[97] P. Jones, G. Salgueiro, M. Jones, and J. Smarr. WebFinger. RFC 7033 (Proposed Standard).
Internet Engineering Task Force, Sept. 2013. url: http://www.ietf.org/rfc/rfc7033.txt.

[98] Blaine Cook and Eran Hammer-Lahav. Web Host Metadata. RFC 6415. Oct. 2011. doi: 10.
17487/RFC6415. url: https://rfc-editor.org/rfc/rfc6415.txt.

[99] P. V. Mockapetris. Domain names: Concepts and facilities. RFC 882. Internet Engineering
Task Force, Nov. 1983, p. 31. url: http://www.rfc-editor.org/rfc/rfc882.txt.

[100] P. V. Mockapetris. Domain names: Implementation specification. RFC 883. Internet Engineer-
ing Task Force, Nov. 1983, p. 73. url: http://www.rfc-editor.org/rfc/rfc883.txt.

130

https://datatracker.ietf.org/doc/html/draft-cai-ssdp-v1-03
https://datatracker.ietf.org/doc/html/draft-cai-ssdp-v1-03
https://doi.org/10.17487/RFC6762
https://doi.org/10.17487/RFC6762
https://rfc-editor.org/rfc/rfc6762.txt
https://doi.org/10.17487/RFC6763
https://rfc-editor.org/rfc/rfc6763.txt
http://www.rfc-editor.org/rfc/rfc3927.txt
http://www.rfc-editor.org/rfc/rfc3927.txt
http://www.qrcode.com/en/about/version.html
http://www.qrcode.com/en/about/version.html
https://doi.org/10.1109/CSNT.2013.112
https://www.ecma-international.org/publications/standards/Ecma-340.htm
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-385.pdf
https://nfc-forum.org/our-work/specifications-and-application-documents/specifications/record-type-definition-technical-specifications/
https://nfc-forum.org/our-work/specifications-and-application-documents/specifications/record-type-definition-technical-specifications/
https://doi.org/10.1145/2534169.2486037
https://doi.org/10.1109/NFC.2011.9
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://www.ietf.org/rfc/rfc7033.txt
https://doi.org/10.17487/RFC6415
https://doi.org/10.17487/RFC6415
https://rfc-editor.org/rfc/rfc6415.txt
http://www.rfc-editor.org/rfc/rfc882.txt
http://www.rfc-editor.org/rfc/rfc883.txt

[101] Paul Vixie. “What DNS Is Not”. In: Queue 7.10 (2009), pp. 10–15.

[102] Unbound, a validating, recursive, and caching DNS resolver. url: http://www.unbound.net/.

[103] D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC 3833.
Internet Engineering Task Force, Aug. 2004. url: http : / / www . rfc - editor . org / rfc /
rfc3833.txt.

[104] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and
Requirements. RFC 4033 (Proposed Standard). Updated by RFCs 6014, 6840. Internet Engi-
neering Task Force, Mar. 2005. url: http://www.ietf.org/rfc/rfc4033.txt.

[105] Srinivas Krishnan and Fabian Monrose. “DNS Prefetching and Its Privacy Implications: When
Good Things Go Bad”. In: Proceedings of the 3rd USENIX Conference on Large-scale Exploits
and Emergent Threats: Botnets, Spyware, Worms, and More. LEET’10. San Jose, California:
USENIX Association, 2010, pp. 10–10.

[106] Please disable ’Perform DNS lookups to check if URLs are valid?’ by default. 2017. url:
https://gitlab.com/gnachman/iterm2/issues/6050.

[107] Stéphane Bortzmeyer. DNS Query Name Minimisation to Improve Privacy. RFC 7816. Mar.
2016. doi: 10.17487/RFC7816. url: https://rfc-editor.org/rfc/rfc7816.txt.

[108] Liang Zhu, John Heidemann, Duane Wessels, Paul E. Hoffman, Allison Mankin, and Zi Hu.
Specification for DNS over TLS. https://tools.ietf.org/html/draft-ietf-dprive-dns-over-tls-09.
Internet-Draft. Internet Engineering Task Force, Mar. 2016.

[109] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS. Internet-Draft draft-ietf-
doh-dns-over-https-03. Work in Progress. Internet Engineering Task Force, Feb. 2018. 16 pp.
url: https://datatracker.ietf.org/doc/html/draft-ietf-doh-dns-over-https-03.

[110] S. Sun, L. Lannom, and B. Boesch. Handle System Overview. RFC 3650. Internet Engineering
Task Force, Nov. 2003, p. 21. url: http://www.rfc-editor.org/rfc/rfc3650.txt.

[111] S. Sun, S. Reilly, and L. Lannom. Handle System Namespace and Service Definition. RFC
3651. Internet Engineering Task Force, Nov. 2003, p. 41. url: http://www.rfc-editor.org/
rfc/rfc3651.txt.

[112] S. Sun, S. Reilly, L. Lannom, and J. Petrone. Handle System Protocol (ver 2.1) Specification.
RFC 3652. Internet Engineering Task Force, Nov. 2003, p. 53. url: http://www.rfc-editor.
org/rfc/rfc3652.txt.

[113] Antony Rowstron and Peter Druschel. “Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware 2001. Ed. by Rachid Guerraoui.
Berlin, Heidelberg: Springer, 2001, pp. 329–350.

[114] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications”. In: SIGCOMM Comput.
Commun. Rev. 31.4 (Aug. 2001), pp. 149–160. doi: 10.1145/964723.383071.

[115] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. “One Hop Lookups for Peer-to-peer
Overlays”. In: Proceedings of the 9th Conference on Hot Topics in Operating Systems - Volume
9. HOTOS’03. Lihue, Hawaii: USENIX Association, 2003, pp. 2–2.

[116] Venugopalan Ramasubramanian and Emin Gün Sirer. “Beehive: O(1)Lookup Performance for
Power-law Query Distributions in Peer-to-peer Overlays”. In: Proceedings of the 1st Conference
on Symposium on Networked Systems Design and Implementation - Volume 1. NSDI’04. San
Francisco, California: USENIX Association, 2004, pp. 8–8.

[117] Ingmar Baumgart. “P2PNS: A Secure Distributed Name Service for P2PSIP”. In: Proceedings
of the Sixth Annual IEEE International Conference on Pervasive Computing and Communi-

131

http://www.unbound.net/
http://www.rfc-editor.org/rfc/rfc3833.txt
http://www.rfc-editor.org/rfc/rfc3833.txt
http://www.ietf.org/rfc/rfc4033.txt
https://gitlab.com/gnachman/iterm2/issues/6050
https://doi.org/10.17487/RFC7816
https://rfc-editor.org/rfc/rfc7816.txt
https://datatracker.ietf.org/doc/html/draft-ietf-doh-dns-over-https-03
http://www.rfc-editor.org/rfc/rfc3650.txt
http://www.rfc-editor.org/rfc/rfc3651.txt
http://www.rfc-editor.org/rfc/rfc3651.txt
http://www.rfc-editor.org/rfc/rfc3652.txt
http://www.rfc-editor.org/rfc/rfc3652.txt
https://doi.org/10.1145/964723.383071

cations (PerCom 2008), Hong Kong, China. Mar. 2008, pp. 480–485. doi: 10.1109/PERCOM.
2008.91. url: http://doc.tm.uka.de/2008/P2PNS_2008.pdf.

[118] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno
Richard, Sami Rollins, and Zhichen Xu. Peer-to-Peer Computing. Tech. rep. HP, Apr. 2002.

[119] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. “Internet In-
direction Infrastructure”. In: Proceedings of the 2002 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications. SIGCOMM ’02. Pittsburgh,
Pennsylvania, USA: ACM, 2002, pp. 73–86. doi: 10.1145/633025.633033.

[120] Russ Cox, Athicha Muthitacharoen, and Robert T. Morris. “Serving DNS using a Peer-to-Peer
Lookup Service”. In: In IPTPS. 2002.

[121] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott Shenker, Ion Stoica,
and Michael Walfish. “A Layered Naming Architecture for the Internet”. In: ACM SIGCOMM
2004. Portland, OR, Sept. 2004.

[122] Michael Walfish, Hari Balakrishnan, and Scott Shenker. “Untangling the web from DNS”. In:
NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems Design and
Implementation. San Francisco, California: USENIX Association, 2004, pp. 17–17.

[123] Verisign. The Verisign Domain Name Industry Brief. https://www.verisign.com/assets/domain-
name-report-Q42017.pdf. Dec. 2017.

[124] V. Pappas, D. Massey, A. Terzis, and L. Zhang. “A Comparative Study of the DNS Design
with DHT-Based Alternatives”. In: INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings. Apr. 2006, pp. 1–13. doi: 10.1109/INFOCOM.2006.
207.

[125] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. “A Censorship-Resistant,
Privacy-Enhancing and Fully Decentralized Name System”. In: Cryptology and Network Se-
curity. Ed. by Dimitris Gritzalis, Aggelos Kiayias, and Ioannis Askoxylakis. Cham: Springer
International Publishing, 2014, pp. 127–142.

[126] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0. http://docs.oasis-open.org/
security/saml/v2.0/. Mar. 2005.

[127] Scott Cantor, Frederick Hirsch, John Kemp, Rob Philpott, and Eve Maler. Bindings for the
OASIS Security Assertion Markup Language (SAML) V2.0. http://docs.oasis-open.org/
security/saml/v2.0/. Mar. 2005.

[128] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch, Prateek Mishra, Rob Philpott, and
Eve Maler. Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0. Mar.
2005. url: http://docs.oasis-open.org/security/saml/v2.0/.

[129] Requirements for Internet Hosts - Application and Support. RFC 1123. Internet Engineering
Task Force, Oct. 1989, p. 98. url: http://www.rfc-editor.org/rfc/rfc1123.txt.

[130] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648. Oct. 2006.
doi: 10.17487/RFC4648. url: https://rfc-editor.org/rfc/rfc4648.txt.

[131] Henry Thompson and David Orchard. URNs, Namespaces and Registries. W3C TAG. 2006.
url: http://www.w3.org/2001/tag/doc/URNsAndRegistries-50.

[132] M. Mealling and R. W. Daniel. URI Resolution Services Necessary for URN Resolution. RFC
2483. Internet Engineering Task Force, Jan. 1999, p. 16. url: http://www.rfc-editor.org/
rfc/rfc2483.txt.

132

https://doi.org/10.1109/PERCOM.2008.91
https://doi.org/10.1109/PERCOM.2008.91
http://doc.tm.uka.de/2008/P2PNS_2008.pdf
https://doi.org/10.1145/633025.633033
https://doi.org/10.1109/INFOCOM.2006.207
https://doi.org/10.1109/INFOCOM.2006.207
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://www.rfc-editor.org/rfc/rfc1123.txt
https://doi.org/10.17487/RFC4648
https://rfc-editor.org/rfc/rfc4648.txt
http://www.w3.org/2001/tag/doc/URNsAndRegistries-50
http://www.rfc-editor.org/rfc/rfc2483.txt
http://www.rfc-editor.org/rfc/rfc2483.txt

[133] Federico Maggi, Alessandro Frossi, Stefano Zanero, Gianluca Stringhini, Brett Stone-Gross,
Christopher Kruegel, and Giovanni Vigna. “Two Years of Short URLs Internet Measurement:
Security Threats and Countermeasures”. In: Proceedings of the 22Nd International Confer-
ence on World Wide Web. WWW ’13. Rio de Janeiro, Brazil: International World Wide Web
Conferences Steering Committee, 2013, pp. 861–872.

[134] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao, and Dan Boneh. “Protecting
Browsers from Dns Rebinding Attacks”. In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security. CCS ’07. Alexandria, Virginia, USA: ACM, 2007, pp. 421–
431.

[135] K. Leung, F. Le Faucheur, R. van Brandenburg, B. Downey, and M. Fisher. URI Signing for
CDN Interconnection (CDNI). https://tools.ietf.org/id/draft- ietf- cdni- uri-
signing-04.txt. Internet Engineering Task Force, June 2015.

[136] Extension for Peers to Send Metadata Files. BEP 9. 2008. url: http://www.bittorrent.
org/beps/bep_0009.html.

[137] Drummond Reed, Les Chasen, and William Tan. “OpenID identity discovery with XRI and
XRDS”. In: IDtrust ’08: Proceedings of the 7th symposium on Identity and trust on the Internet.
Gaithersburg, Maryland: ACM, 2008, pp. 19–25.

[138] Kostas Pentikousis. “Distributed Information Object Resolution”. In: ICN ’09: Proceedings of
the 2009 Eighth International Conference on Networks. Washington, DC, USA: IEEE Com-
puter Society, 2009, pp. 360–366.

[139] NDN, Technical Report NDN-0022. Tech. rep. July 2014. url: https://named-data.net/wp-
content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf.

[140] N. L. M. van Adrichem and F. A. Kuipers. “Globally accessible names in named data net-
working”. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). Apr. 2013, pp. 345–350. doi: 10.1109/INFCOMW.2013.6970714.

[141] CIDR REPORT. Tech. rep. May 2018. url: http://www.cidr-report.org/as2.0/.

[142] Cesar Ghali, Gene Tsudik, and Christopher A. Wood. “Network Names in Content-Centric
Networking”. In: Proceedings of the 3rd ACM Conference on Information-Centric Networking.
ACM-ICN ’16. Kyoto, Japan: ACM, 2016, pp. 132–141. doi: 10.1145/2984356.2984373.

[143] A. Afanasyev, X. Jiang, Y. Yu, J. Tan, Y. Xia, A. Mankin, and L. Zhang. “NDNS: A DNS-Like
Name Service for NDN”. In: 2017 26th International Conference on Computer Communication
and Networks (ICCCN). July 2017, pp. 1–9. doi: 10.1109/ICCCN.2017.8038461.

[144] Scalable and Adaptive Internet Solutions (SAIL). url: http://www.sail-project.eu/.

[145] Petteri Pöyhönen and Ove Strandberg. FP7 SAIL Deliverable 3.1, The network of information:
Architecture and applications. July 2011.

[146] Gerald Kunzmann and Dirk Staehle. FP7 SAIL Deliverable 3.2, The Network of Information:
Architecture and Applications. July 2011.

[147] Stephen Farrell, Christian Dannewitz, Borje Ohlman, and Dirk Kutscher. URIs for Named
Information. Internet-Draft draft-farrell-ni-00. Work in Progress. Internet Engineering Task
Force, Mar. 2011. 11 pp. url: https://datatracker.ietf.org/doc/html/draft-farrell-
ni-00.

[148] PURSUIT Pursuing a PUB/SUB Internet. url: http://www.fp7-pursuit.eu.

[149] Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C. Polyzos. “Developing Information
Networking Further: From PSIRP to PURSUIT”. In: Broadband Communications, Networks,

133

https://tools.ietf.org/id/draft-ietf-cdni-uri-signing-04.txt
https://tools.ietf.org/id/draft-ietf-cdni-uri-signing-04.txt
http://www.bittorrent.org/beps/bep_0009.html
http://www.bittorrent.org/beps/bep_0009.html
https://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
https://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
https://doi.org/10.1109/INFCOMW.2013.6970714
http://www.cidr-report.org/as2.0/
https://doi.org/10.1145/2984356.2984373
https://doi.org/10.1109/ICCCN.2017.8038461
http://www.sail-project.eu/
https://datatracker.ietf.org/doc/html/draft-farrell-ni-00
https://datatracker.ietf.org/doc/html/draft-farrell-ni-00
http://www.fp7-pursuit.eu

and Systems. Ed. by Ioannis Tomkos, Christos J. Bouras, Georgios Ellinas, Panagiotis Demes-
tichas, and Prasun Sinha. Berlin, Heidelberg: Springer, 2012, pp. 1–13.

[150] D. Trossen and G. Parisis. “Designing and realizing an information-centric internet”. In: IEEE
Communications Magazine 50.7 (July 2012), pp. 60–67. doi: 10.1109/MCOM.2012.6231280.

[151] PSIRP Publish-Subscribe Internet Routing Paradigm. url: http://www.psirp.org/.

[152] Konstantinos V. Katsaros, Nikos Fotiou, Xenofon Vasilakos, Christopher N. Ververidis, Chris-
tos Tsilopoulos, George Xylomenos, and George C. Polyzos. “On Inter-domain Name Resolu-
tion for Information-centric Networks”. In: Proceedings of the 11th International IFIP TC 6
Conference on Networking - Volume Part I. IFIP’12. Prague, Czech Republic: Springer-Verlag,
2012, pp. 13–26. doi: 10.1007/978-3-642-30045-5_2.

[153] Dmitrij Lagutin. “Redesigning Internet—The Packet Level Authentication Architecture”. Li-
centiate’s Thesis. Helsinki University of Technology, Department of Information and Computer
Science, 2008.

[154] Ashok Anand, Fahad Dogar, Dongsu Han, Boyan Li, Hyeontaek Lim, Michel Machado, Wen-
fei Wu, Aditya Akella, David G. Andersen, John W. Byers, Srinivasan Seshan, and Peter
Steenkiste. “XIA: An Architecture for an Evolvable and Trustworthy Internet”. In: Proceedings
of the 10th ACM Workshop on Hot Topics in Networks. HotNets-X. Cambridge, Massachusetts:
ACM, 2011, 2:1–2:6. doi: 10.1145/2070562.2070564.

[155] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim, Michel Machado, Arvind
Mukundan, Wenfei Wu, Aditya Akella, David G. Andersen, John W. Byers, Srinivasan Seshan,
and Peter Steenkiste. “XIA: Efficient Support for Evolvable Internetworking”. In: Proc. 9th
USENIX NSDI. San Jose, CA, Apr. 2012.

[156] Konstantinos V. Katsaros, Nikos Fotiou, Xenofon Vasilakos, Christopher N. Ververidis, Chris-
tos Tsilopoulos, George Xylomenos, and George C. Polyzos. “On Inter-Domain Name Reso-
lution for Information-Centric Networks”. In: NETWORKING 2012. Ed. by Robert Bestak,
Lukas Kencl, Li Erran Li, Joerg Widmer, and Hao Yin. Berlin, Heidelberg: Springer, 2012,
pp. 13–26.

[157] K. V. Katsaros, X. Vasilakos, T. Okwii, G. Xylomenos, G. Pavlou, and G. C. Polyzos. “On
the inter-domain scalability of route-by-name Information-Centric Network Architectures”. In:
2015 IFIP Networking Conference (IFIP Networking). May 2015, pp. 1–9. doi: 10.1109/
IFIPNetworking.2015.7145308.

[158] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. Garcia de Blas, F. J. Ramon-Salguero,
L. Liang, S. Spirou, A. Beben, and E. Hadjioannou. “Curling: Content-ubiquitous resolution
and delivery infrastructure for next-generation services”. In: IEEE Communications Magazine
49.3 (Mar. 2011), pp. 112–120. doi: 10.1109/MCOM.2011.5723808.

[159] Yu Tang, Aihua Fan, Yingjie Wang, and Yuanzhe Yao. “mDHT: a multi-level-indexed DHT
algorithm to extra-large-scale data retrieval on HDFS/Hadoop architecture”. In: Personal and
Ubiquitous Computing 18.8 (Dec. 2014), pp. 1835–1844. doi: 10.1007/s00779-014-0784-1.

[160] K. V. Katsaros, L. Saino, I. Psaras, and G. Pavlou. “On information exposure through named
content”. In: Heterogeneous Networking for Quality, Reliability, Security and Robustness
(QShine), 2014 10th International Conference on. Aug. 2014, pp. 152–157. doi: 10.1109/
QSHINE.2014.6928679.

[161] Edith Ngai, Börje Ohlman, Gene Tsudik, Ersin Uzun, Matthias Wählisch, and Christopher A.
Wood. “Can We Make a Cake and Eat It Too? A Discussion of ICN Security and Privacy”.
In: SIGCOMM Comput. Commun. Rev. 47.1 (Jan. 2017), pp. 49–54. doi: 10.1145/3041027.
3041034.

134

https://doi.org/10.1109/MCOM.2012.6231280
http://www.psirp.org/
https://doi.org/10.1007/978-3-642-30045-5_2
https://doi.org/10.1145/2070562.2070564
https://doi.org/10.1109/IFIPNetworking.2015.7145308
https://doi.org/10.1109/IFIPNetworking.2015.7145308
https://doi.org/10.1109/MCOM.2011.5723808
https://doi.org/10.1007/s00779-014-0784-1
https://doi.org/10.1109/QSHINE.2014.6928679
https://doi.org/10.1109/QSHINE.2014.6928679
https://doi.org/10.1145/3041027.3041034
https://doi.org/10.1145/3041027.3041034

[162] Cesar Ghali, Gene Tsudik, and Christopher A. Wood. “(The Futility of) Data Privacy in
Content-Centric Networking”. In: Proceedings of the 2016 ACM on Workshop on Privacy in
the Electronic Society. WPES ’16. Vienna, Austria: ACM, 2016, pp. 143–152. doi: 10.1145/
2994620.2994639.

[163] Jeffrey Pang, Ben Greenstein, Damon McCoy, Srinivasan Seshan, and David Wetherall. “Tryst:
The Case for Confidential Service Discovery”. In: HotNets VI: The Sixth Workshop on Hot
Topics in Networks. Atlanta, GA, Nov. 2007.

[164] S. Sevilla, P. Mahadevan, and J. J. Garcia-Luna-Aceves. “iDNS: Enabling information centric
networking through The DNS”. In: 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). Apr. 2014, pp. 476–481. doi: 10.1109/INFCOMW.2014.
6849278.

[165] E. Demirors and C. Westphal. “DNS ++: A Manifest Architecture for Enhanced Content-
Based Traffic Engineering”. In: GLOBECOM 2017 - 2017 IEEE Global Communications Con-
ference. Dec. 2017, pp. 1–6. doi: 10.1109/GLOCOM.2017.8254708.

[166] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel, and Parisa
Tabriz. “Measuring HTTPS Adoption on the Web”. In: 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, 2017, pp. 1323–1338. url:
https : / / www . usenix . org / conference / usenixsecurity17 / technical - sessions /
presentation/felt.

[167] Roy Thomas Fielding. “REST: Architectural Styles and the Design of Network-based Software
Architectures”. Doctoral dissertation. University of California, Irvine, 2000.

[168] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. “Protecting Browser State
from Web Privacy Attacks”. In: Proceedings of the 15th International Conference on World
Wide Web. WWW ’06. Edinburgh, Scotland: ACM, 2006, pp. 737–744.

[169] Artur Janc and Lukasz Olejnik. “Web Browser History Detection As a Real-world Privacy
Threat”. In: Proceedings of the 15th European Conference on Research in Computer Security.
ESORICS’10. Athens, Greece: Springer-Verlag, 2010, pp. 215–231.

[170] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. “I Still Know What You Visited
Last Summer: Leaking Browsing History via User Interaction and Side Channel Attacks”. In:
2011 IEEE Symposium on Security and Privacy. May 2011, pp. 147–161. doi: 10.1109/SP.
2011.23.

[171] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and
Claudia Diaz. “The Web Never Forgets: Persistent Tracking Mechanisms in the Wild”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’14. Scottsdale, Arizona, USA: ACM, 2014, pp. 674–689.

[172] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan Mayer,
Arvind Narayanan, and Edward W. Felten. “Cookies That Give You Away: The Surveillance
Implications of Web Tracking”. In: Proceedings of the 24th International Conference on World
Wide Web. WWW ’15. Florence, Italy: International World Wide Web Conferences Steering
Committee, 2015, pp. 289–299. doi: 10.1145/2736277.2741679.

[173] Markus Jakobsson and Sid Stamm. “Web Camouflage: Protecting Your Clients from Browser-
Sniffing Attacks”. In: IEEE Security & Privacy 5.6 (2007), pp. 16–24.

[174] A.G. West and A.J. Aviv. “Measuring Privacy Disclosures in URL Query Strings”. In: Internet
Computing, IEEE 18.6 (Nov. 2014), pp. 52–59.

[175] S. Varjonen, T. Heer, K. Rimey, and A. Gurtov. “Secure Resolution of End-Host Identifiers for
Mobile Clients”. In: Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE.
Dec. 2011, pp. 1–6. doi: 10.1109/GLOCOM.2011.6134003.

135

https://doi.org/10.1145/2994620.2994639
https://doi.org/10.1145/2994620.2994639
https://doi.org/10.1109/INFCOMW.2014.6849278
https://doi.org/10.1109/INFCOMW.2014.6849278
https://doi.org/10.1109/GLOCOM.2017.8254708
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://doi.org/10.1109/SP.2011.23
https://doi.org/10.1109/SP.2011.23
https://doi.org/10.1145/2736277.2741679
https://doi.org/10.1109/GLOCOM.2011.6134003

[176] DLNA Networked Device Interoperability Guidelines Expanded. https://spirespark.com/dlna/guidelines.

[177] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace.
RFC 4122 (Proposed Standard). Internet Engineering Task Force, July 2005. url: http :
//www.ietf.org/rfc/rfc4122.txt.

[178] Pasi Eronen, Hannes Tschofenig, Hao Zhou, and Joseph A. Salowey. Transport Layer Security
(TLS) Session Resumption without Server-Side State. RFC 5077. Jan. 2008. doi: 10.17487/
RFC5077. url: https://rfc-editor.org/rfc/rfc5077.txt.

[179] P. V. Mockapetris. Domain names - implementation and specification. RFC 1035. Internet
Engineering Task Force, Nov. 1987, p. 55. url: http://www.rfc-editor.org/rfc/rfc1035.
txt.

[180] The Directory - overview of concepts, models and services. CCITT X.500 Series Recommen-
dations, ITU-T. 1993.

[181] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first
collision for full SHA-1. Cryptology ePrint Archive, Report 2017/190. https://eprint.iacr.
org/2017/190. 2017.

[182] Andrew Banks and Rahul Gupta. MQTT Version 3.1.1. Tech. rep. Apr. 2015.

[183] A. Delphinanto, J.J. Lukkien, A.M.J. Koonen, F. T H Den Hartog, A. J P S Madureira, I. G
M M Niemegeers, and F. Selgert. “Architecture of a Bi-Directional Bluetooth-UPnP Proxy”.
In: Consumer Communications and Networking Conference, 2007. CCNC 2007. 4th IEEE.
Jan. 2007, pp. 34–38. doi: 10.1109/CCNC.2007.14.

[184] Seong-Hoon Kim, Jeong-Seok Kang, Hong Seong Park, Daeyoung Kim, and Young-Joo Kim.
“UPnP-ZigBee internetworking architecture mirroring a multi-hop ZigBee network topology”.
In: Consumer Electronics, IEEE Transactions on 55.3 (Aug. 2009), pp. 1286–1294. doi: 10.
1109/TCE.2009.5277989.

[185] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. J. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. Internet Engineering Task Force, June
1999, p. 176. url: http://www.rfc-editor.org/rfc/rfc2616.txt.

[186] David Naccache and Jacques Stern. “Signing on a Postcard”. In: Financial Cryptography. Ed.
by Yair Frankel. Berlin, Heidelberg: Springer, 2001, pp. 121–135.

[187] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pairing”. In:
Journal of Cryptology 17.4 (Sept. 2004), pp. 297–319. doi: 10.1007/s00145-004-0314-9.

[188] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and Dave Cooper.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280. May 2008. doi: 10.17487/RFC5280. url: https://rfc-editor.org/rfc/
rfc5280.txt.

[189] Warwick Ford and Yuri Poeluev. The Machine-to-Machine (M2M) Public Key Certificate
Format. Internet-Draft draft-ford-m2mcertificate-00. Work in Progress. Internet Engineering
Task Force, Mar. 2015. 14 pp. url: https://datatracker.ietf.org/doc/html/draft-
ford-m2mcertificate-00.

[190] W. Ford and Y. Poeluev. An efficient certificate format for ECC.
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/session2-ford-warwick.pdf.
Workshop on Elliptic Curve Cryptography Standards, June 2015.

[191] Alex Varshavsky, Adin Scannell, Anthony LaMarca, and Eyal de Lara. “Amigo: Proximity-
Based Authentication of Mobile Devices”. In: UbiComp 2007: Ubiquitous Computing. Ed. by
John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas Strang. Berlin, Heidelberg:
Springer, 2007, pp. 253–270.

136

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
https://doi.org/10.17487/RFC5077
https://doi.org/10.17487/RFC5077
https://rfc-editor.org/rfc/rfc5077.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
https://eprint.iacr.org/2017/190
https://eprint.iacr.org/2017/190
https://doi.org/10.1109/CCNC.2007.14
https://doi.org/10.1109/TCE.2009.5277989
https://doi.org/10.1109/TCE.2009.5277989
http://www.rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.17487/RFC5280
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
https://datatracker.ietf.org/doc/html/draft-ford-m2mcertificate-00
https://datatracker.ietf.org/doc/html/draft-ford-m2mcertificate-00

[192] Daniel J. Solove. Understanding privacy. Harvard University Press, 2008.

[193] P. Saint-Andre. XHTML-IM. XEP 0071. XSF, Sept. 2008. url: http://www.xmpp.org/
extensions/xep-0071.html.

[194] Peter Saint-Andre, Peter Millard, Thomas Muldowney, and Julian Missig. ”User Avatar”. XEP
0084. XSF, Aug. 2008. url: http://www.xmpp.org/extensions/xep-0153.html.

[195] P. Saint-Andre. vCard-Based Avatars. XEP 0153. XSF, Sept. 2006. url: http://www.xmpp.
org/extensions/xep-0153.html.

[196] Peter Saint-Andre. vcard-temp. XEP 0054. XSF, July 2008. url: http://www.xmpp.org/
extensions/xep-0153.html.

[197] Peter Eckersley. “How Unique Is Your Web Browser?” In: Privacy Enhancing Technologies.
Ed. by Mikhail J. Atallah and Nicholas J. Hopper. Vol. 6205. Lecture Notes in Computer
Science. Springer, July 8, 2010, pp. 1–18.

[198] Steven Englehardt and Arvind Narayanan. “Online Tracking: A 1-million-site Measurement
and Analysis”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’16. Vienna, Austria: ACM, 2016, pp. 1388–1401. doi: 10.1145/
2976749.2978313.

[199] Marianna Rapoport, Philippe Suter, Erik Wittern, Ondrej Lhoták, and Julian Dolby. “Who
you gonna call? Analyzing Web Requests in Android Applications”. In: CoRR abs/1705.06629
(2017).

[200] Linda Naeun Lee, Richard Chow, and Al M. Rashid. “User Attitudes Towards Browsing Data
Collection”. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors
in Computing Systems. CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 1816–1823. doi:
10.1145/3027063.3053078.

[201] H. Said, N. Al Mutawa, I. Al Awadhi, and M. Guimaraes. “Forensic analysis of private browsing
artifacts”. In: 2011 International Conference on Innovations in Information Technology. Apr.
2011, pp. 197–202. doi: 10.1109/INNOVATIONS.2011.5893816.

[202] Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan Toreini. “On the privacy of private
browsing – A forensic approach”. In: Journal of Information Security and Applications 19.1
(2014), pp. 88–100. doi: 10.1016/j.jisa.2014.02.002.

[203] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-generation Onion
Router”. In: Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13.
SSYM’04. San Diego, CA: USENIX Association, 2004, pp. 21–21.

[204] Paul Vixie, Sue Thomson, Y. Rekhter, and Jim Bound. Dynamic Updates in the Domain
Name System (DNS UPDATE). RFC 2136. Internet Engineering Task Force, Apr. 1997. url:
http://www.rfc-editor.org/rfc/rfc2136.txt.

[205] Frank Wang and James Mickens. “Veil: Private Browsing Semantics Without Browser-side
Assistance”. In: NDSS. San Diego, CA, 2018.

[206] Dietwig Lowet and Daniel Goergen. “Co-browsing Dynamic Web Pages”. In: Proceedings of the
18th International Conference on World Wide Web. WWW ’09. Madrid, Spain: ACM, 2009,
pp. 941–950. doi: 10.1145/1526709.1526836.

[207] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. “An Analysis of Private
Browsing Modes in Modern Browsers”. In: Proceedings of the 19th USENIX Conference on
Security. USENIX Security’10. Washington, DC: USENIX Association, 2010, pp. 6–6.

[208] B. Zhao and P. Liu. “Private Browsing Mode Not Really That Private: Dealing with Privacy
Breach Caused by Browser Extensions”. In: 2015 45th Annual IEEE/IFIP International Con-

137

http://www.xmpp.org/extensions/xep-0071.html
http://www.xmpp.org/extensions/xep-0071.html
http://www.xmpp.org/extensions/xep-0153.html
http://www.xmpp.org/extensions/xep-0153.html
http://www.xmpp.org/extensions/xep-0153.html
http://www.xmpp.org/extensions/xep-0153.html
http://www.xmpp.org/extensions/xep-0153.html
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/3027063.3053078
https://doi.org/10.1109/INNOVATIONS.2011.5893816
https://doi.org/10.1016/j.jisa.2014.02.002
http://www.rfc-editor.org/rfc/rfc2136.txt
https://doi.org/10.1145/1526709.1526836

ference on Dependable Systems and Networks. June 2015, pp. 184–195. doi: 10.1109/DSN.
2015.18.

[209] IST SWIFT. Secure Widespread Identity for Federated Telecommunications (SWIFT). EU
FP7-2008 Contract 215832. url: http://www.ist-swift.eu.

[210] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. Client subnet in DNS queries
- Draft. RFC. Apr. 2016. url: https://tools.ietf.org/html/draft-ietf-dnsop-edns-
client-subnet-08.

[211] Rob Austein. DNS Name Server Identifier (NSID) Option. RFC 5001. Aug. 2007. doi: 10.
17487/RFC5001. url: https://rfc-editor.org/rfc/rfc5001.txt.

[212] Name Server Daemon (NSD). url: http://www.nlnetlabs.nl/projects/nsd/.

[213] P. Vixie. Extension Mechanisms for DNS (EDNS0). RFC 2671. Internet Engineering Task
Force, Aug. 1999, p. 7. url: http://www.rfc-editor.org/rfc/rfc2671.txt.

[214] I. Paterson, D. Smith, P. Saint-Andre, and J. Moffitt. XEP-0070: Verifying HTTP Requests
via XMPP. Draft Standard. XMPP Standards Foundation, Dec. 2005. url: http://xmpp.
org/extensions/xep-0070.html.

[215] A. Kumar, J. B. Postel, C. Neuman, P. Danzig, and S. Miller. Common DNS Implementation
Errors and Suggested Fixes. RFC 1536. Internet Engineering Task Force, Oct. 1993, p. 12.
url: http://www.rfc-editor.org/rfc/rfc1536.txt.

[216] Ilya Moiseenko, Mark Stapp, and David Oran. “Communication Patterns for Web Interaction
in Named Data Networking”. In: Proceedings of the 1st ACM Conference on Information-
Centric Networking. ACM-ICN ’14. Paris, France: ACM, 2014, pp. 87–96. doi: 10.1145/
2660129.2660152.

138

https://doi.org/10.1109/DSN.2015.18
https://doi.org/10.1109/DSN.2015.18
http://www.ist-swift.eu
https://tools.ietf.org/html/draft-ietf-dnsop-edns-client-subnet-08
https://tools.ietf.org/html/draft-ietf-dnsop-edns-client-subnet-08
https://doi.org/10.17487/RFC5001
https://doi.org/10.17487/RFC5001
https://rfc-editor.org/rfc/rfc5001.txt
http://www.nlnetlabs.nl/projects/nsd/
http://www.rfc-editor.org/rfc/rfc2671.txt
http://xmpp.org/extensions/xep-0070.html
http://xmpp.org/extensions/xep-0070.html
http://www.rfc-editor.org/rfc/rfc1536.txt
https://doi.org/10.1145/2660129.2660152
https://doi.org/10.1145/2660129.2660152

