3,272 research outputs found

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems

    Integrative Analysis To Select Cancer Candidate Biomarkers To Targeted Validation

    Get PDF
    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.6414363543652Kulasingam, V., Diamandis, E.P., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies (2008) Nature clinical practice Oncology, 5, pp. 588-599Wu, C.C., Hsu, C.W., Chen, C.D., Yu, C.J., Chang, K.P., Tai, D.I., Liu, H.P., Yu, J.S., Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas (2010) Molecular & cellular proteomics: MCP, 9, pp. 1100-1117Chen, R., Pan, S., Brentnall, T.A., Aebersold, R., Proteomic profiling of pancreatic cancer for biomarker discovery (2005) Molecular & cellular proteomics: MCP, 4, pp. 523-533Shimwell, N.J., Bryan, R.T., Wei, W., James, N.D., Cheng, K.K., Zeegers, M.P., Johnson, P.J., Ward, D.G., Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma (2013) British journal of cancer, 108, pp. 1854-1861White, N.M., Masui, O., Desouza, L.V., Krakovska, O., Metias, S., Romaschin, A.D., Honey, R.J., Siu, K.W., Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma (2014) Oncotarget, 5, pp. 506-518Rifai, N., Gillette, M.A., Carr, S.A., Protein biomarker discovery and validation: the long and uncertain path to clinical utility (2006) Nature biotechnology, 24, pp. 971-983Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Gafken, P.R., A targeted proteomics-based pipeline for verification of biomarkers in plasma (2011) Nature biotechnology, 29, pp. 625-634Makawita, S., Diamandis, E.P., The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification (2010) Clinical chemistry, 56, pp. 212-222Picotti, P., Rinner, O., Stallmach, R., Dautel, F., Farrah, T., Domon, B., Wenschuh, H., Aebersold, R., High-throughput generation of selected reaction-monitoring assays for proteins and proteomes (2010) Nature methods, 7, pp. 43-46Picotti, P., Bodenmiller, B., Aebersold, R., Proteomics meets the scientific method (2013) Nature methods, 10, pp. 24-27Gillette, M.A., Carr, S.A., Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry (2013) Nature methods, 10, pp. 28-34Chang, K.P., Yu, J.S., Chien, K.Y., Lee, C.W., Liang, Y., Liao, C.T., Yen, T.C., Chi, L.M., Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology (2011) Journal of proteome research, 10, pp. 4935-4947de Jong, E.P., Xie, H., Onsongo, G., Stone, M.D., Chen, X.B., Kooren, J.A., Refsland, E.W., Carlis, J.V., Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions (2010) PloS one, 5Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wong, D.T., Salivary proteomics for oral cancer biomarker discovery (2008) Clinical cancer research: an official journal of the American Association for Cancer Research, 14, pp. 6246-6252Sepiashvili, L., Hui, A., Ignatchenko, V., Shi, W., Su, S., Xu, W., Huang, S.H., Kislinger, T., Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy (2012) Molecular & cellular proteomics: MCP, 11, pp. 1404-1415van der Post, S., Hansson, G.C., Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences (2014) Molecular & cellular proteomics: MCPSimabuco, F.M., Kawahara, R., Yokoo, S., Granato, D.C., Miguel, L., Agostini, M., Aragao, A.Z., Paes Leme, A.F., ADAM17 mediates OSCC development in an orthotopic murine model (2014) Molecular cancer, 13, p. 24Liu, N.Q., Braakman, R.B., Stingl, C., Luider, T.M., Martens, J.W., Foekens, J.A., Umar, A., Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue (2012) Journal of mammary gland biology and neoplasia, 17, pp. 155-164Granato, D.C., Zanetti, M.R., Kawahara, R., Yokoo, S., Domingues, R.R., Aragao, A.Z., Agostini, M., Silva, A.R., Integrated proteomics identified up-regulated focal adhesion-mediated proteins in human squamous cell carcinoma in an orthotopic murine model (2014) PloS one, 9Kulasingam, V., Diamandis, E.P., Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets (2007) Molecular & cellular proteomics: MCP, 6, pp. 1997-2011Pham, T.V., Piersma, S.R., Warmoes, M., Jimenez, C.R., On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics (2010) Bioinformatics, 26, pp. 363-369Christin, C., Hoefsloot, H.C., Smilde, A.K., Hoekman, B., Suits, F., Bischoff, R., Horvatovich, P., A critical assessment of feature selection methods for biomarker discovery in clinical proteomics (2013) Molecular & cellular proteomics: MCP, 12, pp. 263-276Kim, Y., Ignatchenko, V., Yao, C.Q., Kalatskaya, I., Nyalwidhe, J.O., Lance, R.S., Gramolini, A.O., Drake, R.R., Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organconfined versus extracapsular prostate cancer (2012) Molecular & cellular proteomics: MCP, 11, pp. 1870-1884Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Mills, S.A., Parsa, A.T., Cancer and the complement cascade (2010) Molecular cancer research: MCR, 8, pp. 1453-1465Cho, M.S., Vasquez, H.G., Rupaimoole, R., Pradeep, S., Wu, S., Zand, B., Han, H.D., Dalton, H.J., Autocrine effects of tumor-derived complement (2014) Cell reports, 6, pp. 1085-1095Bensimon, A., Heck, A.J., Aebersold, R., Mass spectrometrybased proteomics and network biology (2012) Annual review of biochemistry, 81, pp. 379-405Bonne, N.J., Wong, D.T., Salivary biomarker development using genomic, proteomic and metabolomic approaches (2012) Genome medicine, 4, p. 82Leemans, C.R., Braakhuis, B.J., Brakenhoff, R.H., The molecular biology of head and neck cancer (2011) Nature reviews Cancer, 11, pp. 9-22Argiris, A., Karamouzis, M.V., Raben, D., Ferris, R.L., Head and neck cancer (2008) Lancet, 371, pp. 1695-1709da Silva, S.D., Ferlito, A., Takes, R.P., Brakenhoff, R.H., Valentin, M.D., Woolgar, J.A., Bradford, C.R., Kowalski, L.P., Advances and applications of oral cancer basic research (2011) Oral oncology, 47, pp. 783-791Macor, P., Tedesco, F., Complement as effector system in cancer immunotherapy (2007) Immunology letters, 111, pp. 6-13Bjorge, L., Hakulinen, J., Vintermyr, O.K., Jarva, H., Jensen, T.S., Iversen, O.E., Meri, S., Ascitic complement system in ovarian cancer (2005) British journal of cancer, 92, pp. 895-905Kim, D.Y., Martin, C.B., Lee, S.N., Martin, B.K., Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle (2005) Cancer immunology, immunotherapy: CII, 54, pp. 1026-1037Gollapalli, K., Ray, S., Srivastava, R., Renu, D., Singh, P., Dhali, S., Bajpai Dikshit, J., Srivastava, S., Investigation of serum proteome alterations in human glioblastoma multiforme (2012) Proteomics, 12, pp. 2378-2390Rutkowski, M.J., Sughrue, M.E., Kane, A.J., Ahn, B.J., Fang, S., Parsa, A.T., The complement cascade as a mediator of tissue growth and regeneration (2010) Inflammation research: official journal of the European Histamine Research Society, 59, pp. 897-905. , [et al]Markiewski, M.M., DeAngelis, R.A., Benencia, F., Ricklin-Lichtsteiner, S.K., Koutoulaki, A., Gerard, C., Coukos, G., Lambris, J.D., Modulation of the antitumor immune response by complement (2008) Nature immunology, 9, pp. 1225-1235Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674Paiva, J.G., Florian-Cruz, L., Pedrini, H., Telles, G.P., Minghim, R., Improved similarity trees and their application to visual data classification (2011) IEEE transactions on visualization and computer graphics, 17, pp. 2459-2468Rousseeuw, P.J., Silhouettes: A graphical aid to the interpretation and validation of cluster analysis (1987) Journal of Computational and Applied Mathematics, 20, pp. 53-65Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G., Diagnosis of multiple cancer types by shrunken centroids of gene expression (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 6567-6572Guyon, I.W., Barnhill, J., Vapnik, S., Gene Selection for Cancer Classification using Support Vector Machines (2002) Machine learning, 46, pp. 389-422Kuhn, M., Building Predictive Models in R Using the caret Package (2008) Journal of Statistical Software, 26, pp. 1-26Smit, S., Hoefsloot, H.C., Smilde, A.K., Statistical data processing in clinical proteomics (2008) Journal of chromatography B, Analytical technologies in the biomedical and life sciences, 866, pp. 77-88Carazzolle, M.F., de Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS-Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-genedrug interactions by integrating a variety of data sources and tools (2014) PloS one, 9Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Yamanishi, Y., KEGG for linking genomes to life and the environment (2008) Nucleic acids research, 36, pp. D480-D484Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T., Cytoscape 2, new features for data integration and network visualization (2011) Bioinformatics, 27, pp. 431-432Ponten, F., Schwenk, J.M., Asplund, A., Edqvist, P.H., The Human Protein Atlas as a proteomic resource for biomarker discovery (2011) Journal of internal medicine, 270, pp. 428-44

    Integrative analysis to select cancer candidate biomarkers to targeted validation

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOTargeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS6414363543652FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2009/54067-3; 2010/19278-0; 2011/22421-2; 2009/53839-2470567/2009-0; 470549/2011-4; 301702/2011-0; 470268/2013-

    Proteomics in cardiovascular disease: recent progress and clinical implication and implementation

    Get PDF
    Introduction: Although multiple efforts have been initiated to shed light into the molecular mechanisms underlying cardiovascular disease, it still remains one of the major causes of death worldwide. Proteomic approaches are unequivocally powerful tools that may provide deeper understanding into the molecular mechanisms associated with cardiovascular disease and improve its management. Areas covered: Cardiovascular proteomics is an emerging field and significant progress has been made during the past few years with the aim of defining novel candidate biomarkers and obtaining insight into molecular pathophysiology. To summarize the recent progress in the field, a literature search was conducted in PubMed and Web of Science. As a result, 704 studies from PubMed and 320 studies from Web of Science were retrieved. Findings from original research articles using proteomics technologies for the discovery of biomarkers for cardiovascular disease in human are summarized in this review. Expert commentary: Proteins associated with cardiovascular disease represent pathways in inflammation, wound healing and coagulation, proteolysis and extracellular matrix organization, handling of cholesterol and LDL. Future research in the field should target to increase proteome coverage as well as integrate proteomics with other omics data to facilitate both drug development as well as clinical implementation of findings

    Integrative analysis of multi-omics data reveals links between human diseases and the gut microbiota

    Get PDF
    The gut microbiota plays a critical role in human diseases, including type 2 diabetes (T2D) and osteoporosis. Especially, probiotics have been suggested to provide potential intervention strategies for improving human health. This thesis focuses on elucidating the interrelationships between the gut microbiota, probiotics and human diseases by integrative analysis of plasma metabolomics and gut metagenomics, using machine learning (ML) and genome-scale metabolic model (GEM). This work is mainly structured into two parts, including a systematical investigation of: (I) associations between the gut microbiota and T2D, (II) the effects of probiotic Lactobacillus reuteri ATCC PTA 6475 on bone metabolism of the elderly.\ua0\ua0\ua0 \ua0For the first part, a derivative of phenylalanine was identified as a potential link between the gut microbiota and T2D. It was associated with insulin resistance and might contribute to the metabolic imbalance of (pre)diabetes. By performing a systematical analysis of four metagenomic datasets, several short-chain fatty acids (SCFAs)-producing bacteria and metabolic reactions were consistently identified to be important for predicting T2D status across different studies. For the second part, this work revealed that supplementation with L. reuteri ATCC PTA 6475 prevented detrimental alterations in the metabolisms of both the gut microbiota and the elderly as well as increased the microbial gene richness, which might link the beneficial effects of probiotic L. reuteri ATCC PTA 6475 to bone metabolism. In addition, it was demonstrated that the use of ML and GEM have the potential to identify key disease-related metabolic signatures of single L. reuteri strain, the entire gut microbes, or the human host, based on the metabolomics and metagenomics data.\ua0\ua0\ua0 \ua0Taken together, this work provides novel insights into links between the gut microbiota and the human diseases as well as the positive effects of L. reuteri ATCC PTA 6475 on bone metabolism by integrating omics data using ML and GEMs

    The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease

    Full text link
    Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore