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Integrative analysis of multi-omics data reveals links between human diseases and 
the gut microbiota 
Peishun Li 
Department of Biology and Biological Engineering 
Chalmers University of Technology 
 
Abstract 
The gut microbiota plays a critical role in human diseases, including type 2 diabetes (T2D) 
and osteoporosis. Especially, probiotics have been suggested to provide potential 
intervention strategies for improving human health. This thesis focuses on elucidating the 
interrelationships between the gut microbiota, probiotics and human diseases by 
integrative analysis of plasma metabolomics and gut metagenomics, using machine 
learning (ML) and genome-scale metabolic model (GEM). This work is mainly structured 
into two parts, including a systematical investigation of: (I) associations between the gut 
microbiota and T2D, (II) the effects of probiotic Lactobacillus reuteri ATCC PTA 6475 
on bone metabolism of the elderly. 
 
For the first part, a derivative of phenylalanine was identified as a potential link between 
the gut microbiota and T2D. It was associated with insulin resistance and might contribute 
to the metabolic imbalance of (pre)diabetes. By performing a systematical analysis of four 
metagenomic datasets, several short-chain fatty acids (SCFAs)-producing bacteria and 
metabolic reactions were consistently identified to be important for predicting T2D status 
across different studies. For the second part, this work revealed that supplementation with 
L. reuteri ATCC PTA 6475 prevented detrimental alterations in the metabolisms of both 
the gut microbiota and the elderly as well as increased the microbial gene richness, which 
might link the beneficial effects of probiotic L. reuteri ATCC PTA 6475 to bone 
metabolism. In addition, it was demonstrated that the use of ML and GEM have the 
potential to identify key disease-related metabolic signatures of single L. reuteri strain, the 
entire gut microbes, or the human host, based on the metabolomics and metagenomics data. 
 
Taken together, this work provides novel insights into links between the gut microbiota 
and the human diseases as well as the positive effects of L. reuteri ATCC PTA 6475 on 
bone metabolism by integrating omics data using ML and GEMs. 
 
Keywords: gut microbiota, metabolomics, multi-omics, type 2 diabetes, osteoporosis, 
machine learning, metabolic modeling 
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1. Background 
1.1 The human gut microbiota 
A vast number of microorganisms (over 1014 bacterial cells) collectively live inside and on 
human bodies, such as the intestine, oral, nasal and skin, referred to as the human 
microbiota [1, 2]. Thus, humans are also called superorganisms comprised of both host and 
microbial cells. Most of the symbiotic microorganisms reside in the intestinal tract, named 
as the gut microbiota. The gut microbiota consists of diverse communities of bacteria, 
fungi and viruses, but is dominated by bacteria from major phyla Firmicutes and 
Bacteroidetes [3]. The weight of the bacteria colonizing human intestine reaches about 1.5 
kilograms and comprises approximately half of the feces [4]. A metagenomic analysis of 
individuals from four studies identified more than 1000 bacterial species and over ten 
million of genes in the gut microbiota [5], whose collective genome contains 100 times 
more genes than that in the human genome. Although the common species and core genes 
were shared across all cohorts, the abundances of species and genes showed large inter-
individual variations.  
 
1.1.1 Multiple factors shaping the gut microbiota 
The section mainly discusses various factors that shape the gut microbiota. Babies acquire 
the initial gut microbiota from their mother at birth or from exposure to the environmental 
microorganisms according to the different delivery modes [6]. Also, the early colonization 
of the gut microbes in an infant is strongly linked to how the infant is fed, e.g., with breast 
milk or formula [7]. A previous study reported that human genetics to some extent shape 
the composition of the gut microbiota and a number of microbial species from the phyla 
Firmicutes and Verrucomicrobia are heritable [8]. Moreover, several studies have 
suggested ethnicity is related to the inter-individual dissimilarities in the composition of 
gut microbiota [9, 10]. Also, the available nutrition and innate immunity in the human host 
could influence the gut microbiota. 
 
Nevertheless, environmental factors such as diet, lifestyle, anthropometric measurements, 
particular drugs, predominantly shape the gut microbial composition over human host 
genetics [11]. The gut microbiota is strongly affected by long-term diets and influences 
human health [12-15]. Especially, drug treatment could impact the gut microbiota and 
confound the microbial associations with human diseases, emphasizing it is critical to 
adjust for the medicine treatment when identifying disease-related microbial signatures 
[16]. In addition, an early study of populations from three countries revealed that the 
microbial diversity of the infant gut elevated with age during the first 3 years of life across 
all populations [17]. The study also showed that the composition and functional capacity 
of the gut microbiota differed between the three geographically distinct populations, 
consistent with that geographical location showed strong associations with variations of 
the microbiota in a recent report [18]. The study further revealed that the gut microbiota of 
an individual had more similar to members from the same household than from different 
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families, which implies that common living environment is an important factor for shaping 
the microbiota. Additionally, a metagenomic study of Ukrainian population showed that 
the Firmicutes/Bacteroidetes (F/B) ratio increased with the raised body mass index (BMI) 
[19]. Thus, the environmental factors together with human host genetics have a great 
potential to shape the composition and functional capacity of the gut microbiota, 
subsequently affecting human health state (Figure 1). 
 

 
Figure 1 Complex interplays between the gut microbiota, environment and human metabolism. A number of 
environmental factors, such as diet, drugs, probiotics and lifestyle could influence both the gut microbiota and human 
host. Moreover, the gut microbiota could affect human health potentially mediated by producing the beneficial or 
detrimental metabolites, such as short-chain fatty acids (SCFAs), bile acids and branched-chain amino acids (BCAAs). 
Conversely, the human host could exert a selective pressure on the microbiota via nutritional availability and immune 
regulation. In order to investigate the complicated interactions related to human diseases, high-throughput technologies 
have been widely applied to generate multi-omics data, including the gut metagenomics and metabolomics. Integrative 
analysis of the multi-omics, meta or clinic data could provide more insights into the associations between the gut 
microbiota the human diseases.  

 
1.1.2 Targeting the gut microbiota as a potential health-promoting strategy 
As discussed above, the gut microbiota is modifiable by various environmental factors. 
Growing evidence has implicated that modulating the gut microbiota e.g., through dietary 
intervention or oral supplementation with probiotics (Figure 1), could be a potential 
intervention strategy for improvement of human heath state [20]. A metagenomic study of 
49 individuals with obesity and overweight revealed that an intervention by the weight-
loss diet improved gene diversity of the gut microbiota and clinical phenotypes in subjects 
with an initially low gene richness [21]. A recent study also showed that Mediterranean 
diet intervention alters the gut microbiota and improve health status in older people [22]. 
Furthermore, previous studies have observed high inter-person variations in postprandial 
glucose responses to the identical diet [23, 24], which challenges the recommendation of 
a standardized diet for glycemic control in individuals with cardiovascular risk. However, 

High-throughput technologies

MetabolomeMetagenome

ProbioticsLifestyleDiet Drugs

Meta / Clin ic data

Beneficial and detrimental
metabolites

Nutrition and immunity

Supraorganism

Microbiota
Human

Environment
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the tailored meals in combination with the individual gut microbiota showed predictable 
of a person’s metabolic response to the diets, suggesting that personalized nutrition has 
potential as an intervention strategy for improvement of human health. 
 
In addition to the diet intervention, increasing studies have indicated that supplementation 
with probiotics (health-promoting microorganisms) or prebiotics (compounds promoting 
the growth of beneficial microorganisms) have positive effects on human metabolism [25-
27]. In a randomized, double-blind, placebo-controlled trial, Sabico et al implicated that 
multi-strain probiotic supplementation over 6 months significantly decreased the insulin 
resistance and inflammation in patients with type 2 diabetes (T2D) [28]. Also, Karamali et 
al demonstrated that taking probiotic supplements in patients with gestational diabetes had 
positive effects on glycemic control [29]. Conversely, an early study suggested that part of 
subjects did not respond to the probiotic supplementation, while the responders with 
improved insulin sensitivity showed a higher baseline microbiota diversity [30]. Overall, 
personalized dietary or probiotic interventions that target the gut microbiota could be an 
efficient strategy for promoting human health. 
 

1.2 Relationships of the gut microbiota with human diseases 
When the commensal species are outcompeted by other pathogenic microorganisms, 
dysbiosis of the gut microbiota can occur. Increasing studies have demonstrated that the 
imbalance of the gut microbiota plays a critical role in human diseases (Figure 1). This 
thesis focuses on exploring associations between the gut microbiota and human diseases 
including T2D and osteoporosis. As briefly mentioned in section 1.1.2, oral 
supplementation with probiotics could have beneficial effects on human health.  Therefore, 
the section further discusses the existed associations between the two diseases, gut 
microbiota and probiotics as well as the related mechanisms underlying the causal roles of 
the microbiota in the pathogenesis of the diseases. 
 
1.2.1 Type 2 diabetes 
T2D is one of the fastest increasing diseases all around the world [31, 32], characterized 
by hyperglycaemia. Almost all individuals with T2D have prediabetes (Pre-D), 
characterized by higher than normal glucose levels but not yet reaching the threshold for 
diabetes diagnosis [33, 34]. Moreover, 5-10% of all individuals with Pre-D will annually 
progress to T2D, and ~70% will ultimately develop T2D over the course of their lifespan 
[33]. Both the Pre-D and T2D patients undergo metabolic disorders, including the 
abnormal glucose and fatty acid metabolisms. In addition, they have a reduced ability to 
adapt to diet-triggered perturbations, e.g., the limited control for the postprandial glycemic 
level [35, 36]. Insulin resistance and pancreatic beta-cell dysfunction play an important 
role in the metabolic imbalance [37, 38]. Researchers and physicians usually apply a mixed 
meal test (MMT) to examine the postprandial glucose control and insulin secretion [39-
42]. Also, the MMT has been used to investigate the postprandial effects on the metabolic 
processes in subjects with Pre-D or T2D [43-45]. Additionally, recent studies showed that 
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the postprandial glucose responses to a diet could be predictable using machine learning 
(ML) models based on the gut microbiota [23, 24].  
 
Increasing metagenomic studies have suggested that (pre)diabetes is associated with 
alterations in the composition and functional capacity of the gut microbiota [46, 47]. One 
early study reported gut microbial dysbiosis in Chinese individuals with T2D, including a 
decrease in the abundance of some butyrate-producing bacteria [48]. Also, they observed 
an enrichment of microbial functions involved in branched-chain amino acid (BCAA) 
transport and oxidative stress resistance. Moreover, a previous report revealed increase in 
the abundance of Lactobacillus species and decrease in the abundance of Clostridium 
species in Swedish individuals with T2D [49]. Their results also indicated that the 
discriminatory microbial markers of T2D were heterogenous between the European and 
Chinese cohorts. Furthermore, one recent study analyzed metagenomics data from 
individuals with normal glucose tolerance (NGT), Pre-D and T2D [50]. Several microbial 
compositional changes were detected, including an enrichment of Escherichia coli in the 
Pre-D individuals and an increased abundance of Bacteroides spp. in the T2D patients. 
Additionally, a remarkable study found that the overall gut microbiota shifted in different 
glycemic status [51], and the butyrate-producing bacteria were depleted in the Pre-D and 
T2D individuals. More evidence has proved that the gut microbiota could be linked to the 
impaired glucose tolerance by producing detrimentally microbial metabolites [52], such as 
BCAA [53], imidazole propionate[54].  
 
Nevertheless, inconsistent T2D-related gut microbial signatures have been reported across 
various studies. Also, different mechanisms underlying the roles of the inconsistent 
microbial features in T2D have been suggested. One of the main reasons is that T2D is one 
multi-factor disease that has an intricate interaction of human genetics, the gut microbiota 
and other factors [32, 55]. In addition, this might be due to other factors, such as geography, 
age, body mass index (BMI), diet and drugs, could affect the gut microbiota, which would 
possibly confound associations between the microbiota and T2D. Therefore, different 
types of data should be taken into account when performing analysis for the gut microbiota 
studies related to T2D. 
 
1.2.2 Osteoporosis 
Osteoporosis is a prevalent bone disease in the elderly, characterized by reduced bone 
mineral density (BMD), deteriorated bone microarchitecture and decreased bone strength. 
The disease increases the susceptibility to low energy or fragility fractures mainly in the 
older population [56, 57]. The risk of fracture could be reduced by pharmacological 
treatment, but treatment rates in patients with osteoporosis keep low, probably due to low 
osteoporosis awareness, high cost for medication and side effects of available drugs [57, 
58]. Thus, there is an urgent need to develop a novel and effective intervention for the 
prevention and treatment of osteoporosis.  
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Towards this goal, the gut microbiota has been suggested to play an important role in bone 
metabolism, potentially by regulating the immune system and osteoclast formation in mice 
[59-62]. An early study of food allergic infants suggested that the probiotic Lactobacillus 
rhamnosus GG-supplemented formula could expand the butyrate-producing bacterial 
species [63]. Moreover, the probiotic L. rhamnosus GG was suggested to promote bone 
formation through increasing the production of the microbial butyrate, which induced T 
cell-produced Wnt10b in the intestine of mice [64]. These results suggest that modulation 
of the gut microbial composition and functional capacity by supplementation with 
probiotics might provide novel strategies for the prevention and treatment of osteoporosis 
[65].  
 
As a lactic acid bacterium, Lactobacillus reuteri (also known as Limosilactobacillus 
reuteri) strains have been widely used as probiotics. Oral supplementation of the probiotic 
Lactobacillus reuteri ATCC PTA 6475 has been demonstrated to reduce bone loss and 
increase bone density in mice with estrogen deficiency or increased inflammation [66, 67]. 
Moreover, in a recent randomized controlled trial, oral supplementation of L. reuteri 
ATCC PTA 6475 could reduce bone loss by ~50% in older women with low BMD [68]. 
Thus, L. reuteri ATCC PTA 6475 may be a potential therapeutic strategy to prevent 
postmenopausal bone loss in the elderly. However, the mechanisms related to the effects 
of the probiotic L. reuteri ATCC PTA 6475 on bone metabolism remains unknown. 
 

1.3 Multi-omics profiling for investigating links between the gut 
microbiota and human diseases 
The fast developments of high-throughput omics technologies have enabled the 
quantifications of a large number of molecular features from different biological samples, 
such as metabolomics for the metabolites abundancies, metagenomics for the taxonomic 
and functional profiles of the gut microbiota and transcriptomics for the expression levels 
of ribonucleic acid (RNA). In this thesis, the serum metabolomics and gut metagenomics 
were jointly used to explore links between the gut microbiota and the studied diseases 
(Figure 1). Therefore, the following section mainly introduces metabolomics and 
metagenomics technologies. 
 
1.3.1 Metagenomic sequencing for characterizing the human gut microbiota 
To quantify and characterize the gut microbial communities, feces samples are first 
collected. Traditionally, target microbes are isolated from the feces sample and then 
cultured in a laboratory media. Due to the difficulty to grow most of the microorganisms 
within the human gut as well as the sequencing cost is decreasing dramatically, DNA based 
sequencing methods have been widely used, including amplicon sequencing and 
metagenomic shotgun sequencing. The amplicon sequencing mainly profiles 16S 
ribosomal RNA (16S rRNA) that contains around 1500 base pairs and are regarded as main 
markers for bacteria and archaea [69]. When analyzing sequences from the 16S rRNA 
genes, close sequences are classified into operational taxonomic units (OTUs). A subset of 
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bioinformatics tools and databases have been well developed and easily available for the 
taxonomic identification and quantification at a genus or species level. However, many 
human gut microbes lack reference genomes, and species with similar 16S rRNA genes 
could exhibit differential functional potential. Therefore, based on the taxonomic markers, 
it is challenging to characterize the functional capacities of the gut microbiota by 16S 
rRNA sequencing.  
 
Metagenomic shotgun sequencing has enabled to profile not only the microbial 
composition but also its functional capacity by quantification of microbial genes or 
metabolic pathways. A number of computational tools for the taxonomic and functional 
profiles of the metagenome have been devised. To profile the composition of the microbial 
communities from metagenomic data, several marker gene-based computational tools have 
been proposed such as the tool MetaPhlAn [70] and mOTUs2 [71]. The MetaPhlAn is 
based on unique clade specific marker genes collected from about 17000 reference 
genomes, while mOTUs2 is based on phylogenetic marker genes that could profile over 
7700 species.  
 
To characterize the potential functions of the gut metagenomes, a set of bioinformatic tools 
also have been developed and mainly grouped into two classes. The first type of tools 
quantify directly the functional capacity by mapping metagenomic reads to a predefined 
catalogue of genes with known functions, such as the online metagenomics RAST service 
[72], the standalone tool HUMAnN2 [73]. Similarly, the MEDUSA tool is an integrated 
pipeline for analysis of metagenomic sequences, which maps reads to a global human gut 
microbial gene catalogue comprising over 11 million genes [5]. The second type of tools 
first perform a de novo assembly of metagenomic reads into a catalogue of contigs or genes, 
and then map the reads to the assembled genes with functional annotations. For example, 
by calling the de novo assembly tool SOAPdenovo [74], MOCAT has been devised as a 
highly modular pipeline for standardized processing, assembly and profiling of 
metagenomic data [75]. Usually, the assembled genes are annotated with functional 
information from databases, such as the Kyoto encyclopedia of genes and genomes (KEGG) 
[76], COG [77], eggNOG [78] and the Carbohydrate-Active Enzyme (CAZy) database 
[79].  
 
1.3.2 Metabolomic profiling to study the metabolisms of the human host and the gut 
microbiota 
Metabolomics refers to a collection of high-throughput technologies used to identify and 
quantify a large number of small-molecule chemicals (<1500 Da) in a biological sample. 
The detectable molecules mainly consist of both endogenous metabolites naturally 
produced in an organism (including fatty acids, amino acids, carbohydrates, nucleic acids) 
and exogenous metabolites (including food additives, drugs and other xenobiotics) not 
naturally synthesized in an organism. Thus, metabolomics offers a great opportunity to 
investigate the global metabolic processes in human populations [80, 81].  
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Metabolomics technologies are mainly categorized into targeted and untargeted methods. 
Targeted methods measure a predefined set of small molecules with high sensitivity, while 
untargeted approaches quantify a broader range of detectable compounds. In addition, 
liquid chromatography (LC) or gas chromatography (GC) in tandem with mass 
spectroscopy (LC-MS or GC-MS) and nuclear magnetic resonance (NMR) spectroscopy 
have been widely used to quantify metabolites in metabolomics. This thesis mainly applied 
the LC-MS technology that generally has a high sensitivity and broad scope of detectable 
metabolites. After qualification, based on in-house or public databases, all identified 
molecules are annotated to known metabolites with various identifiers from public 
databases, such as KEGG [76], the human metabolome database (HMDB) [82] and the 
PubChem database [83]. After identification and quantification of molecules, the missing 
values of metabolites’ peak areas can be imputed in different ways, e.g., using the 
minimum value of each metabolite abundance. Due to the high variability of the metabolite 
abundances up to three orders of magnitude, the raw values are usually processed by the 
logarithmic transformation to restrict the range of values approximately fulfilling a normal 
distribution. For metabolomic analysis, the web based MetaboAnalyst tool has been 
developed and widely used to perform biomarker identification, pathways analysis and 
multi-omics integration [84].  
 
1.3.3 The microbe-derived metabolites linked to human diseases revealed by omics 
integration 
As discussed in previous reviews [52, 85-87], the gut microbiota may contribute to human 
diseases mediated by the microbe-derived metabolites involved in the key signaling 
pathways (Figure 1). Particularly, the integrative analysis of the metagenomics and 
metabolomics data not only could provide new insights into the metabolisms of the gut 
microbiota or human host, but also study the causal links between them. For example, 
Visconti et al found that the gut microbial metabolic pathways have over 18,000 significant 
associations with blood and fecal metabolites [88], whereas species show less than 3,000 
associations. To examine relationships between blood metabolome and the gut microbiota, 
Wilmanski et al. predicted alpha diversity of the gut microbiota based on a set of 40 plasma 
metabolites [89]. Out of the 40 metabolites, 13 are microbe-derived metabolites including 
imidazole propionate, secondary bile acids, trimethylamine N-oxide (TMAO) and indole 
propionate, which are linked to cardiovascular diseases (CVD) risk and T2D. In a cross-
sectional study, Kurilshikov et al showed that plasma levels of short-chain fatty acids 
(SCFAs) from the gut microbial fermentation of fibers were associated with inflammation 
and CVD risk [90]. Moreover, Pedersen et al identified Prevotella copri and Bacteroides 
vulgatus as the main drivers, which induced insulin resistance via the production of 
branched-chain amino acids (BCAAs) [53]. These demonstrated that the common 
cardiometabolic disorders could be regulated by the microbial metabolites. In addition, by 
integrating metabolomic and metagenomic data, Franzosa et al identified a number of 
associations between inflammatory bowel disease-related species and metabolites 
including caprylic acid, which provides an insight into possible mechanism involved in 
dysfunction of the gastrointestinal tract [91].  
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1.4 Genome-scale metabolic modeling 
As discussed in section 1.3, increasing studies have accumulated tons of multi-omics data 
generated from high-throughput technologies, such as transcriptomics, metagenomics and 
metabolomics. Thus, we are facing major challenges to efficiently extract useful 
information by integrative analysis of these omics data. Systems biology applies 
mathematical models or networks to study complex biosystems that contain varied 
molecular components. Due to considering the intricate interactions between the different 
molecular components, systems biology has the potential to reveal latently novel 
signatures that might not be identified through analysis of a single molecular profile. 
Particularly, in systems biology, genome-scale metabolic models (GEMs) have been a 
powerful tool to study the metabolisms of an organism in detail. Therefore, this section 
mainly introduces the framework for GEM construction and analysis. 
 
GEMs contain the detailed collections of biochemical reactions for all metabolic genes in 
an organism. To construct a GEM of an organism of interest, the gene-protein-reaction 
associations were first collected mainly based on the genomic content and annotation 
information from several genome and biochemical reaction databases such as KEGG [76], 
MetaCyc [92] and NCBI (Figure 2a). A number of widely used tools for the model 
construction have been developed such as Model SEED [93], COBRA[94] and RAVEN 
[95], which could automatize many steps of the construction and generate an initial draft 
model. After obtaining a draft model, several manual curation steps are required inevitably, 
such as biomass reaction definition, parameter optimizations for biomass growth and gap 
filling. Biomass composition can be determined according to literature and experimental 
data. Due to the manual steps, it would take most of time to refine the draft model to 
generate a finalized GEM with completely metabolic pathways that could convert 
substrates into biomass components. When performing the GEM simulation, all 
biochemical reactions in a GEM are formulated as a stoichiometric coefficient matrix S, 
where rows represent metabolites and columns represent reactions. Flux balance analysis 
(FBA) has been widely used to simulate reaction fluxes at the steady state when 
maximizing an objective function under a certain number of constraints. This can be 
formulated mathematically as shown in Figure 2b. 
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Figure 2 The framework for construction and simulation of a genome-scale metabolic model. a) Firstly, the gene-
protein-reaction (GPR) associations were collected based on the genomic contents and the public databases. According 
to the obtained GPR associations, the stoichiometric description of metabolic reactions, genes and metabolites are 
integrated into an initial draft model. After manual curations, a finalized GEM is achieved with a complete metabolic 
network that could convert substrates into biomass components. b) For the GEM simulation, the metabolic network is 
defined as a stoichiometric coefficient matrix S, where rows represent metabolites and columns represent reactions. Flux 
balance analysis (FBA) is usually used to simulate metabolic fluxes at a steady state when maximizing an objective 
function under given condition. c is a vector with coefficients for all reactions that specify a linear combination of all 
reaction fluxes to be maximized; v is a vector with fluxes of all reactions; lb (ub) denotes a vector with lower (upper) 
bounds for all reactions; μ indicates objective function that is maximized to simulate metabolic fluxes. 

 
Until now, abundant GEMs have been constructed for different organisms, including the 
human gut related species. GEMs have been used to investigate the metabolism of a single 
gut microbial species, such as L. reuteri, Lactobacillus casei [96-98]. Additionally, GEMs 
have been applied to examine the complex interrelationships between multiple gut 
microbial species [99]. Particularly, GEMs provide a systematical platform to view the 
community-level metabolic potentials of the gut microbiota [100]. To interrogate the 
associations between diseases and the metabolic capabilities of the gut microbiota, the 
collective reaction fluxes can be simulated by optimizing some potential products or 
maximizing biomass growth. The simulated fluxes from metabolic models may be helpful 
for understanding the abnormal metabolisms or interrelations in the disease-related gut 
microbiota.  
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1.5 Machine learning 
In addition to GEM as discussed in section 1.4, ML methods have been successfully 
applied to integrate multi-omics data for discovery of hidden patterns, phenotypic 
predictions and identifications of potential biomarkers in the field of human gut 
microbiota. ML is a branch of artificial intelligence that automatically learn and improve 
from input data without being explicitly programmed. The section mainly introduces the 
categories of ML algorithms and the general workflow for ML modeling.   
1.5.1 Categories of machine learning algorithms 
ML algorithms are mainly classified into two categories: unsupervised and supervised 
learning (Figure 3a). Unsupervised learning methods purely learn and discover novel 
hidden patterns from given datasets, therefore they are referred to as data driven prediction. 
Out of them, clustering algorithms, for instance k‑means clustering [101], are frequently 
implemented to stratify a set of objects into multiple groups (clusters) based on similarities 
or differences. Particularly, unsupervised learning has been applied to novel pattern 
recognition in the gut microbiota studies, such as identifying enterotypes of the human 
microbiota [102, 103], co-abundance gene groups [104]. 
 

 
Figure 3 The categories and workflow of machine learning modelling. a) ML algorithms are mainly classified into 
unsupervised learning including dimension reduction and clustering methods, and supervised learning, including 
regression and classification approaches. b) In a deep neural network architecture, multiple (here two) hidden layers 
(green color) are connected in a cascade fashion between input and output layers (grey color). Each of these layers takes 
input from its previous layer and transforms the data into a more abstract form as an output for next layer. c) The pipeline 
of ML modeling commonly consists of four steps, including feature engineering, model training and optimization, 
performance evaluation, model application and explanation. d) The framework of a k-fold cross-validation, where the 
original samples are randomly split into k subsets with equal size. 
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In contrast to the unsupervised learning, supervised learning approaches learn and infer a 
function from input data, which is typically comprised of independent variables (i.e., 
features) and dependent variables across all samples. For supervised learning, the known 
dependent variables in a training dataset are used to train a ML model, which is potentially 
capable to predict the outcomes of new samples. This thesis focuses on the supervised ML 
algorithms for classification or regression problems. While the dependent variables are 
continuous, the ML model can be used for regression tasks [89, 105]. For instance, the 
generalized linear models with the penalties least absolute shrinkage and selection operator 
(lasso) and ridge regression [106] has been widely used in the gut microbiota studies, due 
to that they can efficiently process sparse microbial features. When the dependent variables 
are categorical, the ML model can be applied for classification tasks [49, 107]. Particularly, 
decision trees-based ensemble learning methods have been widely applied in the gut 
microbiota studies for both regression and classification tasks, such as random forest (RF) 
[49, 107, 108], light gradient boosting machine (LightGBM) [109, 110] and extreme 
gradient boosting decision trees (XGBoost) [111-113], due to their powerful performance, 
ease of use and model interpretability. Additionally, as a subfamily of ML methods, deep 
learning (DL) is a deep neural network (DNN) with multiple hidden layers [114]. In a DNN 
architecture as illustrated in Figure 3b, hidden layers are connected in a cascade fashion 
between input and output layers with weight representing each connection. Each of these 
layers takes input from its previous layer and transforms the data into a more abstract form 
as an output for next layer. Moreover, the backpropagation approach is utilized to adjust 
the weights to minimize the prediction error. Increasing studies have applied DL 
algorithms that could achieve a considerably accurate prediction [115, 116]. Nevertheless, 
DL algorithms usually need large training data sets and lack model explainablity, which 
limits their applications in the gut microbiota. 
 
1.5.2 Workflow of machine learning modeling  
Although a set of supervised ML algorithms have been developed, the whole pipeline of 
modeling commonly consists of four steps: 1, feature engineering; 2, model training and 
optimization; 3, performance evaluation; 4, testing of the optimal model (Figure 3c). 
Performance of a ML model lies to some extent on the quality of data used for training the 
model. Thus, it is essential to perform feature engineering first, which is involved in data 
pre-processing, feature extraction and feature selection processes. Data pre-processing 
includes proper cleaning, normalization and transformation. Feature extraction is intended 
to build a feature vector representing a reduced number of variables from raw measured 
data, which could contain the sufficient relevant information for the raw data. This can 
facilitate the subsequent training steps. Nevertheless, these extracted features in the dataset 
might be still uninformative and irrelevant for building the predictive model. For example, 
model training with extremely large amounts of variables requires extensive computing 
power and memory, and easily leads to overfitting. Thus, feature selection is important to 
obtain an optimal and non-redundant subset of the initial features, which is critical for fast 
model training, improved performance and even better model interpretation.  
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In addition, cross-validation has been frequently applied to evaluate model performance 
using assessment metrics such as AUC (area under ROC curve) for classification task as 
well as root mean square error (RMSE) and R2 (coefficient of determination) for regression 
task (Figure 3c). In a k-fold cross-validation process, the original samples are randomly 
split into k subsets with equal size at first (Figure 3d). Then one round of cross-validation 
is implemented, where the predictive model is constructed using k-1 subsets (called 
training set) and the model is validated using the single remaining subset (called as testing 
dataset). This step will be iterated k times, where each of the k subsets is used successively 
as the testing dataset. Finally, the k validation outcomes are summarized into a single 
metric for assessing model performance. For most of ML methods, the training process 
includes iterations of model parameters tuning and feature engineering until the model 
performance cannot be improved further. The performance of multiple different 
approaches can be benchmarked and then the one or two best models can be selected. 
Finally, the model can be applied to make prediction on new data. Notably, disease-related 
biomarkers can be simultaneously identified by model interpretability in previous 
microbiota studies [109, 112] (Figure 3c), which allows us to gain biological insights into 
the data. Overall, the above processes can impact the model performance and thus should 
be taken into account when implementing a ML algorithm in the gut microbiota research.  
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1.6 Aim and significance 
Given the heavy medical costs and increasing trend of T2D and osteoporosis around the 
world, there is an urgent need to find novel ways of addressing this global challenge. 
Evidence suggests that the gut microbiota plays a key role in the onset and progression of 
the human diseases. Particularly, probiotics might provide novel interventions strategies 
for prevention and treatment of the diseases. By investigating the metabolisms of both the 
gut microbiota and human host using metabolomics and metagenomics, the mechanistic 
effects of the gut microbiota on the human diseases have been revealed in previous studies.  
In addition, GEMs and ML have been successfully applied to data integration in the gut 
microbiota studies. With this background, this thesis aims to disentangle the associations 
between the gut microbiota, probiotics and human diseases (i.e., T2D and osteoporosis) by 
integrative analysis of plasma metabolomics and gut metagenomics, using ML and GEMs. 
To this end, I first reviewed the current literature about associations between ML, gut 
microbiota and human diseases in Paper I. Moreover, this thesis focuses on answering 
three scientific questions as follow: 
 
How is the human gut microbiota linked with T2D? 
As introduced in the background part (section 1.2.1), few studies have taken a systematical 
investigation on how different underlying factors, including human metabolism and the 
gut microbiota, contribute to the abnormal metabolic responses to a MMT in individuals 
with (pre)diabetes. Therefore, this work first explored the metabolic changes of both 
human host and the gut microbiota, and how the identified link between them might play 
an important role in postprandial abnormalities (Paper II). In addition, inconsistent T2D-
related gut microbial signatures have been reported across various studies. Accordingly, 
the different mechanisms that the gut microbial species are involved in might contribute to 
the pathogenesis of T2D. Given that other factors could influence the gut microbiota and 
cause the inconsistent findings, this work further performed a systematical analysis of four 
metagenomics datasets using ML and community-level metabolic models (Paper III). 
Through the cross-cohort analysis, the common T2D-related gut microbial features and 
interactions across studies could be identified, which would be robust biomarkers for T2D 
and assist us to develop new T2D-specific interventions strategies. 
 
How does the probiotic L. reuteri ATCC PTA 6475 improve bone health in the 
elderly? 
In a recent randomized controlled trial, oral administration of L. reuteri ATCC PTA 6475 
reduced bone loss in older women with low BMD [68]. However, part of older women 
responded poorly to the probiotic intake. In addition, the mechanisms related to the 
beneficial effects of L. reuteri ATCC PTA 6475 on human metabolism remains unknown. 
To systematically investigate interactions between Lactobacillus reuteri ATCC PTA 6475, 
the gut microbiota and bone metabolism in the elderly, this work first examined the 
metabolic properties of L. reuteri ATCC PTA 6475 by constructing its GEM, which can 
help us understand the potential benefits of the probiotics to human metabolism (Paper 
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IV). Moreover, using plasma metabolomic profiling, this work investigated the effects of 
L. reuteri ATCC PTA 6475 on global metabolisms of older women during one-year 
supplementation with the probiotics (Paper V). To interrogate whether the metabolic 
changes of the elderly are linked to the gut microbial changes, this work further analyzed 
the metagenomics data from 20 older women with good or poor responses to the probiotic 
supplementation (Paper VI). Through the integrate analysis, this work could provide new 
insights into the probiotic regulation of bone metabolism that might aid in the development 
of novel interventions strategies for osteoporosis. 
 
Can the joint use of ML and GEM enable the identification of key gut microbial 
signatures related to diseases? 
GEMs have served as a useful tool for studying detailed metabolism of an organism, e.g., 
the GEM reconstruction for L. reuteri ATCC PTA 6475 in Paper IV. The gut microbiota 
of one person consists of hundreds of species. Although it is challenging to construct 
community-level metabolic models based on GEMs of all gut microbes, this work 
hypothesized that the metabolic model of individual gut microbiota has the potential to 
reveal more detailed functional capacity as well as interspecies interactions at the 
metabolic level, compared to only analyzing the metagenomics data. Thus, the metabolic 
capacity by modeling the gut microbiota was simulated in Paper III. 
 
ML has been successfully applied in the field of the gut microbiota as discussed in section 
1.5. Therefore, in this thesis I predicted regression or classification questions by 
developing various interpretable ML models including regression models and the decision 
trees-based ensemble models, which could not only achieve adequate prediction accuracy, 
but also identify key disease-related signatures. To identify potential factors for 
postprandial glucose control, ML was applied to predict the glycemic responses to a meal 
based on multi-omics data (Paper II). Moreover, I used ML to predict T2D status based 
on different gut microbial features as well as to identify T2D-related microbial signatures 
(Paper III). Additionally, this work could also confirm whether the ML in combination 
with GEM could be helpful to identify novel gut microbial metabolic features related to 
diseases. 
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2. Association of the human gut microbiota with T2D  
The gut microbiota plays a critical role in the pathogenesis of T2D. This chapter 
summarizes two studies (Paper II & Paper III) on the association between the gut 
microbiota and T2D. In chapter 2.1 and 2.2, the results from Paper II are presented where 
disfunction of the gut microbiota is linked to abnormally response to a mixed meal test 
(MMT) in T2D. The chapter 2.3 and 2.4 describe the work from Paper III where the 
consistent T2D-related microbial signatures across different studies were investigated by 
using ML and GEMs. 
 

2.1 Links between the gut microbiota and postprandial metabolic 
responses 
T2D is one of the fastest increasing diseases worldwide, characterized by hyperglycaemia. 
Before individuals develop T2D, they always have prediabetes (Pre-D) with higher than 
normal blood sugar levels that have not yet reached the threshold for diabetes diagnosis. 
Metabolic disorders in Pre-D and T2D patients lead to a decreased ability to adapt to diet-
triggered perturbations [35, 36], e.g., abnormally glycemic control. Usually, a MMT can 
be used to assess postprandial metabolism, including glucose and insulin responses [39-
42]. Previous studies have revealed postprandial effects on the multiple metabolic 
processes in the Pre-D and T2D patients [43-45]. In addition, two studies have predicted 
postprandial glucose response to a meal based on the composition of the gut microbiota 
using ML models based on the gut microbiota and personal features [23, 24]. However, 
few studies have taken a systematical view on how different underlying factors, including 
gut metagenomic and blood metabolomic profiles, contribute to abnormally metabolic 
responses to a MMT in individuals with (pre)diabetes. 
 
In Paper II, 106 individuals were recruited and classified into either normal glucose 
tolerance (NGT, n=27), Pre-D (n = 57) or T2D (n = 22) groups according to the American 
Diabetes Association criteria [34]. Moreover, plasma samples for the two-hour MMT and 
metabolomics profiling were collected within three months before the bariatric surgery. 
Also, biopsies from different human organs including liver, jejunum and adipose fat tissues 
for RNA sequencing, and fecal samples for metagenomic shotgun sequencing were 
collected on the day of the surgery. 
 
2.1.1 Abnormally metabolic response during the MMT in individuals with T2D 
To evaluate the postprandial responses of glucose and insulin, individuals with different 
diabetic status underwent a two-hour MMT. The MMT triggered a temporary increase in 
plasma glucose and insulin levels in the NGT, Pre-D and T2D groups (Figure 4a and b; P 
< 0.01 by ANOVA). Especially, glucose excursions differed significantly between the 
three groups (P < 0.01 by ANOVA). This translated in significant differences in total area 
under the curve (tAUC) between the three groups (Figure 4c; P < 0.01 by Kruskal–Wallis 
test). Interestingly, a significantly positive correlation between glucose tAUC and insulin 
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tAUC was only found for the NGT group (Figure 4d; R = 0.58 and P = 0.0015). Thus, 
these results suggested an abnormally postprandial responses of plasma glucose and insulin 
in the Pre-D and T2D groups. 
 

 
Figure 4 The postprandial responses of glucose and insulin to a mixed meal test (MMT). a) The time profiles of 
plasma glucose, b) insulin levels during a MMT (Mean ± SEM) in the NGT (n=27), Pre-D (n=57) and T2D (n=22) 
groups. c) Comparison of total area under the curve (tAUC) of glucose level between the three groups. d) The association 
between insulin and glucose tAUC in each group. Spearman’s rank correlation analysis was performed. 

 
By using the untargeted metabolomic profiling of plasma samples collected at fasting and 
two hour post MMT, this work further investigated the global metabolic responses to the 
MMT in individuals with different diabetic status. A total of 145 differential metabolites 
were identified to be associated with diabetic status (Adjusted P<0.05 by ANOVA; Figure 
5a), mainly consisting of metabolites involved in the classes of lipids (n = 83), amino acids 
(n = 34), xenobiotics (n=6) and carbohydrates (n = 4). Due to the particular interest in the 
(pre)diabetes-related metabolites’ responses to the MMT, these metabolites were further 
classified into three different types of response patterns by the ANOVA analyses (Figure 
5a and b). Type I metabolites have no significant main effect for time and no interaction 
of two main effects time and groups, i.e., no response to the MMT. With this, 39 
metabolites showed a response pattern with no significant difference between the two time 
points in each group (Type I; check details in Paper II). Type II metabolites have 
significant main effect for time but no interaction, i.e., parallel response to the MMT. Out 
of them, 55 metabolites showed a parallel response to the MMT, independent of diabetes 
status (Type II; Figure 5b). Type III metabolites have significant interaction of two main 
effects, i.e., differential response to the MMT. The remaining 51 metabolites showed a 
differential response to the MMT among the three groups (Type III). Therefore, in addition 
to glucose and insulin, other T2D-related metabolic signatures, including 1,5-
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anhydroglucitol, mannose, creatinine, lysine, N−acetylaspartate (NAA), 
3−hydroxydecanoate and 3−hydroxyoctanoate, showed a differentially postprandial 
responses among the NGT, Pre-D and T2D groups (Figure 6), identified by the 
metabolomic analysis. These metabolites with differential responses to the MMT might 
reflect the abnormal metabolisms in the T2D patients after diet. 
 
 

 
Figure 5 The global metabolic responses to the two-hour MMT. a) The (pre)diabetes-related metabolites showed 
three different types of response patterns. b) The three types of response patterns were classified by the ANOVA analysis. 
The left plot shows where the time profiles of type I metabolites have no change and are parallel for the groups (parallel 
means no interaction). The middle plots show where the time profiles of type II metabolites have changes but are still 
parallel for the groups. The last plot shows where the time profiles of type III metabolites have different changes for the 
three groups. 

 
2.1.2 Associations of metabolomic changes with insulin resistance and glucose 
response 
The correlations between the clinical variables and the T2D-related metabolites were 
assessed at fasting and two hour post MMT, respectively (Figure 6). The carboxyethyl 
derivatives of BCAAs and phenylalanine were positively correlated with glucose tAUC 
and HOMA2-IR at both time points (adjusted P < 0.05, R=0.29~0.55), which indicates that 
these metabolites might be associated with insulin resistance and glucose intolerance. 
Consistently, several studies in both rodents and humans have observed alterations in 
BCAA and amino acid metabolites in relation to insulin resistance [53, 117, 118]. In 
addition, previous studies have suggested that the gut microbiome of individuals with 
insulin resistance has an increased capacity to produce amino acids and specifically BCAA 
[53, 54].  
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Figure 6 The associations between the metabolomic changes and the T2D-related clinic variables. Only metabolites 
involved in the metabolic processes, including carbohydrates, amino acids, cofactors, nucleotides, xenobiotics, peptides, 
acylcholines, fatty acids, carnitine and sterol metabolism are shown. Spearman’s rank correlation analysis was 
performed. ‘+’ denotes adjusted P < 0.05; ‘*’ denotes adjusted P < 0.01. 

 
2.1.3 The gut microbiota associated with diabetic status and glucose response 
To investigate the association of gut microbiota with (pre)diabetes, the metagenome of all 
individuals was quantified using DNA shotgun sequencing. Principal coordinate analysis 
(PCoA) revealed that the NGT and T2D groups to some extent were separated by the 
second principal coordinate that accounts for 11% of the variability (Figure 7a). 
Additionally, PERMANOVA analysis showed that the diabetic status was associated with 
dissimilarities in gut microbiota composition (R2= 0.027, P <0.05). Furthermore, a total of 
24 species exhibited differential abundances in two or three pairwise comparisons between 
NGT, Pre-D and T2D groups (adjusted P <0.01; Figure 7b). The abundances of nine 
species of genus Streptococcus, Lactobacillus sanfranciscensis and Lactobacillus ruminis 
were enriched, whereas the abundances of seven species of genus Clostridium, 
Turicibacter sanguinis, Anaerococcus lactolyticus and Paenibacillus polymyxa were 
depleted in the T2D group (adjusted P <0.01). In this study, a reduction of Clostridium 
species (C. butyricum and C. novyi, etc.) with butyrate producing capacity [119, 120] was 
observed, which is in accordance with a recent paper showing that a number of  butyrate-
producing species and the functional potential were depleted in individuals with 
(pre)diabetes [51]. In addition, C. novyi showed a significantly negative correlation with 
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glucose incremental AUC (iAUC, subtracting the baseline values of tAUC; R = -0.49, P < 
1.0e-06; Figure 7c), which suggests dysbiosis of the gut microbiota in T2D patients might 
be linked to the abnormal glycemic control. An early study reported that replenishment of 
butyrate producing bacteria in individuals with T2D could be a personalized approach to 
improve postprandial glucose control [121]. 
 

 
Figure 7 Alterations in the gut microbiota related to diabetes status. a) Principal coordinate analysis of microbiota 
community at species level based on Bray–Curtis distance (n=106). The centroid for each group is represented as a 
triangle and the ellipse covers the samples belonging to the group with 95% confidence. b) Heatmap showing log2 fold 
changes of 24 significantly differentially species between the NGT (n=27), Pre-D (n=57) and T2D (n=22). Only species 
exhibiting differential abundance in two or three pairwise comparisons are shown. ‘+’ denotes adjusted P < 0.05; ‘*’ 
denotes adjusted P < 0.01. c) The association between Clostridium novyi and glucose incremental AUC (iAUC). 
Spearman’s rank Pearson’s correlation analysis was performed. 

 
Further, the functional capacity of the gut microbiome in the NGT, Pre-D and T2D groups 
was investigated. Enrichment of phenylalanine and phenylacetate metabolism capacity of 
the microbiome in individuals with Pre-D and T2D was observed by gene set analysis 
(P<0.05; Table 1). The microbial genes including hcaC, hcaF, tynA, feaB, paaA and paaE 
involved in phenylalanine metabolism were more abundant in the T2D group compared to 
the NGT or Pre-D group (P<0.01 and |log2 (fold change) |>3; Table 1). In line, microbial 
products of aromatic amino acid metabolism, in particular phenylacetic acid, have 
previously been linked to insulin resistance and thrombosis risk [122, 123]. Recently it was 
reported that phenylalanine-derived metabolites increased after autologous fecal 
microbiota transplantation (FMT) in individuals with liver steatosis [124]. In this study, 
the carboxyethyl derivatives of BCAAs and phenylalanine were also observed to be 
positively correlated with HOMA2-IR and glucose indexes by the metabolomic analysis. 
Therefore, through integrative analysis of the metabolomics and metagenomics, the 
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carboxyethyl derivatives of BCAAs and phenylalanine might be potential biomarkers for 
(pre)diabetes. 
 
Table 1. The enriched KEGG pathways and modules in gut microbiome between the NGT (n=27), Pre-D (n=57) 
and T2D (n=22) groups identified by gene set analysis. 

 Differential genes (P < 0.01) 
 T2D vs NGT T2D vs Pre-D 

KEGG pathway    
  Phenylalanine metabolism   tynA, feaB, paaA, paaC, paaD, 

paaE, paaJ 
hcaC, hcaF, paaJ 

KEGG module    
  Phenylacetate degradation   paaA, paaC, paaD, paaE, paaJ         – 

Note: significantly enriched pathway or module comparing two groups (P < 0.05). ‘–‘ denotes no differential genes in 
the pathway or module. 
 
In short, this section 2.1 presents the results from Paper II that systematically 
characterized the metabolic response to a MMT in individuals with different glucose 
tolerance. From plasma metabolomic profiling, the abnormal metabolic processes related 
to (pre)diabetes before and after meal intake were first identified. This work found more 
differential metabolites between the NGT and T2D groups after the meal intake compared 
to fasting condition, thus enabling us to discover abnormal metabolism related to 
(pre)diabetes that did not appear at fasting condition. Furthermore, this work identified 
three different types of response patterns in the 145 metabolites that were associated with 
diabetic status. The derivatives of BCAAs and phenylalanine were found to be associated 
with glucose control and HOMA2-IR. Further the gut microbial composition and 
functional capacity associated with T2D and glucose intolerance were investigated. In 
agreement with metabolomic analysis, the phenylalanine and phenylacetate metabolism 
capacity of the metagenome was enriched in individuals with T2D. Thus, through 
integrative analysis, the derivatives of BCAAs and phenylalanine might be a potential link 
between the gut microbiota and T2D, which provide a new insight into the metabolic 
imbalance of (pre)diabetes. However, future studies should test whether these potential 
biomarkers can be used for the early identification of individuals that are at risk of 
developing T2D.  
 
As discussed in the section 1.5, ML approaches have been widely used for phenotypic 
predictions, identifications of potential biomarkers as well as data integration in the gut 
microbiota studies. In the section 2.2, this thesis mainly presents how ML was applied to 
predict postprandial glycemic responses to a diet based on multi-omics data.  
 

2.2 Prediction of postprandial glucose response based on omics data 
To investigate possible driving factors for postprandial glucose regulation in Paper II as 
introduced in section 2.1, this study predicted glucose tAUC based on multi-omics data 
using ridge regression models with five-fold cross-validation (Figure 8a). The models 
trained with metabolomics data (especially after 2h MMT) performed best with minimum 
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root mean square error (RMSE). The correlation coefficients between the predictive and 
actual glucose tAUC were 0.92 and 0.9 when using metabolomic profiles at fasting 
(n=106) and two hour post MMT (n=95) as the training sets, respectively (Figure 8b). 
Using species and KOs profiles of the gut microbiota as training sets (n=106), correlation 
coefficients between the predictive and actual glucose tAUC were 0.69 and 0.72, 
respectively (Figure 8c). Overall, the predictive accuracy was improved when the model 
was trained with metabolomic profiles compared to using other omics data.  
 

 
Figure 8 Predicting glucose response to a MMT by using ridge regression models based on multi-omics data. a). 
The performances of the ridge regression models evaluated by five-fold cross-validation and root mean square error 
(RMSE). b) The significant correlations between the actual glucose tAUC and the predicted glucose tAUC by ridge 
regression models using metabolomics profiles at fasting and two hour post meal; c) using profiles of gut microbial 
species and KOs. Spearman’s rank correlation analysis was performed. MGX-species, microbiota composition at species 
level; MGX-ko, microbiota KO function profile; HMB-fasting, metabolomic profile at fasting; HMB-postmeal, 
metabolomic profile after 2h MMT; HMB-R, the ratios of metabolite abundance at 2h post MMT to fasting; HTX-liver, 
HTX-jejunum, HTX-mFat, HTX-sFat indicate human transcriptional profiles from liver, jejunum, mesenteric and 
subcutaneous adipose tissues, respectively; All, the integration of all multi-omics data. 

 
In addition to the prediction of postprandial glucose response, this work could identify key 
signatures potentially contributing to the glycemic control based on the trained models. 
The important features were evaluated and ranked by the metric of regression coefficients. 
At fasting, glutamine, creatinine, pseudouridine, arginine, alanine, mannose, 
phenylalanine and lysine were identified to be the most important metabolites for 
prediction of glucose tAUC (check Paper II for detail). After two-hour MMT, mannose, 
allantoin, phenylalanine, 1−carboxyethylphenylalanine and NAA were predicted to be the 
most important metabolites (Figure 9a). Therefore, phenylalanine and its derived 
metabolites were identified important for glycemic control at both time points, which is 
consistent with the results from the metabolomics analysis in the section 2.1.2 (Figure 6). 
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In addition, several Clostridium species, such as Clostridium sp. D5, Clostridium sp. SS2 
and Clostridium bartlettii were identified to be correlated with glucose tAUC (Figure 9b), 
which is in line with the differential species identified by the metagenomics analysis in the 
section 2.1.3 (Figure 7b). Consequently, these results confirmed that the trained ML 
models enabled us to identify key signatures of both the gut microbiota and the host 
metabolism associated with glycemic response to a MMT. 
 

 
Figure 9 The important features for prediction of postprandial glucose responses. a) The regression coefficients of 
the top 30 metabolites based on post meal metabolomics data; b) the top 30 species for predicting glucose tAUC. 

 
In summary, the section 2.2 mainly presents the work from Paper II, where regression 
ML models were trained for prediction of the postprandial glucose responses to a meal. 
These results showed that blood metabolomics-based models had better performance in 
comparison to other omics data. Also, the microbiota-based models showed an adequate 
predictive accuracy. In addition, these interpretable models had the potential to identify 
both the important serum metabolic and gut microbial features that might contribute to the 
abnormal glucose control in individuals with (pre)diabetes.  
 
 

2.3 Systematical investigation of T2D-related gut microbial 
signatures using ML and GEMs 
T2D is one multi-factor disease and has an intricate interaction of human genetics, the gut 
microbiota and other factors, such as ethnicity, geography, age, body mass index (BMI), 
diet and drugs. Due to the complexity, inconsistent findings have been reported across 
various gut microbiota studies related to T2D. Therefore, different types of factors should 
be taken into account when studying the gut microbiota related to T2D. Accumulated 
evidence has shown that ML holds great promise to explore and integrate diverse types of 
data [125-127]. Especially, the decision trees-based ensemble learning methods have been 
widely applied in the gut microbiota studies, such as random forest (RF) [49, 107, 108], 
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light gradient boosting machine (LightGBM) [109, 110] and extreme gradient boosting 
decision trees (XGBoost) [111, 112, 128], due to their powerful performance, ease of use 
and model explanation. In addition, GEMs have been widely applied to investigate the gut 
microbial species, e.g., Lactobacillus reuteri. Particularly, GEMs provide a systematical 
platform to investigate the community-level metabolic potentials of the gut microbiota and 
the interrelationships between the microbes [100]. With this background, Paper III 
performed a systematical analysis of four published metagenomic studies to identify T2D-
related microbial signatures, using ML and GEMs. These four fecal metagenomic datasets 
and metadata were collected from the previous gut microbiota studies related to the Pre-D 
and T2D [48-51], which was summarized in Table 2. In total, 1779 individuals in these 
four cohorts were classified into three groups with different glycemic status, including the 
NGT (n = 848), Pre-D (n = 571) and T2D (n = 360) groups, according to the available 
metadata and disease labels in each original study.  
 
Table 2. Characteristics of the four cohorts included in this study. 

Study NGT Pre-D T2D Total  Age BMI Gender 
(female/male) 

Country 

Qin et al., 2012  [48] 185 - 182 367 48.0±14.4 23.4±3.4 157/210 China 
Karlsson et al., 2013 
[49] 

43 49 53 145 70.4±0.7 27.1±4.6 145/0 Sweden 

Zhong et al., 2019 
[50] 

97 80 79 256 62.3±9.3 24.8±3.2 149/107 China 

Wu et al., 2020 [51] 523 442 46 1011 58.4±4.4 27.7±4.3 568/443 Sweden 
Sum 848 571 360 1779 57.8±10.1 26.4±4.4 1019/760  

 

2.3.1 The overall composition of the gut microbiota associated with T2D 
First the metagenomic data was consistently processed using a standardized bioinformatics 
pipeline, where the MetaPhlAn3 [70] and NG-meta-profiler [129] were used to obtain the 
taxonomic and functional profiles of the gut microbiota, respectively. To investigate the 
overall difference in the gut microbial composition among the NGT, Pre-D and T2D 
groups, the alpha-diversity at the species level using the pooled data from the four included 
studies (n =1779) was compared. Multiple alpha-diversity indexes showed significant 
differences among the three groups (P < 1e-10 by the Kruskal–Wallis test; Figure 10a). 
Moreover, the beta-diversity was investigated by using principal coordinate analysis 
(PCoA) with Bray–Curtis distances at the species level after pooling the data (Figure 10b). 
Consistently, the PERMANOVA result revealed a significant difference in the overall 
composition among the three groups (P = 0.001).  
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Figure 10 Alteration in the overall composition of the gut microbiota in the Pre-D and T2D groups. a) The alpha-
diversity of the gut microbiota using Shannon, Simpson and Invsimpson indexes based on the species profiles after 
pooling the data from the four studies and grouped by different glycemic status. b) Principal coordinates analysis (PCoA) 
based on Bray–Curtis distances at the species level using the pooled data. c) PCoA showing difference in the 
compositional profiles of the gut microbiota between Chinese and Swedish. 

 
Furthermore, the PCoA result showed a significant difference in the beta-diversity between 
the Chinese and Swedish cohorts (P values = 0.001 evaluated by PERMANOVA; Figure 
10c). This suggests that the ethnicity or geography could have considerable impact on the 
gut microbiota, which has been reported in previous studies [9, 10, 18]. Also, it hints that 
the confounding factors, such as ethnicity (or geography), gender, age and BMI, need to 
be taken into account when performing data analysis of the T2D-related gut microbiota.  
 
 
2.3.2 The functional capabilities of gut microbiota simulated by community-level 
metabolic models 
In addition to studying the detailed metabolism of an organism as introduced in section 
1.4, GEMs could serve as a useful tool for investigating the metabolic potential of the 
entire gut microbial species (Paper III), which could help understand the complex 
interactions between the microbes and human metabolism. Thus, for modeling the human 
gut microbiota using GEMs, a semi-automatic pipeline of constructing the microbial 
species GEMs was firstly developed (Figure 11). In the pipeline, the representative strain 
for each species was selected according to the strain and genome information in the NCBI 
database, after obtaining the taxonomic profiles from metagenomic sequence data 
processed by the MetaPhlAn3 tool. With the representative strains, the corresponding 
reference genome sequences from the NCBI database were collected for GEMs 
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construction. Based on the MetaCyc database, the corresponding genes, enzymes and 
reactions were integrated into the draft models of species. Finally, biomass, exchange and 
transport reactions were added into the draft models according to the Gram staining 
information, transporter annotations and medium composition. Using the pipeline, GEMs 
of 827 individual species were constructed, including 456 Gram-positive species and 331 
Gram-negative species. After adding gap-filling reactions, all species GEMs were able to 
simulate growth under the dGMM+LAB medium, which is a mixture of the defined gut 
microbiota medium (GMM) and the LAB medium supporting growth of lactic acid 
bacteria [130]. 
 

 
Figure 11 The semi-automatic pipeline for constructing GEMs of the gut microbial species. Firstly, the taxonomic 
profiles from metagenomic sequence data were extracted by the MetaPhlAn3 tool. Secondly, the representative strain 
for each species was selected according to information from the NCBI database. Thirdly, the corresponding reference 
genome sequences were collected from the NCBI database. Then, the corresponding genes, enzymes and reactions were 
integrated into the draft models based on the MetaCyc database. Finally, GEMs were constructed after adding biomass, 
exchange, transport and gap-filling reactions.  

 
To simulate the entire metabolic capabilities of the gut microbiota in individuals with 
different diabetic status, the community-level metabolic models were further constructed, 
which considered the GEM of each microbial species as one component of the whole 
metabolic model (Figure 12). In the framework, all GEMs of the individual species in the 
gut microbial community were integrated into a much larger metabolic model by creating 
different compartments to separate intercellular metabolites from different species but 
allowing extracellular metabolites to be transported between species. In addition, the 
overall biomass reaction of the community-level metabolic model was established as the 
weighted combination of the biomasses of all species GEMs, where the species abundance 
was used as coefficients for each species biomass (Figure 12). Using the community-level 
metabolic model, the collective reaction fluxes of all species within one individual gut 
microbiota can be simulated under maximizing the biomass growth or optimizing the 
production of one microbial metabolite of interest.  
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Figure 12 The framework of constructing community-level metabolic models for modeling the individual gut 
microbiota. The framework integrates GEMs of all microbial species within one individual gut microbiota into a large 
metabolic model by creating different compartments to separate intercellular metabolites from different species (e.g., the 
suffix ‘_s1’ and ‘_s2’ representing species 1 and 2) but allowing extracellular metabolites to be exchanged between 
species. Additionally, the overall biomass μ was set as the weighted combination of the biomasses μi of all species GEMs. 
The relative abundances of species ai were used as coefficients for each species biomass. For the simulation, the 
community-level metabolic network is defined as a stoichiometric coefficient matrix S, which combines the 
stoichiometric coefficient matrixes Si of all species. FBA is usually used to simulate metabolic fluxes at a steady state 
when maximizing an objective function under given condition.  

 
Increasing studies have revealed the effects of the gut microbiota on the T2D probably due 
to the microbial-derived metabolites [52], such as SCFAs [131], BCAAs [53], imidazole 
propionate [54]. Therefore, the potential production capabilities of several representative 
metabolites, such as SCFAs, BCAAs were evaluated by optimizing the corresponding 
biosynthesis reaction for the individual community-level metabolic model. The simulated 
microbial metabolic fluxes might provide us novel insights into the abnormal metabolisms 
or interrelations in the T2D-related gut microbial species. 
 
2.3.3 Microbiota-based machine learning models for prediction of T2D status 
Next, this work explored whether these obtained microbial features could discriminate the 
T2D patients from the NGT individuals. To this end, different microbiota-based 
classification models that could predict T2D status were devised, using various gut 
microbial signatures including the taxonomic and functional profiles from the gut 
metagenomics data as well as the metabolic fluxes of the gut microbiota simulated by its 
community-level metabolic model as presented in section 2.3.2.  
 
Using three decision trees-based ensemble learning methods including the random forest, 
LightGBM and XGBoost, this study first devised various microbiota-based prediction 
models, based on these obtained microbial features (the profiles of species, KOs, metabolic 
fluxes) and their combinations with ethnicity (or geography), gender, age and BMI (check 
Paper III for details). 
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For the pooled data from the four included studies, all samples (n=1779) were split into 
two parts including 70% training dataset and 30% testing dataset (Figure 13). Using the 
training datasets with various types of features, the predictive models for discriminating 
the NGT from the T2D were first trained and evaluated by five-fold cross-validation, and 
then applied to predict the T2D status of a new sample in the testing dataset.  
 

 
Figure 13 The pipeline of training predictive models for discriminating individuals with T2D from NGT. The 
pooled data from the four included studies was split into two parts including 70% training dataset and 30% testing dataset. 

 
The accuracy of the predictive models trained by using LightGBM and XGBoost showed 
an increased trend with an area under the ROC curve (AUC) of ~ 0.7 compared to using 
the random forest (Figure 14). Moreover, compared to the classifiers without adjustment 
by covariates, the predictive models with the adjustment of variables ethnicity, gender, age 
and BMI showed a better classification performance for discriminating the NGT from the 
T2D in most cases. It is strongly suggestive that the confounding factors should be taken 
into consideration when studying the gut microbiota related to the diabetic disease. In 
addition, the classification models based on the pooled data for prediction of T2D status 
did not achieve a better performance than the models trained with data from one individual 
study. This might owe to differences in other factors across studies, such as the 
experimental design, medication, diet, which should be further included in the predictive 
model (check details in Paper III). 
 
Furthermore, the predictive models of the NGT versus Pre-D or of the Pre-D versus T2D 
showed a poor performance (AUC = ~ 0.5) using any type of data from single study, which 
implies that there might be few discriminative signatures included in the predictive models 
between the NGT and Pre-D groups or between the Pre-D and T2D groups through the 
used pipeline in this study. Also, this suggests that it is still challenging to differentiate 
individuals with prediabetes from the healthy people at early stage by utilizing the gut 
microbiota. 
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Figure 14. The classification models for prediction of T2D status based on the gut microbial features. The 
performance of the predictive models validated on the testing dataset when pooling all data from the four included studies 
a) using species abundances; b) KO profiles; c) the simulated reaction fluxes of the gut microbial community; d) the 
concatenated features of species, KOs and fluxes. The models were trained using three decision tree-based ML methods, 
including the LightGBM, XGBoost and random forest (RF) as well as were adjusted by covariates age, BMI, ethnicity 
and gender.  

 
2.3.4 Consistent T2D-related microbial features identified by classifiers of the NGT 
versus T2D 
Based on the trained models for discriminating the NGT from the T2D, the important 
microbial features in the classification were evaluated and ranked by the metric of mean 
decrease in Gini impurity. The age and BMI were identified to be two most important 
factors for the NGT versus T2D classification, when using the pooled species abundances 
and random forest (Figure 15). This finding is in accordance with that age and BMI could 
be significantly correlated with T2D and confound the relationships between the gut 
microbiota and T2D [19, 132]. Previous studies have demonstrated that genera 
Faecalibacterium, Roseburia and Bacteroides were negatively correlated with the T2D, 
whereas the genus Ruminococcus was positively correlated with the T2D [133]. In line 
with this, Faecalibacterium prausnitzii, three Roseburia species (Roseburia intestinalis, 
Roseburia hominis, Roseburia inulinivorans), three Bacteroides species (Bacteroides 
uniformis, Bacteroides caccae and Bacteroides vulgatus) and two Ruminococcus species 
(Ruminococcus bromii Ruminococcus lactaris) were identified to be important for 
prediction of T2D status (Figure 15a). Particularly, out of them, Faecalibacterium 
prausnitzii and three Roseburia species have been suggested to be butyrate-producing 
microbial species that have a beneficial effect on the T2D [131, 133]. 
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Figure 15 The important microbial features that could differentiate the NGT from the T2D. The top 30 important 
a) microbial species and b) reaction fluxes were identified by training random forest model based on the pooled data with 
adjustment by covariates age, BMI, ethnicity and gender. 

 
In agreement, the variable age was evaluated to be the most important factor, when using 
the pooled reaction fluxes, age, BMI, gender and ethnicity to train model for predicting 
T2D risk. Moreover, reactions NADK1 (NAD kinase GTP catalyzed by NAD kinase 1), 
ALAabcpp (L-alanine transport via ABC system), RXN-15200 (involved in L-
phenylalanine biosynthesis III pathway), two reactions LYSINE-23-AMINOMUTASE-
RXN and 4.3.1.14-RXN (involved in L-lysine fermentation to acetate and butyrate), and 
BUTCT (catalyzed by the acetyl-CoA: butyrate-CoA transferase), GHMT2r (catalyzed by 
glycine hydroxymethyltransferase) were identified to be important for prediction of T2D 
status (Figure 15b). Among them, three reactions BUTCT, LYSINE-23-
AMINOMUTASE-RXN and 4.3.1.14-RXN were involved in the butyrate synthesis 
pathway, which is in line with the above species results. Through the metabolic simulations 
of the gut microbiota, this work identified several important reactions, which are involved 
in the butyrate biosynthesis pathway and important for discriminating the NGT from the 
T2D. Thus, ML in combination with the community-level metabolic models have the 
potential to enable identification of the novel T2D-related gut microbial signatures. 
 
 

2.4 Limited performance of the microbiota-based classifiers on an 
independent cohort 
By using ML integrated with community-level metabolic models, the obtained predictive 
models could not only discriminate the T2D individuals from the NGT (Figure 14), but 
also identify a number of consistent T2D-related microbial features, including the SCFAs-
producing microbial species and reactions (Figure 15). However, this work also revealed 
dramatical heterogeneities across the four included studies. This proposes a question about 
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whether the trained models using all microbial features could be accurately predictive of 
T2D risk on an independent cohort. Thus, out of the four studies, this work further used 
data from three studies as the training dataset while used data from the remaining one study 
as an independent testing dataset every time (Figure 16). This process was iteratively 
preformed for each individual study as an independent cohort. Notably, in most cases, the 
predictive models of the NGT versus T2D showed a limited performance on each 
independent cohort (AUC = 0.5- 0.6) using whatever type of microbial features (check 
details in Paper III). When using the dataset of species abundance from the Qin et al. or 
Karlsson et al., the XGBoost model reached a moderate classification performance (AUC 
= 0.66 and 0.64, respectively). These results imply that the microbiota-based models for 
predicting the T2D risk might be specific to certain types of cohorts rather than 
generalizable across studies, which is in accordance with the previous study [18]. 
 

 
Figure 16 The pipeline for training predictive models and validation in an independent testing dataset. Out of the 
four datasets, three datasets were used as the training dataset while the remaining one dataset used as an independent 
testing dataset. 

 
To sum up, the section 2.3 and 2.4 mainly present the work from Paper III where a 
systematical analysis of four published gut metagenomic data were performed, using ML 
approaches and community-level metabolic models. The microbiota-based prediction 
models not only showed an adequate accuracy, but also enabled us to identify important 
T2D-related microbial features. A number of SCFAs-producing microbial species and 
related metabolic reactions have been consistently identified to be important for 
discriminating the NGT from the T2D. This finding emphasized that alteration in the 
SCFAs-producing capability of the gut microbiota could play a critical role in the 
pathology of T2D progression. However, these results also suggest that the microbiota-
based models for predicting T2D status might be specific to a population due to the 
heterogeneities between different cohorts. In addition, this study has proved that 
investigating the metabolic capabilities of the microbiota by using the metabolic models 
could help to interrogate the associations between T2D and the gut microbiota via targeting 
the key reaction fluxes and genes to specific species. This work indicates that ML in 
combination with GEMs has the potential to identify new microbial metabolic signatures 
related to T2D. 
 



 

 31 

3. The effect of Lactobacillus reuteri ATCC PTA 6475 on 
human metabolism 
As introduced in the background part, previous studies have suggested the positive effects 
of oral supplementation with probiotics on human health. This chapter mainly summarizes 
three studies (Paper IV-VI) on the complex interactions between the probiotic 
Lactobacillus reuteri ATCC PTA 6475, the gut microbiota and host metabolism in older 
women with low bone mineral density (BMD). The first part (chapter 3.1) introduces the 
detailed metabolism of L. reuteri ATCC PTA 6475 via the GEM reconstruction of the 
single probiotic strain (Paper IV). The second part (chapter 3.2) discusses the impact of 
L. reuteri ATCC PTA 6475 intake on the global metabolic profiles of order women with 
bone loss (Paper V). The third part (chapter 3.3) presents alterations in the gut microbiota 
of order women with good or poor responses to orally administered L. reuteri ATCC PTA 
6475 (Paper VI). 
 

3.1 Studying the metabolism of L. reuteri ATCC PTA 6475 using 
GEM 
As mentioned in section 1.4, GEMs have served as a useful tool to elucidate the 
metabolism of an organism. Thus, this work investigated the metabolic capacities of L. 
reuteri ATCC PTA 6475 via reconstruction of its GEM [96]. In this study, the probiotic 
GEM was first reconstructed using a template-based modeling pipeline and then curated 
manually as shown in Figure 17.  
 

 
Figure 17 GEM reconstruction of L. reuteri ATCC PTA 6475 using a template-based pipeline. The iNF517 model 
was first used as a template model. The ortholog genes and reactions were extracted using the bidirectional best hits 
(BBH) to generate the initial draft model. After comparing to the GEMs iBT721, iML1515 and LbReuteri, the exchange 
and transport reactions from the template models were added according to the transporter annotations and corresponding 
medium composition. Then the gap-filling was performed against the template models as well as using the MetaCyc 
database to improve the model performance. Finally, the draft model had been manually curated during the simulation. 
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In the pipeline, the GEM iNF517 of Lactobacillus casei MG1363 was used as the main 
template to reconstruct the initial draft model. Then the metabolic genes and related 
reactions were integrated into the initial GEM in comparisons to the other three template 
models (more details in Paper IV). The exchange reactions, transport reactions and gap-
filling reactions were further added. After refining the draft model, the finalized GEM of 
L. reuteri ATCC PTA 6475 includes 726 metabolites and 894 reactions mapped to 622 
metabolic genes, which further was used to simulate biomass growth and microbial 
metabolite biosynthesis.  
 
Previous studies have suggested that L. reuteri strains have capabilities to produce a 
number of health-related metabolites, such as acetate, lactate, reuterin (3-
hydroxypropionaldehyde), histamine, vitamin B12 (cobalamin) and vitamin B9 (folate). 
Thus, the probiotic strain L. reuteri ATCC PTA 6475 might impact human metabolism by 
the secretion of the beneficial microbial SCFAs metabolites including acetate and lactate. 
As an example, the main biosynthesis pathways of microbial metabolites acetate and 
lactate were simulated using the GEM as illustrated in Figure 18. The carbohydrate 
metabolism mainly uses the phosphoketolase pathway (PKP) to produce lactate and acetate. 
In the dietary fermentation, lactate is usually the most important end-product fermented by 
Lactobacillus and acetate and ethanol are main by-products. 
 

 
Figure 18 The biosynthesis pathways of the microbial metabolites acetate and lactate simulated by the GEM of L. 
reuteri ATCC PTA 6475. Blue arrows indicate the phosphoketolase pathway (PKP); green arrows indicate Emden- 
Meyerhof-Parnas pathway (EMP); red arrows indicate the extensions of EMP; and the dotted arrows indicate multiple 
enzymatic reactions; orange background indicates the extracellular metabolites and blue background indicates the 
metabolites L. reuteri can produce.  
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In general, the section 3.1 presented the results from Paper IV where the metabolic 
capabilities of the probiotic L. reuteri ATCC PTA 6475 were explored by using GEM. 
Through the model simulation, the specific biosynthesis pathways of several metabolites 
with potential benefits on human metabolism, including SCFAs, were investigated in 
detail. This suggests that the positive effect of L. reuteri ATCC PTA 6475 on the host 
metabolism is possibly mediated by the production of the microbe-derived metabolites. 
Therefore, the GEM could provide a reliable scaffold for studying the metabolism of the 
probiotic L. reuteri ATCC PTA 6475, which could help to understand the underlying 
mechanisms of its beneficial effects on older women with bone loss. 
 

3.2 The impact of L. reuteri ATCC PTA 6475 on the metabolic 
profiles of older women 
As a lactic acid bacterium, L. reuteri strains have been widely used as probiotics as well 
as applied in different food products and supplements. Oral administration with L. reuteri 
strains could have the positive effects on human health, such as reducing bone loss in the 
elderly and promoting immune system development. Especially, L. reuteri ATCC PTA 
6475 has been successfully developed as a probiotic product in the market. As shown in 
Figure 19, our previous randomized controlled trial (RCT) demonstrated that 
supplementation of L. reuteri ATCC PTA 6475 led to substantially reduced bone loss in 
older women with BMD [68]. 
 

 
Figure 19 Relative change of total tibia volumetric BMD (vBMD) after one-year supplementation with L. reuteri 
ATCC PTA 6475 or placebo. 32 older women had supplemented with L. reuteri ATCC PTA 6475 (L. reuteri group) 
and 36 older women had administrated with placebo (Placebo group). 

 
However, the mechanism underlying the beneficial effects of the probiotics on bone 
metabolism in the elderly is still unclear. By constructing the GEM of L. reuteri ATCC 
PTA 6475, this thesis first investigated its metabolisms as introduced in chapter 3.1 (Paper 
IV). The results suggested that the beneficial effects of the probiotic on human metabolism 
might be due to its biosynthesis of the beneficial metabolites, e.g., SCFAs (Figure 18). 
Therefore, the following section introduces how the probiotic L. reuteri ATCC PTA 6475 
influences the global metabolism of older women by using the untargeted metabolomics 
profiling (Paper V). 



 

 34 

3.2.1 The dynamic changes of metabolomic profiles during one-year probiotic intake 
During one-year follow-up at four timepoints, serum samples from 32 subjects with L. 
reuteri ATCC PTA 6475 intake (L. reuteri group) and 36 subjects administrated with 
placebo (placebo group) were collected (Figure 20a). Then time-series metabolomic 
profiles of elderly women with low BMD were analyzed to investigate the metabolic 
changes after the probiotic supplementation. To examine the overall difference between 
the L. reuteri and placebo groups, the Euclidean distances based on metabolomic profiles 
between the two groups at four timepoints were calculated and illustrated in Figure 20b. 
It was clear that L. reuteri and placebo groups clustered together at baseline, indicating 
similarity of the baseline metabolism of older women in the two groups. Nevertheless, 
metabolic profiles showed differences between the L. reuteri and placebo groups in the 
following-up period, hinting the effects of the probiotic intake on the host metabolism. 
 

 
Figure 20 Alterations of the metabolomic profiles in older women supplemented with placebo or L. reuteri PTA 
6475.  a) The experimental design of metabolomics profiling. Serum samples were collected from older women with low 
BMD at baseline, 3, 6, and 12 months. b) The heatmap showing the hierarchical clustering of Euclidean distances 
between serum samples. c) Numbers of significantly differential metabolites between time points in the L. reuteri group 
or placebo group (adjusted P < 0.1). 

 
Further, the differential metabolites between any two timepoints in the L. reuteri or placebo 
group were identified respectively (Figure 20c; adjusted P < 0.1 by the Wilcoxon signed-
rank test). During one-year probiotic intervention, 67 (7 up-regulated and 60 down-
regulated), 33 (2 up-regulated and 31 down-regulated), and 41 (10 up-regulated and 31 
down-regulated) metabolites showed significantly differential at 3, 6 and 12 months, 
compared to the baseline in the placebo group, while a few metabolites were identified to 
be differential in the L. reuteri group. Thus, much less metabolic variations were observed 
in the L. reuteri group than the placebo group. In other words, older women in the placebo 
group underwent the significant alterations of the metabolic profiles, which might be 
associated with bone loss. Interestingly, the adverse alterations, including the increased 
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bone loss and metabolic changes in the placebo group, were prevented to some extent by 
the oral administration of L. reuteri ATCC PTA 6475. 
 
3.2.2 Differential metabolic responses relating to the probiotic effects on bone 
metabolism 
Next the probiotics-specific responses during the one-year supplementation were 
investigated, which could help to understand the mechanistic effects of L. reuteri ATCC 
PTA 6475 on bone metabolism. The metabolite levels at follow-up timepoints were first 
calculated as ratios of the baseline values, which were referred to as metabolic response to 
the probiotic intervention. This work further identified metabolites that showed differences 
in relative changes from baseline between the L. reuteri and placebo groups by the 
Wilcoxon rank-sum test. There were 30, 54 and 31 metabolites that changed from baseline 
differentially between the L. reuteri and placebo groups at 3, 6 and 12 months, respectively 
(Figure 21a; VIP score > 1 and P value < 0.05). Particularly, two metabolites 
butyrylcarnitine (C4) and 1−methyl−4−imidazoleacetate responded differentially at all 
follow-up timepoints and showed a robust increase in the L. reuteri group (Figure 21b). 
Butyrylcarnitine (C4), a butyrate ester of carnitine, could act as the pool and transporter of 
butyrate [134], which was previously reported to inhibit bone resorption and stimulate 
bone formation in mice through a signaling pathway involving regulatory T-cells and 
Wnt10b [62, 64]. Moreover, butyrate supplementation was recently suggested to increase 
bone mass in wild type mice and to prevent ovariectomy induced bone loss [135]. Thus, 
the robust increase in this metabolite may indicate the involvement of butyrate signaling 
in the effects of L. reuteri ATCC PTA 6475 on the reduced bone loss as shown in Figure 
19.  
 

 
Figure 21 The differential metabolic responses to the supplementation with L. reuteri ATCC PTA 6475 or placebo. 
a) The metabolites differed in changing from baseline between the L. reuteri and placebo groups at 3, 6 and 12 months 
(VIP score > 1 and P value < 0.05). b) The relative change from baseline (Mean ± SE) of butyrylcarnitine (C4) and 
1−methyl−4−imidazoleacetate that responded differentially between the L. reuteri and placebo groups at three 
timepoints. ‘*’, P < 0.05; ‘**’, P < 0.01; ‘***’, P < 0.001. 

 
In conclusion, the section 3.2 presents the results from Paper V where the effects of L. 
reuteri ATCC PTA 6475 on the global metabolism of older women with bone loss were 
explored by time-series metabolomic analysis. This work found that the alterations, 



 

 36 

including the deteriorated bone loss and metabolic changes in the placebo group, were 
alleviated by one-year supplementation with L. reuteri ATCC PTA 6475. Interestingly, 
butyrylcarnitine (C4) level was increased at all follow-up timepoints in the L. reuteri group 
compared to the placebo group, indicating that the effects of L. reuteri ATCC PTA 6475 
on bone metabolism might be mediated through the butyrate signaling. However, further 
studies are needed to identify the mechanisms and determine how gut microbiota changes 
are caused by supplementation with probiotic L. reuteri and how such changes are linked 
to human metabolomic dynamics. 
 

3.3 The effects of L. reuteri ATCC PTA 6475 intake on the gut 
microbiota of the elderly 
In section 3.2, the impact of L. reuteri ATCC PTA 6475 on the global metabolism of older 
women is discussed. However, it is still unknown whether the alterations in the gut 
microbiota of the elderly occurred due to the probiotic supplementation. To this end, the 
following section introduces the effects of L. reuteri ATCC PTA 6475 on the gut 
microbiota of older women with good or poor responses to the probiotic intake (Paper VI). 
In addition, the section presents whether the microbial alterations could be linked to the 
metabolomic changes observed in Figure 20 and 21. 
 
As observed in a recent study [68], part of older women responded poorly to the oral 
supplementation with L. reuteri ATCC PTA 6475 (i.e., poor responders still had severe 
bone loss). To investigate the differential effects of the probiotic intake on the host, 20 
elderly women by identifying 10 women with a good response (GR group) and 10 women 
with a poor response (PR group) were selected (Figure 22; more details in Paper VI). In 
addition, serum samples for metabolomic profiling and fecal samples for metagenomic 
sequencing were collected from the older women at baseline and 12 months. 
 

 
Figure 22 The experimental design for elderly women with differential responses to the supplementation with L. 
reuteri ATCC PTA 6475. Women with a good response (GR group, n=10) and with a poor response (PR group, n=10) 
were selected. Serum samples and fecal samples were collected from the older women at baseline and 12 months. 
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3.3.1 Probiotic intake reduces bone loss and decreases inflammation in the good 
responders 
After one-year supplementation with L. reuteri ATCC PTA 6475, the relative change in 
tibia total volumetric BMD showed significantly increased in the GR group (0.39 ± 0.77) 
compared to the PR group (-2.22 ± 0.58; P < 0.001 by the t-test). In line with this, the 
significantly decreased level of tibia total volumetric BMD was only observed in the PR 
group at 12 months (Table 3; P < 0.05), indicating that the probiotic intake prevents bone 
loss in the GR group. Moreover, ultrasensitive c-reactive protein (usCRP) showed a 
significantly reduced level in the GR group at 12 months (Table 3; P < 0.05), which 
suggested that inflammation in the GR group was alleviated by one-year supplementation 
with the probiotics. In addition, older women in the GR group had higher BMI than the PR 
group at both baseline and 12 months (P < 0.05). The differences in BMI or weight might 
influence the baseline gut microbiota, which would further contribute to the differential 
responses to the probiotic intake in older women. 
 
Table 3. Comparisons of characteristics in the GR and PR groups at baseline and 12 months. 

 
Characteristics 

Baseline 12 months  
P a 

 
P b GR 

(n = 10) 
PR 

(n = 10) 
GR 

(n = 10) 
PR 

(n = 10) 
Total tibia vBMD 
(mg/cm3) 

247 ± 39.2 231 ± 44.9 248 ± 39.8 226 ± 44.2 # 0.42 0.26 

Weight (kg) 72.4 ± 8.2 63.9 ± 7.7 73.3 ± 8.5 64.0 ± 8.0 0.03 0.02 
BMI (kg/m2) 27.5 ± 3.6 24.0 ± 2.8 27.7 ± 3.7 24.1 ± 3.1 0.03 0.03 
usCRP (mg/L) 2.14 (1.53-3.68) 0.98 (0.8-2.47) 1.57 (1.13-1.90) * 1.36 (0.67-3.19) 0.25 0.91 
Total fat mass (kg) 28.9 (27.1-32.0) 20.8 (19.3-24.5) 28.2 (24.3-31.7) 20.0 (18.5-23.7) 0.04 0.04 

Note: Mean ± SD. Non-normally distributed variables are presented as median with interquartile range. The t-test or 
Wilcoxon test were used as appropriate. ‘*’ and ‘#’ denote significant difference (P < 0.05) between baseline and 12 
months in the GR and PR groups, respectively. P a and P b values are from comparisons between the GR and PR groups 
at baseline and 12 months, respectively. The significant differences (P < 0.05) are highlighted in bold. vBMD: volumetric 
bone mineral density; usCRP: ultrasensitive c-reactive protein; BMI: body mass index. 
 
3.3.2 Alterations of the gut microbiota after one-year probiotic supplementation 
By comparing the composition of the gut microbiota between the GR and PR groups, four 
species, including Prevotella buccae, Clostridium acetobutylicum, Bacteroides sp. 
2_1_56FAA, Acidaminococcus fermentans, were identified to be differential at 12 months, 
while three species, including Streptococcus australis, Lactobacillus antri, 
Lachnospiraceae bacterium 4_1_37FAA, showed differential at baseline (Figure 23; P < 
0.01 by the Wilcoxon rank-sum test). The differences in the endogenous baseline 
microbiota might be important for a good response to the probiotic intake. In other words, 
the differential baseline signatures have the potential to discriminate the good responders 
from the poor responders. Lactobacillus antri was less abundant in the PR group than the 
GR group, while Lachnospiraceae bacterium 4_1_37FAA was more abundant in the PR 
groups at baseline (P < 0.01). Interestingly, 11 species including Escherichia coli showed 
differential between the two timepoints in the PR group while only one differential species 
(i.e., L. reuteri due to the probiotic intake) in the GR group (P < 0.01 by the Wilcoxon 
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signed-rank test). This indicates that dramatic shifts of the gut microbiota occurred in the 
PR group but almost not in the GR group at 12 months, in agreement with that much less 
metabolic variations observed in older women with the oral administration of L. reuteri 
ATCC PTA 6475 by the metabolomic analysis (Figure 20). Particularly, E. coli was only 
enriched in the PR group and meanwhile showed differential between the GR and PR 
groups at 12 months (Figure 23). Additionally, Akkermansia muciniphila, Ruminococcus 
bicirculans, Eubacterium sp_CAG_38 and Butyricimonas virosa were depleted in the PR 
groups at 12 months, compared to the GR group (P < 0.05 by the Wilcoxon rank-sum test; 
check Paper VI for details), when analyzing the taxonomic profiles calculated by the 
MetaPhlAn2 tool [70]. 
 

 
Figure 23 Alterations in the gut microbial composition after oral supplementation with L. reuteri ATCC PTA 
6475. The left heatmap shows log-transformed mean abundances of differential species in the GR and PR groups at 
baseline and 12 months. The grey color in the right heatmap indicates P value of comparative analysis; ‘*’ denotes P < 
0.05; ‘**’ denotes P < 0.01. 

 
Through investigating the functional capabilities of the gut microbiome, gene richness had 
an increased trend in the GR group at baseline but not statistically significant, compared 
to the PR group (Figure 24a). Interestingly, gene richness was significantly higher in the 
GR group than the PR group at 12 months (P < 0.01 by the Wilcoxon rank-sum test). 
Moreover, there were 11 and 157 significantly differential KOs identified between the GR 
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and PR groups at baseline and 12 months, respectively (Figure 24b; Adjusted P < 0.1). 
The differences in the baseline functional potential of the gut microbiota might be 
important for the positive effects of the probiotic L. reuteri ATCC PTA 6475 on the 
elderly. In addition, 152 differential KOs were identified between the two time points in 
the PR group, while only 14 differential KOs in the GR group (Figure 24b; Adjusted P < 
0.1). Thus, more significant alterations of the functional capacities in the PR group at 12 
months were observed, which is consistent with the results from both microbial 
composition and metabolomics analysis. 
 

 
Figure 24 Alterations in the gut microbial function potential after oral supplementation with L. reuteri ATCC 
PTA 6475. a) Gene numbers of the gut microbiota in the PR (n=9) and GR (n=9) groups at the two time points. 20 
million reads from each sample were sampled in order to rarefy the reads to the same depth of sequencing. b) The Venn 
diagram shows differential KOs between the GR and PR groups or between baseline and 12 months (Adjusted P value 
< 0.1). c) The volcano plot displays the differential genes involved in biofilm formation (Escherichia coli) between the 
two time points in the PR group. The horizontal and vertical dashed lines indicate P value < 0.01 and |log2 fold change| 
>1. d) Abundances of the polyisoprenoid biosynthesis (E. coli) pathway in the PR and GR groups at the two time points. 

 
In addition, by the gene set analysis (GSA), the microbial metabolism related to biofilm 
formation (E. coli) was enriched in the PR group at 12 months compared to baseline (P < 
0.05). The microbial genes involved in the biofilm formation, including gmr, arcA, lsrR, 
rcsC and rcsD, showed an increased abundance in the PR group (Figure 24c; P < 0.01 and 
|log2 fold change > 1|). Meanwhile, the difference in the metabolism related to biofilm 
formation (E. coli) between the GR and PR groups was observed at 12 months (P < 0.05). 
In agreement with results of the GSA, the functional capacity of polyisoprenoid 
biosynthesis (E. coli) was elevated in the PR group at 12 months compared to baseline 
(Figure 24d; P < 0.05 by the Wilcoxon signed-rank test), when using the relative profiles 
of the MetaCyc pathways calculated by the metagenomic tool HUMAnN2 [73]. 
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3.3.3 The altered gut microbiota linked to the metabolomic changes in response to the 
probiotic supplementation 
As introduced in section 3.2.2, metabolite butyrylcarnitine (C4) responded differentially at 
all follow-up time points and had a robust increased level in older women supplemented 
with the probiotic L. reuteri ATCC PTA 6475 [136], compared to the placebo group 
(Figure 21b). In line with this, butyrylcarnitine (C4) showed an elevated level in the GR 
group after one-year probiotic supplementation (Figure 25a; P < 0.05). Additionally, a 
positive correlation between species Akkermansia muciniphila and butyrylcarnitine (C4) 
(Figure 25b; R = 0.54, P = 0.017) was observed at 12 months. As previously reported 
[134], butyrylcarnitine (C4) could act as the pool and transporter of butyrate, which has 
been shown to promote bone formation in mice [64, 135, 137]. Simultaneously, earlier 
studies have revealed that A. muciniphila has the ability to degrade mucins in the intestine 
mainly into SCFAs [138-140]. Thus, this correlation result indicates a link between the 
SCFAs-producing species and the butyrate derivative, which might contribute to the 
reduction of bone loss in good responders after the probiotic supplementation. 
 

 
Figure 25 The metabolic changes in older women linked to the gut microbial species. a) Abundances of 
butyrylcarnitine (C4) in the GR and PR groups at baseline and 12 months. b) Association between butyrylcarnitine (C4) 
and species Akkermansia muciniphila. The blue line and grey shade indicate the regression line and 95% confidence 
interval; R denotes Spearman's correlation coefficient. 

 
In summary, the section 3.3 mainly presents the work from Paper VI, where the 
composition and functional capacity of gut metagenome as well as serum metabolome in 
good or poor responders to the probiotic intake were investigated. After one-year 
supplementation with L. reuteri ATCC PTA 6475, the decreased inflammation and 
significantly increased gene richness of the gut microbiota in the good responders were 
revealed. Moreover, detrimental changes including the enrichment of E. coli and its biofilm 
formation observed in the poor responders were alleviated in the good responders after the 
probiotic intake. In addition, a potential link between the SCFAs-producing species A. 
muciniphila and the butyrate derivative butyrylcarnitine (C4) were observed, confirming 
that the effects of L. reuteri ATCC PTA 6475 on bone metabolism might be regulated 
through the butyrate signaling. Overall, by integrative analysis of the metabolomics and 
gut metagenomics, oral supplementation with L. reuteri ATCC PTA 6475 has been 
suggested to have the potential to prevent a deterioration of the gut microbiota and the host 
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metabolism in elderly women with low BMD, which might contribute to the beneficial 
effects on bone loss in the elderly. This study provides a new insight into the regulation of 
bone metabolism and could be crucial for the development of novel osteoporosis 
treatments. However, further studies are needed to validate the links between the gut 
microbial alterations and the host metabolic changes triggered by supplementation with 
probiotic L. reuteri ATCC PTA 6475. 
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4. Conclusions  
This thesis mainly interrogates the associations between the gut microbiota, probiotics and 
human metabolism by using ML and GEMs to integrate gut metagenomics with serum 
metabolomics. For this, I first discussed the current literature about associations between 
gut microbiota, human diseases and applications of ML in Paper I. Additionally, this 
thesis mainly answers the three questions that are raised in the background part (section 
1.6). 
 
In Paper II and Paper III, associations between the gut microbiota and T2D were mainly 
investigated. I first explored how different underlying factors, including the host 
metabolism and the gut microbiota, contributed to the abnormally postprandial responses 
in individuals with (pre)diabetes (Paper II). By integrative analysis of metabolomics and 
metagenomics, the derivatives of BCAAs and phenylalanine were identified to be a 
potential link between the gut microbiota and T2D, which were associated with insulin 
resistance and might contribute to the metabolic imbalance of (pre)diabetes. Further, using 
ML and community-level metabolic models, I performed a systematical analysis of four 
metagenomics data sets related to (pre)diabetes (Paper III). A number of SCFAs-
producing bacterial species and metabolic reactions were consistently identified to be 
important for predicting T2D status across studies, which is in line with a reduction of 
species with butyrate producing capacity (Paper II). These findings suggest that alteration 
in the SCFAs-producing capabilities of the gut microbiota might play a critical role in the 
pathology of T2D progression. 
 
Furthermore, this thesis focuses on the effects of probiotic L. reuteri ATCC PTA 6475 on 
bone metabolism of older women with low BMD. Using the GEM of L. reuteri ATCC 
PTA 6475, this work investigated the biosynthesis pathways of a number of beneficial 
metabolites e.g., SCFAs, which helps to understand the potential benefits of the probiotics 
to human metabolism (Paper VI). By metabolomic profiling, this work revealed that one-
year supplementation with the probiotic alleviated the significantly metabolic changes of 
older women with bone loss as occurred in the placebo group (Paper V). By integrative 
analysis of metabolomics and metagenomics, this thesis further found that, in good 
responders, L. reuteri ATCC PTA 6475 had the potential to prevent detrimental changes 
of the gut microbiota (Paper VI). In addition, a potential link between the SCFAs-
producing species A. muciniphila and the butyrate derivative butyrylcarnitine (C4) was 
observed, suggesting that the effects of L. reuteri ATCC PTA 6475 on bone metabolism 
might be regulated through butyrate signaling. These findings provide new insights into 
the regulation of bone metabolism and could be crucial for the development of novel 
osteoporosis treatments. 
 
GEMs serve as a useful tool to study metabolic questions. In Paper VI, this work 
demonstrated that GEMs could enable us to examine the metabolism of single probiotic 
strain L. reuteri ATCC PTA 6475 in detail. In Paper III, GEMs were used to construct the 
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community-level metabolic model of individual gut microbiota, which helps us to 
investigate its holistic functional capacities via simulating metabolic reactions. Therefore, 
modeling the metabolisms by the GEMs could provide a reliable basis for identifying 
metabolic signatures related to diseases and even interrogating relationships between the 
gut microbial species. 
 
In this thesis, the trained regression or classification models not only showed an adequate 
predictive accuracy, but also identified important disease-related features. In Paper II, the 
regression models were applied to predictions of the postprandial glucose responses to a 
meal using multi-omics data. This work found that blood metabolomics-based models had 
better performance in comparison to other omics data. Also, the obtained interpretable 
models had the potential to identify both the important serum metabolic and gut microbial 
features that might contribute to the abnormal glucose control in individuals with 
(pre)diabetes. In Paper III, different classification models were trained to predict T2D 
status based on various gut microbial features. Through this, several key SCFAs-producing 
microbial species and the metabolic reactions were consistently identified to be critical for 
detecting T2D risk. In addition, this work suggests that the gut microbiota-based models 
for predicting T2D status might be specific to the studied population or region and 
challenging to be generalized across multiple cohorts. 
 
To sum up, this thesis contributes to knowledge on associations between the gut microbiota 
and the human diseases as well as the beneficial effects of L. reuteri ATCC PTA 6475 on 
bone metabolism. In addition, this work suggests that ML in combination with GEMs has 
the potential to identify new microbial signatures related to diseases. 
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5. Future perspectives  
With the fast development of sequencing technologies, the genome sequences of more and 
more species of the human gut microbiota have been uncovered. The considerable gene 
reservoir can enable us to better understand the composition and potential functions of the 
gut microbiota. Increasing studies have used metagenomics to reveal associations between 
the gut microbial species and human diseases. Nevertheless, this is just a first step to set 
up a correlation, which further need to be verified as a causal relationship, e.g., through 
the use of germ-free mice. Additionally, serum metabolomics has been widely used to 
study the metabolism of the human host as well as to identify the gut microbe-derived 
metabolites. Therefore, integrative analysis of the metagenomics and metabolomics has a 
potential to reveal robust links between the gut microbiota and its human host, e.g., the 
signaling pathways the microbe-derived metabolites are involved in, which could provide 
new insights into the causal roles of key species in the human diseases. 
 
Identification of the causality from metagenomic studies enables us to develop efficient 
intervention strategies for improving human health by targeting the gut microbiota, such 
as probiotics, prebiotics and personalized nutrition. Especially, oral supplementation with 
probiotics has been evaluated to be a safe and efficient intervention in a number of double 
blind, randomized placebo-controlled trials. However, subjects have differential responses 
to the oral administration of probiotics, i.e., some responded poorly. Therefore, further 
studies need to be performed for validation of the probiotic efficacy. Identification of the 
factors that contribute to the good or poor responses might help us to design personalized 
intervention. Additionally, the intake of prebiotics, referred to as chemicals that induce the 
growth of commensal microorganisms, could be a good choice to improve human health.  
 
Associations between the gut microbiota and a unique disease have often been revealed to 
be inconsistent across different metagenomic studies. This might be due to other factors, 
such as drugs, age, diet, geography, lifestyle, could influence associations between the gut 
microbiota and the disease. Therefore, these factors need to be taken into account when 
researchers design experiments and analyze the metagenomics data. Particularly, 
integrative analysis of complex data including multi-omics, dietary composition and clinic 
data, has been required to elaborate the underlying links between human diseases and the 
gut microbiota. However, it’s challenging to efficiently extract disease-specific signatures 
from the complicated interactions between the environmental factors, gut microbiota and 
host metabolism. 
 
ML holds great promise to integrate these heterogeneous data for generating interpretable 
models that could not only predict phenotypes but also identify potential biomarkers 
related to human diseases, thus allowing us to gain novel insights into disease pathogenesis 
and further propose potential intervention strategies. Nevertheless, due to high-
dimensional data including extremely large amounts of molecular variables with relatively 
small samples, it is challenging to develop robust and reliable prediction models, and easily 
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leads to overfitting problem. To mitigate this, a range of techniques could be useful such 
as using feature selection, reducing model complexity and utilizing data augmentation. In 
addition, a set of autoencoder-based deep learning methods have been devised to transform 
high-dimensional features into low-dimensional latent representations, which could be 
used for further analysis and prediction. However, the development of gut microbial 
predictive models and diagnostic biomarkers would possibly be specific to the studied 
population, and difficult to be generalized across multiple ethnicities or geographies.  
 
GEMs are a powerful tool for studying metabolisms of a single gut microbe or entire 
microbial community, which could provide new knowledge about the gut microbiota via 
simulating its metabolic capabilities such as biomass growth, target metabolite synthesis. 
However, it is indispensable to address a number of challenges, such as considerable 
manual curations of a draft model, part of microbial species with little gene annotations or 
limited experimental data. In order to model metabolisms of individual gut microbiota 
consisting of hundreds of species, a community-level metabolic model is usually 
constructed based on many GEMs. This process is time-consuming to refine the draft 
model and needs to be accelerated. 
 
Taking together, the joint use of the ML and GEMs for integration of complex data 
provides a great opportunity to elucidate the causal roles of key microbes in human 
diseases. Also, it has the potential to assist in developing gut microbiota-targeted 
intervention strategies for prevention and treatment of human diseases, which would be 
promising solutions for precision medicine. 
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