318 research outputs found

    Intelligent query answering in rule based systems

    Get PDF
    AbstractWe propose that in large knowledge bases which are collections of atomic facts and general rules (Horn clauses), the rules should be allowed to occur in the answer for a query. We introduce a new concept of the answer for a query which includes both atomic facts and general rules. We provide a method of transforming rules by relational algebra expressions built from projection, join, and selection and demonstrate how the answers consisting of both facts and general rules can be generated

    Mapping Fusion and Synchronized Hyperedge Replacement into Logic Programming

    Full text link
    In this paper we compare three different formalisms that can be used in the area of models for distributed, concurrent and mobile systems. In particular we analyze the relationships between a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge Replacement with Hoare synchronization (HSHR) approach and logic programming. We present a translation from Fusion Calculus into HSHR (whereas Fusion Calculus uses Milner synchronization) and prove a correspondence between the reduction semantics of Fusion Calculus and HSHR transitions. We also present a mapping from HSHR into a transactional version of logic programming and prove that there is a full correspondence between the two formalisms. The resulting mapping from Fusion Calculus to logic programming is interesting since it shows the tight analogies between the two formalisms, in particular for handling name generation and mobility. The intermediate step in terms of HSHR is convenient since graph transformations allow for multiple, remote synchronizations, as required by Fusion Calculus semantics.Comment: 44 pages, 8 figures, to appear in a special issue of Theory and Practice of Logic Programming, minor revisio

    Nonfree datatypes in Isabelle/HOL: animating a many-sorted metatheory

    Get PDF
    Datatypes freely generated by their constructors are well supported in mainstream proof assistants. Algebraic specification languages offer more expressive datatypes on axiomatic means: nonfree datatypes generated from constructors modulo equations. We have implemented an Isabelle/HOL package for nonfree datatypes, without compromising foundations. The use of the package, and its nonfree iterator in particular, is illustrated with examples: bags, polynomials and λ-terms modulo α-equivalence. The many-sorted metatheory of nonfree datatypes is formalized as an ordinary Isabelle theory and is animated by the package into user-specified instances. HOL lacks a type of types, so we employ an ad hoc construction of a universe embedding the relevant parameter types

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Solving Disequations in Equational Theories

    Get PDF

    Using Automated Reasoning Techniques for Deductive Databasis

    Get PDF
    This report presents a proposal for a deduction component that supports the query mechanism of relational databases. The query-subquery (QSQ) paradigm is currently very popular in the database community since it focuses the deduction process on the relevant data. We show how to extend the QSQ paradigm from Horn clauses to arbitrary predicate logic formulae such that disjunctions in the consequent of an implication, negation in its logical meaning and arbitrary recursive predicates can be handled without restrictions. Various techniques to improve the search behaviour, such as lemma generation, query generalization etc. can be incorporated. Furthermore we show how to use clause graphs for compile time optimizations in the presence of recursive clauses and to support the run time processing
    • 

    corecore