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INTELLIGENT QUERY ANSWERING 
IN RULE BASED SYSTEMS 

TOMASZ IM.IELINSKI* 

D We propose that in large knowledge bases which are collections of atomic 
facts and general rules (Horn clauses), the rules should be allowed to occur 
in the answer for a query. We introduce a new concept of the answer for a 
query which includes both atomic facts and general rules. We provide a 
method of transforming rules by relational algebra expressions built from 
projection, join, and selection and demonstrate how the answers consisting 
of both facts and general rules can be generated. a 

1. INTRODUCI’ION 

In a large knowledge base system, the data are represented in the form of both 
general laws (given as Horn clauses) and assertions representing specific facts (e.g., 
tuples of relations). We are going to argue here that it is frequently beneficial to 
structure the answer for a query in a similar way, i.e. both in terms of tuples, as is 
traditionally done, and in terms of general rules. This is simply a consequence of the 
general philosophy of logic programmin g, which imposes a uniform view on 
programs (in this case queries and rules) and data [a]. This is beneficial both from 
the conceptual and the computational point of view. 

Conceptually, rules are often more informative and easier to comprehend than 
the corresponding sets of derived tuples. The fact that, for example, in the university 
environment all graduate students in computer science who specialize in a given 
area have to take all the courses offered in this area can be better represented by a 
rule than by the corresponding derived set of tuples, regardless of whether this 
information is part of the database or part of the answer for a query. Computa- 
tionally, we can benefit even more. It is much less expensive to evaluate the rules 
over the result of the query than over the database state itself, since the result of the 
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query is much smaller than the database. Besides, rule transformation extends the 
algebraic spirit of query processing from purely relational databases to databases 
with rules and is also another example of the “lazy evaluation” known in the area of 
programming languages. If rules in the answer of a query are evaluated yielding a 
set of tuples as the fmal answer for the query, the rules become derived integrity 
constraints in the view of the database [3]. 

Finally, this new concept of the answer for a query can be helpful in resource 
limited computation, when we do not have enough resources to compute the full 
answer to a query. Indeed, we may interpret an answer with rules as a type of 
“abstracted” answer to a query. Such an answer can be further specified, depending 
on the user’s request. For example, if in the answer we include the rule saying “all 
prerequisities of courses”, a user may want to know what these prerequisities are 
(see the next example), and in such a case our rule has to be evaluated. The query 
formulation process is in this case not only the process of choosing a proper formula 
to express a query, but also choosing a language in which the answer for a query is 
acceptable to the user. Such a language could for example include predicates which 
can occur in the rules of the answer to a query. Needless to say, computing rules in 
answers is an option for the user and is applied only if he explicitly requests it. We 
would also prefer that in case such a request is made, the necessary additional 
computation should be cheaper than starting everything from scratch. 

Formally a database consists of a database extension, represented in the form of 
relations, and a database intension, which includes the rules R. The rules mentioned 
above are really inference rules, that is, rules which will derive missing, implicitly 
represented information from the information explicitly stored as tuples of the 
database extension. Therefore, if we want to query such a database, we cannot 
ignore the database rules, but have to take them into consideration in the process of 
query evaluation. Formally the answer for the query in such circumstances could be 
computed by closing the database under the underlying set of rules and then 
evaluating the query. We will say that rules from the database can be transformed 
by the query if some of the rules can be evaluated after the evaluation of the query 
without a&Sing the tinal result: 

Example 1. Let us assume that the set of all professors of a university is 
partitioned into research groups. Let the binary predicate Group(x, y) be true for x 
and y iff x and y belong to the same research group. In this case it is natural to 
a&tune (or require) that professors from the same research group be able to teach 
the same courses. This can be formally represented as the following formula: 

ri=Teach(x, y) A Group(x,z) +Teach(z, y). 

Besides, we may have rules expressing standard equivalence properties of the 
relation Group (reflexivity, symmetry, transitivity). We may also, require that the 
professors should be able to teach prerequisites of all the courses they are able’to 
teach, which can be expressed by the following formula: 

., 

r2 = Teach( x, y ) A Prerequisite( x, y ) + Teach( x, z), 

where additionally the predicate Prerequisite satisfies the transitive closure rule. 
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Let us consider now the query: “Give me all the courses that Imielinski may 
teach”. This query can be expressed as the following relational algebra expression: 

=CouI% u_=,rtiM(Teach). 

It is easy to see that the following rule, related to rz, can be included in the 
answer for the query: 

Q(x) A Prerequisite(x, y) + Q(r), 

where Q denotes the query predicate. Let us say that this rule is transformed from r, 
modulo the query Q. This rule has also a very natural interpretation-together with 
the set of courses which will be returned, it simply says “include prerequisites of the 
courses which were just printed out”. If the user wants to know what these 
prerequisites are, he may request the evaluation of this rule. Notice that even in this 
case we will benefit computationally, since the new transformed rule will be 
evaluated over the result of the query, which is much smaller than the database. 

It is also clear that the rule rl is not transformable modulo this query and would 
have to be evaluated prior to the query itself. 

The situation changes when we consider a different query: 

“Who can teach the Database course”. 

It is easy to see that the situation is totally reversed: now the rule rz has to be 
evaluated prior to the query evaluation, while the rule rl can be transformed into 
the rule: 

Q(x) A Gwh _Y) -+ Q(Y). 
In other words; the answer for the query can be described in natural language as 

“the groups of Imielinski, Smith, etc. can teach databases”. 
Again, if the user wants to know who are the members of a particular group, he 

should request the evaluation of this rule. 

Formally, the rules in the answer for a query should be either expressed totally in 
terms of the query predicate i.e., the predicate defined by the query or by the query 
predicate and some other additional predicates which occur in the database. The 
choice of these additional predicates may be left to the user. The query predicate 
must appear both in the consequent and in the body of the rule (otherwise the query 
definition could trivially form such a rule). We will always denote the query 
predicate by Q. 

In this paper we analyze conditions under which rule transformation is possible. 
First we describe conditions under which single rules can be transformed by single 
relational operations; then we generalize our discussion to the relational expressions 
and finally to the sets of rules. The transformation of the sets of rules is particularly 
difficult-we always attempt to decompose the problem of transformation of sets of 
rules into the transformation of individual rules. We also demonstrate that even 
when the particular set of rules cannot be transformed, we can frequently construct 
an equivalent set of rules which can be transformed. 

The paper is organized as follows. In the second section, basic notions are 
introduced. General conditions for transformation of single rules are described in 
the third section. The sets of rules are discussed in the fourth section. In the last 
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section we talk briefly about the further generalization of the answer for a query to 
include predicates and function symbols. 

2. BASIC NOTIONS 

We assume that the reader is familiar with the relational model of data [7] and 
standard terminology of logic programming [6,2]. P(t) will denote an atomic 
formula where P is the predicate name and t is a tuple of variables and constants. 
Rules will have the form of function free Horn clauses: 

A rule with k literals in its body will be called a k-rule. We will say that a rule r 
defines a predicate p ifT p occurs as a consequent of r. By assertions we mean 
atomic formulas of the form P(t) where t is a constant tuple. With a set of 
assertions we will usually identify the relations built from the sets of tuples t such 
that P(t) is an atomic assertion. These relations will have columns identified either 
by attributes [7] or by the letters referring to attribute names. For example, in the 
predicate P(x,, . . . , x,) first position will be referred to by the number 1 or by A, the 
second by the number 2 or by B etc. With sets of predicates we will associate 
multirelations, i.e., sets of relations each corresponding to an individual predicate. 
Further, we will identify sets of .assertions with the corresponding multirelations. 

Let our rule be P(tl) A - - - A P(t,) A W + P(t,+l), where W is a conjunction of 
literals with predicate names different from P. 

A variable will be called bound iff it has more than one occurrence in the body 
(the left-hand side) of the rule. The rule is active iff it serves as an inference rule; it 
is passive if it is satisfied by the set of assertions. In the latter case, the rule does not 
yield new answers and becomes simply an integrity constraint. We will assume 
further in the text that our database intension is built from inference rules R and 
integrity constraints IC. The division of the rules into passive and active will usually 
be done at the compile time of the database and will hold for all possible database 
extensions. 

Further, we will always assume that our sets of rules are free from mutual 
recursion. Since mutual recursion is disallowed here, the set of all predicates could 
be partially ordered in such a way that p precedes 4 if p occurs in the body of some 
rule r defining q (i.e., with 4 the consequent of r). We will say that 4 uses p and 
define the “use” relation formally as a transitive closure of the above partial order. 
In a similar way we will say that the rule r uses rule s if s defines a predicate which 
is used by some predicate occurring in the body of the rule r. 

We wiIl classify the rules we are going to consider into certain categories. First of 
all, the rules that we will consider are function free. We will consider unirelutionaf 
rules, in which only one predicate occurs (possibly in the different literals), and 
multirelational rules, in which several predicates may occur. For example, all 
template dependences are unirelational. The rules in the initial example are multire- 
lational, since they consist of occurrences of more than one predicate. 

The database state will consist of two parts: the database extension and the 
database intension. The database extension will be simply a set of assertions S 
stored in the form of a relational database. The database intension will consist of 
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Horn rules without functions. The rules of database intension will generate ad- 
ditional, derived assertions from the database extension. Given a set of rules R, by 
R*(S) we denote the smallest multirelation containing S and closed under the set of 
rules R.’ 

We will say that the set of rules is bounded iff there exists k such that for any 
database state S (i.e. the set of database assertions), R*(S) = R“(S). We will say 
that a set of rules R is p-bounded, where p is a predicate, iff there exists k such that 
for any S= (Si,..., S,) we have R*(S)[p] = Rk(S)[ p], where S[ p] denotes the 
relation corresponding to predicate p in the multirelation S. Such a predicate will 
be called a bounded predicate, and the smallest k with the above property is called 
the limit of the set of rules. Obviously a set of rules may in general be unbounded 
and at the same time p-bounded for some particular predicate p. 

A relation Si is closed with respect to a set of rules R iff the smallest fixpoint of 
R containing S = (S,, . . . , Si, . . . , S,,) has the same i th component as S (the fixpoint 
is a multirelation as well as a database extension). The rule r is closed in a database 
state S iff r(S) = S. 

All the predicates other than the consequent predicate which occur in the rule are 
called foreign predicates. 

We will say that the rule r is strongly idempotent fi r(r(S)) = r(S), and weakly 
idempotent iff r(r(S)) = r(S) for any multirelation S such that all foreign predi- 
cates in r are closed. In other words, if the rule r is evaluated after all the rules 
which are used by it are closed, then it does not have to be evaluated more then 
once to reach a fixpoint. 

We are going to introduce now two subclasses of rules we are going to deal with 
further in the paper. 

2.1 Strongly Linear Rules 

We will say that a rule is typed with respect to a certain predicate if each variable 
can occur only in a fixed position in any occurrence of this predicate. A predicate 
which occurs in the consequent of a rule will be called a consequent predicate. 

A rule will be called strongly linear if a consequent predicate occurs exactly once 
in the body of the rule and a rule is typed with respect to its consequent predicate. 
The body of a linear rule can be viewed as a conjunction of the literal generated by 
the consequent predicate and some formula which is the conjunction of literals 
generated by foreign predicates. The latter formula will be called the writing formula 
of the strongly linear rule. By an R-occurrence of a consequent predicate in the rule 
r we mean the consequent literal. By an L-occurrence we mean its occurrence 
(exactly one, since the rule is linear) in the body of r. 

By Arg(r) we denote the set of positions of the L-occurrence of the consequent 
predicate which share variables with the writing formula. By Res(r) we denote the 
set of positions of the R-occurrence of the consequent predicate which share 
variables with the writing formula. Intuitively, Res(r) is the set of positions of the 
consequent predicate which are changed (written) by the rule r, while Arg(r) is the 
set of positions in the consequent predicate on which the changed positions depend. 

‘In other words, the smallest fixpoint of the set R of rules containing S. 
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2.2 CONST Rules 

Let CONST be a family of unirelational rules which are typed with respect to their 
consequent predicates and such that the set of variables which occur in the body of 
the rule is a subset of the set of variables which occur in the consequent of the rule. 
We have named these rules in this way because the constants occurring there play 
an important role. In face, these rules can be viewed as describing properties and 
relationships between different constants in the database (see Example 11 in the 
appendix). We believe that although in logic programming the rules of this type are 
not very interesting, in the context of databases or expert systems they have 
important applications. 

Any finite set of rules from CONST has, of course, finite breadth first resolution 
trees (BFT) which result from resolving the rules of the database against negations 
of each individual predicate.’ 

Let us now describe more formally the notion of a query. Traditionally, queries 
in databases are expressed using the two different formalisms: relational algebra and 
the relational calculus [7]. The relational calculus is a variant of the predicate 
calculus with queries being open formulas of the language. Formally, by the answer 
for a query Q(x) in the database DB (which is viewed as a first order theory, a 
combination of database extension and intension) we mean the set of all substitu- 
tions of domain constants for the variable x such that the resulting formula is a 
semantic consequence of the database DB. If the database is relational-i.e., if the 
database state is a collection of relations- then for any query Q(x) we can compute 
the answer for this query by a relational algebra expression built from the following 
relational algebra operations: 

(1) Selection: Denoted by u,(R) where E is a selection condition generated by 
descriptors of the form (A = a) or (A = B) (where A, B are the attribute 
names) and conjunction, disjunction and negation. For example, E = 
(A = a) A (B = b) V 7( A # B) is a selection condition. It is easy to see that 
the selection conditions correspond to formulas expressed in the predicate 
calculus of equality without quantifiers. 

(2) Projection: Denoted ~rx(R), where X is a subset of the set of attributes of R 
which is defined as ( tps E R such that t[ X] = s[ Xl}, where t[ X] denotes the 
restriction of tuple t to the set of attributes X. 

(3) Natural join: Denoted by R w S, and defined as the set of all tuples t defined 
over the union of the set of attributes of R and the set of attributes of S and 
such that the projection of the tuple t over the set of attributes of R belongs 
to R and the projection of t over the set of attributes of S belongs to S. 

(4) Union and diJkrence: Standard set theoretical operations on relations. 

We will define P-queries as queries built only from projections, PS-queries as 
queries built from projection and selection, and finally PSJ-queries as queries built 
from projection, join, and selection. 

Traditionally, therefore, the answer for the query is defined as a set of tuples. In 
the next section we are going to modify this concept suitably. 
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3. RULES IN THE ANSWERS OF QUERIES-RULE TRANSFORMATION 

We will now describe the conditions under which we can include rules as part of the 
answer for a query. Although the logic progr amming approach does not make any 
distinction between the query and the data (both are parts of the same program), we 
will make such a distinction. We will refer to the query usually by a relational 
algebra expression. This is more convenient in our approach, which is essentially 
bottom up. 

Formally, we will be interested in the following three situations: 

i. The rules in the answer for a query are defined totally in terms of the query 
predicate and con be “postponed” after the evaluation of the query. Formally, this 
will correspond to the following formula: 

For every set of assertions S, Q(R*(S)) = RQ(Q( S)), where RQ is the new 
“postponed” or transformed set of rules. 

This situation can be illustrated by the following diagram: 

+-!-----R,(S) 

I I 
Q I I Q 

RQ 
Q(S)-------R$(Q(S)) 

Example 2. Take the predicate Teach(x, y, x), meaning that a teacher x teaches 
a course y to a student z, and take the (CONST) rule 

Teach( x, Databases, z) + Teach( x, File Systems, z) 

If the query Q is a simple projection ?~r~~,~,,_, we can get the following rule as 
the answer for this query: 

rQ= Q(x,Databases) -) Q(x,FileSystems) 

It is easy to see that this rule rQ satisfies the formula above-i.e., the original rule 
can be totally transformed. 

ii. The rules in the answer for a query are defined totally in terms of the query 
predicate but may be only partially postponed, and some of them will have to be 
performed prior to the evaluation of the query. In this case we have: 

For every set of assertions S, Q(R*(S)) = Ri;Q(R,*(S)), where R, is the set of 
rules which have to be evaluated prior to the query itself (i.e., which cannot be 
postponed). 

For example, take the CON~T rule as before and the query 

Q=a (C- * Database) v fleac.bm + John) (Teaches). 
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It is easy to see that the rule 

r,,= Teach(John,Databases,z) +Teach(John,Compilers, z) 

will have to be evaluated prior to the query, while 

rQ = (x # John) A Q(x, Databases, z) * Q(x, FileSystems, z) 

can be postponed till after the query evaluation. [Notice that we could really ship 
the condition (x # John) in this rule.] 

iii. The rules in the answer for a query are defined not only in terms of the query 
predicate but also in terms of other database predicates. .In this case again we may 
have both the case of total rule transformation as in situation i and the case of 
partial query transformation as in situation ii. Formally this situation. could be 
described by the same formula as in the latter case. The only difference is that the 
user has first to define the set of concept predicates, i.e., predicates in terms of which 
he is going to accept the answer to the query. The query Q is now no longer just a 
single relational expression (or formula of predicate calculus). It is rather a pair 
(Q, C) consisting of the query Q and the set C of concept predicates. 

The term “concept” is used here to reflect the fact that these predicates will be 
treated as “atomic” concepts which can then occur in rules in an answer for a query. 
We will assume that concept predicates do not occur in the query itself (otherwise 
we could allow trivially the query definition as the possible answer for a query). By 
concept rules we mean rules in which all foreign predicates are concept predicates. 

In all these situations we assume that all the rules in an answer for a query are 
recursive, i.e., they contain the query predicate both in the consequent and in the 
body of the rule. This assumption prevents us from considering trivial rule transfor- 
mations, such as for example including a query definition (in the form of a Horn 
formula with a query predicate as a consequent) in an answer for a query. Besides, 
since the recursive rules are the hardest to evaluate, their transformation could lead 
to significant computational gains. 

Notice that in all the above cases the rule transformation is obtained indepen- 
dently of the set of assertions. 

We must also point out here that we are interested in getting active rules in an 
answer for a query-that is, we want our rules still to play the role of inference 
rules, as in the database itself. Certainly, we may also talk about transforming rules 
into passive rules in an answer for a query; however, this more in the spirit of 
deriued integrity constraints, considered e.g. in [3] and [5], and will not be consid- 
ered here. 

3.1 Single Rules 

We start by describing the method for single rule transformation by a single 
relational expression. We will give precise conditions under which a single applica- 
tion of a given rule r can be transformed by a single relational operation. Later we 
will consider the cases of an arbitrary number of applications of a single rule and of 
a set of rules. 

Projection. Let or, be a projection operation over an instance of the predicate 
occurring in the consequent of the rule, and let I be any atom in whi& the 
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consequent predicate occurs. By I[X] we denote the atom resulting from 1 by 
dropping all positions which.correspond to the columns outside of X. We will say 
that the symbols which occur in these columns are projected out by the projection 
operation. 

We have the following lemma: 

Lemma. A rule r is a-transformable3 if n, does not project out either constants or 
bound variables. In this case, the result of the projection is the rule in which each 
occurrence of the literal I generated by the consequent predicate is replaced by its 
projection l[ X]. 

PROOF. If the condition of the lemma is not satisfied, we can construct two different 
database instances which will have the same projection before the derivation of 
additional tuples by the rule r and different projections after the closure is 
computed, which demonstrates that the construction of the derived rule is impossi- 
ble. If the conditions of the theorem are met, then by easy verification we obtain 
that the transformed rule satisfies the conditions of s-transformability. 

Example 3. Let r =p(x, y, z’, w) ~p(x’, y, z, w) -+p(x, y, z, w). Let X= 
{A, C }. Then r is ‘not ~&ransformable, because the variable w is bound (it has 
two different occurrences). It is easy to see that for 

ABCD A B C D 

&= a b c d ad sz= a b c d 
a’ b’ c’ d a’ b c’ d’ 

where a, b, . . . , d’ are domain constants, we will have nAc(S,) = qA,-(S2) but not 

%(G]] = Islc(‘(%)]* 

On the other hand, if we take any X such that B E X and D E X, then the rule r 
is ?r&ransformable. If X = { B, C, D }, then the rule 

7x(r) = Q(Y, z’, w) A Q(Y, 2, w’) + Q(Y> z, w> 

is part of the result of the query Q = rrBoD (r). In this case the rule r does not have to 
be evaluated on the operand R, but could remain active and be transformed 
independently into an active rule in the answer for the query. It simply does not pay 
to evaluate the rule r over R in this case. Notice also that rule transformation does 
not require any accesses to the assertional part of the database and may be even 
done at compile time in many cases. In a similar way, the rule r = P(x, y, z) A 
W( y, y’) A U(z, w) --, P(x, y’, w) is not Ir,,-transformable, because the variable z 
which is projected out is bound (by the predicate U). However, if we apply 
projection over the attributes B and C, then the rule can be transformed to the form 

Q(Y, r> A I+‘(Y, Y’) A u(r, w) + Q(Y, w), 

where Q is a query predicate. 

Let us now describe the join operation and the transformability of the rules by 
the join. 

3’That is, there exists a rule r‘ such that n*(r(S)) = r’(rrx(S)). 
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Join. Let ri and r, be two rules defined for relations R and S. 
In order to determine the transformability of these rules, we have to determine 

when the following holds: 

ri( R) w r*(S) = re( R w S). 

Let X= Y n 2 be the common set of attributes for R and S. In order for the 
above equality to hold, the following necessary and sufficient conditions must be 
satisfied: 

r&,(R)) = In, and &&)) = TX(S) for every R and S. (1) 

The condition (1) simply means that the rules ri and r, leave projections on X of 
R and S invariant. Indeed, otherwise the rules r, and r, could produce some tuples 
which would contribute to the join if evaluated prior to the join itself. In conse- 
quence it would be incorrect to postpone their evaluation till after the join. This 
above condition is very easy to test and can be done using standard methods of 
testing the equivalence of relational expressions. 

The rules r, and r, in this case will transform to a set of rules rather than to just 
a single rule. The resulting set will contain three rules, denoted by r;, ri, and rm, 
constructed in the following way: 

Let r, define the predicate p. By a p-literal we will mean a literal generated by a 
predicate symbol p. The rule r{ will be formed from the rule ri by replacing all 
p-literals in the body of the rule as well as in its consequent by Q-literals, where Q is 
a new predicate with the arity corresponding to the arity of the join. Each p-literal I 
will be replaced by the new Q-literal and will have the same variables as I on the 
attributes corresponding to the attributes of p. The other positions of the new 
Q-literal will be formed by a vector of new variables zi,, . . . , zi,. These variables will 
be the same for any new Q-literal replacing any p-literal either in the body or in the 
consequence of the rule. All the other literals in ri will remain unchanged.. The rule 
r; will be formed in the identical way. 

There will be also the third rule r, in the join, which will be a unirelational 
recursive rule generated by the predicate Q_ This rule will be a proper join 
dependency corresponding to the join. It will be formed in the following way: 

There will be two Q-literals in the body, each corresponding to one of the 
arguments of the join operation. The consequent literal will have the form 

Q(x 1,. . . , x,), and the body Q-literal corresponding to the argument R will have the 
same variables as the consequent literal on all attributes in Q corresponding to the 
attributes in R. The second literal will be formed in the identical way with respect 
to the second argument of the join. All the other variables in the rule will be 
pairwise different and different from the variables occurring in the consequent 
predicate. 

The third rule always holds in the join of the two relations (with the sets of 
attributes Y and 2 respectively). In other words, even join of two relations R and S 
over the sets of attributes Y and 2 satisfies this rule. It is therefore a derived 
integrity constraint or a passive rule in our previous terminology. Can this rule be 
made active? Yes, if we perform the “simplified” join over the tables R and S and 
just add the rule r, as an additional rule which computes the remaining tuples if 
necessary. This simplified join has the following form: For each tuple in R, find one 
tuple in S which can be joined with it, make a join of them, and include the tuple in 
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the result. Do the same thing for each tuple in S. What we are saving here is space, 
since we do not have to represent all the combinations of tuples of R and tuples in 
S which match on X; they can always be generated by the r, “on demand”. In such 
a case the size of the result is in the worst case #R + #S instead of #R - #S. In 
this case the rule r becomes the “active” part of the result. This method therefore 
constitutes a good alternative way of evaluating a join. 

Example 4. Let R[A, B] and S[B, C] be two relational schemes. Let ri = 
R(u, b,) -+ R(a, b2) and r, = S(b, cl) + S(b, cz). 

This set of rules is not transformable, because for X= {A, B} f~ {B, C} = {B} 
the rule r1 is not X-invariant, i.e., it does not satisfy the condition (1). However, the 
rule r_ will always hold in the result of this query. 

The situation changes when instead of the rule rl we consider the rule ri’ = 
R(a,, b) + R(a,, b). The resulting set of rules is transformable. Indeed, the condi- 
tion (1) is now satisfied and the transformed set of rules has the following form: 

ri! = Q(q, h Y) -+ Q(+, b, .Y), 
r2’ = Q(z, b, cl> --, Q(z, b, cz), 

rm = Q(x, Y, z’) A Q(x’, Y, z> + Q(x, Y, z). 
We can make all these three rules active in this case by evaluating a “simplified” 
join as described above. 

Selection. This is the most important operation, both because it is frequently 
used and also because it is the most “restrictive” one in producing small answers 
even from large databases. It definitely pays to evaluate rules over the result of the 
selection instead of evaluating them over the original database. This leads to a rule 
transformation which intuitively speaking “instantiates” the rule and makes it 
“more specific”. 

Let E be a selection condition. If t is a tuple (possibly with variables), by E(t) 
we will denote a formula such that 

u(E(t)) = true iff E(u(t)) is true, 

where u is the substitution of the constants for variables. 
Let a, be the selection operation. We will have two conditions under which the 

rule r will be transformed into either an active or a passive rule. 
Let the rule r have the form P(tJ,. . . , PAN W+P(t,+l), where W is a 

conjunction of all the other literals in which the consequent predicate does not 
occur. We assume here again (as in case of projection) that our rule is built only 
from concept predicates and the consequent predicate. We will distinguish the 
following three cases: 

(1) 

(2) 

(3) 

The rule r is us-transformable into an active rule 8’ E(t,+,) c* E(t,) 
A - - - A E( t,). In this case we simply have uE( r) = r. 

The rule r=P(t,)A --- A P(t,) A W --, P(t,+l) is a,-transformable into a 
passive rule itT E(t,) A - * - AE(t,) --, E(t,+,) holds. 

The rule r is independent of the selection condition E iff E(t,+,) is false. In 
this case the rule r does not have to be evaluated at all as far as the selection 
query is concerned. 
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(4) Indeed, in the case (1) we simply have that uE(r( R)) = r( uE( R)). It is easy to 
see that the condition (1) is a necessary and sufficient condition for this 
equation to hold. In the case (2) that is not true, but the rule r is still implied 
as the integrity constraint in the result. 

In the situation when a rule cannot be transformed, we can decompose the rule into 
two parts, one of which is transformable while the other is not. 

Dejinition. Let P(tl) A - - - /\P(t,) A W-‘P(tn+I) be the rule. Let E* =E(t,) 
A . . . A E(t,), and let 

E’ = E* A E(t,+,) 

and 
-E’=,(E*) A E(t,+,). 

By rE we denote the rule E’ A P(tl) A . - - AP(t,) A W-, P(t,+,), and by reE 
we denote the rule -E’ A P(tl) A * * - AP( W-, P(t,+J. If either of the 
preconditions E’ or -E’ is false, then the corresponding rule rE or reE will be 
empty (the empty rule will be denoted by 6). 

It is easy to see why the rule r -E will have to be evaluated prior to the section. It 
takes into account the tuples which themselves do not satisfy the selection condition 
but conMbute to the selection condition through the original rule. Therefore this 
modified rule will have to be evaluated prior to the query. On the other hand, the 
rule r+E) can be evaluated after the selection condition-indeed, all P-literals in 
the body of the rule satisfy the selection condition, so no information will be lost by 
postponing this rule. 

Example 5. Let our rule r have the form 

p(x, Y, 2) A I+, u) A %‘, 0) --) p(x, u, o), 

and let the selection condition E = (A # a) A [(B = b) v (C # c)]. This rule can be 
decomposed into two rules: 

rE= P(x, Y, z) A W(z, u) A U(y, 0) A E(x, y, z) 

A(u=b)V(u+c)+P(x,u,u) 

The descriptor (x # a) which seems to be missing above is implied by E(x, y, z): 

t-E=P(X,y,~)A [(x=a)V(y~b)A(z=c)] 

Aw(z,u)A ~(y,u)A(x+a)A [(u=b)V(u#c)] +P(x,u,u). 

Since the first rule belongs to the answer to our query, we can replace it by 

Q(x, Y, z) A J-f+, u) A U(Y, 0) A (u = b) V (0 + c) + Qb, u, 01, 

where Q is the query predicate. 

Queries. Now we have to say a few words about the transformations of individ- 
ual rules by whole relational algebra expressions. The ideal situation would be if we 
could simply apply our transformation rules for the individual relational operators 
in a.recursive way. Unfortunately, it is not that simple, and we will have to restrict 
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the syntax of the queries (expressions) to effectively use the rules introduced above. 
The most problematic operation will be the natural join, since it generates a 
nonlinear recursive rule as the result of the rule transformation (i.e. a join depend- 
ency r,). If additionally the argument predicates of the join are defined by some 
other recursive rules (e.g. strongly linear rules), then after applying the join we will 
produce (in case all rules are transformable) the set of (not necessarily linear) 
recursive rules as the set of transformed rules. If there is a next operation in our 
expression which governs the join, it will not have a single rule as an argument, but 
rather a set of complex rules. As we will see in the next section, the transformation 
of the set of recursive rules is considerably harder than the transformation of 
individual rules and is not always possible. Therefore, if we want to transform the 
rules effectively, we should avoid expressions in which the join operation does not 
occur as the top (final) operation but is an argument of the other operation. Notice 
that neither selection nor projection suffers from the above problem; they always 
transform single rules into single rules. 

Iakmpotent Rules. So far we have described conditions for transforming single 
applications of a single rule by individual relational operations. These conditions 
can be directly applied in a case of an arbitrary number of application of a single 
rule r*(S) in the case of projection, selection, and join. Unfortunately, the decom- 
position of the rules modulo the selection condition cannot be directly generalized 
to the case of an arbitrary number of applications of a single rule. Such a 
decomposition is only possible when our rule r is idempotent, i.e., no more than one 
application of the rule is necessary in order to reach a fixpoint (the limit of the rule 
is equal to one). This is the case for CONST rules and join dependencies, and it turns 
out that it will also be the case for strongly linear rules which we want to consider, if 
we make some additional assumptions about concept definitions. We will come back 
to this point when discussing the transformation of the sets of rules. 

4. TRANSFORMING SETS OF RULES 

Rules may be related to each other in a complicated way. In most cases we cannot 
simply apply the procedure described above to a set of rules on a rule by rule basis. 
Hull in his paper [3] demonstrated a simple family of rules (template dependencies) 
such that a simple projection of it is not tinitely specifiable by Horn clauses. In 
other words, he demonstrated that the set of rules holding in a simple projection 
may be not finite. We provide here his example. 

Example 6 [3]. Let the rules have the following form: 

rl =P(a, b’,c’,d’,e), P(u, b,c, d,e’) +P(a, b, c, d, e), 

rz = P(u’, b, c’, d’, e), P(a, b, c, d, e’) + P(a, b, c, d, e), 

r3=P(a’, b’,c,d,e), P(u, b,c, d’,e) -+P(a, b,c,d,e), 

where u, 6, c, d, e, a’, b’, c’, d’, e’ are variables. Let us consider the projection Vet,--. 
Hull demonstrated that the set of all relations which are the projections on ABCD 
of the relations satisfying this set of rules is not finitely specifiable by a set of Horn 
clauses. In our terms this means that the set of rules holding in the above projection 
is even not finitely specifiable. 
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Frequently it turns out that although a given set of rules is not transformable by 
the query, some other equivalent set of rules is. The following example illustrates the 
point: 

Example 7. Given two rules p(a)+p(b) and p(b)+p(c) and a selection 
CJ~,,_~~~~,,_~), we can get the implied rule p(a) -p(c) by the application of modus 
ponens to the above two rules. In this case only the rule p(b) --*p(c) should be 
evaluated before the query; the implied rule could be part of the answer. Therefore 
the “closure” of this set of rules allows us to postpone one of the rules till after the 
query evaluation, which was not the case for the original set of rules. 

In this section we are going to describe conditions under which sets of rules are 
transformable. In general we will be looking for the cases in which the transforma- 
tion of a set of rules can be reduced to the transformation of a single rule or can be 
done on a rule by rule basis. In case the given set of rules is not transformable, we 
will be interested in the construction of sets of rules which are equivalent to the 
given set and in the same time “easier” to transform. 

We will select here some properties of the sets of rules which make them easy to 
transform. All of these properties will require certain forms of modularity or 
independence. 

Definition (Modular decomposability). We will say that a set of rules R is modularly 
decomposable into (R,, R,) (where the union of R, and R, is equal to R) iff 

R*(S) = Rz(Rf(S)) 

for any set of assertions S. 

Notice that the set R of rules may be modularly decomposable into (R,, R,) but 
not into (R,, R,). 

Definition (Strong independence). A set of rules R is strongly independent iff for any 
set of assertions S 

R*(S) = u r(S). 

Definition (Independence). Independence is the same as strong independence, but 
with respect to the closures of individual rules, i.e. with respect to fi* instead of ri 
for i=l,...,n. 

All these definitions correspond to some hind of modularity, since they express 
the 6xpoint of a set of rules in terms of the fixpoints of the subsets of this set of 
rules. 

We will say that a set of rules R is tot@ transformable by the query Q ilT all the 
individual rules in R are totally transformable. 

We will start our description of transformations of the sets of rules from the 
situation when the set of rules is modularly decomposable. Later on we will analyze 
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the transformation of independent sets of rules and show how, given the set of rules, 
to construct an independent set of rules which is equivalent to it. 

In the following subsections we will show two principal ways in which we are 
going to transform rules in a database. The first will be applied to the situation 
when the set of rules is modularly decomposable. In the second the set of rules will 
be transformed to a singZe rule. Finally, at the end of the section we will discuss the 
general methods of constructing an independent set of rules which is equivalent to 
the given one. 

4.1 Transforming Modular& Decomposable Sets of Rules 

By a totally transformable set of rules we mean a set of rules in which each 
individual rule is directly transformable (i.e., it satisfies our initial condition for 
situation i in section 3). 

Let us start with a transformation of a totally transformable set of rules. We will 
assume that all these rule are concept rules; otherwise we have to eliminate 
nonconcept rules first. A totally transformable set of rules can be transformed rule 
by rule in the case of queries involving projections and selections. Indeed, such 
queries can be distributed over the union operator and our property directly follows. 
The join operator can be distributed too, but in this case the “total transformability” 
of the set of rules is more restrictive. It requires that no rule violate the join 
requirement (specified in the join transformation rule). The transformation rules in 
this case will require us to take each possible pair of rules, one from each argument 
of the join, and perform a transformation according to the previously described join 
transformation rule. 

The case of total transformability of a set of rules enables us therefore to reduce 
the problem of the transformation of a set of rules to the problem of the 
transformation of single rules. What happens, however, if the set of rules under 
consideration is not totally transformable? In this case we have to do the following: 

(1) Identify a modular decomposition (R,, R,) of the set R such that R, is 
totally transformable (clearly therefore we require that all rules in R, are 
concept rules). 

(2) Evaluate all nonconcept rules and all rules from R, or used by R, prior to 
the query Q, and transform the rules from R, on a rule by rule basis. 

Indeed, since the rules R, will have to be evaluated prior to the query Q, so must 
be all the rules used by the rules from R,, regardless of whether they are concept or 
nonconcept rules. Notice that in general we will be interested in the maximization of 
the subset R, which have the above properties. 

It is clear that the modular decomposability of the set of rules allows the 
components of such decompositions to be treated as independent modules. As such, 
they can be transformed separately. It is also easy to see that even when the subset 
of rules is totally transformable but is not an independent submodule of the total set 
of rules, then the rule transformation is not possible. 

Unfortunately we do not have sufficient and necessary conditions for the mod- 
ular decomposability; we can provide only certain sufficient conditions. One of such 
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useful sufficient conditions is presented here: 

Dt$nition. Rule r, is invariant with respect to rule r, iff for any S 

r&l(S)) = r*(S). 

In other words, the rule ri is not “affected” by the rule ri. The condition given in 
the above definition can be easily checked using, for example, standard methods of 
testing the equivalence of relational expressions. 

We have now the following sutIicient condition for the modular decomposability: 

Condition I. Let R = R, U R,. If all rules in R, are invariant with respect to all the 
rules in R,, then 

R* = R,*(R:). 

The proof is a straightforward consequence of the definition. ’ 
The other condition is related to strongly linear rules. 

Condition 2. Let R, and R, be two disjoint sets of strongly linear rules dejining the 
same predicate. If for some rule r E R, and any rule s E R, we have Arg(r) n 
Arg(s) = 0, then 

R*(S) = R:(R;(S)) = R;(RT(S)) 

for any S. 

The proof is again trivial. Such two sets of linear rules will be called orthogonal. 
Obviously, when we can establish the total transformability of a subset S of R 
which is orthogonal to its complement in R, then we can simply transform S and 
evaluate all the other rules (i.e. from R \ S) prior to the query. This is simply 
because orthogonality implies the modular decomposability. We will now present an 
example of such a situation and the transformation procedure in this case: 

Example 8. As an illustration of modular decomposability we can consider 
Example 1 with two rules: the first with the “Group” predicate and the second with 
the “Prerequisite” predicate. Both rules are strongly linear and orthogonal. There- 
fore for this set of rules R = {r,, rz} we have that: 

R* = r:r,*(S) = r:rT(S). 

Clearly, as far as the first query is concerned, the rule r, it totally transformable, 
while the rl is not. This is why the first rule has to be evaluated prior to the query, 
while the second one could be transformed. For the second query the situation is 
exactly the opposite. In both cases we can transform the rules separately because of 
the possibility of modular decomposition. 

An interesting situation occurs when a query is simply a selection operator (or is 
built from selection operators). When a rule r is not selection transformable, we still 
have a change, as the previous section indicates, to decompose the rule into two 
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parts, rE which is transformable and r-s which is not. This is the case, however, 
only when the rule r is idempotent. We would like to establish conditions under 
which the rule r can be decomposed in such a way when it is a member of the set of 
rules. A necessary condition is the idempotence of the rule. It is not however, (as it 
was for transformation of a single rule) a sticient condition. Let R’ be a result of 
replacement of r in the set R by {r “, rME }. For sufFiciency we need the existence of 
a modular decomposition of R’ into modular components R’, and Ri such that rE 
will belong to R& and rmE to Ri. Indeed, otherwise rules from R; would have to be 
evaluated at least one more time after R& contradicting the correctness of the 
transformation of R 6. 

In the next subsection we demonstrate a situation when the set of linear rules can 
be replaced by a single linear rule. 

4.2 Saturating Transformation 

The following theorem is a key to our transformation of a set of linear rules to a 
single linear rule: 

Theorem Let Z be a set of strongly linear p-rules. There exists a set of rules Z’ which 
is equivalent to Z module p (i.e., both sets imply the same formubas about p) and 
such that p occurs only in one rule, which is strongly linear and weakly idempotent. 

In other words, in the above theorem we claim that there exists a transformation 
of a set of strongly linear rules into a single idempotent rule. Clearly therefore, the 
problem of the transformation of a set of rules can be reduced here to the problem 
of transformation of a single rule. 

PROOF. Let Z = { rI, . . . , rk }. Let { wr, . . . , wk} be a set of writing formulas for 
rI,. . . , r, respectively. By the saturating transformation TX of Z we mean the 
following one: Add one additional predicate symbol T to the language. The rank of 
this symbol (the number of columns) should be equal to the cardinality of ACTIVE = 
U{Arg(r,) U Res(ri) : ri E Z } times two. Intuitively, the predicate T will describe 
how the positions from ACTIVE Will be changed by the rules, by showing their “new” 
values. That is why we need the predicate T with arity twice as large as the 
cardinality of ACTIVE. 

Replace Z as follows: 

(1) 

(2) 

a single linear rule 

rT=P(x1,...,xn)~T(xil,...,Xip’Zil’...’~i))-)~(~1,...,~n), 

where T is the predicate added to the language, ACTIVE = {i,, . . . , ip}, and: 

i 

zik if i=i,EACrIVE, 
ui = 

xi otherwise. 

Some of the variables zil may be equal to xi*, for example in case the position 
i, is not changed by any rule. 

Add two sets of rules defining this additional predicate symbol T: 
Initialization rules. For each writing formula wi introduce the following rule: 

Wi(Xi,,...,Xi.,Ujl,...,i(i,,yk,,...,Yk,)-, T(~1,...,~k,Zl,...rZk), 
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where the x-variable on the left hand side are the variables which occur both 
in the L-occurrence of the consequent predicate and in the writing formula, 
the u-variables are the variables which occur only in the writing formula (i.e. 
neither in L- nor in R-occurrences of the consequent predicate), and finally 
the y-variables occur in the writing formula and in the R-occurrence of the 
consequent predicate. Moreover, 

xi if iERes(wi), 

if ri = 

i 

yi i E Res( wi), assuming that yi 

occurs at the i th position 

of a consequent predicate. 

As it is easy to see, the effect of this added rule the predicate T will leave 811 
positions unchanged with the exception of the ones written by w,. 

Continuation rule. This is the transitive closure of T, i.e. 

T(x~,...,x~,Y~,...,~~)AT(Y~,...,Y~,z~,...,z~) 

-+T(x, ,..., xn,zl ,..., zn). 

It is easy to see that the obtained set of rules is equivalent to the original set of 
rules with respect to p. Indeed, any sequence of appliations of original linar rules 
rr,..., rk can be “simulated” by the evaluation of a new single rule with the 
predicate T. In the same way, any sequence of appliations of a single new rule can 
be simulated by some sequence of applications of the original rules rl, . . . , rk. 0 

Notice also another interesting interpretation of the above theorem: In order to 
compute the least fixpoint of strongly linear rules, it is sulZcient to extend relational 
algebra only by a transitive closure operator (to compute one of transformed set of 
rules). The full power of least fixpoint queries is therefore much too large for 
strongly linear rules. 

To benefit from such a transformation a user must include T in a set of his 
concept predicates, since otherwise a single new rule could not be a subject of 
transformation at all. 

Example 9. Assume that we have the following set of rules: 

MayTeach(x, y) A Prefer(x, y, z) + MayTeach(x, z), 

MayTeach(x, y) A Better(x, y, u) + MayTeach(u, y). 

The intuitive meaning of the first rule is the following: If a teacher is able to 
teach a given course he also has to be able to teach all the courses which he prefers 
[these courses depend on the individual teacher; therefore the predicate 
Prefer(x, y, L) is ternary, meaning “Teacher x prefers course z to course y”]. The 
meaning of the second rule is as follows: If the teacher x is able to teach the course 
y, so must be any teacher u who is better then x in y (again, Better (x, y, z) means 
that “z” is better than “x” on the subject “y”.) 

Suppose now we have a query: Give me all teachers and the undergraduate 
courses4 which they may teach. It is easy to see that neither of these two rules is 

4Asbming we have an additional may predicate Undergraduate(x) at our disposal. 
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transformable with respect to this query. Indeed, this query is analogous to a pure 
selection query with respect to which neither rule is transformable. If however we 
apply a saturation transformation with respect to this set of rules, we will be able to 
transform the resulting rule. 

Indeed, let us introduce the additional predicate 

Betterknow(x, y, u, u) 

with the meaning “u knows u better then x knows y”, and the rule 

.rT= MayTeach(x, v) A Betterknow(x, y, u, u) + MayTeach( u, u) 

together with the rules defining the Betterknow predicate: 

Prefer(x, y, z) -+ Betterknow(x, y, x, z),~ 

Better(y, z, u) + Betterknow(y, Al, z, u), 

Betterknow(x, y, u, u) A Betterknow(u, u, x’, y’) + Betterknow(x, y, x’, y’). 

According to the above theorem the second set of rules is equivalent to the original 
set of rules with respect to a predicate MayTeach. If the user ZJ accepts the 
Betterknow predicate as the concept predicate, then the answer for the query must 
include the following rule: 

Q(x, r) A Betterknow(x, y, u, u) A Undergraduate(u) + Q(u, u). 

4.3 Transforming Sets of Bounded and Relatively Bounded Rules 

Iti this subsection we are going to consider other situations in which a set of rules 
can be transformed on a rule by rule basis. This is the case when the set of rules is 
independent. That is a very rare property (though it will happen for example when 
the set of rules under consideration has a connection graph with no edges). Thus we 
will rather look for conditions under .which a set of rules which is not independent 
can still be transformed to a logically equivalent independent form. It turns out, for 
example, that in a situation when a set of concept rules is p-bounded, where p is a 
predicate under consideration, we can always generate a finite set of rules which is 
equivalent to the original one and independent. This is so because, if the set of rules 
is bounded, only a finite bounded part of the BFT is relevant. An independent set 
R’ which is equivalent to R can be generated by generating the p-closure for any 
predicate p. This p-closure can be generated simply by building a BFT with 
:--p(x1,.**, x,) as the goal node. With each node of the BFT we can associate the 
(answer) .substitution 8 generated down to this node. Let the node of the BFT have 
the form 

:-Pi(O..., P&J. 

With this node we can associate the following rule: 

P&i),..., P&J +P(~b,L.A&J) 

where p is the “goal” predicate. 

5This name convention is based on philosophical assumption that if x prefers teaching y than to 
teaching I, then x knows y better than he knows z. 
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Obviously, this rule follows by the resolution inference rule from the original set 
of rules. Notice that in case the node is empty (we do not expect this to happen in 
our case unless we allow pure assertions to occur in R) we will get a “pure” answer 
substitution as the rule associated with the node. The set of all rules associated with 
any node of the BFT for a goal : -p(x,, . . . , x,) will be called a p-closure of the set 
of rules R. The p-closure of the set of rules can therefore be computed at compile 
time of the database by the “symbolic execution” of the set of rules (i.e., the 
execution of the set of rules of the database as a logic program). The p-closure 
(which simply corresponds to the logical closure of the set of rules by resolution) is 
of course ~logically equivalent to R. Moreover it is independent, as the following 
corollary shows: 

Corollary 1. Let R be a p-bounded set of rules. The p-closure of R is independent. 

The symbolic execution of a set of rules has to be done only once at the compile 
time for the database. The size of the resulting set of rules may still, in the worst 
case, be exponential (with respect to the size of the set of rules). We do not see any 
better alternative: after all, if we did not evaluate the rules symbolically at compile 
time, we would have to do possibly exponential compuations at run time, which 
would be much more expensive. An additional advantage of the closure computa- 
tion at compile time is the possibility of the optimization of the resulting, indepen- 
dent set of rules in such a way that redundancy is avoided (for example, no two 
rules imply each other). 

The above method will be useful only when the closure of a set of rules can be 
computed. That will be the case, for example, for sets of nonrecursive rules. Indeed, 
their BFT is finite; therefore the process of closure generation will always terminate 
in this case. This will be the case for CONST rules. Sets of bounded rules will be also 
transformable to an equivalent unbounded form. The trouble is that the problem of 
deciding boundness is undecidable [l]. The hope again is in finding special families 
of rules for which the boundness problem is decidable. The class of functional rules 
defined in [4] has this property. The transformation of such rules is considered % 
that paper too, so we will not elaborate on it any further here. The generation of the 
closure will however be used further in the case of transformation of the CONST 

rules. 

Example 10. Example 7 clearly illustrates the case when the original set of rules 
cannot be transformed, while the closure (in this case obviously finite) is indepen- 
dent and can be transformed on a rule by rule basis. 

4.4 Examples of Transformation of Set of Rules 

Let database predicates have the form: 

Supply(x, y, z), meaning that supplier x supplies parts y to a project 2, 

Subpart(u, u), meaning that part u is a subpart of u, 

Related(x, y), meaning that projects x and y are related (similar area), 

Location(x, y), meaning that supplier x has location y (he may have a number 
of locations). 
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Let our set of rules have a form 

ri = supply(x, y, z) A Subpa+, y) + Supply(x, ~7 r) 

with the interpretation that if a supplier supplies a project with a part, he must 
supply this project with all subparts of this part, and 

r,= Supply(x, y,z) A Related(w, z) + Supply(x, y, w) 

with the interpretation that given supplier supplies all related projects. Additionally 
we have the transitive closure rule for the Subpart relation. We do not assume 
anything about the predicate Related; in particular, we do not assume that it is 
transitive. 

Let us assume that the predicates Related and Subpart are concept predicates. 
Notice first that again, as in the previous example, the rules r, and r2 are 
orthogonal. Therefore they can be transformed independently. 

Let now 

Q = rsupptier,~art (Supply) W Location 

be our query or a view.6 Intensionally this query defines a view which is a table 
(“report”) listing all suppliers, parts, and locations of suppliers. 

First of all we have to compute the result of the transformation of our set of rules 
by a subquery Q’ = ?r sUPp,er,part(Supply). We can consider rules r, and rz separately 
because of their orthogonahty. Clearly r, is transformable into the trivial tautology 
and rl is transformed into 

Q’<x, Y) A Subpa+ Y) --, Q’(x, z). 

This rule will be transformable by join in our query Q, since it does not change 
projection over the attribute “Supplier”. We now have to apply the join transforma- 
tion and finally get the transformed set of rules: 

r3 = Q(x, Y, z) A Subpart(~, Y) -, Q(x, 0, I>, 

r4 = Q(x, Y, z) A Q(u, Y, w) -+ Q(x, Y, w>. 

The rule r, is our r-rule for a join transformation (it is in fact the so-called join 
dependency). Notice the computational benefit stemming from the rule transforma- 
tion here. The resulting query (or “view”) could be economically stored by evaluat- 
ing only the simplified join, as we described before, and leaving the above two rules 
unevaluated. The rule r3 could generate a huge number of tuples (because of the 
transitivity of the subpart predicate); in this way these tuples do not have to be 
stored, since they can always be generated by the corresponding rules. It is also clear 
here that the answer for the query (view) is of the same type as a database (i.e., 
information is stored both in terms of tuples and in terms of rules). 

In the next subsection we are going to describe rule transformations for the sets 
Of CONST I-UkS. 

6A view, in the database literature [7], is a mapping defining a new “derived” database. Such a 
definition mapping is frequently a relational algebra expression. 
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4.5 Transforming Sets of CONST Rules 

We will deal here with sets of &relational CONST rules. As it is easy to see, these 
sets of rules will always have finite BFT; therefore the closure computation will be 
straightforward here. 

The unirelational CONST rules have one more important feature: It turns out that 
if we deal only with rules from CONST, we do not have to compute the whole closure, 
but most frequently much less. 

Fact. If the rules are CONST, then the only rules which are v&ransformable for any 
proper subset of the set of all attributes are l-rules. 

PROOF. If a rule is a k-rule for k > 1, then each position at each literal in the body 
of the rule consists of either a constant or the same variable (different variables 
occur on different positions, though). Therefore, at each position we have either a 
variable which is bound or a constant. According to our previous criterion such a 
rule is not projection transformable. 0 

This fact has an important influence on the overall process of rule transformation 
in the case of the CONST rules. If any projection occurs in the query (which is most 
frequently the case), we need not even bother considering k-rules for k > 1. We may 
restrict ourselves to l-rules and their closures, since according to the above fact no 
k-rule for k > 1 is going to be transformed into a rule in the answer for the query. In 
other words, we have only to symbolically evaluate the subset of l-rules’ from R. 
This is a considerable simplification, since each rule in the closure of l-rules is a 
l-rule too, while in the general case the size of the rule (number of literals) grows 
exponentially with the number of times resolution is applied. Hence much space can 
be saved. Only in cases when we are dealing with the selection operation separately 
do we really have to compute the closure (at compile time, though). 

As before, the general pattern of the transformation algorithm for a set of 
independent rules is that we apply the above projection, selection, and join on a rule 
by rule basis. Additionally, if a rule is not selection-transformable, we can always 
decompose it into two parts, one of which is decomposable and the other not. 

If a set of rules R is independent, then the selection operation crE is simply 
performed by decomposing each rule. In this case, for any rule r E R the rule rE is 
the element of the answer. Moreover, the resulting set of rules is independent too. In 
fact, for the set of CONST rules we can simplify the rule transformation by describing 
it “at once” for the expressions built from projection (on the proper subset of the 
set of attributes) and selection. 

i 

6 iff r is the k-rule for k > 1 

vEG9) = or7rX(r)=SorrE=S, ( PS-rule) 

rX( r “) otherwise. 

We can easily generalize these transformation rules to the case when the rule is of 
the form 

@IP(t, ... AP( W-d’(t), 

where E, is the additional condition imposed on the variables in the rule. For 
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example, such a rule may have the form: 

In this case E, = (x # cl) A (y # b2). It is straightforward to generalize our projec- 
tion, join, and selection rules to capture this important modification, This simplified 
transformation rule illustrates the point which we made before about the decisive 
influence of projection (only l-closure has to be taken into consideration, etc.). 

In general, there are classes of queries and classes of rules for which the rule 
transformation will be very beneficial, and classes for which we do better to apply 
traditional methods, since we are not going to gain much by the rule transformation. 
Here is the classification, together with the proper modifications of the general “rule 
by rule” application of selection, projection, and join transformation rules: 

(1) 

(2) 

(3) 

The class of PS-queries, built on& from projection (on the proper subset of the 
set of attributes) and selection. This is a particularly good class of queries for 
the application of rule transformation. Indeed, in this case we only have to 
compute the closures of l-rules (at compile time) by the symbolic execution 
of the set of rules. It is a good idea to label each rule with its derivation tree 
(i.e., from which rules it was derived and how). In such a case we may also be 
able to eliminate some redundancies after the rule transformation has been 
completed and possibly further decrease the number of rules which have to 
be evaluated prior to the query evaluation. In general the rules which cannot 
be transformed will have to be evaluated prior to the evaluation of the query. 
In this way elimination of redundancy could improve the overall computa- 
tional benefit. In the case of CONST rules this is fairly inexpensive, since 
effectively we are going to deal only with l-rules. Basically, if the given rule 
which is not transformable can be derived from some transformed rule, than 
it does not have to be evaluated at all, hence saving expensive computation. 
The main procedure of rule transformation has the following form: 

I. Eliminate the rules which are independent of the query, that is, the rules 
for which either TX(r) = 6 or E(t,) is false. 

II. Apply a PS-rule to the set of rules on a rule by rule basis to compute the 
set of transformed rules. 

III. Select the rules which have to be evaluated prior to the query [the set R, 
from the formula ( * * )]. These are the k-rules for k > 1 and the 
r - E-rules. 

In the top down interpretation the rules computed in step III will have to be 
included as part of the program computing the answer for the query. The 
rules computed in step II will be included in the answer for the query. Notice 
that from the practical point of view this is a very important class of queries. 
It corresponds for example to the mappings in the query language SQUARE 

171. 

The class of PSJ-expressions, built from the joins of PS-expressions. This is a 
similar case where the closure of l-rules is sufficient. We apply the same 
procedure as in (1) followed by the application of the join transformation 
rules [see (3) below]. 

The class of S-queries, built purely from selection conditions. These queries 
require in principle the computation of the full closure of the set of rules at 
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compile time of the database. Then the rule decomposition could be applied 
on a rule by rule basis. The same applies to the combinations of S-queries 
with join. This pays only if the closure of the set of rules is not very large, 
which happens when the limit of the set is small. The limit of the set of rules 
measures in fact “how close” the set of rules R is to the independent set. 

The queries of the tirst two groups are more frequent, since selection is usually 
followed by projection. 

In general the rule transformation can be applied when the set of rules ‘is 
“loosely” connected, that is, when the closure of the set of rules is not too large, or 
when we do not have to compute the full closure (as for PS-queries). We claim that 
rule transformation should be applied every time it is possible because of the 
obvious benefits. In addition, let us point out that we have dealt here only with the 
conditions for obtaining the complete set of rules in the answer for the query. If we 
give up completeness, we can always apply our transformation (projection, selection, 
and join) rules directly to the set of rules, getting only some rules in the answer. This 
may still be beneficial and does not require dealing with the closure. 

5. FUNCTIONS AND PREDICATES IN THE ANSWERS FOR QUERIES 

The concept of the answer for a query could be further revised to allow function 
symbols and even whole predicates to occur in it. For example the term Brother(John) 
may occur in the answer for the query “Who lives with Mary?” even if we do not 
know who is the brother of John. Technically such an answer would result from 
aborting the unification (or semantic unification) in the query answering process. 
This way of representing answers could help in technically handling infinite answers 
resulting from the presence of arithmetic functions (e.g., successor) in the database 
formulas. For example, we could represent the answer to some query by listing a set 
of objects and adding the rule “all successors”. In a similar way one can include 
predicates in the answer for a query. For instance as the answer for the query “who 
is teaching undergraduate courses” one may get the predicate “Assistant Professors”. 
These answer may be further specified if such a request is made by the user. This 
“abstracted answer” is easier to obtain than the full one. Besides, it may fully satisfy 
the user’s needs at the moment. The abstracted answer may be also given to the user 
if the system itself finds the query too time consuming to process. Indeed, comput- 
ing the answers for queries (remember, we require all tuples which satisfy the query 
predicate to be included) may frequently be too hard. One way to cut the 
computational cost would be to approximate the answers to queries, i.e., not return 
all the tuples satisfying the answers. This seems rather arbitrary, however. The other 
option is the one provided above-to give the complete answer for the query but in 
more “abstracted terms”, possibly provided by the user as an option. In this case we 
may talk about complexity tailored computation which tailors the level of detail of 
the answer of the query to the computational resources. This is a topic for further 
research. 

6. CONCLUSIONS 

We have proposed rule transformation as a technique for query processing which is 
beneficial both from the conceptural and from the computational point of view. We 
have established the method of transformation of single rules by relational oper- 
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ations of projection, join, and selection. We have demonstrated that the situation 
becomes much more complex when we want to transform sets of rules, but in some 
cases we were still able to give the algorithm of rule transformation. We have 
defined classes of queries and rules for which the rule transformation is advanta- 
geous. These include queries built from projections and selection and limited 
occurrences of join. 

An interesting extension of this work would be to study the concepts of answers 
including unevaluated predicates and function symbols. An important future direc- 
tion of research is to develop the concept of “complexity tailored” information 
systems in which a user will have a whole hierarchy of answers to a query at his or 
her disposal. The more abstracted answers would cost less, and the final choice of 
the type of answer would depend on the limitations on the computational resources 
of the system. 

APPENDIX 

In this appendix we will demonstrate examples of the transformation of CONST 

rules. 

Example 12. Let our database scheme consist of two relation schemes: 

TAKEN[Student, Program, Major, Minor, Course# ] 

and 

DESCRrTPION [ Course # , Credits, Field] . 

The relation TAKEN describes the courses taken by a given student during his stay at 
the university. Only those students who graduated from the university are stored in 
this relation, which is a record of the curriculum of the student. The relation 
DESCRIPTION simply describes the number of credits for a given course. Notice that 
the relation TAKEN is not normalized-it may be interpreted as a view defined over 
two relations: one describing students (and their attributes), and the other describ- 
ing the relationship between students and courses. 

The domain of the attribute Program has two elements: “honors” and “regular”, 
depending on whether the student was in an honor program or in a regular program. 
The attributes Minor and Major describe the corresponding minor and major fields 
(one each) for a given student. The relation DESCRIPTION is defined over three 
attributes; the last one, Field, describes the field of a given course and has the same 
domain as the attributes Major and Minor. 

Let us consider the following rules defining instances of our database: 

(1) r, = “All students who major in economics and take course #211 must also 
take course #241” 

(2) rz = “All students who major in computer science and take course # 111 
must also take course #211” 

(3) 5 = “All honor students majoring in a given field must take all the 400 level 
courses in the field’ 

The first two rules represent the prerequisite information. They can be represented 
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by the following formulas: 

(4) tls, y, z TAKEN(S, y, Economics, z, 211) --j TAKEN(X, y, Economics, z, 241) 

(5) tls, m, p TAKEN(S;P, m,ComputerScience, 111) --, TAKEN (s, p, m, 

Computer Science, 211) 

Consider another set of Fles about the predicate DESCRIPTION: 

(7) “All 400 level courses have 4 credits” 

(8) “All 300 level courses have 3 credits” 

Let us have now the following query: 

Q, = “Give me all the students s and courses c such that c is either # 211 or # 241 
and that student s is taking c” 

We could simply return the rule r1 as part of the answer for the query. This is an 
illustration of the first case of our definition-when the rule can be totally trans- 
formed. 

Now let’s consider another similar query which, however, requires some more 
work: 

Q, =“Give me all students who took either course #ill or #241” 

The answer for this query also contains a rule. However, this rule is no longer one of 
the rules rl or r,. It is the consequence of these two rules by means of modus 
ponens. Namely, .the rule which is part of the answer has the following form: 

r12 = “All the minors in computer science who are majors in economics and who 
took #ill had also taken #241” 

Again, instead of evaluating both r1 and r2 before the selection condition, we may 
only evaluate r, and postpone the evaluation of the rule r12 or just include it in the 
answer without evaluating it. In the former case, the rule r12 will become a passive 
integrity constraint similar to those “derived constraints” holding in the view (1); in 
the latter case, when the rule r12 remains unevaluated, it will stay as an active, i.e. an 
inference rule. 

Another query for which we could include rules as part of the answer is the 
following: 

“Give me all the set of the tuples of the relation TAKEN describing the students who 
took 400 level courses” 
In this case a modified form of r3 will be part of the answer, i.e., 

“Honor students took all the courses” 
since we are talking only about 400 level courses. 

It is even more natural to keep the rules of the second scheme active. Indeed, it 
definitely does not pay to physically store all the courses and the credits associated 
with them separately, since we can always use the rules to derive the necessary data. 
It is helpful also for the queries to manipulate over the unevaluated rules. For 
example if we ask about the courses which have 3 credits, we could immediately 
include in the answer the statement “All 300 level courses”, which can be later 
evaluated to the list of courses if the user wants to (see [6] for a similar argument). It 
could also be left as a meaningful part of the answer. 
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Example 12. Consider 
p( ABC): 

255 

the following set R, of rules defined over the relation 

rl =P(x,,, b,, xc) -+P(G, b,, xc), 

r2 =p(+, xg, cl> +p(x,, xg, c*>, 

r3= (xczc2) Ap(a19 xgy xC> Ap(a29 xBp xC) +pca3, xB9 xC)y 

where b,, b,, q, c2, a,, a,, a3 are constants and xA, xg, and xc are variables. By 
symbolic execution of this set of rules (not demonstrated here) we can obtain the 
following closure of l-rules and full closure of this set of rules: The closure of 
l-rules of R, has the form 

ES” {r‘& 

where 

the full closure of R, will additionally contain the following three rules: 

(x,%) Ap(ai, bi, xc) AP(% b,d +~(a~, bZ+h 

(xC#c*)A~(a,,bz,xc)A\P(a,,b,,x,) +~(a3,b2,4 

(xc%) Apta,, b19 xc) Ap(a,, b2, xc) +~(a~, b2, xc). 

Let us start from the S-queries. Given a selection query uE, we can decompose 
each rule of the closure according to E-decomposition. Two extremal situations 
occur when r-=? = S for all rules r and rE = S respectively. In the first case all the 
rules can be transformed directly by the selection and no rule has to be evaluated 
prior to selection. In the second case no rule can be transformed. The first situation 
is equivalent to total transformability of all the rules, i.e., it occurs when for any rule 
r we have E( t,) * A , E TE(t). This is the case, for example, for any selection 
condition which is implied by E’ = (A E X,) A (B E X,) A (C E X,), where X,, 
.X,, and X, are subsets of the proper domains, b,, b, E X,, a,, u2, u3 E X,, and 
cl, c2 E X,. Indeed, as it is easy to verify for each rule r, reE = 8. Therefore in this 
case all the rules are the part of the answer for the selection query, which can be 
evaluated directly on the extension of the database (no rules have to be evaluated). 

This situation is certainly optimal. Let us now consider a less favorable situation, 
when 

E=(B=b,)r\(C=c,)v(B=b,)~(C#c,). 

Here we have: 

r1 7 
E’6 

since it is not possible to have both E(t,) and E(t,) true for this particular rule and 
this particular selection condition (t is the antecedent of the rule and r, is the 
consequent of the rule). Thus 

-Es 
'1 (~~#c1)A\P(~a,b,,x,)j~(a,,b,,~c). 

For r2 we have in a similar way 

r2 
E’& 
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and 
-E_ 

r2 - (%I = b,) vb,, XB, Cl> -v+,, xl.33 c2). 

Finally, for r, we have that 

r4 
E,r 4 and rcE=8. 

Therefore the rule r, may become an element of the answer for the query, while 
the rules r; E and r;’ will have to be evaluated prior to the query itself. The other 
rules of the closure of R, can be transformed in a similar way. Notice the 
importance of the computaton of the closure (the rule r, is not in the original set of 
rules). 

We now consider PS-queries (queries built from selection and projection). If we 
are dealing with the query involving projection, we may restrict ourselves to the 
l-rules from the closure. For example, ~~~(a,( R)) for this set of rules can be 
computed by totally disregarding 2-rules in applying the global transformation rules 
for PS-expressions and CONST rules. So if E is the selection condition, considered 
above, which allows the total transformability of the rules, then the projected rules 
will have the form: 

P(& 4 -‘P@,, 4, (1) 

Ph 4 -‘P&f9 c2h (2) 

and 

Ph Cl> -+P(b,, c2h (3) 

which is the modus ponens consequence of the first two rules. On the other hand, 
for the selection condition E, considered above, only the rule (3) will be trans- 
formed: 

Pb Cl> -+P@z, c2)- 

Finally let us consider queries built from join. Assume now that the relation R 
has four attributes ABCD instead of three ABC. All the rules are changed by 
adding one more position D to the predicate p and putting the variable xD into this 
position. Suppose than that we have the second reltion scheme T[DEF] with the 
following rules: 

&-= { T(x,, e,, xF) -+ T(xD,e2, x,), 

T(d,, XE, xF) + T(d,, xE, xF)}* 

Let the query have the form 

%CD(“,4+,~(R) w %E@))* 

From the join rules we immediately obtain that the second rule in R, is not 
?r,,-transformable (it does change the projection on D). If we apply the CONST 

transformation rules, we obtain that the only transformable rules are ri, r,, and r3. 
Moreover the rule r, does not have to be evaluated at all, since E(t,,) is false. 

Finally then, the rules. which are the result of the left subexpression Q’ = 

‘BCD (0 1,.,(R)) we 

Q’(b Xc, xD> + Q’@, Xc, xD), 

Q’h, Cl, xD> --) Q’h ~2, xD)* 
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The only rule which is join transformable in the right argument of join in the first 
rule is R,. The second rule has to be evaluated prior to the join. Both rules about 
Q’ are however join transformable. 

According to the join transformation rules we finally obtain the set of the 
following rules in the answer for this query: 

Q@,, xc, xg, x,) + Qh xc, XD, XE), 

Qb,, ~1, xg, xd + Qb,, ~29 xg, x,>, 

Qb,, xc, xg, q> --) Q&z, xc, x,,, e2h 

and the rule corresponding to the join operation: 

Qb,, xc, XL,, u> A Q(Y, z, xD~ XE) + Qh xc, XD> XE)- 

In the top down interpretation this would mean that the program computing the 
answer for this query would only have to include the second rule in the set R,; all 
the other rules could just be included in the answer for the query. They could 
eventually be evaluated together with the set of answers obtained from the program 
computing the query. They could also be left in an unevaluated form, as a part of 
data. 

The comments of anonymous referees, including the suggestion of a new title for the paper, are gratefully 
acknowledged. 
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