32 research outputs found

    Application of interferometry to studies of glacier dynamics

    Get PDF

    Seasonal and interannual ice velocity changes of Polar Record Glacier, East Antarctica

    Full text link
    We present a study of seasonal and interannual ice velocity changes at Polar Record Glacier, East Antarctica, using ERS-1/2, Envisat and PALSAR data with D-InSAR and intensity tracking. Ice flow showed seasonal variations at the front of the glacier tongue. Velocities in winter were 19% less than velocities during summer. No significant interannual changes were detected. Ice velocities in the grounding zone and grounded glacier did not show clear seasonal or interannual changes. The distributio of the seasonal variations suggests that the cause for the changes should be localized. Possible causes are seasonal sea-ice changes and iceberg blocking. Satellite images show that the sea ice surrounding Polar Record Glacier undergoes seasonal changes. Frozen sea ice in winter slowed the huge iceberg, and provided increased resistance to the glacier flow. The interaction between the glacier tongue, ice berg and sea ice significantly influences their flow pattern

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    Improving the Performance of Ice Sheet Modeling Through Embedded Simulation

    Get PDF
    Understanding the impact of global climate change is a critical concern for society at large. One important piece of the climate puzzle is how large-scale ice sheets, such as those covering Greenland and Antarctica, respond to a warming climate. Given such ice sheets are under constant change, developing models that can accurately capture their dynamics represents a significant challenge to researchers. The problem, however, is properly capturing the dynamics of an ice sheet model requires a high model resolution and simulating these models is intractable even for state-of-the-art supercomputers. This thesis presents a revolutionary approach to accurately capture ice sheet dynamics using embedded modeling at a high resolution. Such an approach embeds a high-resolution ice sheet model of a region evolving rapidly within a low-resolution ice sheet model of areas evolving slowly. The embedded model approach was implemented within the Parallel Ice Sheet Model (PISM), a widely used model for the study of large scale ice sheets limited to simulating models in isolation. PISM is limited to simulating ice sheet models in isolation and thus implementing an embedded model requires new synchronization and communication schemes. In this work we analyze the accuracy of our prototype embedded model with respect to directly observed ice velocities. We have shown a stronger correlation to directly observed values, yielding a T-test value of 0.64, compared to a non-embedded model T-test of 0.02

    Sea Tide Influence on Ice Flow of David Drygalski’s Ice Tongue Inferred from Geodetic GNSS Observations and SAR Offset Tracking Analysis

    Get PDF
    David Glacier and Drygalski Ice Tongue are massive glaciers in Victoria Land, Antarctica. The ice from the East Antarctic Ice Sheet is drained through the former, and then discharged into the western Ross Sea through the latter. David Drygalski is the largest outlet glacier in Northern Victoria Land, floating kilometers out to sea. The floating and grounded part of the David Glacier are the main focus of this article. During the XXI Italian Antarctic Expedition (2005-2006), within the framework of the National Antarctic Research Programme (PNRA), two GNSS stations were installed at different points: the first close to the grounding line of David Glacier, and the second approximately 40 km downstream of the first one. Simultaneous data logging was performed by both GNSS stations for 24 days. In the latest data processing, the kinematic PPP technique was adopted to evaluate the dominant diurnal components and the very small semi-diurnal variations in ice motion induced by the ocean tide and the mean ice flow rates of both GNSS stations. Comparison of the GNSS time series with predicted ocean tide calculated from harmonic coefficients of the nearest tide gauge stations, installed at Cape Roberts and Mario Zucchelli Station, highlight different local response of the glacier to ocean tide, with a minor amplitude of vertical motion at a point partially anchored at the bedrock close to the grounding line. During low tide, the velocity of the ice flow reaches its daily maximum, in accordance with the direction of seawater outflow from the fjord into the ocean, while the greatest daily tidal excursion generates an increase in the horizontal ice flow velocity. With the aim to extend the analysis in spatial terms, five COSMO-SkyMED Stripmap scenes were processed. The comparison of the co-registered offset tracking rates, obtained from SAR images, with the GNSS estimation shows good agreement

    PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images

    Get PDF
    Prior to the application of any persistent scatterer interferometry (PSI) technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR) images available. Two criteria are mainly available for the estimation of pixels' phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS) approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC), has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR) data when the number of images available is small (10 images in the work presented). The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees), are employed for this study. For both datasets, the TSC technique has showed an excellent performance compared with traditional techniques, achieving up to a four-fold increase in the number of persistent scatters detected, compared with the coherence stability approach, and a similar density compared with the PS approach, but free of outliers.Peer ReviewedPostprint (published version

    Multi-year observations of Breiðamerkurjökull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry

    Get PDF
    Terrestrial radar interferometry (TRI) is a new technique for studying ice motion and volume change of glaciers. TRI is especially useful for temporally and spatially dense measurements of highly dynamic glacial termini. We conducted a TRI survey of Breiðamerkurjökull, a marine-terminating glacier in Iceland, imaging its terminus near the end of the melt season in 2011, 2012 and 2013. The ice velocities were as high as 5 m d−1, with the fastest velocities near the calving front. Retreat of the glacier over the 3 year observation period was accompanied by strong embayment formation. Iceberg tracking with the radar shows high current velocities near the embayment, probably indicating strong meltwater outflow and mixing with relatively warm lagoon water

    Interferometric SAR data analysis and processing

    Get PDF
    The differential Interferometric Synthetic Aperture Radar (DInSAR) is a remote sensing technique, which has improved very quickly in recent years. The main application of this technique is the accurate estimation and monitoring of land deformation. The goal of this project is the processing and analysis of DInSAR data with an experimental procedure developed at the Institute of Geomatics (IG). This document reviews the basic concepts of radar, SAR images and the DInSAR technique. Furthermore, it describes in detail the work done with the experimental DInSAR procedure of IG

    Applications of SAR Interferometry in Earth and Environmental Science Research

    Get PDF
    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions
    corecore