14 research outputs found

    Technical SWOT analysis of decentralised production for low voltage grids in Flanders

    Get PDF
    The increasing energy prices, combined with high funding by the government, has resulted in a massive integration of decentralised electrical energy production units in Belgium. These systems are mainly PhotoVoltaic systems and the sudden increase of both number and power ratio of the DG systems has put additional stress on the distribution network. In this paper a technical SWOT analysis is presented. The researchers believe that the solution to decompress the stress can result in additional benefits for both, end user and distribution network operators

    Measurement-based modelling and validation of PV systems

    Get PDF
    This paper presents the analysis and results of modelling of various photovoltaic (PV) systems. Two general models are discussed and presented: an analytical model and an equivalent circuit model, both formulated for main PV technologies currently available on the market. Analytical model does not require any PV system specific input data or parameter, and is formulated as a generic performance model of a considered PV technology. Equivalent circuit model, however, requires specific input data and adjustment of the model parameters, in order to provide an accurate representation of a modelled PV system. The paper provides direct comparison of models based on manufacturer’s specification data and available measurements, as well as the discussion of obtained results

    Test field for LV distribution systems

    Get PDF
    Detailed analysis of an actual Low Voltage distribution grid is often difficult due to practical considerations. Designers generally use simulation tools to predict the behavior of the distribution grid, although parasitic effects are hard to predict and even harder to model accurately. In this paper an actual, but free programmable, distribution grid is presented which enables detailed analysis of nearly all the electrical parameters of a residential distribution grid. Although this paper focusses on the design of this demonstrator project, some suggestions to future research are indicated

    Integration of UPQC for Power Quality Improvement in Distributed Generation Network – A Review

    Get PDF
    In this paper a technical review of the integration of a Unified Power Quality Conditioner (UPQC) in a distributed generation network is presented. Although the primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation, additional functionalities such as compensation of voltage interruption and active power transfer to the load and grid have also been identified. Connection methodologies with their advantages and disadvantages are also described. Recent improvements in capacity expansion techniques and future trends for the application of UPQC in distributed modes are also identified

    Power Quality Concerns in Implementing Smart Distribution-Grid Applications

    Get PDF
    This paper maps the expected and possible adverse consequences for power quality of introducing several smart distribution-grid technologies and applications. The material presented in this paper is the result of discussions in an international CIGRE-CIRED joint working group. The following technologies and applications are discussed: 1) microgrids; 2) advanced voltage control; 3) feeder reconfiguration; and 4) demand-side management. Recommendations are given based on the mapping

    Wind turbine fault detection and identification through PCA-based optimal variable selection

    Get PDF
    An effective condition monitoring system of wind turbines generally requires installation of a high number of sensors and use of a high sampling frequency in particular for monitoring of the electrical components within a turbine, resulting in a large amount of data. This can become a burden for condition monitoring and fault detection systems. This paper aims to develop algorithms that will allow a reduced dataset to be used in wind turbine fault detection. The paper firstly proposes a variable selection algorithm based on principal component analysis (PCA) with multiple selection criteria in order to select a set of variables to target fault signals while still preserving the variation of data in the original dataset. With the selected variables, the paper then describes fault detection and identification algorithms, which can identify faults, determine the corresponding time and location where the fault occurs, and estimate its severity. The proposed algorithms are evaluated with simulation data from PSCAD/EMTDC, SCADA (Supervisory control and data acquisition) data from an operational wind farm, and experimental data from a wind turbine test rig. Results show that the proposed methods can select a reduced set of variables with minimal information lost whilst detecting faults efficiently and effectively

    Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda

    Get PDF
    Introduction: This paper presents a multi-objective methodology applied to the Transmission Expansion Planning problem when demand and large wind generation uncertainties are considered. Objective: Obtain robust expansion plans that minimize investment costs and maximize the use of the wind resource, considering its uncertainty and the demand influences. Method: The proposed methodology is based on Reduced Scenario Methodology to represent these uncertainties. The proposed methodology considers the DC model of the network, the obtained expansion plans that minimize the investment, the load shedding and the wind generation curtailment, in its formulation. To obtain the multi-objective algorithm, used to minimize expansion costs and wind power curtailment, an enhanced NSGA-II and a set of Pareto optimal expansion plans were implemented. Results:  The expansion plans performances were evaluated and compared with previous work, in order to demonstrate the proposed approach robustness. All tests were carried out on Garver and the IEEE 24-bus RTS systems. Conclusions: Observing the number of times that the expansion plan takes to zero the load cut and the wasted wind energy, with respect to a value established in this paper, the proposed methodology has a performance index higher than 75,16% for the Garver system and 98,97% for the IEEE system of 24 nodes.Introducción: En este documento se presenta una metodología multiobjetivo aplicada al problema del Planeamiento de la Expansión de la Transmisión (PET) cuando se consideran las incertidumbres en la demanda y la generación eólica. Objetivo: Obtener planes de expansión robustos que minimicen los costos de inversión y maximicen el uso del recurso eólico, teniendo en cuenta su incertidumbre y la introducida por la demanda. Metodología: La metodología propuesta se basa en la Metodología de Escenario Reducido para representar estas incertidumbres. En la formulación de la metodología se consideraron: el modelo de red en DC, los planes de expansión que minimizan la inversión, la reducción en la carga y la generación eólica. Para obtener el algoritmo multiobjetivo, utilizado para minimizar los costos de expansión y la reducción de la energía eólica, se implementó un NSGA-II mejorado y un conjunto de planes óptimos de expansión de Pareto. Resultados: Se presenta el desempeño de los planes de expansión, los cuales fueron evaluados y comparados con trabajos anteriores para demostrar la solidez del enfoque propuesto. Todas las pruebas se realizaron en los sistemas Garver e IEEE de 24 nodos. Conclusiones: Al observar el número de veces que el plan de expansión lleva a cero el corte de carga y la energía eólica desperdiciada, con respecto a un valor establecido en este trabajo, se tiene que la metodología propuesta presenta un índice de rendimiento superior al 75,16% para el sistema Garver y al 98,97% para el sistema IEEE de 24 nodos

    Evolution of the Electricity Distribution Networks : Active Management Architecture Schemes and Microgrid Control Functionalities

    Get PDF
    The power system transition to smart grids brings challenges to electricity distribution network development since it involves several stakeholders and actors whose needs must be met to be successful for the electricity network upgrade. The technological challenges arise mainly from the various distributed energy resources (DERs) integration and use and network optimization and security. End-customers play a central role in future network operations. Understanding the network’s evolution through possible network operational scenarios could create a dedicated and reliable roadmap for the various stakeholders’ use. This paper presents a method to develop the evolving operational scenarios and related management schemes, including microgrid control functionalities, and analyzes the evolution of electricity distribution networks considering medium and low voltage grids. The analysis consists of the dynamic descriptions of network operations and the static illustrations of the relationships among classified actors. The method and analysis use an object-oriented and standardized software modeling language, the unified modeling language (UML). Operational descriptions for the four evolution phases of electricity distribution networks are defined and analyzed by Enterprise Architect, a UML tool. This analysis is followed by the active management architecture schemes with the microgrid control functionalities. The graphical models and analysis generated can be used for scenario building in roadmap development, real-time simulations, and management system development. The developed method, presented with high-level use cases (HL-UCs), can be further used to develop and analyze several parallel running control algorithms for DERs providing ancillary services (ASs) in the evolving electricity distribution networks.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Power Quality Improvement of Distributed Generation Integrated Network with Unified Power Quality Conditioner.

    Get PDF
    With the increased penetration of small scale renewable energy sources in the electrical distribution network, maintenance or improvement of power quality has become more critical than ever where the level of voltage and current harmonics or disturbances can vary widely. For this reason, Custom Power Devices (CPDs) such as the Unified Power Quality Conditioner (UPQC) can be the most appropriate solution for enhancing the dynamic performance of the distribution network, where accurate prior knowledge may not be available. Therefore, the main objective of the present research is to investigate the (i) placement (ii) integration (iii) capacity enhancement and (iv) real time control of the Unified Power Quality Conditioner (UPQC) to improve the power quality (PQ) of a distributed generation (DG) network connected to the grid or microgrid
    corecore