15 research outputs found

    Towards a Taxonomy for Neighborhood Volunteering Management Platforms

    Get PDF
    The management and organization of volunteering in the social sector have been strongly influenced by technological progress over the last two decades. New proposals for IT-based volunteering management platforms that draw on many elements of social media are appearing with increasing frequency. In this article, we analyzed the current state of the art and use a methodological approach to develop a taxonomy for classifying existing and emerging developments in the field. The taxonomy is intended to assist practitioners in selecting appropriate systems for their respective purposes as well as support researchers in identifying research gaps. The resulting research artifact has undergone an initial evaluation and can support maintaining a better overview in a growing subject area

    Aplicaciones inteligentes sobre internet de las cosas y grandes volúmenes de datos: un enfoque riguroso

    Get PDF
    Día tras días se generan millones y millones de nuevos datos y la cantidad de información a procesar es un desafío creciente. Entre los más destacados podemos mencionar el crecimiento exponencial de la “Internet de las cosas” o Internet of Things (IoT) en inglés en los sistemas modernos. En este sentido, no sólo el almacenamiento constante de información es un problema a resolver, sino también la extracción inteligente de información y su posterior análisis para introducir mejoras en los sistemas. Este problema ha sido atacado desde la Inteligencia Artificial y la Optimización Combinatoria, pero se han encontrado algunas debilidades como la falta de modelado y diseño y de la aplicación rigurosa de técnicas de Ingeniería de Software. Esto hace que el problema se ataque de una manera “ad-hoc”, por lo cual es necesario consolidar un enfoque de mayor formalidad en todas las etapas del proceso. La presente investigación busca aplicar técnicas formales de Ingeniería de Software como Modelado y Model Checking al manejo y análisis de grandes volúmenes de datos. Como caso de estudio concreto se trabajará con sensores para el Mantenimiento de parámetros del ambiente (como humedad o temperatura) del Laboratorio de Redes y Sistemas de Computación mediante protocolos de IoT.Eje: Agentes y Sistemas Inteligentes.Red de Universidades con Carreras en Informátic

    Potential of model predictive control of a polder water system including pumps, weirs and gates

    Get PDF
    This work presents an assessment of the potential of model predictive control (MPC) of a Dutch polder system. The system drains to the Linge river and includes 13 weirs, 4 hydraulic gates and 4 large pumping stations each equipped with multiple pumps, managed by the Water Board Rivierenland. The management of the system must comply with several goals: keep the water levels within the bounds of safety, pump out the excess water at minimum cost or CO2 emission, but always have enough water for irrigation and shipping. To achieve these goals there are weirs regulating the water level in different pools, pumping stations to pump water in and out and gates to let water in and out by free flow when possible. These pumping stations consume large amounts of energy. We propose multi-objective mixed-integer optimization by using goal programming to prioritize different operational objectives. For the control of the pumps mixed-integer optimization is used, which makes it possible to not only model the energy consumption of the pumps while in operation, but also to model if the pumps are turned on or off. The control system is implemented using RTC-Tools, an open-source software tool to implement MPC. It is demonstrated that the proposed control system implementation can comply with the operational goals of the water board: keeping the water levels within the bounds while reducing the operational costs. The proposed control system has been tested numerically on data from the year 2013, and it is shown that it highly outperforms the current operation.</p

    UIS BW, Umweltinformationssystem Baden-Württemberg, F+E-Vorhaben INOVUM, Innovative Umweltinformationssysteme. Phase II 2016/18. (KIT Scientific Reports ; 7751)

    Get PDF
    Das F+E-Vorhaben INOVUM des Ministeriums für Umwelt, Klima und Energiewirtschaft Baden-Württemberg setzt auf eine breite Kooperation mit Partnern aus Verwaltung, Wissenschaft und Wirtschaft zum gemeinsamen Ausbau der behördlichen Umweltinformationssysteme. Schwerpunkte der Projektphase INOVUM II waren u.a. Aspekte der Digitalisierungsstrategie des Landes Baden-Württemberg, Weiterentwicklung servicebasierter Umweltportale, mobile Anwendungen, Big-Data-Technologie und Aufbau eines Sensornetzwerks

    Eight grand challenges in socio-environmental systems modeling

    Full text link
    Modeling is essential to characterize and explore complex societal and environmental issues in systematic and collaborative ways. Socio-environmental systems (SES) modeling integrates knowledge and perspectives into conceptual and computational tools that explicitly recognize how human decisions affect the environment. Depending on the modeling purpose, many SES modelers also realize that involvement of stakeholders and experts is fundamental to support social learning and decision-making processes for achieving improved environmental and social outcomes. The contribution of this paper lies in identifying and formulating grand challenges that need to be overcome to accelerate the development and adaptation of SES modeling. Eight challenges are delineated: bridging epistemologies across disciplines; multi-dimensional uncertainty assessment and management; scales and scaling issues; combining qualitative and quantitative methods and data; furthering the adoption and impacts of SES modeling on policy; capturing structural changes; representing human dimensions in SES; and leveraging new data types and sources. These challenges limit our ability to effectively use SES modeling to provide the knowledge and information essential for supporting decision making. Whereas some of these challenges are not unique to SES modeling and may be pervasive in other scientific fields, they still act as barriers as well as research opportunities for the SES modeling community. For each challenge, we outline basic steps that can be taken to surmount the underpinning barriers. Thus, the paper identifies priority research areas in SES modeling, chiefly related to progressing modeling products, processes and practices.</jats:p

    Eight grand challenges in socio-environmental systems modeling

    Get PDF
    Modeling is essential to characterize and explore complex societal and environmental issues in systematic and collaborative ways. Socio-environmental systems (SES) modeling integrates knowledge and perspectives into conceptual and computational tools that explicitly recognize how human decisions affect the environment. Depending on the modeling purpose, many SES modelers also realize that involvement of stakeholders and experts is fundamental to support social learning and decision-making processes for achieving improved environmental and social outcomes. The contribution of this paper lies in identifying and formulating grand challenges that need to be overcome to accelerate the development and adaptation of SES modeling. Eight challenges are delineated: bridging epistemologies across disciplines; multi-dimensional uncertainty assessment and management; scales and scaling issues; combining qualitative and quantitative methods and data; furthering the adoption and impacts of SES modeling on policy; capturing structural changes; representing human dimensions in SES; and leveraging new data types and sources. These challenges limit our ability to effectively use SES modeling to provide the knowledge and information essential for supporting decision making. Whereas some of these challenges are not unique to SES modeling and may be pervasive in other scientific fields, they still act as barriers as well as research opportunities for the SES modeling community. For each challenge, we outline basic steps that can be taken to surmount the underpinning barriers. Thus, the paper identifies priority research areas in SES modeling, chiefly related to progressing modeling products, processes and practices

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach
    corecore