9 research outputs found

    6LoPLC for smart grid applications

    Get PDF
    © 2015 IEEE. Reliable monitoring, intelligence and control achieved through Information and Communication Technology (ICT) will determine the success of next generation power grid. This paper proposes a Low Power transmission of Internet Protocol version 6 in PLC (6LoPLC) to provide network reliability with acceptable latency in Advanced Metering Infrastructure (AMI). The analysis presented here are preliminary results from an ongoing research that attempts to leverage existing wireless techniques to achieve energy efficiency in PLC. A model was developed using NS-3 to measure and analyze the performance of low-power Narrow Band PLC (NBPLC) in AMI services. Simulation results obtained so far are quite promising

    A new methodology for network scale simulation of emerging power line communication standards

    Get PDF
    This paper presents the development of a new methodology for the simulation of Power Line Communication (PLC) within the popular Electromagnetic Transients Programme-Alternative Transients Programme (EMTP-ATP). As a first application, the comparative performance of the emerging Orthogonal Frequency Division Multiplexing (OFDM) based Prime and G3-PLC narrowband standards is investigated. Models of both standards have been created within the EMTP-ATP and simulations performed using frequency dependent line models and realistic transformer models as terminations. It is observed that both standards are severely affected by the highly frequency selective nature of the MV power line channel and a more considered choice of OFDM parameters may be necessary for optimal performance on MV networks

    Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications

    Get PDF
    Abstract Currently, Advanced Metering Infrastructure (AMI) systems have equipped the low voltage section with a communication system that is being used mainly for metering purposes, but it can be further employed for additional applications related to the Smart Grid (SG) concept. This paper explores the potential applications beyond metering of the available channel in a Power Line Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power Line Communication (NB-PLC) in a real microgrid, which includes an AMI system. A thorough review of potential applications for the SG that might be implemented for this representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering. The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement additional applications such as remote commands or status signals, which entails an added value for deployed AMI systems.This work has been partially funded by the Basque Government (IT.683-13 and ELKARTEK KK-2017/00071

    IP-Centric High Rate Narrowband PLC for Smart Grid Applications

    No full text
    The Internet Protocol version 6 is expected to be a strong enabler for the smart grid, promising seamless communication and network technology independence. However, IP has to be delivered to the last node in the field in order to become the lingua franca of the future smart grid. This article presents a novel approach in power line communication that delivers high resilient communication capable of efficiently transmitting IPv6. Based on the requirements of smart grid applications, the architecture of the communication system developed in the DLC+VIT4IP project is presented. New techniques for integrating IPv6, IPsec security, robust header compression, and end-to-end QoS are described, demonstrating the capability of PLC to efficiently handle IPv6 in the field level of the smart grid

    Header Compression and Signal Processing for Wideband Communication Systems.

    Get PDF
    This thesis is dedicated to the investigation, development and practical verification of header compression and signal processing techniques over TErrestrial Trunked RAdio (TETRA), TETRA Enhanced Data Services (TEDS) and Power Line Communication (PLC). TETRA release I is a narrowband private mobile radio technology used by safety and security organizations, while TEDS is a widebandsystem. With the introduction of IP support, TEDS enables multimedia based applications and services to communicate across communication systems. However the IP extension for TEDS comes at a cost of significant header contributions with the payload. With small application payloads and fast rate application traffic profiles, the header contribution in the total size of the packet is considerably more than the actual application payload. This overhead constitutes the considerable slot capacity at the physical layer of TEDS and PLC. Advanced header compression techniques such as Robust Header Compression (RoHC) compress the huge header sizes and offer significant compression gain without compromising quality of service (QoS). Systems can utilize this bandwidth to transmit more information payload than control information. In this study, the objective is to investigate the integration of RoHC in TEDS and design a novel IPv6 enabled protocol stack for PLC with integrated RoHC. The purpose of the study is also to investigate the throughput optimization technique such as RoHC over TEDS and PLC by simulating different traffic profile classes and to illustrate the benefit of using RoHC over TEDS and PLC. The thesis also aims to design and simulate the TEDS physical layer for the purpose of investigating the performance of higher order modulation schemes. Current TEDS, standards are based on the transmission frequencies above 400MHz range, however with delays in the standardization of broadband TETRA, it is important to explore all possible avenues to extend the capacity of the system. The research concludes the finding of the application of RoHC for TEDS and PLC, against different traffic classes and propagation channels. The benefit of using RoHC in terms of saving bandwidth, slot capacity and other QoS parameters is presented along with integration aspects into TEDS and PLC communication stacks. The study also presents the TEDS physical layer simulation results for modulation schemes and transmission frequency other than specified in the standard. The research results presented in this thesis have been published in international symposiums and professional journals. The application of the benefits of using RoHC for TEDS has been proposed to the ETSI TETRA for contribution to the TETRA standard under STF 378. Simulation results for the investigation of characteristics of ?/4 DQPSK performance below 200 MHz have also been also presented to ETSI TETRA as a contribution to the existing TEDS standard. The Results presented for the design of IPv6 enabled stacked with integrated RoHC have been submitted as deliverable under the FP-7 project DLC+VIT4IP. All the results, simulations and investigations presented in the thesis have been carried out through the platform provided by HW Communication Ltd

    Improving the Reliability of Optimised Link State Routing Protocol in Smart Grid’s Neighbour Area Network

    Get PDF
    A reliable and resilient communication infrastructure that can cope with variable application traffic types and delay objectives is one of the prerequisites that differentiates a Smart Grid from the conventional electrical grid. However, the legacy communication infrastructure in the existing electrical grid is insufficient, if not incapable of satisfying the diverse communication requirements of the Smart Grid. The IEEE 802.11 ad hoc Wireless Mesh Network (WMN) is re-emerging as one of the communication networks that can significantly extend the reach of Smart Grid to backend devices through the Advanced Metering Infrastructure (AMI). However, the unique characteristics of AMI application traffic in the Smart Grid poses some interesting challenges to conventional communication networks including the ad hoc WMN. Hence, there is a need to modify the conventional ad hoc WMN, to address the uncertainties that may exist in its applicability in a Smart Grid environment. This research carries out an in-depth study of the communication of Smart Grid application traffic types over ad hoc WMN deployed in the Neighbour Area Network (NAN). It begins by conducting a critical review of the application characteristics and traffic requirements of several Smart Grid applications and highlighting some key challenges. Based on the reviews, and assuming that the application traffic types use the internet protocol (IP) as a transport protocol, a number of Smart Grid application traffic profiles were developed. Through experimental and simulation studies, a performance evaluation of an ad hoc WMN using the Optimised Link State Routing (OLSR) routing protocol was carried out. This highlighted some capacity and reliability issues that routing AMI application traffic may face within a conventional ad hoc WMN in a Smart Grid NAN. Given the fact that conventional routing solutions do not consider the traffic requirements when making routing decisions, another key observation is the inability of link metrics in routing protocols to select good quality links across multiple hops to a destination and also provide Quality of Service (QoS) support for target application traffic. As with most routing protocols, OLSR protocol uses a single routing metric acquired at the network layer, which may not be able to accommodate different QoS requirements for application traffic in Smart Grid. To address these problems, a novel multiple link metrics approach to improve the reliability performance of routing in ad hoc WMN when deployed for Smart Grid is presented. It is based on the OLSR protocol and explores the possibility of applying QoS routing for application traffic types in NAN based ad hoc WMN. Though routing in multiple metrics has been identified as a complex problem, Multi-Criteria Decision Making (MCDM) techniques such as the Analytical Hierarchy Process (AHP) and pruning have been used to perform such routing on wired and wireless multimedia applications. The proposed multiple metrics OLSR with AHP is used to offer the best available route, based on a number of considered metric parameters. To accommodate the variable application traffic requirements, a study that allows application traffic to use the most appropriate routing metric is presented. The multiple metrics development is then evaluated in Network Simulator 2.34; the simulation results demonstrate that it outperforms existing routing methods that are based on single metrics in OLSR. It also shows that it can be used to improve the reliability of application traffic types, thereby overcoming some weaknesses of existing single metric routing across multiple hops in NAN. The IEEE 802.11g was used to compare and analyse the performance of OLSR and the IEEE 802.11b was used to implement the multiple metrics framework which demonstrate a better performance than the single metric. However, the multiple metrics can also be applied for routing on different IEEE wireless standards, as well as other communication technologies such as Power Line Communication (PLC) when deployed in Smart Grid NAN

    Robust data protection and high efficiency for IoTs streams in the cloud

    Get PDF
    Remotely generated streaming of the Internet of Things (IoTs) data has become a vital category upon which many applications rely. Smart meters collect readings for household activities such as power and gas consumption every second - the readings are transmitted wirelessly through various channels and public hops to the operation centres. Due to the unusually large streams sizes, the operation centres are using cloud servers where various entities process the data on a real-time basis for billing and power management. It is possible that smart pipe projects (where oil pipes are continuously monitored using sensors) and collected streams are sent to the public cloud for real-time flawed detection. There are many other similar applications that can render the world a convenient place which result in climate change mitigation and transportation improvement to name a few. Despite the obvious advantages of these applications, some unique challenges arise posing some questions regarding a suitable balance between guaranteeing the streams security, such as privacy, authenticity and integrity, while not hindering the direct operations on those streams, while also handling data management issues, such as the volume of protected streams during transmission and storage. These challenges become more complicated when the streams reside on third-party cloud servers. In this thesis, a few novel techniques are introduced to address these problems. We begin by protecting the privacy and authenticity of transmitted readings without disrupting the direct operations. We propose two steganography techniques that rely on different mathematical security models. The results look promising - security: only the approved party who has the required security tokens can retrieve the hidden secret, and distortion effect with the difference between the original and protected readings that are almost at zero. This means the streams can be used in their protected form at intermediate hops or third party servers. We then improved the integrity of the transmitted protected streams which are prone to intentional or unintentional noise - we proposed a secure error detection and correction based stenographic technique. This allows legitimate recipients to (1) detect and recover any noise loss from the hidden sensitive information without privacy disclosure, and (2) remedy the received protected readings by using the corrected version of the secret hidden data. It is evident from the experiments that our technique has robust recovery capabilities (i.e. Root Mean Square (RMS) <0.01%, Bit Error Rate (BER) = 0 and PRD < 1%). To solve the issue of huge transmitted protected streams, two compression algorithms for lossless IoTs readings are introduced to ensure the volume of protected readings at intermediate hops is reduced without revealing the hidden secrets. The first uses Gaussian approximation function to represent IoTs streams in a few parameters regardless of the roughness in the signal. The second reduces the randomness of the IoTs streams into a smaller finite field by splitting to enhance repetition and avoiding the floating operations round errors issues. Under the same conditions, our both techniques were superior to existing models mathematically (i.e. the entropy was halved) and empirically (i.e. achieved ratio was 3.8:1 to 4.5:1). We were driven by the question ‘Can the size of multi-incoming compressed protected streams be re-reduced on the cloud without decompression?’ to overcome the issue of vast quantities of compressed and protected IoTs streams on the cloud. A novel lossless size reduction algorithm was introduced to prove the possibility of reducing the size of already compressed IoTs protected readings. This is successfully achieved by employing similarity measurements to classify the compressed streams into subsets in order to reduce the effect of uncorrelated compressed streams. The values of every subset was treated independently for further reduction. Both mathematical and empirical experiments proved the possibility of enhancing the entropy (i.e. almost reduced by 50%) and the resultant size reduction (i.e. up to 2:1)

    Análisis de la capacidad de PRIME para gestión de red en entornos con generación distribuida y sistemas de almacenamiento.

    Get PDF
    214 p.La evolución de las comunicaciones sobre las redes eléctricas o PLC requiere la superación de algunos retos, como las perturbaciones que algunos dispositivos conectados a la red eléctrica introducen en el medio de transmisión. Por otra parte, la mayoría de las nuevas aplicaciones que se proponen en el desarrollo de las Smart Grids dependen de aspectos como la capacidad del medio, la latencia o el número de dispositivos que pueden realizar transmisiones de forma simultánea. En esta tesis se estudian los dos aspectos mencionados. En primer lugar, se realiza una caracterización de las emisiones en el rango de frecuencias utilizado (de 2 a 150 kHz), basada en medidas de campo. La tipología y el nivel de las emisiones dependen de múltiples factores, algunos basados en el funcionamiento de los dispositivos conectados, y otros en las características de la red, como la variación de la impedancia. La importancia de este tema se manifiesta en el hecho que organismos como CENELEC y CIGRÉ están actualmente demandando estudios que aporten metodologías y resultados de medidas de emisiones en entornos reales y su influencia en las comunicaciones.En segundo lugar, se analizan las posibilidades de la red eléctrica para la transmisión de datos adicionales a los de tele-lectura, que posibilitan el desarrollo de nuevas aplicaciones, basadas en la transmisión entre medidores conectados a la red eléctrica, o incluso entre nuevos dispositivos conectados a la red eléctrica. El estudio analiza la capacidad de transmisión en función de factores relacionados con la topología de la red, el tipo de tráfico de tele-medida y la configuración de los datos adicionales.Los conclusiones de la tesis aportan resultados útiles para la evolución de las comunicaciones en las redes eléctricas, y por tanto, también de las futuras aplicaciones de las Smart Grids.CIEMAT CEDE

    Análisis de la capacidad de PRIME para gestión de red en entornos con generación distribuida y sistemas de almacenamiento.

    Get PDF
    214 p.La evolución de las comunicaciones sobre las redes eléctricas o PLC requiere la superación de algunos retos, como las perturbaciones que algunos dispositivos conectados a la red eléctrica introducen en el medio de transmisión. Por otra parte, la mayoría de las nuevas aplicaciones que se proponen en el desarrollo de las Smart Grids dependen de aspectos como la capacidad del medio, la latencia o el número de dispositivos que pueden realizar transmisiones de forma simultánea. En esta tesis se estudian los dos aspectos mencionados. En primer lugar, se realiza una caracterización de las emisiones en el rango de frecuencias utilizado (de 2 a 150 kHz), basada en medidas de campo. La tipología y el nivel de las emisiones dependen de múltiples factores, algunos basados en el funcionamiento de los dispositivos conectados, y otros en las características de la red, como la variación de la impedancia. La importancia de este tema se manifiesta en el hecho que organismos como CENELEC y CIGRÉ están actualmente demandando estudios que aporten metodologías y resultados de medidas de emisiones en entornos reales y su influencia en las comunicaciones.En segundo lugar, se analizan las posibilidades de la red eléctrica para la transmisión de datos adicionales a los de tele-lectura, que posibilitan el desarrollo de nuevas aplicaciones, basadas en la transmisión entre medidores conectados a la red eléctrica, o incluso entre nuevos dispositivos conectados a la red eléctrica. El estudio analiza la capacidad de transmisión en función de factores relacionados con la topología de la red, el tipo de tráfico de tele-medida y la configuración de los datos adicionales.Los conclusiones de la tesis aportan resultados útiles para la evolución de las comunicaciones en las redes eléctricas, y por tanto, también de las futuras aplicaciones de las Smart Grids.CIEMAT CEDE
    corecore