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Abstract

Remotely generated streaming of the Internet of Things (IoTs) data has become a
vital category upon which many applications rely. Smart meters collect readings for
household activities such as power and gas consumption every second - the readings
are transmitted wirelessly through various channels and public hops to the operation
centres. Due to the unusually large streams sizes, the operation centres are using
cloud servers where various entities process the data on a real-time basis for billing
and power management. It is possible that smart pipe projects (where oil pipes are
continuously monitored using sensors) and collected streams are sent to the public
cloud for real-time flawed detection. There are many other similar applications that
can render the world a convenient place which result in climate change mitigation and
transportation improvement to name a few. Despite the obvious advantages of these
applications, some unique challenges arise posing some questions regarding a suitable
balance between guaranteeing the streams security, such as privacy, authenticity
and integrity, while not hindering the direct operations on those streams, while also
handling data management issues, such as the volume of protected streams during
transmission and storage. These challenges become more complicated when the
streams reside on third-party cloud servers. In this thesis, a few novel techniques are
introduced to address these problems.

We begin by protecting the privacy and authenticity of transmitted readings
without disrupting the direct operations. We propose two steganography techniques
that rely on different mathematical security models. The results look promising -
security: only the approved party who has the required security tokens can retrieve
the hidden secret, and distortion effect with the difference between the original and
protected readings that are almost at zero. This means the streams can be used in
their protected form at intermediate hops or third party servers.

We then improved the integrity of the transmitted protected streams which are
prone to intentional or unintentional noise - we proposed a secure error detection
and correction based stenographic technique. This allows legitimate recipients to
(1) detect and recover any noise loss from the hidden sensitive information without
privacy disclosure, and (2) remedy the received protected readings by using the
corrected version of the secret hidden data. It is evident from the experiments that
our technique has robust recovery capabilities (i.e. Root Mean Square (RMS) <

xxiii



0.01%, Bit Error Rate (BER) = 0 and PRD < 1%).

To solve the issue of huge transmitted protected streams, two compression
algorithms for lossless IoTs readings are introduced to ensure the volume of protected
readings at intermediate hops is reduced without revealing the hidden secrets.
The first uses Gaussian approximation function to represent IoTs streams in a
few parameters regardless of the roughness in the signal. The second reduces the
randomness of the IoTs streams into a smaller finite field by splitting to enhance
repetition and avoiding the floating operations round errors issues. Under the same
conditions, our both techniques were superior to existing models mathematically (i.e.
the entropy was halved) and empirically (i.e. achieved ratio was 3.8:1 to 4.5:1).

We were driven by the question ‘Can the size of multi-incoming compressed
protected streams be re-reduced on the cloud without decompression?’ to overcome
the issue of vast quantities of compressed and protected IoTs streams on the cloud.
A novel lossless size reduction algorithm was introduced to prove the possibility of
reducing the size of already compressed IoTs protected readings. This is successfully
achieved by employing similarity measurements to classify the compressed streams
into subsets in order to reduce the effect of uncorrelated compressed streams.
The values of every subset was treated independently for further reduction. Both
mathematical and empirical experiments proved the possibility of enhancing the
entropy (i.e. almost reduced by 50%) and the resultant size reduction (i.e. up to 2:1).
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Chapter 1

Introduction

Recently, there has been an enormous interest in the remote gathering of data to

effectively monitor various activities on real-time bases such as smart homes, smart

grids, climate change, border invasion, smart manufacturing, nuclear facilities or

smart transportations [11]. The data is collected wirelessly using small devices (e.g.

sensors) known as Internet of Things (IoTs) and forwarded to their final destination

such as operation centres through the Internet [11]. The continuous streams usually

contain two types of data: (1) normal readings (e.g. meter power readings) and

(2) highly-sensitive information (e.g. household identity, nuclear facility tags, border

screen geometric location, facility IDs or small pictures of the locations coupled with

date and time).

According to Cisco Visual Networking Index (VNI) Complete Forecast for 2015 to

2020 [12], the growth in the number of these devices will increase three-fold from 4.9

billion to 12.2 billion between 2015 and 2020. The IP generated data traffic is expected

to explode from 72.5 exabytes (1 exabyte = 260 bytes) to 194.4 exabytes per month

between 2015 and 2020. The report also highlights that 46 percent of that traffic will

be sensor streams, in other words, nearly half produced by IoTs. The extremely large

generated streams (i.e. big data) will pose unique challenges regarding security and

data management.

Dealing with these concerns in the high-stream sensors data context will be more

complicated for two main reasons. Firstly, the generators of these streams (e.g.

1
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remote sensors or smart meters) pose unique challenges (e.g. their presence in an

uncontrollable environment, resource constraints such as memory and power, and

topological constraints where the data should go through multiple public hops to the

final destination) which prevent a direct transplant of existing privacy preservation

and authenticity techniques [13]. Secondly, the significant size and the speed of these

streams force the operation centres to (1) use a concept called ‘cognitive radio’ where

the data can be sent wirelessly through various shared licensed spectra (i.e. channels)

based on their availability and (2) conduct offshore operations by using cloud public

servers, for example.

Additionally, in 2013 Intel surveyed more than 200 information technology

managers from various technology companies in the United States about their main

concerns regarding IoTs generated big data streams [14]. The top two obstacles are

data security (i.e. privacy, authenticity, and integrity) and data management (i.e.

increased network bottleneck, storage and real-time analysis). Surprisingly, although

these concerns have been well studied independently for static data, tackling them

together received limited attention and are still immature for streaming, dynamic

high-speed IoTs sensors data into the cloud environment [15, 16]. This is due to (1)

the fast, sharp increase of IoTs and their compelled adoption, and (2) the emergence

and the urgent need for the power and capabilities of the cloud infrastructure. To

achieve the incredible benefits from the generated IoTs streams using real-time analysis

while guaranteeing the outcomes, the issues of privacy (i.e. transmitted sensitive

information), authenticity (i.e. the origin of transmitted streams), integrity (i.e.

manipulation detection, remedy, and recovery) and size (i.e. during transmission

and storage) have to be treated together.

The aim of this research is to address these four major problems together

concurrently with the IoTs streaming data to cloud environment and bridge the gap

between them. Therefore, this research proposes new algorithms to be integrated into

the IoTs end-point devices, such as meters and sensors. Further compatible algorithms

are also introduced at intermediate hops or gateways. In contrast, additional
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harmonious techniques will be presented as cloud-enabled algorithms appropriate for

deployment to the cloud.

1.1 Research Scope and Challenges

IoTs streaming data has become a core category upon which many applications rely.

For instance, smart meters gather household power and gas consumptions periodically

(e.g. every second) and transmit them wirelessly through various channels and public

hops to the operation centres [17]. Due to the unprecedented volume of streams and

for real-time analysis, the operation centres are using cloud servers where various

entities process the data on a real-time basis for billings and power management. For

instance, imagine a smart oil pipe project where the pipes are continuously monitored,

and the collected streams are sent to the public cloud for real-time detection of any

possible flaws. There are many projects that help create a more convenient world, such

as solar panels and transportations, and cloud technology is crucial one. Despite the

clear merits of these applications, unique challenges may arise [18]; how can we have a

suitable balance between (1) ensuring the streams security (i.e. privacy, authenticity

and integrity) while not hindering the direct operations on those streams, and (2)

handling the data management issues such as its size during the transmission and

storage. These challenges become more complex in cases where the streams reside

on third-party cloud servers. In the following, these challenges are discussed in more

depth.

• Privacy and Authenticity: The following points shape the unique privacy

and authenticity challenge:

– The presence of IoTs end-point devices in hostile areas.

– The transmission of entities’ (customers) highly-sensitive data through

public networks

– Their residence and processing on third-party cloud servers.
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Due to these challenges, countries such as Australia and the United States are

forming strict regulations on companies mandating that an IoTs client’s sensitive

information must be kept secure from unauthorised access even when the

company performs offshore operations, such as using and storing on cloud servers

[19, 20]. In fact, there are two concerns. (a) From an IoTs customer point of

view, a main concern regards their sensitivity to the privacy and confidentiality

of their personal information, such as their identification documents, addresses

and geometric locations; while contrarily they want to ensure the authenticity

of collected power consumption readings (for example) and resultant billings are

completely accurate (i.e. Is this bill calculated correctly and are the readings

from the customer’s premise?). (b) The main worry from an operational

centres’ viewpoint is about ensuring the efficient (applying direct operation on

collected streams) and secure technique that helps them protect their customers’

confidential information.

• Integrity: Due to the sharp growth in the number of IoTs devices that

simultaneously transmit continuous critical streams, the chances of interference

between applications that use identical or overlapping bands are highly increased

(e.g. Bluetooth and ZigBee at 2.4 GHz) [21]. To overcome this, a new

wireless communication technique called Cognitive Radio (CR) has emerged

where applications can use any other available idle bands. The shared spectrum

characteristics create a huge integrity challenge where the transmitted data is

highly prone to intentional attacks (i.e. interference) and unintentional attacks

(i.e. noise) rendering these applications impractical [22]. This is simply because

any slight change in the transmitted readings will result in loss of crucial

information and, more significantly, loss of faith in the received readings. In

some cases, it may be too late to ask the source to resend especially in critical

cases; other times the source is often configured to forget what it sends directly

(i.e. due to resource constraints); lastly, the destination has no return channel

to the source - these contributing factors create many complications [23]. In an
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extreme case, this may happen to millions of premises in the same day!

• Data management: The unforeseen magnification in the speed and size of

collected IoTs sensor streams renders many operation centres who own these

streams incapable of handling them. This imposes utilizing a third-party

elastic cloud environment to perform direct operations on the collected streams.

The two drawbacks of that are: (1) a huge-unexpected pressure on the

communication infrastructure during the transmission, and (2) exponential

increase in the storage space cost and burdening the available data management.

The unique challenge is that there is a lack of proper data management [14]

models, such as size reduction and direct operations, that is harmoniously

compatible with privacy, authenticity and integrity. This is because many data

management models, such as real-time data mining and size reductions, work

on the original form of the collected readings, but neglect to observe security

aspects or assume that they are beyond the scope of focus. This was acceptable

in the traditional model where the data travelled between point A and point

B, and both belong to the owners of the data. However, this assumption is

not applicable in the cloud environment where the owners of the data want to

employ the power of the third-party cloud infrastructure for better management

while not disclosing any security aspects such as privacy.

Therefore, deeply considering the above core challenges, the following is the

summary of the core issues derived and targeted (See Figure 1.1):

• Protecting privacy requires a way to preserve the sensitive information while not

hindering the direct operation on the collected readings.

• Ensuring the authenticity of the collected readings requires a unique

imperishable seal at the origin that is not disclosed on the cloud level.

• Guaranteeing the integrity requires a mechanism to easily detect any alteration

to the transmitted readings without disrupting direct operations on the

transmitted readings.



6 CHAPTER 1. INTRODUCTION

• Improving the communication infrastructure requires size reduction techniques

at the IoTs end-points without losing any bit or disclosing the privacy and

authenticity.

• Improving data management by reducing the burden and the cost on the cloud

level, which requires special size re-reduction models by finding any potentially

similar correlation between the myriad of multiple-incoming streams.

Privacy of IoTs end point 
sensitive info
Authenticity of collected 
readings

Intentional/unintentional
noise during wireless 
transmission

Mangeing huge data size
during transmission
without revealing privacy

Mangeing the size of
multincoming compressed 
IoTs streams at Cloud 
without privacy disclousure 

RQ-1

RQ-2

RQ-3

RQ-4

Figure 1.1: High IoTs streams in the cloud environment, and the correlated security
and data management problems.

1.2 Research Questions

The core objective of this thesis is to introduce harmonious algorithms that guarantee

and secure the privacy, authenticity and integrity of dynamically high IoTs streams

into the cloud environment while providing better data management by the way of size

reduction. On the other hand, these streams allow direct operations on third-party

servers without security disclosure.

To overcome the above unique challenges and to achieve the stated objectives, the

following research questions were formed.

• Research Question (RQ)-1. How can the privacy of the sensitive

information and the authenticity of the transmitted IoTs sensor
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streams be protected without hindering direct operations at

intermediate hops or cloud?

One of the major issues in IoTs field is with the privacy of customer sensitive

information as well as the authenticity of the transmitted collected streams.

These streams reside in remote third-party servers. Researchers have introduced

various models to protect these streams. They mostly rely on implementing

traditional heavy cryptographic mathematical mechanisms, which means they

inherit issues such as large overheads, expensive computational complexity and

changing the form of the data. In doing so, sensitive information would have

to be disclosed to process the streams. Therefore, to address this question, we

understand that:

(i) this must ensure the privacy of transmitted sensitive information

(ii) this must guarantee the authenticity of the normal transmitted readings

(iii) this needs to avoid an increase or change from the original structure of

normal readings

(iv) allows direct operations on the received IoTs streams at cloud public servers

without security disclosure.

• RQ-2. In the first research question, our novel technique to guarantee both

privacy and authenticity without changing the form of the readings is by

encrypting the sensitive information and to hide them by using steganography,

randomly, bit-by-bit inside the normal transmitted readings. However, if the

transmitted streams are altered either intentionally or unintentionally during

their travel from the end-point IoTs device to the cloud, we may not be able

to detect or recover the hidden information, and we may lose confidence in

the received readings. Re-requesting and resending these streams will be very

expensive and a burden on the infrastructure. Therefore, our second research

question is: How can any alteration to the transmitted information

be detected and recovered without hindering direct operations at
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intermediate hops or cloud?

The identified targets from this question are that we need to:

(i) detect any alteration to the transmitted streams using hidden sensitive

information

(ii) recover any lost data from the transmitted sensitive information

(iii) remedy the received streams using the recovered sensitive information

(iv) understand that this does not increase or change the original form of the

transmitted readings to allow continuous direct operations on the collected

streams.

• RQ-3. In the first research question, our solution to ensure both the privacy

and the authenticity at the same time is by encrypting only the sensitive

information and hide them randomly on the bit level inside the transmitted

normal readings. Therefore, this leads us to the following question: How

can the size of the protected transmitted IoTs streams that contain

the encrypted hidden information be blindly reduced without any

security disclosure?

The objectives designed from this question are:

(i) reduce the huge size of transmitted sealed readings for improving the

performance and so the efficiency

(ii) achieve better results than general compressors by exploiting the new form

of protected readings characteristics

(iii) work seamlessly and blindly with our solution to questions 1 and 2, thereby

not losing any data and ensuring all encrypted and hidden information can

be recovered.
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• RQ-4. On cloud level, multiple compressed streams of protected readings are

received from various sources in a very short period that will quickly reserve

a huge space. Therefore, focus of this question is: Can the multi-incoming

compressed protected IoTs sensor streams be re-reduced without

privacy or authenticity disclosure?

The objectives of this question are:

(i) to re-reduce the massive volume of received compressed streams on cloud

level by exploiting the similarities among a wide range of multi-incoming

streams

(ii) to work seamlessly and blindly with our solution to questions 1, 2 and 3,

thereby not losing any data and so all encrypted and hidden information

can be recovered.

1.3 Limitations of Existing Solutions

A majority of the early solutions that ensure privacy and authenticity relied heavily

on transplanting cryptography techniques such as symmetric, asymmetric and digital

signature [24–29]. These models focused on how to protect the data from point A

to point B (i.e. sender to receiver) during transmission. However, following the

emergence of the cloud (and its compelled adoption for its immense benefits), another

dimension became crucial to any proposed security model in the IoTs field - the

efficiency aspect because of the huge size and speed of the collected streams (i.e. big

data) that needs to be analysed directly on the cloud without tolerating the security

aspects. Therefore, these solutions became outdated and is currently unfit to todays

handling infrastructure. Firstly, they change the form of all original data into a

ciphertext which hinders the ability to work directly on the transmitted streams at

intermediate hops (i.e. where the transmitted data may be collected and compressed)
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or on cloud servers. Secondly, on cloud servers, the privacy of the sensitive information

should be disclosed (i.e. decrypted) to perform operations on the collected streams.

On the other hand, most of the data management models, such as size reduction

and data mining, neglect the security aspects and assume they have access to the

readings directly. This was acceptable when both ends were controlled by the data

owners. However, this is not the case in the cloud infrastructure model where the

readings may end up in public servers in unknown jurisdictions. For instance, most

of the current size reduction (i.e. compression) models are lossy [30] - this means the

models rely on losing some information while trying to maintain the main features of

the waveforms signal. This means they have access to the actual readings, and that

the streams are not required for crucial applications. This kind of compression was

acceptable in the traditional sensor streams, and so most research has been conducted

in this path which can be classified [31–33] into transformation techniques, parametric

coding and mixed (see Chapter Four). This can easily achieve higher compression

ratios while losing small amount of data. Lossy compression was recently discouraged

after the emergence of smart IoTs applications such as smart meters, and after the

potential use of the remotely collected readings for billings and other purposes.

Conversely, only few research has been done under lossless reduction category such

as in [8, 9]. This is because in ‘lossless compression’, it is an obligation to reconstruct

the exact waveform signal of the readings with original zero loss. These models are

also assuming direct access to the original data.

Therefore, due to the limitations gap between the security and data management

models of IoTs streams in the cloud environment, this thesis concentrates on

developing an end-to-end framework that comprises some unique methods to ensure

security (i.e. privacy, authenticity and integrity). It also provides a privacy preserving

size reduction without hindering direct operations on the protected transmitted

readings.
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1.4 Contributions

To address the research questions explained in Section 1.2, and to bridge the gap

between security techniques and data management models, this thesis introduces a

novel framework that consists of several new techniques to the area of high IoTs data

streams, such as sensors and smart meters. The contributions can be classified into two

main domains: security for privacy, authenticity and integrity, and data management

for size reduction and data recovery. Figure 1.2 identifies the core contributions and

recognises their links to the core issues.

Privacy of IoTs end point 
sensitive info
Authenticity of collected 
readings

Intentional/unintentional
noise during wireless 
transmission

Mangeing huge data size
during transmission
without revealing privacy

Mangeing the size of
multincoming compressed 
IoTs streams at Cloud 
without privacy disclousure 

RQ-1

RQ-2

RQ-3

RQ-4

Preserving both Privacy of 
sensitive info and 
Authenticity of collected 
readings

Manipulation detection,
recovery and remedy

Privacy and authenticity
preserving size reduction

Cloud Level privacy and 
authenticity preserving 
size re-reduction

Chapter2

Chapter3

Chapter4

Chapter5

Reaserch Questions Reaserch Contributions

Figure 1.2: A summary of research questions, contributions and thesis structure.

• Privacy preserving of private information and authenticity of collected

streams while not hindering direct operations on the readings.

The focus of Chapter 2 is to (1) guarantee the privacy of the customer

sensitive information and (2) ensure the source of origin of the collected

readings. Steganography is employed as an underline mechanism to conceal

the secret information. Two new models are proposed in this chapter which are

Walsh-Hadamard based stenography and Wavelet based steganography. They

vary in their security, hiding capacity and simplicity. Both techniques are neither

increasing nor changing the form of the transmitted readings. In other words,

only data owners can retrieve the seal whereas others are just monitoring and

can use the protected form of the readings.
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• Manipulation detection, remedy, and recovery while not hindering

direct operations on the data nor changing the form of the readings.

Chapter 3 concentrates on the integrity of the transmitted readings by (a)

detecting and recovering any loss from the hidden confidential information

without privacy disclosure, and (b) also curing the received normal readings by

using the corrected version of the secret hidden data. A new model is introduced

in this chapter that uses both steganography, and error detection and correction

technique called Bose-Chaudhuri-Hocquenghem (BCH) syndrome codes. The

model is extensively measured using various well-known benchmarks such as Bit

Error Rate (BER), Percent of Root-mean-square Difference (PRD) and Root

Mean Square (RMS). It is obvious from the experiments that our technique has

robust recovery capabilities (i.e. BER =0, PRD < 1% and RMS < 0.01%).

• Hidden information preserving size reduction without privacy and

authenticity disclosure

Chapter 4 focuses on reducing the size of protected readings at intermediate

hops without revealing the hidden secrets. Two novel lossless IoTs (smart meter)

readings compression algorithms are proposed. The first Gaussian-based model

target is representing IoTs sensor streams in a few parameters regardless of

the irregularity in the signal. The second N-Split model target is reducing the

randomness in the IoTs streams into a smaller finite field to boost duplications

and to avoid the floating operations round errors issues. After a thorough

evaluation under the same conditions, both our techniques were mathematically

superior to existing models where we successfully halved the entropy, and

empirically we achieved a ratio of 3.8:1 to 4.5:1.

• Cloud-based hidden features preserving size re-reduction

The work in Chapter 5 addresses whether the protected readings of

multi-incoming compressed IoTs can be re-compressed? The answer is an

affirmative - by pre-processing the compressed streams in such a way that it

improves the theoretical entropy and exploits it. This is successfully achieved by
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employing a supervised learning classifier as a similarity measurement to classify

the compressed streams into subsets to reduce the noise impact of dissimilar

compressed streams. The streams in every resultant subgroup have been treated

separately to reduce the size. Both mathematical and empirical experiments

proved the significant improvement of the compressed streams entropy (i.e.

almost reduced by half) and the resultant compression ratio (i.e. more than

50%). To the best of our knowledge, there has been no other study that tackles

this issue within the IoTs sensor streams field.

1.5 Thesis Structure

The rest of the thesis is organised as follows.

1. Chapter 2 explains the solution to Research Question 1. It presents two

novel privacy preserving and authenticity protection models that rely on

steganography. It also summarises relevant work and presents our algorithms

in main stages. Next, evaluation of different characteristics of the proposed

steganography-based techniques are introduced followed by a discussion about

the experiments we performed and the attained results. Finally, we summarised

this chapter.

2. Chapter 3 describes the solution to Research Question 2. It introduces a

resilience to the shared spectrum noise scheme using BCH syndrome codes

combined with steganography to protect the integrity of transmitted protected

IoTs streams. A preliminary introduction about BCH syndrome codes is

provided. Next, we present the mathematical model of our algorithm. A

thorough security and noise impact evaluation are then performed and provided.

The conclusion is finally drawn for this chapter.

3. Chapter 4 explains the solution to Research Question 3. It introduces two novel

techniques that ensures hidden information preserving size reduction. We begin

by summarising the relevant work and introducing the mathematical models of
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our size reduction algorithms. This is followed up with a detailed discussion on

our experiments and we make comparisons with existing models. Finally, we

summarised this chapter.

4. Chapter 5 introduces the solution to Research Question 4. It presents our

cloud-based size re-reduction model. A preliminary analysis of the received

compressed streams is introduced. Then, our algorithm along with the

evaluation and results are presented. This chapter is lastly concluded.

5. Chapter 6 concludes the thesis by summarising the main contributions. It also

draws attention to some of limitations along with possible progressions.

Note, four core chapters (Chapter 2-5) are introduced in a stand-alone

and self-content way. Therefore, each of which has its context including

related work, architecture, algorithms, discussions, evaluations matrices

and experiments.



Chapter 2

Steganography to Protect IoTs

Streams

This chapter answers the first research question discussed in Section 1.2. The main

concerns about the privacy of the confidential Internet of Things (IoTs) end-point

nodes, such as household identity, and the authenticity of transmitted streams are

examined along with the limitations raised due to transplanting existing security

algorithms to solve this issue. This chapter then highlights why steganography (stego)

can be a candidate technique to take some of the challenges and what limitations

should be taken into account. Section 2.1.1 introduces the main contributions of

this chapter and how they have been accomplished. Section 2.2 highlights briefly the

key related works and the efforts of other researchers to solve the issue. Sections

2.3 and 2.4 explain in detail our two novel models including the design, sensitive

information protection, randomisation mathematical models, and the hiding and

retrieval strategies. The evaluation of various characteristics of both models along

with an overview comparison between them is introduced in Section 2.5. In Section

2.6, we present detailed experimental examinations of both models, their resultant

effect on the actual IoTs high streams and a comparison with available techniques.

Section 2.7 summarises this chapter.

15
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2.1 Introduction

Recently, there has been great-interest in and an increase in the amount of

remotely collected data [11]. The purposes of such collections is to monitor

the following: environmental phenomenon, battlefield scenarios, surveillance,

manufacturing automation, traffic screening and remote healthcare. The data is

mainly collected using Wireless Sensor Networks (WSNs); these comprise large

numbers of small IoTs devices that have limited computational capabilities and low

battery power [34]. Commonly, the collected data includes: 1) normal readings

(environmental or activities data), and 2) highly sensitive information (IDs, battlefield

geometric location or secret nuclear facility features). This information is periodically

sent via a predetermined spectrum (e.g. 2.4 GHz) [21]. However, the extraordinary

amount of transmitted data through continuous surveillance and the massive demand

on the spectrum reservation results in wireless communications issues, such as

‘spectrum scarcity’ [35].

To overcome these issues, a new wireless communication technology called

Cognitive Radio (CR) has emerged [36]. It deploys a simple idea where the licensed

spectrum can be shared by a Secondary User (SU) whenever the Primary User (PU)

is idle, also known as white space. CR allows SU to sense the licensed bands

and whenever the space is white, SUs can utilise these bands to improve the IoTs

communication performance, throughput and reduce the interference between the

applications that use identical or overlapping bands, such as Bluetooth and ZigBee

at 2.4 GHz [21]. Therefore, tremendous effort is currently being spent on developing

various standardisations to exploit this opportunity. For example, a Defence Advanced

Research Projects Agency (DARPA) project, titled neXt Generation (XG), is focused

on how unused spectrum technologies, such as television (TV) bands, can be utilised

for US military applications [37, 38]. Also, CR technology has recently been

implemented in various sets of IoTs applications such as smart homes, medicine and

traffic screening [39–41]. Despite the obvious advantages, CR Networks (CRNs) cause

many security issues for the transmitted IoTs streams in addition to the traditional
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Sensors

multimedia

Gun-Camera

Urban Battlefield where different information is collected by CR sensors 
and should be continuously sent to cloud based military servers

e.g. Multimedia, Environmental 
and Soldiers’ sensitive data!

Fixed licensed spectrum
Problem! Can not handle all
periodically collected high
speed transmitted data 
e.g. 24/7 surveillance Surrounding available spectrums

e.g. TV band (used in DARPA XG project)
Problem! There is no authentication mechanism

Public
Routers

Multimedia
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and sensitive data

Cloud-Based Servers

Radars

Military facilities

Problem! How can operations be applied on 
the data with  1. No sensitive data disclosure 
and 2. Strong evidence of authenticity?

Multimedia
Environmental
and sensitive data

Urban Battlefield

Figure 2.1: Main issues faced when different information (e.g. environmental,
multimedia and soldiers’ sensitive data) are periodically collected by IoTs devices in a
battlefield area and should be sent to cloud-based servers for authorised management.

WSNs troubles which is illustrated in Figure 2.1 and can be categorised in the following

way:

1. The confidentiality and the privacy of the transmitted sensitive content (e.g.

soldiers’ sensitive and geometric locations).

2. The authenticity of the collected normal IoTs readings because of the IoTs device

presence in hostile areas and the possible-natural or malicious interference.

Although these problems have been discussed in traditional WSNs, we are

compelled to target these issues in the context of IoTs today because: 1) they are rarely

targeted in today’s management model where the data is stored and processed by third

parties’ machines (i.e. Cloud Providers (CPs)), and 2) in using CRNs technology, the

data may be sent in a spectrum that has no authentication mechanism, such as TV
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broadcasting [42], as in the XG project (see Fig. 2.1). Therefore, this chapter proposes

a novel solution for these issues based on the following questions:

• How can the IoTs transmitted sensitive information be protected without

disrupting any possible operations at data aggregators and CPs?

• How can the authenticity of the transmitted normal readings be checked,

especially if the data are sent in a spectrum that has no authentication

mechanism, such as a TV band?

• Can both requirements be met without revealing the sensitive information to

CPs?

To solve these issues, most of the early solutions relied heavily on traditional

cryptography techniques, such as symmetric, asymmetric and digital signature

[24–29, 43]. However, they suffer from two main limitations:

• The huge delay and overhead of the approaches that result from thousands or

millions of mathematical operations in order to achieve high security, which

usually cannot be handled by existing IoTs end-point devices capabilities (i.e.

memory and power).

• Changing the form of all original data into a ciphertext makes applying

operations on the data more difficult at aggregators (i.e. where the transmitted

data may be collected and compressed) and at CPs.

To solve some of the traditional cryptography issues, a recent non-traditional

cryptography technique called homomorphism has been used [44–46]. The advantage

of this technique is that the encrypted data can be worked on at data aggregators and

CPs points without revealing its meaning and thus provides strong end-to-end security.

However, homomorphic techniques are still not feasible in practical applications,

because their computational operations are very complex [22].

Steganography is another means of protecting sensitive information where a

portion of a secret message, like a watermark, is hidden inside host data and can only
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be retrieved by authorised users. The advantage of steganography over cryptography

is that it requires much lower power and processing capabilities. Therefore, many

solutions have been proposed using one of the steganography aspects called digital

watermarking (i.e. protecting integrity) where a small fixed-length message (e.g.

MAC) is hidden inside the host data [22, 47–51]. There are limitations in these

digital watermarking techniques.

• They mainly provide strong integrity and so the receiver can extract the

watermark and check the validity of the data, but they do not protect the

privacy of the transferred sensitive information, thus raising a confidentiality

issue.

• The watermark is embedded directly inside sensors’ readings, which is called,

‘hiding in the spatial domain’. This restricts the size of the hidden secret message

and becomes a capacity issue. Also, the amount of distortion (the difference

between the watermarked and the original forms) on the sensors’ readings is

very high, so the watermark should be removed whenever normal readings are

used.

2.1.1 Contributions

This chapter proposes two novel steganographic algorithms: 1) to protect sensitive

node information by hiding them randomly bit-by-bit inside normal IoTs streams

using a generated key; and 2) to provide strong evidence of authenticity by sealing

the normal transmitted readings. These algorithms will address the aforementioned

concerns derived from the first research question in Section 1.2. To overcome the

hiding capacity issue, two signal processing techniques called ‘Walsh-Hadamard’ and

‘Wavelet’ are used to transform the normal readings from their spatial domain to their

frequency domain. This results in a set of decomposed values called ‘coefficients’ [52].

Our two models vary in terms of speed, security and the maximum size of confidential

information that can be handled. This will be summarised in the evaluation section



20 CHAPTER 2. STEGANOGRAPHY TO PROTECT IOTS STREAMS
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Figure 2.2: The main scenario of our proposed model where sensors’ sensitive
information is hidden inside normal readings and only authorised users can retrieve
this confidential data.

of this chapter.

2.2 Related Work

Any solution proposed to protect sensitive transmitted IoTs end-point information

should carefully consider the security, efficiency and capacity because of the nature of

IoTs devices capabilities and their surrounding environment. However, most existing

proposed solutions lack a suitable balance between these three features.

A majority of the solutions focused on the first aspect of security and ignored the

other aspects, such as efficiency. For example, models in [53, 54, 57, 58] provide strong

security by using classical cryptography techniques, known as asymmetric encryption.

However, their efficiency is poor, because all the data should be decrypted whenever

it is used.

The other stream of solutions has targeted this issue by using homomorphism,

which is a new cryptography technique [46, 56]. Although they tried to have a

reasonable balance between security and efficiency by using homomorphic encryption,
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Table 2.1: Related Work Summary.

Protection
Technique

Features Comments

Traditional
Cryptography
[29, 53, 54]

• Use symmetric/asymmetric keys
for encryption at sensors side

• Aggregators and CPs should
decrypt all data before
operations

• Receiver should decrypt all data
before using them

• Low
Confidentiality

• Poor Efficiency

• Key’ management
issue

• Unlimited
Capacity

Homomorphic
Encryption
[45, 46, 55, 56]

• Use homomorphic encryption at
sensors side

• Aggregators and CPs can work
on the encrypted form

• Receiver should decrypt all data
before using them

• Strong
Confidentiality

• Is not feasible
in practical
applications

• Low Efficiency

• Unlimited
Capacity

Digital
Watermark
[22, 49–51]

• Embed secret message (e.g.
MAC) at sensors side

• Using the spatial domain for
hiding

• Aggregators and CPs can work
on the normal readings

• Receiver should remove the
watermark before using the data

• Strong Integrity

• No Confidentiality

• High Efficiency

• Low Capacity
of embedded
messages with
High Distortion



22 CHAPTER 2. STEGANOGRAPHY TO PROTECT IOTS STREAMS

this non-traditional cryptography is still not feasible in practical applications for its

complexity [22].

The third stream of solutions applied a well-known technique used in multimedia,

known as ‘digital watermarking’ to guarantee the authenticity of the transmitted data

as in models [22, 49–51]. However, these solutions mainly focus on the integrity of the

transmitted data, but they neglect the end-to-end privacy preservation of the sensitive

information, meaning its a security issue. Secondly, only a few bits can be embedded

into the transmitted readings, thus creating capacity issue. Thirdly, the classical

watermarking technique results in a certain amount of overhead in the transmitted

data as can be seen in [51].

Table 2.1 summarises the work that can be categorised into three classes based

on the techniques used: traditional cryptography, non-traditional cryptography, and

digital watermarking.

2.3 Model 1(MD1): Walsh-Hadamard based

Steganography

In this section, a new fast steganography algorithm is introduced which takes into

consideration a reasonable balance between security and efficiency in such a way that:

1) there is little effect on the normal IoTs streams, so the readings can be used without

removing the stego (i.e. hidden sensitive information) and 2) it is impossible for

illegitimate parties to extract the hidden information without using an appropriate

key. The algorithm relies on a simple and fast signal processing technique called

Walsh-Hadamard.

The operations at the remotely distributed IoTs end-point device can be

categorised into four stages:
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2.3.1 Obfuscation

The goal of this stage is that the encryption and hiding processes of the sensitive

information in the normal IoTs sensors’ readings must be completely random and

different among IoTs devices, and so disallow unauthorised parties from retrieving

them properly. Therefore, a security key is generated for every distributed IoTs node

and will be known only to the end receiver of the data. This key has two main tasks:

1. Encrypt the sensitive information (e.g. IDs and geometric location data) before

the hiding process using Exclusive OR (XOR) operation, which is very fast and

suits the IoTs small devices technical capabilities. This can be shown in Eq 2.1

S̃ = S
⊕

KEY (2.1)

where
⊕

is a XOR operation, S is the original sensitive information and S̃ is

the encrypted form.

2. Generate the sequence of selected coefficients that will be used to hide the

confidential IoTs devices’ information. Then, it will be shifted by one character

and will generate the second layer of selected coefficients and so on. This is

shown in Eq 2.2 and will be fully comprehensible after reading Section 2.3.3.

Ñ = fx(KEY ) (2.2)

where Ñ is the generated sequence of coefficients.

2.3.2 FWHT Transform

Walsh-Hadamrd Transform (WHT) is a well-known process that is used to decompose

a signal into a set of coefficients representing its frequency components [59, 60]. The

significance of that is the resultant coefficients can be classified into: 1) low-sequence

coefficients which represent most of the signal energy, and 2) high-sequence coefficients

representing the less important parts of the signal. The advantage of this technique
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is that the original signal can almost be reconstructed from only the low sequence

components.

For better understanding, Fig 2.3 shows an example of IoTs devices’ readings. a)

Plot for more than 500 temperature samples. b) Plot for the resultant coefficients

after applying WHT, which clearly shows the most energy is in the low sequence

coefficients from 0 to <50, whereas others are less important. Accordingly we erased

all coefficients from >50 to 512 to show their effect on the reconstructed samples. c)

Plot the reconstructed original temperature samples from only <50 coefficients. This

figure demonstrates the flexibility and the capacity that will be derived from these

coefficients. This inspired us to use signal transformation techniques to hide more

sensitive information related to IoTs end-point data without increasing the actual

IoTs devices’ readings.
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Figure 2.3: IoTs device’ readings: (a) direct plot, (b) after applying Fast
Walsh-Hadamrd Transform (FWHT), and (c) rebuilt form after zeros more than 90
% of FWHT coefficients.

Additionally, there is a fast version of WHT algorithm that will provides the

computational complexity NLogN [61], whereas the complexity of the commonly

used WHT is O(N2) [62]. Therefore, FWHT is used in our algorithm and is shown in

Eq 2.3.
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yn =
1

N

N−1∑
i=0

xiFWHT (n, i), n = 1, 2, ..., N − 1 (2.3)

where yn is the resultant coefficient, xi is the original sample value and FWHT (n, i)

is the applied transformation [61, 62].

FWHT simply works by applying a Walsh generated matrix that is correlated to

the number of samples. The matrix values are +1 and -1. The order of rows in this

matrix can be ‘Sequence’, which is used in signal processing, Hadamard - is used in

controls applications or Dyadic is used in mathematics. A simple FWHT matrix for

only four samples is shown in Eq 2.4 [63].⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

s3

s4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

+w11 +w12 +w13 +w14

+w21 +w22 −w23 −w24

+w31 −w32 −w33 +w34

+w41 −w42 +w43 −w44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

where Ss is the original IoTs device stream, ws is the FWHT matrix value and cs is

the resultant coefficient values.

In our research, FWHT is chosen for two main reasons: 1) the original IoTs

sensors’ readings can be accurately reconstructed from only a few coefficients, allowing

others to be used freely to hide a reasonable amount of sensitive information, and 2)

FWHT uses less storage space, is faster to calculate and consumes fewer resources than

many other transformation techniques, such as Fast Fourier, Chirp Z and Frequency

Response of Digital Filter, because it uses only real additions and subtractions [52].

Therefore, in this work, FWHT is applied to different real-time collected IoTs

devices’ readings (e.g. temperature, humidity, light and voltage) and the resultant

coefficients will be reshaped to a two-dimensional (2D) matrix. The first few

low-sequence coefficients will not be manipulated because they represent the most

important part of the IoTs devices’ readings. On the other hand, several bits will be

changed in the remainder of FWHT coefficients - the steganography level. Also, to

guarantee the minimum acceptable amount of distortion to the actual IoTs devices’

readings, we performed many experiments to select an appropriate steganography
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level to demonstrate how many bits can be hidden in the less important coefficients.

This is shown in Fig 2.4. From the results of those experiments, about 5 bits will be

hidden in the randomly-selected high-sequence coefficients.
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Figure 2.4: Effect of applying steganography using different levels
1bit/2bits/3bits/5bits on the resultant distortion for each coefficient.

2.3.3 Hiding in Walsh-Hadamard Matrix

At this stage, the sensitive information will be hidden inside the resultant coefficients,

after applying FWHT to the IoTs devices’ readings. However, to guarantee a high

level of security and to prevent unauthorised parties from accessing this information,

three layers of security are implemented. These are:

1. the sensitive information is encrypted using a security shared key

2. the key is used to scramble and reshape the resultant coefficients from a vector

to a matrix of M -by-N

3. the key is used to generate the selected coefficients’ order in a vector space.

This will guarantee that only an authorised receiver who has the security key can

extract and decrypt the sensitive information properly.

The detailed process of hiding is shown in Fig 2.5. After applying FWHT to

the normal IoTs readings, the resultant coefficients are scrambled and reshaped to
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Figure 2.5: Block diagram shows the steps of hiding sensitive IoTs device information
inside their normal readings.

M -by-N matrix. The key is then used to encrypt the sensitive information after

converting both to bits. Next, the key will be used to generate the selected order of

first row coefficients, which is based on the American Standard Code for Information

Interchange (ASCII) positions of the key character set. After that, the secret bits will

be embedded corresponding to this order. After finishing all the selected coefficients,

the key will be shifted by one character to generate the second row of selected

coefficients; this will be used to hiding again, and so on.

Fig 2.6 shows a simple example of how the shared key can be used to generate the

order of selected coefficients for a single row. It starts by converting the key into ASCII

and a default position value will be given. Then, order the key ASCII in ascending

order and another position value will be assigned (i.e. ascending position order).

Finally, return the key ASCII to its original order using the default position order
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(to avoid having two different keys resulting in a similar sequence of numbers).The

resultant ascending position order is regarded as the ‘selected coefficients order’. In

our algorithm, the key length will be more than 32 symbols in length.

Coefficient Order : 3 7 8 4 1 6 2 5

Key Character Set :  A     X     Z     N    1    R    5    N

Defult ASCII Order : 65    88    90   78   49  82  53  78

 Default Position Order : 1      2      3     4    5    6    7    8

Ascending ASCII Order : 49   53    65   78   78  82  88  90

Default Position Order : 5     7      1     4    8    6    2    3
Ascending Position Order : 1      2      3     4    5    6    7    8

Default ASCII Order : 65    88    90   78   49  82  53  78
 Default Position Order : 1      2      3     4    5    6    7    8

Ascending Position Order : 3      7      8     4    1    6    2    5

1

2

3

4

5

AXZN1R5

  AXZN1R5

N

N

shift

Figure 2.6: Block diagram shows how a selected coefficients order is generated from
the key in five steps. The complexity is a vector space.

The detailed hiding algorithm is demonstrated in Algorithm 1. It begins by

initialising the required variables. FWHT is then applied and the resultant coefficients

will be shifted and processed into an integer format. Next, by using the key, the

algorithm will shuffle the coefficients into 2D. The secret bits are then hidden in

different coefficients. Finally, the 2D coefficients will be reshuffled and rescaled to their

original format, then the inverse FWHT is implemented to produce the watermarked

readings which is then transmitted.

2.3.4 Inverse FWHT Re-composition

Following the hiding process, the resultant coefficients are called stego (or sealed)

coefficients. At this stage, the stego coefficients will be re-reshaped and the inverse

FWHT applied to convert IoTs readings from their frequency domain to their original

time domain. The result is a reconstructed form called stego IoTs streams, meaning

it contains hidden confidential information, which is quite similar to the original IoTs

sensor readings. The beauty of that is even the stego IoTs sensor streams can be

used as the original form; however, only authorised receivers with a security key can
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Algorithm 1 The hiding algorithm

1: i, j, k : counters
2: m,n : 2D matrix size
3: coef : FWHT coefficients matrix
4: S : secret bits
5: Apply FWHT on host data
6: Rescale coef → int
7: shuffle coef → 2D
8: /*Start hiding*/
9: while counter < EoF coef do

10: for i = 1 : n do
11: for j = 1 : m do
12: Hide 5 bits of S(k) → coef(i, j)
13: if EoF S then
14: Start again
15: end if
16: end for
17: end for
18: counter = counter + 1
19: end while
20: Re− shuffle coef → original form
21: Re− rescale coef → original form
22: Apply inverse FWHT to host data
23: return watermarked readings

extract the hidden information, such as IDs and geometric location information, and

verify them. The inverse FWHT can be defined by Eq 2.5

xi =
1

N

N−1∑
i=0

ynIFWHT (n, i), i = 1, 2, ..., N − 1 (2.5)

where xi is the original sample value, yn is the resultant coefficient from the

decomposition process and IFWHT (n, i) is the inverse transformation [61, 62].

2.3.5 Retrieval from Walsh-Hadamard Matrix

To properly retrieve and decrypt the hidden sensitive information, the receiver must

have the security key. The process is almost identical to the hiding process except that

it extracts the bits instead of hiding them. Fig 2.7 shows the detailed process. First,

we apply FWHT onto the IoTs sensor readings. The key is then used to reshape

the FWHT coefficients into a 2D matrix. Next, the key is used to generate the
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selected order of the first row and start extracting the sensitive bits from each selected

coefficient. The key will then be shifted and will generate the second layer of selected

coefficients, and so on. Finally, by using the key, we can decrypt the secret bits and

verify the resultant information.

Apply FWHT
Decomposition

CR sensors 
reading

Reshape to
M-by-NFWHT

coefficients

Key
Generate

selected order

Extract
Secret Bits2D

coefficients

Coefficient
Order

Shift the KEY
 1 Char

Decrypt
secret bitsSecret

bits

Sensitive
information

Figure 2.7: The main steps to retrieve the sensitive information.

2.4 Model 2 (MD2): Wavelet-based Steganography

In this section, another novel steganography algorithm is proposed. It focuses on

strengthening the security by using a two-dimensional signal processing technique

called ‘Wavelet’. Our proposed hiding mathematical model takes the advantage of

the obtained wavelet sub-bands tree that complicates the time required for retrieving

the hidden bits illegally.

The operations on the IoTs device’s side can be classified into the following stages.

2.4.1 Strong Encryption

The goal of this stage is to ensure that the encryption and hiding processes of

the confidential information in the normal IoTs device’s readings must be strong,

completely random and different among IoTs devices, and so disallows illegitimate

parties from retrieving them accurately. Therefore, a security key will be generated

for every IoTs device and will be known only to the end receiver of the data (e.g.

operation centres). This key has two main tasks:

1. Encrypts the confidential information, such as IoTs device IDs and geometric

location data, household name, Date of Birth (DoB), address and total watts
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consumption, before the hiding process using Advanced Encryption Standard

(AES) encryption - this is very strong and suits the IoTs device’s technical

capabilities. This can be defined in Eq 2.6

fx(O,KEY ) ⇒ Ẽ (2.6)

where fx is AES operations, O is the original confidential information and Ẽ is

the encrypted form.

2. Generates two random sequences of numbers to build a random matrix that will

be used to hide the sensitive information of IoTs devices. This will become fully

comprehensible after reading Section 2.4.3.

2.4.2 Wavelet Decomposition

Wavelet Transform (WT) is a well-known technique used in signal and image

processing where the content, such as biomedical signal, is transformed from its spatial

domain into its frequency domain to identify the most and the least significant parts

of the signal [64]. More precisely, it is a linear transformation that is performed on

the given signal which leads to decomposing it into differing values that represent its

frequency components at a given time called coefficients. WT is shown in Eq 2.7

C(i, j) =

∫ ∞

−∞
f(t)ψ(i, j)dt (2.7)

where i and j are positive integers that represent transform parameters. C represents

resultant coefficients. ψ is wavelet function [65]. The WT can be used in two ways

which are either Discrete and Continuous. The Discrete Wavelet Transform (DWT) is

preferred in most applications, because the produced and analysed real-life information

comes in discrete numbers rather than continuous functions [66].

To conduct DWT decomposition, high-pass and low-pass band filters are applied

on the original signal. Consequently, two sub-signals called ‘bands’ are obtained. The

first sub-band is the low frequency components that represents the approximation of

the original signal. The second is the high-frequency components that represents the
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detailed coefficients. When this process is repeated multiple times, it is known as

multi-level wavelet decomposition [65, 67]. DWT is defined in Eq 2.8.

D(a, b) =
∑
a

∑
b

X(a)Φab(n) (2.8)

where D(a, b) represents DWT coefficients, a and b represent the shift and scale

transform parameters and Φab(n) represents the base-time wavelet function that is

shown in Eq 2.9.

Φab(n) = 2−a/2Φ(2−an− b) (2.9)

In this work, DWT is chosen for two main reasons: 1) it produces a tree

of sub-bands which helps with strengthening the security of embedding while not

increasing the original size of the data; where the total number of coefficients from all

decomposed sub-bands are equal to the original signal samples, and 2) the signal can

almost be reconstructed from only the most significant coefficients - the approximation

sub-band coefficients - allowing free use of the detailed sub-band coefficients in order

to hide confidential information with minimum amount of distortion on the original

transmitted readings (as in electricity consumption). This inspired us to use wavelet

to hide more confidential information related to IoTs device securely without effecting

the actual readings of the IoTs devices.

Therefore, in this work, the 5-level wavelet packet decomposition will be

applied on different real-time readings from IoTs devices readings (e.g. watts,

heat-index, wind chill, humidity and temperature), which results in 32 sub-bands

as shown in Fig. 2.8. A wavelet family called ‘Daubechies’ with the order 2

(db2) is chosen in the decomposition process, because its performance in analysing

discontinuous-disturbance-dynamic signals has already been proven to be perfect [68].

To achieve minimum amount of distortion, the low frequency sub-bands coefficients

(from 1 to 16) will not be changed because they represent the most significant parts

of the IoTs readings. On the other hand, a number of bits will be manipulated into

the rest of the detailed sub-bands coefficients - this is called the steganography level,

because the confidentiality of the hidden sensitive information and the imperceptibility
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to human senses are our top priorities[69]. To guarantee the minimum acceptable

distortion on the actual readings, many experiments have been conducted to select

an appropriate steganography level (i.e. how many bits can be embedded in the

least important sub-bands). Consequently, about five bits will be hidden in the

randomly-selected high-frequency sub-bands coefficients.

Smart meter readings
      e.g. Watts 0,0

1,0 1,1

2,0

3,0

2,1 2,2 2,3

3,1 3,2 3,3 3,4 3,5 3,6 3,7

Level 1

Level 2

Level 3

4,0 4,1 4,14

5,0 5,30

Level 4

Level 5

cA1 cD1

DetailedApproximation

5,1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5,9 5,10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5,18 5,19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5,315.27 5.28 5.29

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4,15

Level 5

Figure 2.8: Decomposing IoTs streams (e.g. smart meter) into 32 sub-bands.

2.4.3 Embedding in Wavelet Tree

At this stage, the confidential information from households will be hidden inside

the resultant sub-bands coefficients tree after applying DWT to the IoTs device,

namely from the smart meter. However, to guarantee a high level of security and to

prevent unauthorised parties from retrieving this information, two layers of security

are implemented. These are explained below:

1. the confidential information is encrypted using the security key (i.e. shared key)

2. the key is used to generate the selected coefficients order from different rows in

the form of a random 2D space M × N
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This will guarantee that only an authorised receiver who has the security key can

extract and decrypt the confidential information properly.

Generating Hiding Matrix: To achieve the goal of hiding the secret bits in an

entirely random way that is different among IoTs devices, the security key is used to

generate two random sets of numbers as defined in Eq 2.10

Z ⇐

⎧⎪⎪⎨⎪⎪⎩
c̃ = fx1(K)

r̃ = fx2(K)

(2.10)

where c̃ and r̃ are the generated sequences of numbers. The combinations of c̃ and r̃

is used to build a 2D M X N matrix Z.

Z{m,n} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1, c1 r1, c2 · · · r1, cn

r2, c1 r2, c2 · · · r2, cn
...

...
. . .

...

rm, c1 am,2 · · · rm, cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.11)

where Z is a 2D generated matrix (see 2.11). m represents the number of rows, and n

represents the number of columns which is < 32. (rm, cn) which represents a position

of a sub-band coefficient in the wavelet tree.

There are two crucial 2D matrices in our algorithm that can be seen in Fig 2.12.

The first is matrix C which corresponds to the readings’ coefficients. The second is

matrix Z which corresponds to the generated random order that should be followed

to hide the secret bits. Here, the size of the 2D matrices is m × n. Therefore, our

algorithm relies on the total number of readings, the decomposition level and the total

number of sub-bands used in hiding process. This is shown in Eq 2.12.

(m,n) =

{
TR × 2

(2L)2

}
,

{
TR

(2L)

}
(2.12)

where TR is the total number of readings. L represents the decomposition level

used.
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For example, assume that the total number of IoTs readings (in watts) contains

1024 samples and the used decomposition level is five (see Eq 2.13). Consider:{
m =

1024× 2

(25)2
⇒ 16

}
,

{
n =

1024

(25)
⇒ 32

}
(2.13)

  6   8  1  5  2  9  4  10  7  3

Key Symbols :  X  c    !    W   2    m    R    z      a   Q
Defult ASCII: 88  99  33  87  50  109  82  122  97  81

Position Order :  1   2   3    4    5     6    7    8     9   10

Ascending Order : 33  50  81  82   87   88   97   99  109 122
Defult Postion : 3    5   10   7    4     1     9    2     6    8

Ascending Position : 1    2    3    4    5     6     7     8   9    10

 Defult Position:  1   2     3     4     5     6     7    8    9  10

Descending Position :  6   8     1     5     2     9     4   10   7   3

1

2

3 Defult ASCII: 88  99   33   87   50   109  82 122 97 81

Portion of the 2D order 

Repeat steps 1,2 and 3
 in descending order

5

4

8 4 1 7  2  9 6 10 3 5 

Build 2D random Order 

M

N

M NX

Columns

Rows

Figure 2.9: This example demonstrates how the 2D hiding matrix order is generated
from the key in five steps.

For a better understanding, Fig 2.9 shows a simple example of how the key can

be used to generate the 2D hiding matrix order (Z). First, the key is converted into

ASCII and a default position value will be allocated. The key ASCII is then ordered

in descending mode and another position value will be given (i.e. descending position

order). Next, the key ASCII is returned to its original order using the default position

order to avoid having two different keys resulting in an identical sequence of numbers

and the resultant descending position order is regarded as r̃. A similar process is

repeated to generate c̃, except that ascending order is used instead of descending.

Finally, Z is built from the combination of r and c. However, in our algorithm, the

key length contain more than 32 symbols.

Embedding Process: The detailed process of hiding is shown in Fig 2.10, 2.11 and

2.12. DWT is applied to the normal IoTs device’s readings, which result into a 32

sub-bands coefficients tree. Only non-significant sub-bands coefficients (from 16 to

31) will be split, rescaled and converted into bits be used in the hiding process (see
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Apply 5 levels wavelet
decomposition

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
1 2 3 4 31

Split detailed subbands 
coefficients  from 16-31

3

1

2Smart Meter Readings

16

Approximation Detailed

Portion of the coeffeints matrix 

Rescale the numbers to int
and convert into bits

Portion of the coefficients matrix

0 15

m X n

m X n

 m= 16 bands
 n = Total readings/32

Figure 2.10: Block diagram shows how an example of IoTs readings are decomposed,
split, rescaled and converted into bits.

3

Smart Grid’s Sensitive information

Grid ID: 321752
Geomtric Location: X/Y/Z

Household
Name: Alsharif Abuadbba
DoB : 1/1/1986

Address: 1/200 XXX 

Convert
into bits

100100010100111...

XOR

100000110110001...

000100100010110...
Secret  bits

=

Total Watts: 19000

Smart Meter

.........

Date: 20/5/2014

Security KEY

(e.g. AXZ2MCn1..)

Figure 2.11: An example of how confidential information is encrypted before hiding.

Fig 2.10). The key is then used to encrypt the confidential information (see Fig 2.11).

Finally, the secret bits will be hidden in the sub-bands coefficients tree corresponding

to the early generated 2D matrix order Z (see Fig 2.12). If all selected coefficients

are used and if there are more secret bits, the key then will be shifted 1-character to

generate another two random sequences of numbers that will be used to hide, and the

process repeats.

Algorithm 2 clearly demonstrates the steps followed in the hiding process in a

pseudo-code. However, to make sure that all high-frequency coefficients are ready for
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Portion of the coefficients matrix C 

 3     6     7      2      5       4       8       1

Portion of the 2D order matrix Z 

00010 01000 10110...
Secret  bits

Start hiding Encrypted bits in 5 LSB following the 2D matrix order Z
so hide in the subband 6 coef 3 first. Then, 6,6 and so on

00010

01000

6

3
2

7
4
5
1
8

c=r
=
,

m x n r x c

Figure 2.12: Block diagram shows how the secret bits are hidden corresponding to the
2D matrix order Z.

the steganography, they should be rescaled to a positive integer format before the

process.

Algorithm 2 The hiding algorithm

1: Apply ⇒ 5 level wavelet decomposition
2: Split ⇒ high frequency sub-bands from 16 to 31
3: Add ⇒ (lowest value + -1) to all coefficients
4: Multiply ⇒ all coefficients by 10000
5: Convert ⇒ coefficients from double to integer
6: while counter < Total coefficients do
7: Start hide secret bits into 2D matrix
8: end while
9: Convert ⇒ coefficients from integer to double

10: Divide ⇒ all coefficients by 10000
11: Subtract ⇒ (lowest value + -1) from all coefficients
12: Recombine ⇒ high and low frequency sub-bands
13: Apply ⇒ Inverse 5 level wavelet re-composition
14: return ⇒ stego readings

For clarification, Fig 2.10 and 2.12 show a simple example of a split sub-bands

coefficients of size 8 × 8. However, the size of the 2D matrix has no fixed size and

can be changed based on the total number of decomposed readings and the level of

decomposition. For example, if the total number of readings is 512, and 5-level wavelet

decomposition is applied, a 2D matrix will be generated. The columns represent the

32 sub-bands and each has its own row that is a list of coefficients (i.e. each sub-band

has a list of 16 coefficients). Only the high-frequency sub-bands that range from 16

to 31 will be used. Therefore, 16 sub-bands are split and, according to our example,
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each has its own 16 coefficients. Due to space limitations in the illustrated figures,

only size 8× 8 portions are on view.

2.4.4 Wavelet Reconstruction

Following the hiding process, the resultant sub-bands coefficients are called stego

coefficients. At this stage, the stego coefficients will be re-embedded into the 32

sub-bands coefficients tree and the inverse DWT is applied to convert IoTs readings

from their frequency domain to their original time domain. The result of that is a

reconstructed form called ‘stego IoTs readings’ (i.e. they contain hidden confidential

information) which is similar to the original IoTs stream. The beauty of that is even

the stego IoTs readings can be used as the original form; however, only authorised

receivers with a security key can extract the hidden information and verify them (e.g.

grid IDs, household name, an individuals DoB, address and the total watts used). The

inverse DWT is defined by Eq 2.14

X =
∑
a

∑
b

D(a, b)Φab(n) (2.14)

where X is the original form of data.

It should be noted that the focus of this chapter is to protect the IoTs confidential

information and to seal the accumulated readings. However, to improve the efficiency

of communication and reduce the payload, compatible size reduction techniques may

be applied before transmitting the stego readings [68, 70]. The only condition is that

the stego readings must be fully recovered at the receiver side, because losing a single

bit may result in losing a portion of the hidden secret bits. This will be discussed

further in detail in Chapter 4.

2.4.5 Extracting from Wavelet Tree

To accurately retrieve and decrypt the hidden confidential information, the receiver

must have the security key. The process is roughly identical to the hiding process

except that it retrieves the bits instead of hiding them. First, DWT is applied to
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the IoTs readings which results in 32 sub-bands tree. Only the detailed sub-bands

coefficients will be split and used in the retrieving process. Next, the key is used to

generate two random sequences of numbers which are used to build the M×N matrix

(Z). The secret bits will then be retrieved corresponding to this order. After that,

the key will be shifted into 1-character to generate another two random sequences of

numbers that will be used to extract information, and so on. Finally, by using the

key the secret bits will be decrypted and the resultant information can be verified.

To evaluate the accuracy of the extracted information, the secret bits have been

carefully checked after every retrieval process using Bit Error Ratio (BER) which can

detect any data loss even down to one bit[71]. From our simulations, all BERs were

0 which means that all secret bits are recoverable.

BER =
Br

BT
× 100% (2.15)

Br is the number of erroneous bits and BT is the number of bits.

2.5 Evaluation

In this section, the proposed algorithms will be evaluated in terms of the key strength,

security of the hidden data, the size of the embedded sensitive data and the used

distortion measurements.

2.5.1 Key Strength Analysis

The security of the algorithms proposed in this work requires that the recipient know in

advance the full IoTs devices readings and the security key, otherwise the confidential

hidden data cannot be extracted and decrypted properly.

The most significant parameter is the security key. It is used to provide two layers

of security: 1) by encrypting confidential information and 2) by generating a random

order of coefficients in the form of a vector and 2D M×N matrix to hide the encrypted

bits randomly (see Fig 2.6 and 2.11). Therefore, this key should be kept secret and

known only to two parties: 1) the sender (e.g. smart meter) where the key should be
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Table 2.2: Examples of key lengths and possible combinations

Key length Character set Probabilities

64 US-ASCII 7.2e+134

64 UTF-8 1.3e+154

64 UTF-16 ∞
128 US-ASCII 5.2e+269

128 UTF-8 ∞
128 UTF-16 ∞

burned and used whenever the collected IoTs device’s readings are sent, and 2) the

receiver (e.g. operation centres) who can properly retrieve and check the validity of

the hidden sensitive information, whereas only the stego IoTs device’s readings can

be seen by other parties (e.g. public cloud providers). In our research, the key is

generated and is kept secret at the IoTs end-point and at the recipient side. Our

algorithms’ key strength can be quantified as the number of entropy bits H (see Eq

2.16) where 2H is the number of possibilities that should be exhausted by an intruder

during a brute-force attack.

H = log2N
L (2.16)

L is the symbol’s length and N symbolises the probabilities of these symbols. Table

?? displays examples of different key lengths, character sets and the total number of

their probabilities. Therefore, the longer the key and character set are, the stronger

the algorithm becomes.

2.5.2 MD1: Walsh-Hadamard based Steganography

Unauthorised retrieval: The key is used to generate a hiding order in

one-dimensional vector format. Therefore, to protect the hidden and secret

information from being extracted without the key, the total number of combinations

after applying FWHTs on the host data (i.e. normal IoTs device readings) should

have a suitable size (see Eq 2.17).

T =

m∑
i=1

R!×
n∑

j=1

C!×NL (2.17)
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where T is the total number of combinations, R and C are the number of rows and

columns from the reshaped coefficients matrix using the generated vectors.

Hidden Data Size: The total amount of hidden data mainly relies on the total

number of IoTs device’s readings (e.g. watts) and the Walsh-Hadamard resultant

one-dimensional coefficients (see Eq 2.18).

b =
t∑

i=1

v × l (2.18)

where b is the total number of hidden bits, t is the total coefficients, v is the selected

values, and l is the number of hidden bits in each Walsh-Hadamard resultant values.

2.5.3 MD2: Wavelet-based Steganography

Unauthorised Retrieval Analysis: The key is employed to create a hiding order

in 2D format to match the resultant wavelet tree. Therefore, to prevent retrieving

the hidden, confidential information without the key, after the DWT decomposition

of the IoTs devices readings host data, the 32 sub-bands coefficients tree should have

a suitable size (e.g. > Key length)(see Eq 2.19).

T =
r∑

i=t

R!×
c∑

j=t

C!×NL (2.19)

where T is the total combinations’ number, R and C are the rows and columns numbers

from the 32 sub-bands coefficients tree and t is the minimum number of sub-bands

coefficients that can be used from each row.

Assume smart meter’s readings (in watts) comprise 1024 samples in length, and

the 32 sub-bands coefficients matrix are a 32 × 32 size after applying DWT. The

assumed threshold (t) is 32× 16, the key length is 128 and its character set is UTF-8

(see Eq 2.20).

T =

32∑
i=1

32!×
32∑

j=16

32!× 256128 ⇒ T = ∞ (2.20)

Consequently, this proves that the ability to properly retrieve and decrypt the

intended confidential information in a reasonable time is highly improbable.



42 CHAPTER 2. STEGANOGRAPHY TO PROTECT IOTS STREAMS

The Size of Hidden Data: The total amount of hidden data relies on the total

number of IoTs device’s readings (e.g. watts) and the steganography level (see Eq

2.21).

b =
t∑

i=1

n

2
×B (2.21)

where b is the total number of hidden bits, t is the total coefficients’ number in each

sub-band after decomposing the original samples, n is the total sub-bands number,

B is the steganography level, that is the number of hidden bits in each sub-band’s

coefficient.

This means that after decomposing the normal readings with 5-level DWT , the

resultant coefficients will be distributed under 32 sub-bands. Only high-frequency

sub-bands from 16 to 31 are split resulting in a 2D matrix. The total number of

columns represent the maximum sub-bands’ number of 16, and the total number of

rows represent the maximum number of resultant coefficients under each sub-band.

In every coefficient, several bits will be hidden at the steganography level; therefore,

the longer the total number of readings, the larger the size of the hidden data. We

conducted intensive experiments to achieve a reasonable balance between the size of

hidden bits in each coefficient and the resultant distortion as explained in Section

2.5.3. Based on that, about 5 bits will be hidden in each coefficient. Therefore, the

total size of hidden data will be an accumulation of the total number of bits hidden

in each high-frequency sub-bands coefficient.

For example, assume that 5-level DWT decomposition is applied to normal

IoTs readings, each resultant sub-band coefficients number is 512 (i.e. value of n).

Therefore, the 2D split matrix will be the size of 16 × 512 (i.e. 16 is the value of t).

Also, assume about 5 bits (i.e. value of B) are hidden in each coefficient. Therefore,

around 5120 bytes (5 KB) of confidential data can be hidden inside these coefficients.

2.5.4 Comparison of our MD1 vs MD2

Two novel models are introduced that rely on the Walsh-Hadamard and Wavelet signal

processing techniques. Our first algorithm, MD1, relies on a much lighter and faster
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transformation technique, such as Fast Walsh-Hadamard Transform in terms of time

(i.e. linearithmic complexity n log n) and operations (i.e. based on additions and

subtractions) [61]. However, the output is a one-dimensional vector of coefficients and

so the generated random order is also a vector level which results in mild security.

On the other hand, the second model, MD2, relies on wavelet transform and the

production of multi-dimensional sub-bands wavelets tree. This is a relatively expensive

process requiring both time, based on quadratic complexity, and operations, based on

multiplications[72]. Nevertheless, due to the obtained two-dimensional wavelet tree,

the random order also generated in 2D dimensional space.

In terms of the possible of hidden data size, MD1 can hide more data by using

more than 80% of the obtained coefficients, whereas MD2 can embed less data by

using only low sub-bands that hold 50% of the coefficients. Conversely, both models

demonstrated < 0.5% resultant distortion in all cases, as discussed in the Experiments

and Results section. In brief, this means the Walsh-Hadamard based model (MD1)

has a faster and higher hiding capacity with mild security, whereas the wavelet-based

model (MD2) is slower with a lower hiding capacity, but maintains stronger security.

2.5.5 Steganography Efficiency Measurement

To accurately evaluate the effect of our algorithms on the difference between the

original and the stego IoTs device’s readings (i.e. resultant distortion), a well-known

measurement called a Percent of Root-mean-square Difference (PRD) is calculated,

after applying the signal processing transforms. The PRD can accurately measure

any reconstruction error between the original and the reconstructed form as defined

in Eq 2.22 [1].

PRDj =

√∑m
i=1(ci − c̃i)∑m

i=1(c
2
i )

× 100 (2.22)

where ci is an original coefficient, and c̃i is the reconstructed stego form.

Identically, the distortion caused by the retrieving process is measured by

calculating PRD between the original and the extracted IoTs device’s readings after
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removing all hidden, sensitive bits. The results are presented in the next section of

this paper.

2.6 Experiments and Results

Our experiments are classified into two main parts: 1) Embedding which is used by

distributed IoTs devices to hide secret information in their normal readings and the

steps explained in Sections 2.3 and 2.4; 2) Extraction occurring on the recipient side

(e.g. operation centres) so even if the IoTs devices’ normal readings contain the hidden

sensitive information are intercepted or tampered with by unauthorised parties, it will

not disclose any information and it can be easily checked and verified.

2.6.1 MD1: Walsh-Hadamard based Steganography

In our experiments, various IoTs devices’ readings were randomly selected from two

different datasets. The first dataset is collected and published by Intel Berkeley

Research Lab 2004 [73], and the second is collected and published by research group

from University of North Carolina at Greensboro 2010 [74]. For brevity in this chapter,

most of the results that will be shown are data, such as temperature, humidity, light

and voltage, are collected by environmental monitoring IoTs sensors. Experiments

were performed for each result to hide and retrieve the sensitive information according

to our algorithm described in Sections 2.3.3 and 2.3.5. The confidential data was a

set of information that must be kept confidential such as IDs, geometric location data

and other private information. These are converted into bits to be hidden inside IoTs

device’s readings.

To obtain unbiased results, we experimented with our proposed algorithm with

different keys as well as various IoTs streams lengths, such as 512, 1024, 2048 and

4096 samples. Also, to get the highest distortion effect, all high sequence coefficients

have been used. For brevity, we present six cases of our results. 1) Fig. 2.13 shows an

example of four original IoTs streams plots (temperature, humidity, light and voltage)

used to hide sensitive information, and the stego form before and after the stego
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Figure 2.13: Four examples of IoTs sensors’ readings: (a) direct plot for original form
(b) stego form that contains the hidden sensitive information (i.e. IDs and geometric
location data) and (c)extracted form (i.e. after removing the sensitive information).

Table 2.3: PRD results for temperature and humidity IoTs sensors readings from
Dataset 1

Temperature Humidity
Segment
No

PRD %
stego

PRD %
Extracted

PRD %
stego

PRD %
Extracted

1 0.1482 0.1705 0.0820 0.1016

2 0.1413 0.1702 0.0912 0.1048

3 0.1781 0.2128 0.0764 0.0940

4 0.1791 0.2055 0.0717 0.0892

5 0.1205 0.1440 0.0795 0.0943

6 0.1792 0.2115 0.0700 0.0842

7 0.1575 0.1930 0.0678 0.0800

8 0.1339 0.1633 0.0772 0.0933

9 0.1251 0.1535 0.0845 0.1037

10 0.1760 0.1979 0.0769 0.0920

11 0.1683 0.1969 0.0756 0.0892

12 0.1226 0.1495 0.0977 0.1203

extraction process. 2) Table 2.3 shows the exact PRD results from the temperature

and humidity IoTs streams between the original and stego form as well as between the

original and the extracted forms. 3) Table 2.4 shows the PRD results from light and

voltage IoTs readings. 4) Fig. 2.14 proves that whenever a fixed amount of sensitive
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data is hidden in a bigger host data size, the amount of distortion is slightly decreased.

5) Fig.2.15 shows that, despite using all host data samples in the hiding process with

different sizes (e.g. 512, 1024 and 2048), our algorithm behaviour and the resultant

distortion is still stable whenever the same number of host data samples is used. 6)

Fig. 2.16 accurately measures the time and the space taken by the proposed algorithm

to accomplish both phases of the hiding and the extraction which clearly is very low

- < 0.03 seconds - in all cases.

Table 2.4: PRD results for light and voltage IoTs sensors readings

Light Voltage

Segment
No

PRD %
stego

PRD %
Extracted

PRD %
stego

PRD %
Extracted

1 0.0354 0.0423 0.1712 0.5733

2 0.0129 0.0150 0.5072 0.2203

3 0.0672 0.0670 0.3266 0.2187

4 0.0658 0.0789 0.7298 0.2287

5 0.0617 0.0767 0.0721 0.3220

6 0.0672 0.0715 0.5449 0.2485

7 0.0677 0.0793 0.6236 0.2388

8 0.0410 0.0484 0.6989 0.1923

9 0.0296 0.0357 0.6114 0.2093

10 0.0841 0.1014 0.2169 0.2277

11 0.0691 0.0886 0.3319 0.2509

12 0.0672 0.0670 0.2204 0.2104

In all cases, despite the different sizes of IoTs sensors’ readings and different ranges

of values, all PRDs are ≤ 0.6 %. This means that the effect will only be to the third

or fourth decimal values which are ignored in the temperature and humidity cases.

This proves that our proposed algorithm will be stable and provide little distortion on

the original IoTs sensors’ readings. On the other hand, it offers a great advantage by

securing the sensitive information in such a way that: 1) does not increase the actual

IoTs streams size, 2) preserves the bandwidth, storage space and power consumption

at the distributed IoTs end-point environment, and 3) only an authorised receiver

can retrieve the hidden secured information: others (e.g. CPs) can only see the

watermarked form which is almost similar to the original IoTs readings.
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Table 2.5: PRD results for temperature and humidity IoTs sensors readings from
Dataset 2

Temperature Humidity
Segment
No

PRD %
Watermarked

PRD %
Extracted

PRD %
Watermarked

PRD %
Extracted

1 0.0174 0.0761 0.0327 0.1335

2 0.0177 0.0776 0.0289 0.1386

3 0.0168 0.0766 0.0280 0.1458

4 0.0172 0.0773 0.0326 0.1338

5 0.0145 0.0695 0.0315 0.1333

6 0.0197 0.0765 0.0300 0.1350

7 0.0208 0.0778 0.0265 0.1391

8 0.0148 0.0807 0.0354 0.1447

9 0.0135 0.0789 0.0278 0.1449

10 0.0173 0.0753 0.0277 0.1329

11 0.0175 0.0761 0.0332 0.1475

12 0.0188 0.0784 0.0299 0.1419
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Figure 2.14: Fixed amount of sensitive data of size X is hidden in different host data
size 512/1024/2048/4096. Distortion decreased with more host data size. (a) PRDs
between the original and stego form, (b) PRDs between the original and the extracted
form.

Comparison with Existing Models To the best of our knowledge, there is no

research that used steganography with Walsh-Hadamard Transform signal processing

to protect the privacy and the authenticity of the collected and transmitted data in

the IoTs sensor streams context. However, recent work proposed by Huang and Fang
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Figure 2.15: Despite using all host data samples, there is stability in the resultant
distortion whenever we used the same number of samples (e.g. 16 cases use 512, 16
cases use 1024 and 16 cases use 2048) temperature samples. (a) PRDs between the
original and stego form, (b) PRDs results between the original and the extracted form.
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Figure 2.16: The required time and space to hide and extract sensitive information in
the collected IoTs sensors readings.

[51] has a similar approach with different context. Therefore, our work is compared

with this recent technique in [51] where the authors used a histogram and quad-tree

decomposition to hide user identification in the transmitted image.

There are three main improvements in our technique: 1) The capacity of the

hidden information is much higher in our algorithm than in model [51] where up
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Table 2.6: Summary of improvements.

Feature Model in [51] Our algorithm

Size of hidden information per
coefficient

1 bit 5 bits

Extra Overheads >= x% 0%

Hiding Mechanism Static Dynamic-Random

Security Key -
√

to 5 bits can be hidden in each coefficient because of using FWHT, whereas only 1

bit can be embedded in their algorithm. 2) There is no overhead in our algorithm

which means the size of the watermarked coefficients is equal to the original size,

whereas the algorithm in [51] has a certain size of overheads because of using quad-tree

decomposition. 3) Most importantly, our algorithm is more secure than the model in

[51] because they are hiding the sensitive bits directly into a static fixed positions

without a security key. In our algorithm three layers of enforced security scramble the

resultant coefficients, encrypt the sensitive data and generate a random order to hide

the bits dynamically in different and random coefficients. Table 2.6 highlights most

of the improvements over existing techniques.

2.6.2 MD2: Wavelet-based Steganography

In our experiments, a wide range of IoTs devices’ readings were randomly selected

from datasets that are collected and published as part of a project named ‘Smart*’

by the Laboratory for Advanced System Software [75, 76]. The datasets contain

minute-by-minute periodic readings for three months from three homes. The readings

are related to power (e.g. watts consumption and heat index) and the environment

(e.g. inside/outside temperature and humidity, and wind chill). They also contain

electricity power consumption from 400 anonymous homes every minute for (24×30×
3) hours. As per the spatial and temporal aggregations definition in [77], these readings

are regarded as temporal, because they are collected separately from every single house

by equipping it with a smart meter that releases its readings on a regular basis. In this

study, all types of readings mentioned were used to thoroughly consider the feasibility

of implementing the proposed algorithm to various IoTs streams. Experiments were
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Figure 2.17: Three examples of watts consumption readings collected from different
homes: (a) direct plot for original form (b) stego form that contains the hidden
sensitive information (i.e. meter ID, household name, DoB, address and total watts)
and (c) extracted form (i.e. after removing the confidential information).

performed to hide and extract the confidential information according to our proposed

algorithm described in Sections 2.4.3 and 2.4.5. The confidential data was a set of

information that is secret, such as smart meter IDs, geometric location data, household

names, DoBs, addresses and the total watts consumption all of which were converted

into bits to be hidden inside IoTs device readings.

To avoid biased results, we experimented our proposed algorithm with different

keys as well as various IoTs sensor streams with lengths of 512, 800, 1024, 2048

and 4096 as samples. Also, to get the worst distortion effect, all detailed sub-band

coefficients have been used. For brevity, we present three cases of our results in this

section: 1) Fig. 2.17 shows an example of a plot with three original smart meter

readings showing watts consumption used to hide sensitive information, and the stego

form before and after the stego extraction process; 2) Fig. 2.18 shows an example of

another plot of six original smart meters’ readings of inside/outside temperature and

humidity, wind chill and heat indices, and the stego form before and after the retrieval

process; 3) Tables 2.7, 2.8 and 2.9 show the exact PRD results from the watts, heat
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Figure 2.18: Six additional examples of possible smart meter readings: (a) direct plot
for original form (b) stego form that contains the hidden confidential information and
(c) extracted form (i.e. after removing the confidential information).

index, temperature and humidity readings between the original and stego form, as

well as between the original and the extracted forms.

From all cases, despite the different sample lengths of IoTs streams and various

ranges of values, all PRDs are less than ≤ 0.6 %. This means that the impact will

only be to the third or fourth decimal digits which are usually ignored in many cases;

for example, watts, temperature and humidity. To avoid inaccurate calculation of

financial bills, the total watts consumption is also hidden. Consequently, this proves

that our proposed algorithm will have stable and little distortion on the original IoTs

streams. On the other hand, it offers a great solution with a paradigm shift for securing

the confidential information that should be transmitted, as well as the authenticity

of smart meter readings. The advantages of this solution are: 1) strong end-to-end

confidentiality and authenticity where the hidden secured information (including the

total watts consumption) can only be retrieved and verified by an authorised receiver,

whereas others can only see the stego form which is almost similar to the original IoTs

readings; 2) no increase in the actual size of smart meter readings, and 3) no change

to the original form of readings which helps the authorised recipients quickly use
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Table 2.7: PRD results for Watts and Heat Index readings

Watts Heat-Index

No
PRD %
Stego

PRD %
Extracted

PRD %
Stego

PRD %
Extracted

1 0.0006 0.0007 0.0016 0.0021

2 0.0005 0.0006 0.0016 0.0020

3 0.0004 0.0005 0.0015 0.0020

4 0.0006 0.0007 0.0016 0.0019

5 0.0006 0.0008 0.0015 0.0019

6 0.0003 0.0004 0.0016 0.0019

7 0.0004 0.0005 0.0018 0.0021

8 0.8797 0.5797 0.0016 0.0020

9 0.4689 0.4689 0.0018 0.0023

10 0.0003 0.0003 0.0017 0.0020

11 0.0003 0.0004 0.0016 0.0020

12 0.0007 0.0008 0.0017 0.0021

13 0.0004 0.0005 0.3638 0.3638

14 0.0004 0.0006 0.1700 0.1700

15 0.0006 0.0007 0.0019 0.0023

operational administrations, such as cloud providers, without disclosing any sensitive

information.
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Figure 2.19: Distortion Comparison for different PRD results of 512 samples of power
consumptions between our algorithm and the model in [1]. (a) PRDs between the
original and Stego form, (b) PRDs results between the original and the extracted
form.
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Table 2.8: PRD results for Inside and Outside temperature readings

Inside Temperature Outside Temperature

No
PRD %
Stego

PRD %
Extracted

PRD %
Stego

PRD %
Extracted

1 0.0015 0.0019 0.0016 0.0021

2 0.0014 0.0019 0.0016 0.0021

3 0.0015 0.0018 0.0016 0.0021

4 0.0015 0.0019 0.0016 0.0020

5 0.0015 0.0020 0.0016 0.0020

6 0.0015 0.0018 0.0016 0.0020

7 0.0014 0.0018 0.0017 0.0021

8 0.0014 0.0018 0.0016 0.0020

9 0.0015 0.0019 0.0018 0.0023

10 0.0015 0.0018 0.0016 0.0021

11 0.0014 0.0018 0.0015 0.0019

12 0.0015 0.0019 0.0016 0.0021

13 0.0015 0.0018 0.3341 0.3341

14 0.0015 0.0019 0.1599 0.1599

15 0.0015 0.0019 0.0018 0.0024

Table 2.9: PRD results for Inside and Outside humidity readings

Inside Humidity Outside Humidity

No
PRD %
Stego

PRD %
Extracted

PRD %
Stego

PRD %
Extracted

1 0.0023 0.0029 0.4201 0.4215

2 0.0022 0.0027 0.4580 0.4589

3 0.0022 0.0029 0.1471 0.0613

4 0.0023 0.0029 0.0612 0.0020

5 0.0023 0.0030 0.0087 0.0088

6 0.0026 0.0032 0.3224 0.3224

7 0.0024 0.0031 0.0014 0.0018

8 0.0025 0.0031 0.5102 0.6102

9 0.0026 0.0033 0.0015 0.0019

10 0.0024 0.0031 0.2643 0.2643

11 0.0024 0.0030 0.1432 0.1433

12 0.0024 0.0030 0.1011 0.1011

13 0.0020 0.0025 0.4278 0.5278

14 0.0029 0.0034 0.3898 0.3898

15 0.0027 0.0034 0.0015 0.0019
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Figure 2.20: Distortion comparison for different PRD results of 512 samples of
Humidity readings between our algorithm and the model in [1]. (a) PRDs between
the original and Stego form, (b) PRDs results between the original and the extracted
form.

Comparison with Existing Models To the best of our knowledge, there is no

research work that uses steganography with wavelet transformation signal processing

to hide IoTs confidential information in the resultant wavelet tree. However, recently

there is a proposed study [1] uses a similar approach in a different context. Therefore,

our proposed technique is compared with this recent model in [1] where the authors

proposed a steganographic technique to hide patients’ confidential information in

their collected electrocardiogram signals using signal processing. There are two main

improvements in our algorithm: 1) After experimenting both models on different sets

of IoTs streams (see Fig 2.19 and Fig 2.20), it should be noted that our algorithm

has much less distortion and is more stable than the model in [1]. This is because

only high-frequency sub-bands are used in the hiding process, whereas all sub-bands

coefficients are used in their model. 2) Both algorithms use a security key to encrypt

the confidential information; however, our algorithm is more efficient in terms of

generating and managing the random hiding order matrix. This is because in our

model, this matrix is dynamically generated on the fly using the security key, whereas

in the model [1] the random order is statically stored in a form of 2D matrix of size

128× 32 which obviously consumes the storage space in addition to the security risk
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of storing and managing this matrix.

2.7 Chapter Summary

In this chapter, two novel steganography algorithms that rely on different

mathematical security models (the vector space and the two-dimensional tree) have

been designed and implemented by using the key to encrypt the sensitive information,

reshape the coefficients into a random hierarchy, and randomly generate an order

used in the hiding process. To broaden the hiding capacity, insertion of sensitive

information and to maximise the randomisation process, the Fast Walsh-Hadamard

and DWT processing techniques were exploited - we transformed the IoTs high streams

from their spatial domain to their frequency domain in order to recognise and collect

most of the readings’ features in some coefficients, thus allowing others to be used

freely to hide more data. The two new proposed models in this chapter vary in their

simplicity by using the MD1: Walsh Hadamard-based steganography versus security

with MD2: Wavelet-based steganography. The key contribution of both techniques is

that they protect the privacy and the authenticity by neither increasing nor changing

the form of the transmitted IoTs readings. This means only data owners can retrieve

the seal, whereas others are just monitoring the protected form of the readings which

is almost similar to the original readings. On the other hand, the protected streams

can be directly used without revealing privacy nor the authenticity at the third-party

cloud servers.





Chapter 3

Protected IoTs Manipulation

Detection and Recovery

This chapter answers the second research question discussed in Section 1.2. The

main concerns about the possibility of intentional or unintentional noise are examined

along with the issues of losing the hidden secret information and damaging the

transmitted readings. This chapter highlights how a combination of steganography,

error detection and correction is a possible technique to overcome some of the

challenges. Section 3.1.1 introduces the main contributions of this chapter and how

they were accomplished. Section 3.2 briefly highlights the key related works and the

efforts of other researchers to solve the issue. Section 3.3 explains in detail our novel

model including the design, secret information encoding, readings decomposition and

manipulation, readings re-composition, manipulation detection and recovery. The

evaluation of various characteristics of our model including complexity analysis and

correction capabilities are introduced in Section 3.4. Experimental examinations of the

model are presented in Section 3.5 detailing the test bed scenario and the ‘wide range

of noise mimicking the real world’ scenario, recovery of lost hidden data, a possible

remedy of the actual IoTs high streams and a comparison of existing techniques.

Section 3.6 summarises this chapter.

57
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CHAPTER 3. PROTECTED IOTS MANIPULATION DETECTION AND

RECOVERY

3.1 Introduction

The classic power grid of the past 100 years is now regarded as unsuitable to 21st

Century requirements for reasons such as outage management deficiencies, a lack

of automated and real-time analysis [78, 79]. Consequently, a new Internet of

Things (IoTs) infrastructure called the ‘smart grid’ has presently emerged and can

be used to automatically gather periodic smart meter readings at every second or

minute for power consumption and environmental characteristics of the premise, and

transmit them to operational centres using various techniques [80, 81]. Significant

benefits include improved efficiency for automated outage management, accuracy

for continuous-dynamic electricity distribution and sustainability regarding climate

change mitigation. However, the unusual amount of the continuous transmitted data

from millions of premises and the enormous demand on the spectrum reservation

results in wireless communications issues, such as ‘spectrum scarcity’ [82].

To solve these issues, a new wireless communication technology emerged called

Cognitive Radio (CR) [83, 84]. The basic idea is that the licensed spectrum for

various parties (e.g. premises) can be shared by Secondary User (SU) whenever the

Primary User (PU) is idle (i.e. white space). The main purposes are: (1) improving

the communication performance and throughput, and (2) reducing the interference

between the applications that use the identical or overlapping bands, such as Bluetooth

and ZigBee at 2.4 GHz [85–87]. Therefore, tremendous efforts are made to exploit

this opportunity in the IoTs context [23, 88–91]. Despite the obvious advantages, CR

smart grids cause many security and robustness issues due to sharing the transmission

spectrum [92, 93].

Recently, a widely-known technique in multimedia domain called steganography

was exploited to ensure privacy without changing the form of the transmitted readings,

such as in models [2–4] in Chapter 2. Steganography can protect the sensitive

information where a piece of a secret message is hidden inside the host data and can

only be retrieved by authorised users. However, due to shared spectrum characteristics

in CR mechanism, where PUs and SUs are sharing the same band simultaneously,
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of bits

Decode to orginal
form
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Figure 3.1: The main unique challenges that highlight the contribution of this chapter.

the transmitted data are highly prone to an intentional (i.e. interference) and

unintentional (i.e. noise) attacks rendering the existing solutions impractical [23].

This is simply because any slight change in the transmitted stego form of readings

will result in a loss of hidden information, such as household sensitive data, and more

significantly, a loss of faith in the received readings. There are three possible outcomes:

it may be too late to ask the source to resend (especially in critical cases), the source

is often configured to forget what it sends directly due to resource constraints, and

the destination has no return channel to the source. In an extreme case, this may

happen to a million premises on the same day!

To overcome the deficiencies of the aforementioned models, we are compelled to

address the following questions (see Fig. 3.1).

1. How can any change in the hidden secret information be detected and recovered?

2. Can the recovered secret information be used to remedy the received collected

CR IoTs readings?

3. Can above two be met without revealing the sensitive information to cloud

providers or without changing the form of the transmitted readings?

3.1.1 Contributions

• To the best of our knowledge, it is the first novel hybrid model that combines

advanced steganographic algorithms with error detection and correction

techniques (Bose-Chaudhuri-Hocquenghem (BCH) syndrome codes) in the
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Figure 3.2: The main scenario of our proposed model where customers confidential
information is encoded and hidden inside IoTs normal readings and only authorized
users can retrieve, detect, recover this confidential data and remedy the received
readings.

context of IoTs streams. This will allow us to detect and recover any loss

from CR shared spectrum noise drawn from hidden confidential information

without privacy disclosure, and it will also allow us to remedy the received

normal readings by using the corrected version of the secret hidden data. Both

cases have been examined carefully and are explained in Section 3.5.

• To the best of our knowledge, it is the first model that strengthens the security

of hiding and increases the randomisation into a 3D level using a fast signal

processing technique called 3D Discrete Wavelet Transform (DWT).

• The integration of BCH with advanced steganographic algorithms highlighted

a new finding this paper will explore in Section 3.5 by simply integrating

error detection and correction techniques with most of the previously proposed

steganography algorithms. These algorithms use the widely-known hiding
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positions - Least Significant Bits (LSB) - will fail to recover the corrupted

hidden bits. Therefore, the hiding positions and coefficients are chosen carefully

to achieve the best Bit Error Rate (BER), that is the recovery accuracy of

the hidden secret information, and the Percent of Root-mean-square Difference

(PRD)/Root Mean Square (RMS) - meaning the remedy precision of the normal

readings. This has been examined thoroughly and is presented in Section 3.5

after monitoring the PRD, RMS and BER results with various ranges of hiding

positions.

In our model (see Fig 3.2), IoTs smart meters are used to collect normal readings

from different customer premises for wattage consumption, heating index, inside and

outside temperature, and humidity. Customer secure information (e.g. grid ID,

geometric location, name, Date of Birth (DoB), address and total power consumption)

will be then encoded using BCH syndrome codes and randomly hidden inside the

normal readings. Finally, the stego normal readings are transmitted to the remote

operational centres via CR shared spectrum. Consequently, the real-transmitted data

size is only of the normal readings with no additional overhead, because the encoded

confidential information is embedded inside them. The stego readings that contain the

hidden information will be stored at operational centres. However, only authorised

users can retrieve the secretly encoded information from the stego normal readings by

using an appropriate key, to detect and recover any alteration to them due to possible

CR interference, as well as to remedy the stego form of readings. Alternatively, offshore

cloud-based servers (and others) can only see the stego form. The second advantage

is that based on our experimental results, even the stego CR smart meter readings

can be cured so there is no need to resend the stego whenever the data is corrupted.

The rest of this chapter is organised as follows. Section 3.2 summarises the relevant

work. Section 3.3 presents our algorithm and its preliminaries. The evaluation of

different characteristics of our proposed technique is introduced in Section 3.4. Section

3.5 discusses the experiments we performed and the results we obtained. We draw

our conclusions in Section 3.6.
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3.2 Related Work

Any solution proposed to protect the transmitted CR IoTs information should

carefully consider the nature of CR smart meters shared spectrum and their

surrounding environment with: (1) security (the privacy of confidential information

and the authenticity of transmitted readings), (2) robustness (detection and recovery

of loss), and (3) efficiency (direct usage of the received readings without privacy

disclosure). However, most current proposed solutions lack a suitable balance between

these three features.

To ensure robustness, most of the existing solutions use traditional error detection

and correction techniques (e.g. BCH or LDPC) in the low level data-link layer where

the packets are independently encoded at the sender location and decoded at the

receiver end [94–97]. The outcomes of these processes will be in the form of a

‘codeword’ that is completely different to the original packet in both size and shape.

Therefore, despite their technical functionalities, their main concern is to ensure the

robustness of the transmitted packets and to totally ignore the other two aspects of

security and efficiency.

On the other hand, a majority of the solutions that focused on the security

(the first aspect) neglect robustness and efficiency. For example, models shown in

[98, 99] provide strong security by using traditional cryptography techniques, such as

asymmetric encryption. However, their efficiency is poor, because all the data should

be decrypted whenever it is used.

An other category of solutions targeted this issue by using a new cryptography

technique, homomorphism, as models in [100–102]. Although they attempted to

achieve a reasonable balance between security and efficiency by using homomorphic

encryption, this non-traditional cryptography is still not feasible in practical

applications for its complexity [2].

The third group of solutions applied steganography - a well-known technique used

in multimedia to ensure privacy and authenticity without neglecting the efficiency

aspect. For example, models [2–4] show applied steganography used to hide a tenant’s
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confidential information in the collected premises readings using signal processing in

[2], whereas the model in [3] was to protect the privacy of the remote CR sensors’

nodes using steganography. On the other hand, the model in [4] proposes a least

significant qubit (LSQb) information hiding algorithm for quantum images. However,

the existing steganography models have limitations - changing a single bit in the

transmitted readings means that results with hidden information cannot be retrieved

and the received readings cannot be trusted.

With all these streams of solutions, none have carefully considered the three aspects

together. This is mainly because they are transplanting widely-known techniques to

a completely new territory, IoTs, without considering characteristics such as using

shared spectrum for robustness issues, applying direct operations at operation centres

for efficiency issues and performing offshore operations using cloud infrastructure for

privacy issues.

To the best of our knowledge, this chapter is the first to research work that tackles

this unique challenge (see Fig. 3.1).

3.3 Methodology

This paper is introducing the first hybrid BCH-based steganography model that can

recover lost hidden secret information and remedy the received corrupted readings.

Due to CR shared spectrum interference in CR IoTs networks, we first recall the

steganography theoretical process as preliminaries which is formulated based on our

previously published works [2, 3].

3.3.1 Preliminaries

The main steps secure the sensitive information, randomise the normal collected

readings, hide the sensitive bits inside the resultant coefficients and finally reconstruct

the readings.
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Securing the hiding At this stage of this paper, we target the hiding process of the

sensitive information in the normal IoTs smart meter readings that must be entirely

random and different among other CR smart meters. This prevents unlawful parties

from retrieving them correctly. Therefore, a security key will be generated for every

CR smart meter and will only be known to the end recipient of the data (i.e. operation

centres). This key has two main tasks:

1. Encrypt the sensitive information that is related to CR smart meters (e.g. IDs,

geometric location), and the household (e.g. name, DoB, address and the total

watts consumption) before the hiding process using symmetric encryption (i.e.

AES), which is very fast and suits the CR smart grid’s technical capabilities (see

Fig. 3.3). This can be defined in Eq 3.1.

fE(O,K) ⇒ Ẽ (3.1)

where fE is an AES algorithm, O is the original smart meter IoTs and household

sensitive information, K is the key, and Ẽ is the encrypted form.

2. Generate random sequences of coefficients to be used to hide the confidential

smart meter IoTs information. This will be completely clear after reading

Section 3.3.2.

Convert
into bits

100100010100111...

Encrypt
1010100110110001...

i

Grid ID: 12345678
Geomtric Location: X/Y/Z

Household

Name: Alsharif Abuadbba
DoB : 1/1/1984
Address: 60 X XX Total Watts: 17000

CR Smart Meter

.........Date: 04/10/2015

Convert
into bits

Figure 3.3: An example of how the sensitive information is encrypted before encoding.

Embedding After encrypting the sensitive information, the randomly generated

order will be followed to hide the sensitive bits, such as power consumption, in the
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normal collected readings. However, to increase the level of randomisations before

the hiding process, different signal processing techniques have been applied (e.g. 1D

and 2D wavelet decomposition). Finally, an inverse process of these signal processing

techniques should be performed to reconstruct the stego readings as they contain the

hidden bits.

Retrieving The legitimate recipient of the stego readings must have the security

key. The process is almost identical to the hiding process except that it extracts the

bits instead of hiding them.

3.3.2 The Proposed Scheme

This section sheds the light on the crucial steps in our algorithm such as encoding, 3D

wavelet transformation, 3D random order generation, and finally decoding, as well as

correction and recovery.

Secret Information Encoding In information theory, BCH syndrome codes are

cyclic linear block error detection and correction codes that are constructed using

finite fields or more precisely, the Galois field [103]. The BCH abbreviation stands

for the discoverers, Bose, Chaudhuri, and independently Hocquenghem. BCH simply

works by breaking the information into chunks of size k, calculating parity check bits

of size p after the division process by a generated arithmetic polynomial gx belongs

to the same chosen Galois field. Each k+ p block is called a ‘codeword’ and its size is

n. These resultant codewords will be packed together and used in the detection and

recovery of the corrupted bits. Theoretically, every BCH (n,k) codes can correct up

to t errors [95].

In this paper, BCH is chosen for two main reasons. (1) The encoding process, which

will be at the IoTs smart meter, is very simple and fast (see Eq. 3.2) compared with

other error detection and correction codes (e.g. LDPC) [96], and so it fits the remote

IoTs devices technical capabilities. (2) It exhibits a stable behaviour in terms of its
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correcting capabilities up to its theoretical entropy t, which explains its wide usage

with satellite communications, disk storage and Automatic Teller Machines (ATMs).

⎧⎪⎨⎪⎩k mod gx ⇒ p

p+ k ⇒ n
(3.2)

Therefore, various BCH syndrome codes are used to encode the encrypted sensitive

information before hiding process by: (1) detecting and correcting the confidential

information in their encrypted format to avoid privacy disclosure, and (2) unlike all

the aforementioned applications, our algorithm uses BCH in such a way that does not

increase or change the actual transmitted IoTs smart meter readings, meaning it has

an efficiency advantage.

Readings Decomposition/Randomisation 3D Wavelet Transform (WT) is a

widely-known linear technique used in signal and image processing that is performed

on the given signal that decomposes into different values called coefficients. These

represent the frequency components at a given time [64]. 3D WT is shown in Eq 3.3.

C(a, b, c) =

∫ ∞

−∞
f(t)ψ(a, b, c)dt (3.3)

where C represents resultant coefficients, a, b and c are positive integers that represent

transform parameters, and ψ is wavelet function [65].

There are two ways of using wavelet which are discrete and continuous. However,

the preferred format is discrete, because it simulates the reality where most of the

produced and analysed real-life information comes in discrete numbers rather than in

continuous functions [66].

There are two main targets when choosing 3D DWT for this paper: (1)

Unpredictable randomisation, robust detection and recovery of the IoTs smart meter

readings by decomposing the waves into 3D frequency domain sub-bands coefficients;

all while avoiding to increase the size in their time domain when the stego form

of readings are transmitted to the operation centres. (2) The readings can almost

be reconstructed from only the low-frequency components, as the approximation
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sub-band coefficients, allowing other detailed sub-band coefficients to be freely used

to embed the encoded sensitive information with a minimum amount of distortion

on the originally transmitted IoTs readings (e.g. watts consumptions). This inspired

us to further use this technique to ensure high randomisation with enough space to

embed more encoded secret information related to IoTs without affecting the actual

smart meter readings.

To conduct the 3D DWT decomposition, two levels of filters (high-band and

low-band) are applied to the original readings. Consequently, two sub-signals

called sub-bands are obtained. The first relates to low-frequency components that

represent the approximation of the original readings. The second sub-band relates

to high-frequency components that represent the detailed coefficients. To avoid the

complexity of multi-level 3D decomposition, a type called ‘single 3D transform’ was

used [65] which is defined in Eq 3.4.

D(i, j, k) =
∑
i

∑
j

∑
k

X(i)Φijk(n) (3.4)

where D(i, j, k) represents 3D DWT coefficients, i, j and k represent the shift and

scale transform parameters and Φijk(n) represents the base time wavelet function that

is shown in Eq 3.5.

Φijk(n) = 2−i/2Φ(2−i(n− j).(n− k)) (3.5)

Therefore, in this chapter, different real-time collected IoTs smart meter readings

of watts, heat index, wind chill, temperature and humidity will be decomposed into 3D

wavelet sub-bands coefficients as shown in Fig. 3.4. The chosen wavelet family in the

decomposition is called Daubechies with the order 2 (db2) because its performance in

analysing discontinuous-disturbance-dynamic consecutive readings has already been

proven to be perfect [68]. To guarantee the lowest amount of distortion, the most

important sub-bands coefficients will not be utilized because they represent the most

significant parts of the IoTs readings. On the other hand, a number of bits will

be inserted in the rest of the detailed sub-bands coefficients, which is called the

steganography level, meaning how many bits can be embedded into each sub-bands
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coefficient. To ensure the minimum acceptable distortion on the actual readings, many

experiments have been performed in [2] and [3] to select an appropriate steganography

level. Consequently, about five bits can be hidden in the randomly-selected high

frequency sub-bands coefficients.

High Fequency
     bands

Low Frequency
   bands

CR Smart meter
readings
e.g. Watts

XY

Z

3D Wavelet Tree

Figure 3.4: Decomposing CR smart meter readings in a 3D sub-bands tree.

Random Coefficients Order The key is utilised to generate three random

coefficients’ sequences in a 3D matrix format that will be used to hide the encoded

secret information. This is defined in Eq 3.6.

fx(K) ⇒ X̃ × Ỹ × Z̃ (3.6)

where X̃ × Ỹ × Z̃ is the generated 3D sequence of coefficients.

Fig. 3.5 shows an example of how the key can be utilised to generate the selected

3D DWT sub-bands coefficients’ order. It initialises by converting the key into ASCII

and a default position value will be assigned. Then, the key ASCII will be arranged
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  X = 4 2 3 5 8 1 7 6

Key Character Set : Z     M    W    a     i      3     f      d

Defult ASCII Order : 90   77   87   97  105   51  102  100

 Defult Position Order : 1      2      3     4    5    6    7    8

Ascending ASCII Order : 51  77  87  90  97  100  102  105
Defult Postion Order : 6    2    3    1    4    8     7      5

Ascending Position Order : 1    2    3    4    5    6     7      8

 Defult Position Order :1    2     3    4     5      6     7     8

Ascending Position Order : 4   2     3     5    8     1     7     6

1

2

3
Defult ASCII Order : 90  77   87   97  105   51  102  100

Portion of the 3D matrix 

Split key into 2, take 3 char
from part 2 and order in an 
      ascending way

5

Z = 2 1 3

Build 3D random order matrix 

Repeat steps 1,2 and 3
 in Descending order

4
Y = 3  2  8  1  4  6  7  5

6

Rows

Depth

Columns

iii

Z

Y

X

Figure 3.5: An example of how the 3D hiding matrix order X̃ × Ỹ × Z̃ is generated
from the key.

in an ascending manner and another position order will be given, again in ascending

order. Next, return the key ASCII to its original format using the default position

order (to avoid producing two similar sequence of coefficients from different keys)

which represents X̃. Almost the identical steps are repeated using a descending order

to generate another sequence of values representing Ỹ . After that, Z̃ is generated by

splitting the key’s characters into two parts, taking three characters from the second

part and calculating the ascending order. Finally, X̃, Ỹ and Z̃ are used to build the

random sequence 3D matrix. However, in our algorithm, the key length will be ≥ 128

bits in length.

Coefficients Rescaling/Manipulation After applying 3D DWT to the normal

CR smart meter readings, the resultant low frequency coefficients are split and rescaled

to 3D X×Y ×Z matrix form (see Fig 3.6). The key is then used to encrypt household

confidential information. The secret information will be encoded using various BCH

syndrome codes. Next, the key will be utilised to generate the 3D random coefficients

order. The encoded bits will finally be packed and embedded corresponding to the

generated order. The detailed process of hiding is shown in Figs. 3.3, 3.5, 3.6 and
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Resultant DWT Coefficients

Frequency sub-bands

Split Low frequency sub-bands
 in 3D form (XxYxZ Matrix)

1

Rescale the numbers to int
and convert into bits2

X x Y x ZPortion of the coefficients matrix

ii

X

Y

Z

X

Y

Z

3D levels Tree

Figure 3.6: Block diagram presents how the 3D DWT sub-bands coefficients are split,
reshaped, rescaled and converted into bits.

00010..01000..101100011...

00010

01000

Portion of the 3D order 
matrixPortion of the 3D Coefficients X x Y x Z

Hide in Coefficient
 (4,3,2). Then, 
(4,2,1) and so on

Hide encoded bits in the 3D XxYxZ coefficients matrix 
following the 3D random order (Fig. 3)

(Fig. 5)

(Fig. 6)iii
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X Y Zx x

Dim 2 (4,3,2)

Figure 3.7: Block diagram summarises the hiding process and uses the information
explained in Figures 3.3, 3.5 and 3.6.

summarised in Fig 3.7

Readings Re-composition The resultant sub-bands values after the embedding

process are called ‘stego coefficients’. At this stage, these coefficients will be

re-combined into a 3D sub-bands coefficients matrix and the inverse 3D DWT will

be applied to convert smart meter readings from their frequency domain to their

original time domain. The result is a reconstructed form called stego IoTs readings

(i.e. contains hidden encoded information) which is quite similar to the IoTs normal
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readings. The significance of that is even the stego IoTs readings can be used as the

original form. However, only authorised recipients with a security key can retrieve the

hidden secret information (e.g. meter IDs, household name, DoB, address and total

watts),and can detect and correct any possible manipulation. The inverse 3D DWT

is defined by Eq 3.7.

X =
∑
i

∑
j

∑
k

D(i, j, k)Φijk(n) (3.7)

where X is the original form of IoTs streams.

Apply
3D DWT

Noisy Stego CR smart meter
readings (e.g. watts)

Split and
rescale

   3D coefficients
   Tree

Key

Generate
order in 3D

Retrieve
Secret Bits3D

coefficients

Coefficients
Order

Decrypt
secret bits

Secret
bits

Household
Sensitive info.

Detect/Correct
secret bits

Remedy Stego
Readings

Cured Stego
Readings

Figure 3.8: An overview of the extraction, correction and remedy processes.

3.3.3 Error Detection and Recovery

To guarantee the robustness of the received IoTs smart meter streams without privacy

disclosure, the BCH decoding process will be performed on the encrypted form

of retrieved secret bits. The main algebraic BCH decoding steps are syndrome

computations, error locator’s polynomial determination, error roots findings, and

finally inversing and correcting [103] which can be summarised as follows:

• Let r(x) = r0+r1x+r2x
2+ ....+rn−1x

n−1 be the received codewords, c is secret

bits and e(x) is the error pattern. Then, r(x) = c(x) + e(x).

• The required syndromes are 2t as s = s1, s2, ...., s2t and is calculated by r×Ht,

where H is a parity-check matrix related to BCH (n,k,t) and its members α are
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Noisy Received Readings

Cured Readings

3D Decompose

Re-compose

Retrieve random hidden bits and organise
11001... 00011... 01010... 11001...

Detect/Correct the secret bits using Syndrome

10011... 11011... 10010... 00111...

Extract

Recovered secret bits

......

.....

Remedy

Figure 3.9: Detecting and correcting the random hidden secret bits (in their encrypted
form) and remedy the received noisy readings at the operation centres.

the primitive elements in the chosen Galois field. H is shown in Eq 3.8.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 · · · αn−1

1 α3 (α3)2 · · · (α3)n−1

...
...

...
. . .

...

1 α2t−1 (α2t−1)2 · · · (α2t−1)n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.8)

• Every si is a result of dividing r(x) by a consecutive minimal polynomial ∅i(x)

of αi in the chosen Galois field.

• If any s(αi) 	= 0, this means that the transmitted CR smart meter readings have

been tampered with and so these syndromes will be used to locate the errors as

shown in Eqs 3.9 and 3.10.

σμ+1(x) = σμ(x) + dμ × d−1
ρ × x2(μ−ρ) × σρ(x) (3.9)

dμ+1 = s2μ+3 + σμ+1
1 s2μ+2 + σμ+1

2 s2μ+1 + ...+ σμ+1
l s2μ+3−l (3.10)

where σi is the coefficients in the i-th term in σμ(x), μ is 1
2 � μ � t, ρ are the

preceding values and l is the degree of current σμ+1(x).

• The roots of the located errors Λ(x) can be found in the form of Eq 3.11.

Λ(x) = (αi1x− 1)(αi2x− 1)....(αivx− 1) (3.11)

• The calculated roots Λ(x) will be inversed within Galois field and used to recover

the corrupted secret bits.
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Finally, the recovered version of the secret bits is used to remedy the received stego

form of IoTs smart meter readings as is shown in Fig 3.9.

However, only the legitimate receiver can decrypt the secret bits by using the key

and to reveal the sensitive information. Fig. 3.8 shows an overview of the extraction,

correction and remedy processes.

3.4 Evaluation

This section focuses on the proposed algorithm evaluation in terms of the key strength,

the security of hidden secret information, the maximum size of household’s sensitive

data that can be hidden, the distortion measurements, and detection and correction

capabilities.

3.4.1 Key Strength

The security of the proposed BCH-based steganographic technique relies on the fact

that, unless the collected IoTs readings and the security key are known in full and in

advance by the recipient, the hidden secret information cannot be retrieved, decoded

and decrypted correctly.

However, the security key is the most critical parameter, because it is used to

enforce two layers of security as seen in Figs. 3.3, 3.5 and 3.6: (1) encrypt the

sensitive information, and (2) generate a random coefficients’ order in the form of the

3D X̃× Ỹ × Z̃ matrix to hide the encoded sensitive bits. Therefore, this key should be

kept secret and known only to two parties: (a) the sender (remote IoTs smart meter)

where the key should be burned and used at any time the collected IoTs readings are

sent, and (b) the legitimate receiver (operation centres) which can properly extract,

decode and verify the validity of the hidden sensitive information. Other parties,

including the cloud, can only see the transmitted stego IoTs readings.

In this chapter, the key is generated and will be kept secret at the IoTs end-point

device and at the recipient’s ends. The key strength of our algorithm can be

quantified as the number of entropy bits Δ (see Eq. 3.12) where 2Δ is the total
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possible combinations that would have to be exhausted by illegitimate parties during

a brute-force attack.

Δ = log2 S
L
p (3.12)

where L is the symbol’s length and Sp is the symbols’ probabilities. Table 3.1 shows

examples of various key lengths, key symbols sets and the total number of possible

combinations. Therefore, the longer the key and the symbol combinations are, the

stronger is the algorithm.

3.4.2 Unlawful Retrieval

To prevent certain parties from unlawfully extracting the hidden secret information

correctly without the key, which is a brute-force attack, the rescaled 3D X × Y × Z

coefficients matrix after 3D DWT decomposition of the host data, meaning IoTs smart

device readings, should have an appropriate size (e.g. > Key length) (see Eq 3.13).

P =

x∑
i=ϕ

X!×
y∑

j=ϕ

Y !×
z∑

k=ϕ

Z!×ΔL ×
∏

GF (pm)! (3.13)

where P is the total possible combinations, X, Y and Z are the rescaled 3D coefficients

matrix, ϕ is a threshold that represents the minimum selected coefficients number from

each row, L is the key length, GF is the chosen Galois field, p and m are its base and

space respectively.

For example, assume IoTs smart meter wattage readings are one hour in length,

and rescaled to 3D coefficients matrix of size 32× 16 × 16 after applying 5 levels 3D

DWT. The assumed threshold is 16× 8× 8, the key symbol collection is UTF-16, its

length is 128, and the chosen Galois field of base 2 and space 9 (see Eq 3.14).

P =
32∑

i=16

32!×
16∑
j=8

16!×
16∑
k=8

16!× 65536128 ×
∏

GF (29)! ⇒ P = ∞ (3.14)

This proves that accurately retrieving and decrypting the intended secret sensitive

information is highly impossible.
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Table 3.1: Example of various used keys strength

Key length Symbol Set Possibilities

64 US-ASCII 7.3e+134

64 UTF-8 1.4e+154

64 UTF-16 ∞
128 US-ASCII 5.3e+269

128 UTF-8 ∞
128 UTF-16 ∞
256 US-ASCII ∞
256 UTF-8 ∞
256 UTF-16 ∞

3.4.3 Hiding Capacity

The maximum amount of hidden data fundamentally relies on two parameters: (1)

the total number of transmitted periodically collected readings (e.g. smart meter

samples) and (2) the steganography level (or number of hidden secret bits in each

sub-band coefficient) (see Eq 3.15).

M =

n∑
i=1

((X × Y × Z)−Hc)× Sl (3.15)

where M is the maximum number of hidden secret bits, n is the total IoTs smart

device readings, X, Y and Z are the rows, columns and the depth of the rescaled 3D

coefficients matrix after applying 3D DWT decomposition to the original readings, Hc

is the high frequency coefficients and Sl is the steganography level in each sub-band

coefficient.

For better understanding, assume that 5-level 3D DWT decomposition is applied

to normal IoTs smart meter readings, each resultant sub-band coefficients number is

512 (i.e. value of n). The size of the rescaled 3D matrix is 32×16×16 (i.e. values of X,

Y and Z). Also, assume about 5 bits (i.e. value of S) are hidden in each coefficient.

Therefore, around 5110 bytes (5 KB) of sensitive secret data can be hidden inside

these coefficients.
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3.4.4 Distortion Measurements

To carefully evaluate the effect of our algorithm on the transmitted IoTs streams and

to certify their usability in their stego format, the difference between the original and

stego forms of the readings with resultant distortion has been completely monitored

using a widely-known measurement called a ‘percent of root-mean-square difference’

(PRD). The PRD can accurately measure any reconstruction error between the

original and the reconstructed forms of the signal as shown in Eq. 3.16 [104].

PRDj =

√∑n
i=1(Ri − R̃i)∑n

i=1(R
2
i )

× 100% (3.16)

where Ri and R̃i are the original and the reconstructed form of the sub-bands

coefficients, and n is the length of the transmitted IoTs smart meter readings.

Similarly, the PRD is also used to accurately measure the resultant distortion after

the retrieval and correction processes between the original and the recovered form of

signals after correcting the hidden secret bits. All results are presented in Section 3.5.

In addition, to deeply highlight the detailed impact of the proposed algorithm

on the frequency domain level, we used another well-known benchmark called ‘Root

Mean Square’ (RMS) [105]. The RMS uses a mathematical model called ‘Parseval’s

theorem’ to precisely monitor the differences between two signals on frequency domain

coefficient level as shown in Eq 3.17.

RMS =
1

N

N∑
m=1

| X(m)− Y (m) |2 (3.17)

where X and Y are the 3D wavelet form of coefficients before and after applying the

algorithm. N is the total number of manipulated coefficients.

The same process has been repeated to measure the feasibility of our remedy

operation on the distorted form of received readings. The obtained results have been

summarised in Section 3.5.

3.4.5 Correction Capabilities

To avoid biased results while testing the feasibility of our algorithm, the ability of

detecting and correcting the hidden secret information in their encrypted form, as
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well as using the recovered bits to remedy the received readings, have been carefully

examined. To achieve that goal, three main steps have been followed. (1) The

transmitted stego form has been attacked using different levels of random noise, such

as Gaussian noise, which mimics the impact of many random processes that occur

in nature that is the CR shared spectrum characteristics [106]. (2) The retrieved

and corrected form of secret hidden information was examined using a well-known

measurement called ‘Bit Error Rate’ (BER) which is the number of bit errors per unit

time (see Eq. 3.18). Therefore, the lower the BER is, the better the correction is. (3)

The recovered form of stego readings, after their remedy using the corrected secret

bits, has been compared with their original format using PRD. (See Section 3.5 for

results.)

BER =
Berr

Btotal
× 100% (3.18)

where Berr is the total corrupted bits, and Btotal is the total original hidden secret

bits.

It should be mentioned that every BCH syndrome code (n,k) has a maximum

theoretical entropy t (or maximum correction capability) based on the chosen Galois

field space and the number of secret bits k in each codeword n [103]. However,

the beauty of BCH syndrome codes is that (1) the entropy of detection capabilities

are almost double the correction and so it can easily detect the occurrence of the

manipulation, and (2) the t can be dynamically determined and varied even in the

same Galois field. In other words, it can be scaled based on the criteria of the CR

shared spectrum - the noisier the channel, the higher t should be and vice versa.

3.4.6 Complexity Analysis

Because of the smart meters power and memory constrains, the algorithm’s

functionalities have been designed carefully to avoid the worst computational

complexity such as exponential and factorial. Therefore, the worst computational

complexity of our main functions has been thoroughly measured. (1) Theoretically

using big O notations (see Table 3.2). From Table 3.2, it should be noticed that
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Figure 3.10: The required time and space needed by our algorithm to accomplish
both hiding and retrieval process: (a) 7 types of readings of size 512 samples and (b)
7 examples of readings of size 1024 samples.

most of our functions are linear and have stable time complexity including random

order generation where it has been improved from quadratic to linear by using radix

sorting. Also, to avoid the complexity of the decomposition and reconstruction of

3D wavelet, a single-level 3D-wavelet was chosen instead of the real multi-level 3D.

(2) Experimentally by involving all resultant coefficients from all used datasets in the

process and proved that it is very low - < 0.3 seconds - in all the cases as shown in

Fig 3.10.

Table 3.2: Algorithm Functionalities Computational Complexity

Complexity Time Space

Best Average Worst Worst
3D-DWT/Inverse O(n2) O(nc) O(nc) O(nc)

Random Order O(nk) O(nk) O(nk) O(n+ k)

Scramble Secret O(m) O(m) O(m) O(m)

BCH Encode O(w) O(w) O(w) O(w)

Embedding O(ncb) O(ncb) O(ncb) O(nc +m)

BCH Decode O(wt) O(wt) O(wt) O(wt)

The main functionalities of our algorithm (see Table 3.2) especially that should run

on the remote smart meters are 3D-DWT and its inverse, random order generation,
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encoded information scrambling, embedding and BCH encoding. In addition, the

correction algorithm (BCH decoding) runs on more powerful machines, such as

operating centres. Firstly, let’s assume f(n) is O(g(n)) if f grows at most as fast

as g. Therefore, f(n) = O(g(n)) only if there exists c, n0 ε R
+ such that for all

n ≥ n0, f(n) ≤ c.g(n). Thereby, for each 1D vector of collected reading of size n (i.e.

varies from 512 to 4096 in this example), the worst complexity of these functionalities

is as follows. (i) O(nl) for both the time and space required for 3D-DWT and its

inverse [65], where l is the dimensional level. This is caused by using single-level 3D

instead of the much more complicated multi-level 3D. (ii) O(nk) is for generating

random orders using a constant key length k ε Z - 128 in the implementations - where

it has been improved from quadratic to linear by using radix sorting. The maximum

required space will be an accumulated size of n and k. (iii) The worst time and

space complexity for scrambling the encoded information of size m where at least

< n/2 is O(m). (iv) O(w) -linear- for both the time and space required for BCH

encode, where w ε Z is the number of codewords. (v) O(nlb) for embedding b ε Z

(varies from 1 to 5) the number of bits per coefficient of total size n, whereas the

required space will be a total size of both nl and m. (vi) O(wt) is for the time

required for BCH decode [107], where w ε Z is the number of codewords. However,

the maximum required space will be an accumulated size of w and t.

Finally, it is clear from the time complexity analysis that the best, average and

worst complexities are stable and almost the same. This is because all the collected

readings of size n are used in each functionality of the hiding and correction algorithms.

In addition, to avoid the cost of the 3D model, most of the functionalities have

been designed to have complexity less than polynomial especially those run on the

smart meters. Therefore, the smaller the transmitted periodical readings are, the less

complex is the algorithm.
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3.5 Implementations

3.5.1 Datasets

The datasets of various IoTs smart end-point devices readings have been used in

our experiments, and collected and published by Laboratory for Advanced System

Software as part of a project named ‘Smart*’[75, 76]. The datasets comprise

continuous readings, every minute, from three homes for three months. The readings

are categorised into: (1) power usage, such as watts consumption and heat index,

and (2) environmental features, such as inside and outside temperature, inside and

outside humidity and wind chill. The datasets also provides periodic electricity power

consumption, every minute, from around 400 anonymous homes for (3 × 30 × 24)

hours. Based on the definition of the spatial and temporal aggregations [77], these

readings are temporal, because they are collected separately from every single house

after equipping them with a smart meter that gathers its readings periodically.

3.5.2 Cognitive Radio Characteristics

In our experiments, a well-known CR sensing mechanism which is standardised as

IEEE 802.22 [10] has been simulated. This standard encompasses cognitive capabilities

such as sensing interface, spectrum management, Geo-location and database access.

Table 3.3 depicts the key parameters.

Table 3.3: Cognitive Radio Key Parameters [10]

Feature Value

Operating Frequency 54 ∼ 862 MHZ

Users ≤ 255 Channels

Sensing Time ≤ 2ms Per channel

Burst Allocation Linear

Self-Coexisting Dynamic spectrum sharing

Superscription ratio 40 : 1

Capacity 1.5mbps Upstream
384kbps Downstream

Area Typically 33km Radius
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3.5.3 Experiments Setup

Our main performed experiments are four steps which can be categorised into two

main parts and each has two steps. The first part which is performed by distributed

CR smart grids as follows. (1) Encoding of CR smart meter and household secret

information using BCH. (2) The random hiding by embedding the encoded secret bits

in the household collected normal readings and the steps explained in Section 3.3.2.

The second part will be at the recipient’s end (e.g. operation centres) as follows.

(3) Retrieving the hidden bits as described in 3.3.2, and (4) decoding the secret bits

using BCH. Therefore, even if the IoTs smart meter normal readings that contain the

hidden confidential information are intercepted or tampered with intentionally (i.e.

unauthorised parties) or unintentionally (i.e. channel noise), (1) it will not disclose

any information, (2) it can be easily detected and recovered.

In this chapter, all aforementioned types of readings were used to fully observe the

feasibility of implementing the proposed algorithm on various smart meters. For each,

experiments were performed to embed and retrieve the encoded sensitive information

according to our proposed algorithm described in Sections 3.3.2. The sensitive data

was a set of information that have to be secret which are related to smart meter (e.g.

ID, geometric location), and household (e.g. name, DoB, address and the total watts

consumption). This information is all converted into bits to be encoded and randomly

embedded inside IoTs smart meter readings.

To avoid biased results, our proposed algorithm was experimented with different

key lengths as well as various IoTs streams with lengths such as 512, 1024, 2048, 4096

and more. Also, to obtain the most possible worst distortion result, all low-frequency

3D sub-bands coefficients have been used.

3.5.4 Base Testing Scenario

To validate the effectiveness of the error detection and correction capabilities of

our algorithm, these steps have been followed. (1) We used various best codeword

combinations in every Galois field space; for example, (7,4,1), (15,5,3),(31,6,7) and
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Figure 3.11: Comparison of 40 cases (i.e. after applying 40 random noise levels into
the transmitted stego form of readings) of BER of the recovered secret bits (i.e. after
extraction, decoding and correction) using BCH codes (7,4,1) and various cases of
hiding positions.

(65,7,15). The size of codeword n in Galois field will be 7, 15, 31, 63, 127, 255 and

511 for an easier understanding. Each has maximum theoretical recovery capabilities

t. For example, for k = 7 ⇒ t = 1, for k = 15 ⇒ t = 3, for k = 31 ⇒ t = 7, for k = 63

⇒ t = 15 and so on. So in our experiments, and to avoid unbiased results, the same

levels of random noise have been applied more than 1000 times on every best (n, k, t)

possible combinations. (2) During the transmission of the stego readings that contain

the random hidden encoded bits, various random Gaussian noise levels from the worst

(-9) to medium (30) were imposed to simulate the possible CR channels interference.

To get stable and precise recovery capabilities of our algorithm, these experiments were

repeated more than 1000 times with every single codeword combination possible. (3)

To examine the possibility of improving detection and recovery capabilities of our

algorithm, different hiding positions from 1-to-5, 2-6, 3-7, 4-8, 5-9 and 6-10 were used

with every codeword. (4) Similarly, these steps have been repeated to compare the

best outcomes from the proposed algorithm with previous models as shown in Section

3.5.7.
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Figure 3.12: Comparison of 40 cases (i.e. using 40 random noise levels) of BER of the
recovered secret bits using BCH codes (15,5,3) and various cases of hiding positions.

In all the cases, three benchmarks were carefully measured after the correction and

remedy processes of the received stego form of readings. These are (1) the possible

recovery capabilities using BER, (2) the remedy effectiveness on the time domain

using PRD, and (3) the remedy effectiveness on the frequency domain at 3D level

using RMS.

3.5.5 Results

Our main concerns discussed in the results are that after applying random levels of

noise to the transmitted stego readings, can that manipulation be detected? Can

the hidden secret bits be recovered? And, can the recovered secret bits be used

to remedy the received signal? For brevity in this paper, only a few cases of our

results are presented. (1) Fig. 3.11 shows 40 cases after applying 40 different noise

levels into the transmitted stego form of readings of BER of the recovered secret

bits (i.e. after extraction, decoding and correction) using BCH codeword (7,4,1)

and various cases of hiding positions. (2) Fig. 3.12, 3.13 and 3.14 also show 40

cases of BER of the recovered secret bits using BCH codewords (15,5,3),(31,6,7) and
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Figure 3.13: Comparison of 40 cases (i.e. using 40 random noise levels) of BER of the
recovered secret bits using BCH codes (31,6,7) and various cases of hiding positions.

(65,7,15) respectively with the same hiding positions cases. (3) Fig 3.15 shows a

comparison between different BCH codewords combinations using the best observed

resultant hiding positions (i.e. 6-10) from previous experiments. (4) Figs. 3.18 and

3.19 show the exact PRD and RMS results - from all hiding positions combinations

used - between the original and stego forms before applying the noise, as well as

between the original and the cured forms (i.e. after recovering the secret bits and

remedying the signal). (5) Fig. 3.16 shows an example of a plot of three original IoTs

smart meter readings (i.e. power consumption) used to hide sensitive information,

and the stego form before transmission and after recovery process. (6) Finally, Fig.

3.17 shows an example of another plot of six original IoTs smart meter readings (i.e.

inside/outside temperature and humidity, wind chill and heat index), and the stego

and the recovered forms.

3.5.6 Discussion

In all cases, despite the different sample lengths of the IoTs readings, the various

characteristics and value ranges, all PRDs are < 1%, RMS < 0.01 and up to BER=0.
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Figure 3.14: Comparison of 40 cases (i.e. using 40 random noise levels) of BER of the
recovered secret bits using BCH codes (63,7,15) and various cases of hiding positions.
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Figure 3.15: Comparison of 40 cases (i.e. using 40 random noise levels) of BER
of the recovered secret bits using best hiding positions with various BCH syndrome
codes(n,k,t).

This proves that our proposed algorithm is stable with little distortion impact, reliable

recovery and remedy mechanisms. However, it should be noticed that from the detailed

experiments performed, it was discovered that the same BCH codewords have different
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Figure 3.16: Three examples of watts consumptions’ readings collected from different
homes: (a) direct plot for original form (b) stego form that contains the hidden
sensitive information (i.e. grid ID, household name, DoB, address and total watts)
and (c) recovered form (i.e. after applying the noise and remedy processes).
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Figure 3.17: Six additional examples of possible IoTs (i.e. smart meter) readings:
(a) Direct plot for original form (b) stego form that contains the encoded hidden
information and (c) recovered form (i.e. after applying the noise and remedy
processes).
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behaviours, being the recovery capabilities, based on the hiding positions used. For

example, the least significant hiding positions (1 to 5) that have been used in lots of

papers such as [2–4], are the worst in terms of detecting and correcting the random

hidden bits, whereas the newly configured hiding positions from 6 to 10 are the best

in terms of recovery. Additionally, BCH codeword (63,7,15) has the highest ability to

detect and recover data among these various codes whenever the transmitted stego

readings are faced with high noise interference: it can recover more random error bits

with the penalty of more control bits and less payload. On the other hand, BCH

codeword (7,4,1) is the most desirable among these codes in terms of detecting and

correcting capabilities when the channel is faced with less noise or attack; for example

one corrupted bit in every seven bits.

In summary, the hiding positions (6 to 10) and the BCH codeword (63,7,15) are

the most powerful combinations whenever the transmission channels are prone to

higher noise and attacks, especially in shared environments such as CR spectrum.

Their resultant PRDs are all < 1%, RMS < 0.01% and BER =0. The BER results

mean that all secret hiding information can be recovered from the distorted readings.

The PRD and RMS results mean that the distorted reading can be cured using the

corrected hidden information and the effect will only be to the third or fourth decimal

digits, which are usually ignored in many cases, such as watts, temperature and

humidity. On the other hand, it offers a great solution with a paradigm shift for

securing the sensitive household information that should be transmitted as well as

the authenticity of IoTs smart device readings. The advantages are as follows. (1)

Strong detection and correction mechanisms recover both the hidden bits and the

transmitted readings up to the theoretical entropy without any increase in the actual

size of smart meter readings. (2) There is no change to the original form of readings

that facilitate the usage of operational administration such as cloud providers by the

authorised recipients without disclosing any confidential information.
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Figure 3.18: (20×6) PRD results obtained from various combinations of used hiding
positions both (a) after hiding and (b) after recovery of lost bits and remedy the
received signal in relation to BER. This proves that all resultant distortion has been
minimised to < 1% which means the readings still can be used.
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Figure 3.19: (20×6) RMS results obtained from various combinations of used hiding
positions (i.e. as in Figures 3.11, 3.12,3.13 and 3.14) on 3D frequency domain
coefficients level both (a) after hiding and (b) after recovery of lost bits and remedy
the received signal in relation to BER. This also proves that even on the 3D frequency
domain coefficient level, the resultant distortion are very low < 0.01% which means
the recovery of the original readings is possible after the interference at CR channels.
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3.5.7 Comparison with Existing Models

To the best of our knowledge, there is no research that combines steganography with

error detection and correction techniques, such as BCH syndrome codes, to embed

household sensitive information in their IoTs smart device readings in such a way

that it helps to protect the privacy, and authenticate and provide robustness, as

in detecting and recovering the lost information, without hindering the efficiency of

direct operations on the transmitted readings. However, there are recently proposed

works [2], [3] and [4] that use only steganography in a different context. Therefore, our

proposed technique is compared with these recent models in [2] where a steganography

used to hide tenants’ confidential information in their collected premises readings

using signal processing (Wavelet-stego), whereas the model in [3] was to preserve the

privacy of the remote IoTs nodes using Walsh-stego. On the other hand, the model

in [4] proposes the least significant qubit (LSQb-stego) information hiding algorithm

for quantum images.

There are three main improvements in our algorithm. (1) After applying 40 levels

of random noise on the stego form of readings of all models (see Fig 3.20), it should

be noticed that our algorithm is more robust in terms of detecting and recovering the

distorted hidden information as well as curing the received form of readings (i.e. up to

the theoretical entropy) than the models in [2], [3] and [4]. This is because privacy was

the only concern in those models, so they have zero detection and recovery capabilities,

whereas the targets of this algorithm are privacy, authenticity and robustness. (2) The

selected hiding positions of the models [2], [3] and [4] (i.e. LSB) are much more prone

to be lost whenever the transmitted readings are faced with intentional interference or

unintentional noisy channel attacks as shown in our results (see Fig. 3.20). Therefore,

the hiding positions of the proposed algorithm were chosen carefully to minimize the

loss to the lowest possible level. (3) All algorithms use a security key to cipher the

sensitive information; however, the proposed algorithm is much more secure in terms

of generating the random hiding order matrix. This is because in the proposed model,

this matrix is dynamically generated on the fly using the key in 3D format, whereas
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in the model [3] the random order is only in a vector complexity, in [2] is in a 2D

complexity and in [4] relies on the randomness of the used frequency transformation

technique.
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Figure 3.20: Comparison of 40 cases (i.e. using 40 random noise level cases) of
detection and recovery capabilities (i.e. BER) between the proposed algorithm and
the models in [2], [3] and [4] respectively.

3.6 Chapter Summary

In this chapter, a novel secure BCH based stenographic technique was proposed that

allows legitimate recipients to: (1) detect and recover any loss due to CR shared

spectrum noise from the hidden sensitive information without privacy disclosure; (2)

remedy the received stego readings by using the corrected version of the secret hidden

data, and (3) directly work on the stego form of the normal IoTs readings without

neglecting the privacy or the authenticity of the received readings. To guarantee the

minimum distortion, high randomisation and robust detection and recovery, a 3D

WT is used to decompose the normal IoTs readings to their frequency domain. The

less significant sub-bands are used to embed the encoded sensitive information. To

thoroughly measure the detection and recovery capabilities, random noise levels are
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applied to the transmitted readings. Then, the detection, recovery of the sensitive

information and the remedy of stego readings are deeply examined using BER, PRD

and RMS. It is evident from the experiments that our technique has solid recovery

capabilities (i.e. BER = 0, PRD < 1% and RMS < 0.01%).





Chapter 4

Protected IoTs Size Reduction

This chapter answers the third research question discussed in Section 1.2 by

introducing two novel models. This chapter discusses the main concerns about the

transmission of the unusually large size of Internet of Things (IoTs) readings, the

resultant negative effect on the bit error rate and transmission energy consumption.

Further on, we discuss the issues around the current lossy models and their effect

on hidden secret information, and on the damage of transmitted readings. This

chapter then highlights how a blind lossless compression technique is a likely candidate

to overcome the reduction of protected IoTs readings size at intermediate hops

without revealing the hidden information. This chapter then highlights how a

blind lossless compression technique is a likely candidate to overcome the reduction

of protected IoTs readings size at intermediate hops without revealing the hidden

information. Section 4.1.5 introduces the main contributions of this chapter and

how they have been accomplished. Section 4.2 briefly highlights the key-related

works and the efforts that other researchers took to solve the issue. Section 4.3

explains in detail our first novel model including the design, Gaussian approximation,

margin calculation, Burrow-Wheeler and Move-To-Front (MTF) transform, and

entropy coding. Section 4.4 explains in detail our second novel model including,

design, splitting, stable group reduction, noise group reduction, and code chaining.

We evaluate various characteristics of our models, including a theoretical entropy,

empirical ratio improvement, and performance analyses which are introduced in

93



94 CHAPTER 4. PROTECTED IOTS SIZE REDUCTION
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Figure 4.1: Our model where power consumptions readings from houses are collected
as waveform readings and compressed before transmission to operation centres.

Section 4.5. Section 4.6 presents detailed experimental examinations of the models,

including the test bed scenario and a wide range of protected IoTs readings after the

stego process, their possible reduction ratios (i.e. compress), the actual IoTs protected

high streams after decompression and comparison with available techniques. Section

4.7 finally summarises this chapter.

4.1 Introduction

The IoTs such as smart meters are currently being investigated and deployed into

premises. These can be used to gather periodic waveform readings automatically

every second, such as the power consumption of a premise, and can transmit them

to operational centres using various techniques [79]. According to the latest survey

conducted by the International Council on Large Electric Systems (CIGRE) [108],

there are more than twelve key applications using cases that can be achieved from the

distributed IoTs smart meters. At the top of the list are automatic metering services,

load forecasting and energy feedback. Therefore, there will be an unusual volume of

collected readings from small meter devices that should be transmitted simultaneously

on real-time through limited bandwidth and low energy environment.

By reducing the huge size of the collection of readings before transmission, we

noticed many operational benefits. These are discussed further into the chapter.
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4.1.1 Limited Bandwidth Reservation

Many IoTs smart meter projects are connected through Narrowband Power-Line

Communication (PLC) Links. In Germany, 13 out of 24 metering projects use PLC

[109]. Narrowband PLC works at lower frequencies (3-500 kHz), lower data rates

up to 100s of kbps, and has a longer range going into distance of kilometres. The

collision probability increases relatively with the rise of data volume. Therefore, the

more data every meter must transmit, the more time the bandwidth is required, as

a result disallow or disrupt each other. With the compression model, the data rate

decreases significantly, and likewise, the probability of the collusion.

4.1.2 Energy Saving

The power required for bits’ transfer considerably exceeds the power needed for

the computational complexity of operations on the same device. For example,

transmitting a single bit from embedded devices, such as Mica2Dot, is equivalent

to executing around 2090 clock cycles [110]. Therefore, up to 6270 clock cycles in

every 8260 are saved by the proposed compression in this chapter.

4.1.3 Bit Error Rate Reduction

By reducing the volume of collected data, the time interval required by every meter

to transmit reduces significantly lowering the bit error rate this assists with avoiding

repeated retransmissions of corrupted traffic [109]. This will open space allowing room

for the addition of more devices; thereby, enhancing the reliability and extensibility

of communication infrastructure.

4.1.4 Low Storage Cost

The cost of storing collected data increase exponentially due to the readings volume.

For example, the generated data volume from IoTs smart meters projects of 40 million

households in Germany alone exceeding 25TB per day [6]. Management of the data

worsens due to many government regulations that enforce the preservation the data
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for many years without losing any of its features. Therefore, compression is an ideal

remedy for this problem.

Compression methods of IoTs waveform readings can be classified into two

groups: ‘lossy’ and ‘lossless’ [30]. Lossy compression relies on losing some information

while trying to maintain the main features of the waveform signal. Therefore, the

decompressed signal is somewhat different from the original signal. This kind of

compression was acceptable in the traditional grid model, and so lots of research went

into this field (see summary table 4.1). However, lossy compression has been recently

discouraged for two reasons: (1) the recent IoTs smart devices usage demonstrates

the use of data for crucial purposes such as billings, and (2) to maintain the privacy

and authenticity of the transmitted readings, current models are using steganography

to hide the secret information randomly inside these readings [3]. Consequently,

losing any bit of these readings is no longer tolerated.

In contrast, lossless compression has an obligation to reconstruct the exact

waveform signal as the original with zero loss. With these constraints in mind,

some research has been done in the following categories [5, 8, 9]. However, as per

a recent state-of-the-art study [30], this route is far from being as mature as image,

voice and video lossless compressions. Therefore, we were compelled to look for

better lossless compression mechanisms that achieve a higher compression ratio, while

preserving all features of IoTs transmitted readings. Therefore, the main question

that drives this chapter is that, how can the waveform IoTs protected readings

be pre-processed to significantly reduce the entropy?

4.1.5 Contributions

In this chapter, we introduce the compression algorithms of two novel lossless IoTs

smart meter readings that reduces the protected readings size at intermediate hops

without revealing the hidden information. The first generic Gaussian-based model

target is representing IoTs smart device readings in few parameters regardless of
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the roughness in the signal. This is successfully accomplished using the Gaussian

approximation [111]. The difference between the approximated and the actual

waveform is calculated. Therefore, the compression will be only for margin space

rather than the entire stream of waveform readings. The margin space values

are finally encoded. After thorough evaluation under the same conditions, our

technique was superior to existing models mathematically (the entropy was halved)

and empirically (the achieved ratio was 3.8:1). In the second target model (or the

N-Split model), we lessened the randomness in the IoTs streams into a smaller finite

field to expand the possibility of repetition and avoid the accumulated rounding

errors due to floating operations. This has been successfully achieved by splitting

the collected readings into different groups before reducing them independently. The

achieved ratio was 4.48:1.

4.2 Related Work

Most studies have been conducted on the waveforms collected IoTs smart meter

readings focusing on lossy compression. This is because (1) the readings were not

directly transmitted and used for crucial purposes, such as billings and real-time

analysis in the tradition grid; (2) the effectiveness of a transform technique called

‘wavelet’ helps to represent waveform signals in few values, this means losing some

bits from every reading. The lossy compression can be grouped based on the used

techniques into transform, parametric coding and mixed.

Firstly, transformation models such as the work of J. Ning et al. [33], is where

discrete wavelet transform has been applied to identify most of the signal energy

in low-frequency coefficients (i.e. using dbX), and allowed others to be removed.

Additional work has been conducted using different families of wavelet such as Sluntlet

[115] and B-Spline [116]. Secondly, parametric coding models such as the work of

Tcheou Michel et al. [32] where they used damped sinusoids models to extract signal

features before compression. Finally, mixed transformation and parametric models

such as the work proposed by Ribeiro Moises et al. [121], is where fundamental
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Table 4.1: Related Work Summary.

Set Category Main
Tech

Rept
CRi

Test
CRi

Mat-
ric

ValueComments Ref

Loss-

DictionaryLemp-Ziv 5:1 2.5:1 - - Measurement should be
bin-bin not text to text

[7]

Entropy

Huffman
&
Del-Huf

1.7:1
&
2:1

1.8:1
2.2:1

- - Accurate numbers based on
bin-to-bin

[5]

Arithmic
Code

2.5:1 2.4:1 - - Better than Huffman [9,
112]

less Invert
Golomb

2.8:1 2.8:1 - - Accurate results & less
overhead

[8]

Mixed

Prediction
& LZMA

2.5:1 2.5:1 - - Improve 10% over LZMA [113]

Bzip2 &
Del-Bzip2

2.8:1
&
3:1

2.7:1
2.9:1

- - The best existing lossless
model

[9]

General 2:1
&
4:1

1.7:1
&
1.9:1

- - Reported CRi tested with ≤ 2
decimal precision / Measured
CRi Tested with 4 decimal

[114]

Normalise
based

2:1
&
5:1

1.5:1
&
2.2:1

- - Reported CRi tested with ≤ 2
decimal precision / Measured
CRi tested with 4 decimal

[6]

Lossy

Transform

Daubech
DWT

5:1 - RMS 10−3 Losing info [33]

Slantlet
DWT

10:1 - MSE -
19dB

Serious loss [115]

B-Spline
DWT

15:1 - MSE -
25dB

Very high distortion [116]

WPT &
AC

6:1 - NM
SE

10−5 Losing info. [117]

EZW 10-16:1- NM
SE

10−5 Losing info. [118]

Lifting
WT &
Huffman

20:1 - SNR > 25 Huge loss [119]

Singular
Value

> 20 - MAE
MPE

4.1%
0.036

Losing many bits [120]

Param.
Coding

Damped
sinusoids
modeling

16:1 - SNR >
30dB

Very high distortion [32]

Mixed
Trans &
Param

Basic,
Hamonic
& Trans

16:1 - MSE 30dBHigher distortion [121]
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harmonic and transient coding are used together.

On the other hand, a few studies have been conducted on lossless compression due

to its restrictions and nature of waveform readings. The lossless compression can be

classified based on the technique used into the dictionary, entropy and mixed based

models.

Dictionary-based algorithms rely mainly on general compressors (e.g. ZIP, GZIP

and LZO) where a dictionary is built, more frequent samples will be represented in

fewer bits, whereas more bits are allocated to less frequent samples; for example,

Gerek Omer et al. [7] used Lempel-Ziv to compress a stream of waveform readings.

The achieved compression ratio was 2.5:1 bin-to-bin. However, dictionary algorithms

are fundamentally designed for letters (e.g. English characters) where the number

of options is limited. This is ill-suited for waveform signals because of their floating

point nature. This means every integer number has thousands of images due to its

floating values.

Entropy-based algorithms are statistical models designed by measuring the

probability of every symbol within a stream and allocating a fewer number of bits

for a higher probability and vice-versa; for example, the work of Kraus Jan et al. [9],

Arithmetic coding was used to replace the input symbols with a single floating-point

value. The achieved compression ratio was 2.6:1. Zhang Dahai et al. [5] also proposed

a model that improves Huffman coding by preprocessing the data by using a higher

order delta modulation. The improvement was from 1.7 to 2.3:1. Additionally, Joseph

Tate [8] recently introduced a model that uses Golomb-Rice coding after preprocessing

the data using several methods, such as frequency compensated difference. The

achieved compression ratio was 2.8:1.

Mixed algorithms are more sophisticated techniques using both dictionary and

statistical algorithms. This allows the exploitation both the frequency of repetition

and its probability within a stream of values. For example, Kraus Jan et al. [113]

introduced a model that improves LZMA algorithm by reducing the redundancy in

waveform readings. This is accomplished by using prediction models based on interval
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selection optimisation and differential encoding. The achieved compression was 2.6:1.

Kraus Jan and Tobiska Tomas [9] also proposed a model that improves BZIP2 by using

delta modulation after applying an efficient block sorting Burrows-Wheeler algorithm.

The achieved compression ratio was 2.9:1.

Additionally, M. Ringwelski et al. [114] utilised various general-purpose mixed

algorithms (e.g. Adaptive Huffman Coding, tiny Lempel-Ziv Markov Chain, and

Lempel Ziv Markov Chain Huffman Coding) and performed them on public data

sets (i.e. REDD and TUD) that have either integer entries with one or a maximum

two decimal points. The achieved compression ratio varies between 2-4:1. Andreas

Unterweger et al. [6] also achieved a better compression ratio (e.g. > 2.5-5:1) using

the same data sets by proposing a multi-steps algorithm. They started by normalising

the collected readings before deriving the differential coding. Then, variable length

coding is applied followed by resultant code concatenation before entropy coding.

The effect of data granularity and a wider detailed precision (e.g. three decimal)

of both works [6, 114] have been examined thoroughly by Andreas Unterweger et al.

in [122]. Although they performed well in some appliances-levels, they become less

effective at a coarser granularity especially when the decimal precision exceeds two.

This is because both are designed and performed well for datasets that have either

an integer, and one or a maximum two decimal precisions. In cases relating to recent

use and published datasets (e.g. the datasets targeted in this paper [78, 79]), the

recommended precision is four decimal. Table 4.1 summarises most of the related

work.

4.3 Model 1 (MD1): Gaussian-based Model

The principle behind this proposed technique is to represent IoTs smart meter

collected readings using only a few parameters as accurately as possible. Various

curve fitting functions (e.g. radial base, polynomial, exponential, Gaussian, Fourier

and linear) are investigated to approximate the signal using certain parameters while

maintaining the minimum error margin. Gaussian approximation function is chosen
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Figure 4.2: Three examples of Gaussian approximation optimisation. (a) Plot of more
than 1500 IoTs (e.g. smart meter) power readings and their Gaussian approximations
and (b) plot of the resultant residuals after calculating the margin (i.e. highlighted in
blue). b3 is obviously better due to its very low residuals.

due to its superiority over the others. The margin space between the approximated and

the actual readings has been calculated before encoding them using Burrow-Wheeler

Transform (BWT). This has been followed by MTF and Run Length (RLE) to

eliminate the repetition. Entropy coding is finally applied. The core challenging

task of our model is that the precision of Gaussian model and the selection of its

appropriate parameters is to produce accurate approximated smart meter readings.

4.3.1 Gaussian Approximation

In mathematics, Gaussian approximation is a well-known continuous probability

distribution. It’s significance comes due to its ability to represent real-value random

fluctuated signals whose distribution are not known [111]. This inspired us to use

Gaussian distribution functions in our compression algorithm to approximate the IoTs

smart device readings. Simple Gaussian function is depicted in Fig 4.2 and shown in

Eq. 4.1

f(x) = ae
−
(

(x−b)
2c

)2

(4.1)

where x is a discrete variable and the Gaussian function parameters are represented
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by a = 1
σ
√
2π
, which is the amplitude of the highest peak value, b = μ is the centroid

of the model and c = σ is the peak’s width.

To depict a multi-peak signal, the identical Gaussian equation can be reformulated

as shown in Eq. 4.2.

f(x) =

n∑
i=1

aie

[
−
(

(x−bi)

2ci

)2
]

(4.2)

where n reflects the number of Gaussian functions (i.e. the required peaks to

fit). f(x) represents the IoTs readings. The crucial part is that hthe values of

the parameters are selected? Therefore, a suitable optimisation theory called trust

region algorithm is used to calculate these parameters in our model, due to its robust

behaviour in bad conditions while maintaining very strong convergence properties.

This resulted in minimising the difference between the approximated and the actual

values of the IoTs smart meter readings. The variation between the original readings

(y) and the Gaussian approximated signal (ŷ) is carefully measured by using a

non-linear least square equation as in Eq. 4.3

f =
n∑

i=1

(yi − ŷi)
2 (4.3)

where f demonstrates the sum of the squared-residuals that should be reduced.

Therefore, the Trust region algorithm [111] is used to find the optimum Gaussian

parameters x that is utilised to minimise the objective function represented in f .

This is done by approximating the original function f utilising a quadratic equation

mδ(p) to find out the optimum step size p by which the parameter values x should

be scaled up or down. Additionally, the step value at iteration δ can be specified by

resolving this quadratic equation [123] as shown in Eq. 4.4

mδ(p) = fδ + pT gδ +
1

2
pTBδp (4.4)

where the value of the objective function at iteration δ using the current parameters

values xδ can be reflected as fδ = f(xδ), Bδ is the Hessian of f , and gδ is the gradient

of both the parameter values of xδ at iteration δ and f . The step size value p (i.e. the
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solution of this problem) is restricted to a particular region Δk called trust region as

depicted in Eq. 4.5

‖p‖ ≤ Δδ (4.5)

The trust region can be scaled up or down based on the original objective function

and its accuracy in the approximated quadratic function. For this target, a reduction

factor rk is introduced to examine the performance of the quadratic approximation as

formulated in Eq. 4.6

rδ =
f(xδ)− f(xδ + pδ)

mδ(0)−mδ(pδ)
(4.6)

The trust region Δδ is changed based on rδ as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Δδ ↑ if rδ >

3
4

Δδ ↓ if rδ <
1
4

Δδ → else

(4.7)

The parameters are finally updated utilising step pδ and the operation is repeated

until the stop condition is reached.

For clarity, Fig 4.2 shows three examples of Gaussian approximation optimisation.

(a) Plot for more than 1500 smart meter power readings and their Gaussian

approximations. (b) Plot of the resultant residuals after calculating the margin

(i.e. highlighted in blue), which clearly shows the more the accuracy of Gaussian

approximations is the less left margin values are. In this process alone, more than

50% of the values have been zeroed and others have been significantly reduced. The

advantage of that is achieving higher compression ratio while keeping just a few

parameters to reproduce Gaussian approximation to recover the readings.

4.3.2 Margin Calculation

Gaussian distribution optimisations have been thoroughly examined to achieve the

best possible generic distribution. To avoid unbiased results, the final optimum
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collection of parameters has been used in all our experiments. Next, the difference

between smart meter readings and their Gaussian approximation is calculated (see

Eq. 4.8). The significance of that is the compression will only be on the calculated

margin space rather than the entire set of readings. Also, to avoid large differences in

any consecutive margin calculated values, the first derivative is applied as shown in

Eq. 4.9.

ϕ =

∫ n

i=1
[yi − ŷi] (4.8)

D = [ϕ(2)− ϕ(1)ϕ(3)− ϕ(2)...ϕ(Ω)− ϕ(Ω− 1)] (4.9)

where ϕ is the calculated margin, Ω is the length of ϕ and D is the resultant derivative

vector.

4.3.3 Burrow-Wheeler Transform

After calculating the first derivative on the margin space, we observed there were less

than 10% unique values (see Fig. 4.3). However, they are scattered which minimise

their compression effectiveness. Therefore, BWT is used to rearrange the values to

be in a consecutive long sequence of identical symbols. BWT is originally introduced

by M. Burrows and D. Wheeler [124] to transform text into a different format to

increase its compressibility by applying techniques, such as the MTF technique. The

significance of this algorithm is that it is reversible with zero additional information;

the general idea is to rotate the data (i.e. 1 to n blocks) . Let’s Λ be the block

of symbols in textual or numerical (i.e. numerical in our algorithm) form to be

compressed).

Λ = Λ1,Λ2, ...,Λn (4.10)

The BWT begins by left rotation of the vector Λ in an iterative manner. This generates

a 2D matrix called ω, as in Eq. 4.11
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ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1 Λ2 Λ3 · · · Λn

Λ2 Λ3 · · · Λn Λ1

Λ3 · · · Λn Λ1 Λ2

...
...

. . .
...

Λn Λ1 Λ2 · · · Λn − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.11)

It is clear from Eq. 4.11 that the rows in ω represent various rotations of Λ. A

new version of the initial ω called ω̃ is generated by sorting its rows in ascending way.

The last column C of ω̃ is retrieved and accompanies the index I that points to the

original block Λ.

For a better understanding, let’s assume that the resultant values after the

calculation of the margin and first derivative as shown in Table 4.2. For simplicity,

they have been converted to characters (i.e. represent Λ). Λ is rotated n times (i.e.

number of elements) to generate ω as shown in Eq. 4.12.
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Table 4.2: Conversion from numerical to character values
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Figure 4.4: Graphical representation for encoding a message ”bnnax”.
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a n a | ∧ b a n

n a n a | ∧ b a

a n a n a | ∧ b

b a n a n a | ∧

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

| represents the end of data. ω then is sorted to generate ω̃.

L (i.e. last column) and I (i.e. the index) will be the final output from this stage.

The decoder will rely on L and I to retrieve the original form. This is done by

inserting L as the last column in a temporary 2D matrix of size n×n (i.e. the number

of elements). This column is sorted to figure out the first column. Then the first and

last columns (of each row) together give you all the pairs of successive characters.

Finally, the resultant matrix is identical to ω̃. Therefore, the original form of data is

easily accessible using the parameter I.
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4.3.4 Move-To-Front

Although the output of BWT perfectly clusters similar symbols in long runs, in the

case of IoTs smart meter readings these symbols vary from very small (e.g. 10) to

large values (e.g. 5000). Therefore, to expand the compression effectiveness of any

entropy encoder such as Arithmetic Coding, MTF transform is applied. MTF is a

lightweight algorithm proposed by Ryabko [125], used to increase the probability of

small numbers near zero while decreasing the large numbers in a data list. The general

idea is that each symbol in the data is replaced by its index in the list of currently

used symbols. Therefore, long sequences of similar symbols are replaced by many

zeros, while a rear symbol that has not been used for a long time will be replaced by

a larger number.

Let Υ be all the distinct symbols in the list L obtained from BWT stage which

is shared between the encoder and decoder The MTF algorithm can be summarised

in three steps. (1) Υ is initialised using L. (2) Each Lx in the list L is encoded as

its preceding number of symbols in Υ, which will then be moved to the front of the

distinct list Υ. (3) The final output is constructed in a list ∂ by combining the codes

of step 2.

The decoding process is the inverse of these steps.

For better clarification (see Table 4.3), let’s assume L = [b, n, n, a, a, a] which is

the output of BWT and its distinct symbols Υ = [a, b, n]. The first symbol L0 is b,

and its preceding symbol index in Υ is 1. Consequently, the encoder will output 1 in ∂

and move b to the front of Υ = [b, a, n]. The second symbol L1 is n which is preceded

by two symbols, and so the encoder output will be 2 and updated Υ = [n, b, a]. This

will continue until Llast and the final output of this stage is ∂ = [1, 2, 0, 2, 0, 0, 0, 0].

Note that; two zeros have been added at the end of L to emphasize the significance

of MTF.
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Table 4.3: MTF of L = [b, n, n, a, a, a] and Υ = [a, b, n]

Lx 1 2 0 2 0 0 0 0

Υ abn ban nba nba anb anb anb anb

∂ b n n a a a a a

4.3.5 Run Length

The output from MTF contains many identical consecutive symbols; therefore, a

simple technique called RLE [126] is applied before the entropy codes. The general

idea behind this approach to data compression is this: let’s assume a data item d

occurs n consecutive times in the list of values, the n occurrences of this item will be

replaced with the single pair nd. The n consecutive occurrences of the item are called

a run length of n. For example, the consecutive zeros in ∂ = [1, 2, 0, 2, 0, 0, 0, 0] will

be ∂ = [1, 2, 0, 2, 0#4].

4.3.6 Arithmetic Coding

An entropy encoding technique called Arithmetic Coding AC is applied in our

algorithm to achieve the most possible optimum compression ratio. AC is a statistical

variable length coding by which frequently used numbers will be stored with fewer bits

and not-so-frequently occurring symbols will be represented with more bits [126]. It

is superior in most respects to the better-known entropy coders, such as the Huffman

method. This is because that rather than segregating the input into component

symbols and replacing each with a code, it encodes the entire message into a single

number, a fraction n where (0.0 ≤ n < 1.0).

The main idea is initiating from a certain interval, reading the input list by symbols

and using the probability of each number to narrow the interval. In other words, AC

begins by defining the current interval as (0,1). It then repeats the following two

steps for each symbol Si in the data list: (a) to divide the present interval into

subintervals whose sizes are proportional to the symbols probabilities, and (b) choose

the subinterval for Si which will be defined as the new present interval. Finally, when

the entire data list is processed in this way, the output should be any number that
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Table 4.4: Frequency Distribution in message M

Symbol Probability Accumulative Freq

b 0.4 0.4

n 0.3 0.7

a 0.1 0.8

x 0.2 1

uniquely distinguishes the current interval (i.e. any number in the present interval).

The present interval gets smaller for each symbol processed. The final output is

a single number, called ‘tag value’, and does not consist of codes for the individual

symbols.

To illustrate AC code construction, let’s consider encoding a portion of message

M̃ = (b, n, n, a, x). The full frequency distribution of that message is shown in Table

4.4. Default probability limit is between (0, 1). First, if b occurs, then the tag value

has to be between (0, 0.4). Next, n is detected, so the current interval (0, 0.4) should

be divided into subintervals by using lower and upper limit equations as shown in 4.13

and 4.14 [126].

ln = ln−1 + (un−1 − ln−1)× Fx(xn−1) (4.13)

un = ln−1 + (un−1 − ln−1)× Fx(x) (4.14)

where ln and un are the lower and upper limit of the nth symbol, Fx represents

its accumulative frequency.

After substituting in Eq 4.13 and 4.14, the tag value of the sequence b, n is

(0.16, 0.28). This must be repeated for the entire message accumulatively. All tag

values have been graphically summarised in fig. 4.4. The final compressed value is

the average of the lower and the upper tag values 0.2360+0.2368
2 = 0.2364 which will be

converted into binary.

On the decoder side, this tag value will be received and the probabilities of the

message must be known. Then, the steps are identical but an inverse where the letters

or numbers should be found by their accumulative probability.
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4.3.7 Decompression - Gaussian-based Model

The decompression is identical to the stated compression steps, but in an inverse

way. The algorithm begins by Arithmetic decoding. Next, the run length values are

segregated followed by MTF decoding. Burrow-Wheeler inverse transform then is

applied which will generate the calculated margin space values. After that, the first

derivative inverse is conducted to retrieve the actual margin space values. The stored

Gaussian parameters are then used to calculate the approximated waveform readings.

The summation of the approximated readings and the margin space values is finally

calculated to reconstruct the exact lossless smart meter readings.

Fig. 4.7 in Section 4.6 shows a few examples of the original smart meter readings

and the decompressed version which obviously proves that the readings are fully

recoverable in our approach with zero loss.

4.4 Model 2 (MD2): N-Split Based Model

The principle behind this proposed technique is for minimising the randomness of IoTs

smart meter readings into a smaller finite field to boost the possibility of repetition

and avoid the accumulated rounding errors due to floating operations. This was

successfully achieved by splitting the collected readings into different groups. The

more stable group (the integer side) is highly compressed using the first derivative

followed by BWT. This was followed by MTF and RLE to eliminate the repetition.

Entropy coding is finally applied. The more random group (the floating part) is

mapped to a smaller space using a mathematical model before applying BWT, MTF

and RLE followed by entropy coding.

Although it appears there is some stability in the collected readings, most of

the general dictionary and statistical compressors are ineffective due to the precision

problem. Most current readings formats are four decimal precision, which means every

single reading has ten thousand images from 12.0000 to 12.9999. Therefore, at this

stage every reading is split into N - two groups GA and GB. GA only contains the

more stable part (i.e. integer) of the readings and GB includes the noise (i.e. four
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Figure 4.5: Three examples of the split output. Group A represents the more stable
part, and group B highlights the noise part.

decimal precision) part. Every group is treated differently due to its characteristics.

4.4.1 Stable Group Reduction

To exploit the stability feature in GA, the first derivative is calculated as shown in Eq

4.15.

D = [ϕ(2)− ϕ(1)ϕ(3)− ϕ(2)...ϕ(Ω)− ϕ(Ω− 1)] (4.15)

where ϕ is the ith reading in GA, Ω is the length of ϕ and D is the resultant derivative

vector.

We observed that there is lots of redundancy, but in scattered format. Therefore,

BWT (Read 4.3.3) is used to rearrange the values to be in the consecutive long

sequence of identical symbols. BWT simply rotates a suffix array SA values (GA

readings) and its original is T . BWT can be defined as Eq. 4.16.
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BWT [i] =

⎧⎪⎨⎪⎩T [SA[i]− 1] if ⇐⇒ SA[i] > 1

$ Otherwise
(4.16)

To increase the effectiveness of any entropy coding, MTF (see 4.3.4) is employed.

The basic idea is that each symbol in the resultant series from BWT - these symbols are

replaced by its index in the list of currently used symbols. Therefore, long sequences

of similar symbols by as many zeros.

The output from MTF contains many identical consecutive symbols; therefore, a

simple technique called ‘run length’ (see 4.3.5) is applied before the entropy codes. For

instance, the consecutive zeros in ∂ = [1, 2, 0, 2, 0, 0, 0, 0] will be ∂ = [1, 2, 0, 2, 0#4].

AC (see 4.3.6) is finally applied on the stable group GA to achieve the most possible

optimum compression ratio.

4.4.2 Noise Group Reduction

The group GB contains the decimal parts of the readings and we called it ‘noise’. This

is because they have no stable pattern. However, the merits of pulling them aside are

explained thusly: (i) reducing the space from ten thousand images for every single

reading (e.g. 11.0000 - 11.9999) to ten thousand images for all readings together,

(ii) that operations of floating points are more expensive than the integer values,

because of the deficiency and limitations of handling floating points in the majority

of embedded systems. Therefore, the split values in GB (i.e. four decimal .9999) are

converted to an integer counterpart in our algorithm.

To eliminate unnecessary digits while not losing any details, the resultant values

are mapped into smaller digits space MGB. For example, 0001 value into 1, 0002 into

2 and so on.

The resultant mapped space MGB is then reshuffled employing BWT (see 4.3.3)

and MTF (see 4.3.4) to obtain consecutive sequences to be exploited later.

Finally, RLE (see 4.3.5) is used to eliminate redundancy before applying the

entropy coding AC (See 4.3.6).
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4.4.3 Code Chaining

The output from both groups GA and GB is in a bit format. Thus, the two streams

are concatenated in this step. One small, two bytes, delimiter is added prior to the

concatenated stream to identify the size of the first part S1, which in tern tells the

second part T − S1.

4.4.4 Decompression- N-Split Based Model

The decompression is identical to the stated compression steps but in an inverse way.

The algorithm begins by code splitting to identify the bit streams that belong to

each group. (i) The more stable group (the integer side) is decompressed by entropy

coding, RLE segregation, MTF, BWT decoding and first derivative inverse that are

conducted to retrieve the actual GA values. (ii) The more random group (the floating

part) is decompressed by AC, RLE segregation, MTF, BWT decoding and mapping

inverse is performed to recover the original GB set. Finally, N-Split stage is inverted

by concatenating the two groups to rebuild the exact original IoTs streams.

4.5 Compression Performance Metrics

This section discusses the theoretical and empirical matrices used to evaluate our

proposed algorithm.

4.5.1 Theoretical Entropy

In information theory, the term entropy of a signal represents the minimum bitrate,

meaning assuming the best compression, that is required to transmit this signal [127].

Therefore, to prove the effectiveness of preprocessing the data in our algorithm, the

theoretical entropy is calculated for every data list of IoTs smart meter readings

before starting our algorithm. Then, a quantitative comparison of measurements will

be conducted between the theoretical entropy and the achieved compression ratio.
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Figure 4.6: Comparison of entropy before/after Gaussian approximation.

Let’s assume IoTs readings list consists of the data points d[1], d[2], ..., d[N ] with the

maximum likelihood that entropy (in bits) is measured as

H(d) � −
∑

v∈U(d)

p̂(v) log2(p̂(v)) (4.17)

p̂(v) � 1

N

N∑
n=1

δv(d[n]) (4.18)

δv(d[n]) �

⎧⎪⎪⎨⎪⎪⎩
1 if d[n] = v

0 else

(4.19)

where U(d) is the range of d and p̂(v) is the empirical probability of v ∈ U .

The highest entropy is the worst-case occurs when each value in U appears at the

identical frequency 1/|U |, where |U | represents the elements in original U (see Eq.

4.20).

Hmax = −
∑
v∈U

1

|U | log2(
1

|U |) = log2 |U |. (4.20)

Contrarily, the lowest entropy (or the best-case) occurs when all d values are similar,

which leads to Hmin = −1 log2(1) = 0.

Fig. 4.6 emphasises the average improvement in the entropy before and after

the major step which is applying the Gaussian approximation and utilising only the

margin space. The entropy has been almost halved.
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Table 4.5: Compression ratio

Meter Huf Del-Huf Norm+AC AC Lemp-Ziv P-LZMA Bzip2 Inv-Golomb Del+Bzip2 Our approach
[5] [5] [6] [9] [7] [113] [9] [8] [9]

1 1.72 1.97 1.78 2.43 2.47 2.44 2.60 3.07 3.13 3.90

2 1.08 1.71 1.93 2.41 2.21 2.54 2.53 2.81 3.11 3.91

3 1.14 1.63 1.88 2.39 2.13 2.53 2.58 2.73 3.01 3.90

4 1.29 1.64 1.87 2.37 2.14 2.51 2.54 2.74 2.97 3.89

5 1.78 2.01 1.91 2.36 2.01 2.26 2.47 2.61 2.90 3.87

6 1.81 1.78 1.86 2.36 2.28 2.48 2.52 2.88 2.83 3.85

7 1.34 1.70 1.96 2.36 2.20 2.50 2.56 2.80 2.88 3.83

8 0.91 1.62 1.99 2.37 2.12 2.54 2.54 2.72 2.84 3.82

9 1.18 1.58 1.86 2.38 2.08 2.53 2.61 2.68 2.77 3.80

10 1.03 1.80 1.91 2.41 2.30 2.36 2.65 2.90 2.82 3.78

11 1.32 1.67 1.99 2.42 2.17 2.33 2.66 2.77 2.86 3.76

12 1.52 1.74 2.05 2.44 2.24 2.22 2.67 2.84 2.84 3.73

13 1.03 1.84 2.01 2.46 2.34 2.53 2.67 2.94 2.91 3.70

14 1.47 1.92 2.04 2.46 2.42 2.48 2.69 3.02 2.95 3.65

15 0.95 2.09 2.02 2.44 2.09 2.22 2.69 2.69 2.96 3.60

16 0.91 1.74 2.12 2.44 2.24 2.50 2.68 2.84 2.97 3.54

17 1.09 1.80 2.06 2.43 2.30 2.61 2.68 2.90 2.97 3.97

18 0.79 2.06 2.10 2.42 2.06 2.55 2.67 2.66 2.99 3.91

19 0.68 1.74 2.16 2.42 2.24 2.64 2.63 2.84 2.99 3.85

20 0.67 1.81 2.08 2.44 2.31 2.30 2.63 2.91 2.98 3.80

Average 1.19 1.79 1.98 2.41 2.22 2.45 2.61 2.82 2.94 3.80

4.5.2 Empirical Ratio

The Compression Ratio CRi is the main benchmark to measure any proposed

compression algorithm performance. Let’s denote the original IoTs readings block

O (i.e. its unit in byte or bit) and the resultant compressed readings C. Therefore,

the empirical CRi in results section is calculated as shown in Eq. 4.21.

CRi =
O

C
(4.21)

A well-known and leading power quality storage format for electric power system

waveforms that is used in most of the IoTs smart devices called Power Quality Data

Interchange Format (PQDIF). This is defined by the IEEE1159 working group [128]

and was used to accurately measure the original and compressed size of the readings
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in bits. Every reading is represented as 16 bits. The typical block size suggested is

around 1500 readings.

4.6 Experiments and Results

4.6.1 Datasets

Various datasets of IoTs smart meter readings have been utilised in our experiments

that were collected and published by the Laboratory for Advanced System Software

as a part of a project named ‘Smart*’ [129, 130]. The dataset includes continuous

readings (every minute) from three homes for three months. The readings’ types

can be classified into (1) power usage - watts consumption and heat index, and (2)

environmental characteristics - inside/outside temperature, inside/outside humidity

and wind chill. The datasets also provide periodical electricity power consumption

(every minute) from around 400 anonymous homes for (3× 30× 24) hours. According

to the definition of spatial and temporal aggregations, these readings are temporal,

because they are gathered separately from every single house after equipping it with

a smart meter that collects its readings periodically.

Our main performed experiments can be classified into two main parts. (1) The

compression performed by aggregators that receives an overwhelming amount of

collected readings from various entities (e.g. homes). (2) Decompression which is

performed at operation centres or on the cloud level.

4.6.2 MD1: Gaussian-based Model

To avoid biased results, all records of meter readings in the aforementioned datasets

have been used. The shown results in both Table 4.5 and Fig. 4.8 are from continuous

blocks from 15/Apr/2012 to 1/Jul/2012. Similarly, the existing lossless compression

models in this domain have been implemented under the same conditions to precisely

provide a clear comparison. For brevity, the results have been summarised in Table



4.6. EXPERIMENTS AND RESULTS 117

0 150 300 512
166

168

170

172

(a)
Original

0 150 300 512
280

290

300

310

0 20 40 60 80 100 120

×104

0

2

4

6

8

(b)
Compress

0 150 300 512
166

168

170

172

(c)
Decompress

0 150 300 512
280

290

300

310
0 20 40 60 80 100 120

×104

0

2

4

6

8
0 150 300 512

290

300

310

0 150 300 512
290

300

310
0 20 40 60 80 100 120

×104

0

2

4

6

8

Figure 4.7: Three examples of watts consumptions’ readings of three homes: (a)
direct plot of original readings, (b) plot of the obtained compressed streams gathered
as 16-bit per value, and (C) plot of the readings after decompression.

4.5. Every column represents results from different model as follows. (1) The second

and third columns show CRi of using techniques in [5] which mainly relies on Huffman

and delta-Huffman. (2) The fourth column presents results of employing the model in

[6] based on normalisation, differential coding and other steps before entropy coding.

(3) The fifth column depicts the results of utilising models in [9] based on AC. (4)

The results of the sixth column are based on the model in [7] that uses Lempel-Ziv.

(5) The seventh column presents results obtained by utilising the technique in [113],

which is based on linear prediction model and LZMA. (6) The eighth and the ninth

columns highlight results using the technique in [9] which relies on bzip2 and delta

bzip2 (i.e. BWT,MTF and AC). (7) The ninth column shows the results using the

invertible transformation pre-processing followed by Golomb-Rice encoding [8]. (8)

The last column shows results using our Gaussian-based algorithm.

Fig 4.8 shows a larger number of the obtained CRi from our algorithm compared

to the ones above. Also, Table 4.6 presents the exact improvement factors compared

with the best existing model. In addition, Fig. 4.9 shows a comparison of the exact

required time between our model and the highest existing compressor working on the
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Figure 4.9: Average time required in millisecond to compress/decompress per value of
readings from 20 different meter readings using both our approach and BZIP2 based
model [13].

same datasets that have four decimal precision. Finally, Fig. 4.7 shows an example of

a plot of six original CRi IoTs readings before the compression and after the recovery
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Table 4.6: our Gaussian approach against the best existing model

Factor Delta+Bzip2 [9] Our approach (MD1: Gaussian-based)

Best ratio 3.13 4.02

Worst ratio 2.49 3.50

Average 2.80 3.73

Standard deviation 0.02 0.11

Improvement percent 33%

(i.e. decompression).

Discussion The experiments obviously emphasise the effectiveness of our

Gaussian approximation based lossless compression of IoTs smart meter readings

compared to other existing algorithms. This is due to the advantage of excluding

many data points and compressing only the margin space. This has been proved

by comparing the Shannon entropy before and after our approach (see fig. 4.6) and

experimentally as shown in Fig. 4.8.

It is also obvious from Fig. 4.9 that our model requires less time (i.e. ≤ 2 ms vs. 4

ms) to accomplish both compression and decompression than the model that achieved

the highest compression among existing techniques. This is because our model uses

less number of stages (i.e. only six) and they use more than nine stages between

them building the Huffman dictionary which is not that efficient in detailed numerical

datasets that have four decimal precision.

4.6.3 MD2: N-Split Model

To avoid biased results, all records of meter readings used in our Gaussian-based

model has been reused. The published results in both Table 4.5 and Fig. 4.8 are from

continuous blocks (i.e. from 15/Apr/2012 to 1/Jul/2012). For brevity in this chapter,

the results have been summarised in Table 4.7. Every column represents results from

a different model as follows. (1) The second column portrays the CRi of using our

Gaussian-based model, and that has been proven to have the best compression ratio

among the existing size reduction algorithms in this field. (2) The last column presents

results using our N-Split based algorithm.
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Table 4.7: our N-Split approach against the Gaussian model

Mater No (MD1: Gaussian Based) (MD2: N-Split Based)

Mater 1 3.90 4.67

Mater 2 3.91 4.61

Mater 3 3.90 4.56

Mater 4 3.89 4.52

Mater 5 3.87 4.48

Mater 6 3.85 4.45

Mater 7 3.83 4.43

Mater 8 3.82 4.42

Mater 9 3.80 4.41

Mater 10 3.78 4.42

Mater 11 3.76 4.43

Mater 12 3.73 4.45

Mater 13 3.70 4.27

Mater 14 3.65 4.39

Mater 15 3.60 4.22

Mater 16 3.54 4.14

Mater 17 3.97 4.56

Mater 18 3.91 4.57

Mater 19 3.85 4.58

Mater 20 3.80 4.58

Average 3.80 4.48

Table 4.8: our N-Split approach against the Gaussian model

Factor (MD1: Gaussian-based) (MD2: N-Split-based)

Best ratio 4.02 4.73

Worst ratio 3.50 4.09

Average 3.80 4.48

Standard deviation 0.11 0.05

Improvement percent 17%

Fig 4.10 shows a larger number of the obtained CRi from our N-Split based

algorithm compared to the Gaussian-based model. Also, Table 4.6 presents the exact

improvement factors compared with the best existing model. Additionally, Fig. 4.9

shows a comparison of the exact required time between our N-Split model and the

highest existing compressor (the Gaussian-based) as working on the same datasets

that have four decimal precision.
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based models.

4.6.4 Comparison of our MD1 vs. MD2

It is very clear from the results that the Gaussian based model (MD1) achieved better

results of 3.80:1 than most of the best existing work in [9] (i.e. 2.80:1). It also requires

less time to compress and decompress (i.e. ≤ 2 ms vs. 4 ms). In addition, MD1 is a
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generic model, because it relies on the Gaussian approximation function that learns

from the IoTs signal stream itself. Therefore, regardless of the signal form, MD1 can

achieve a stable CRi. On the contrary, our latest approach N-Split based model (MD2)

accomplished better CRi (i.e. 4.48) than the Gaussian-based algorithm. The required

processing time is also less (i.e. ≤ 0.6 ms vs. 2 ms). However, MD2 is dataset driven

model. In other words, there is no guarantee that we can achieve the highest CRi with

varied datasets. MD2 has been built based on the obtained datasets observations.

4.7 Chapter Summary

We introduced two novel compression algorithms for lossless IoTs smart device

readings that reduce the volume of protected readings at intermediate hops without

revealing the hidden secrets. The target of the first generic (i.e. Gaussian-based)

model represents IoTs streams in several parameters despite the crudity of the signal.

This is successfully accomplished using the Gaussian approximation. The difference

between the approximated and the actual waveform is calculated in other words, the

compression will only be for margin space, rather than the entire stream of waveform

readings. The margin space values are finally encoded. The second target uses the

N-Split model to reduce the randomness in the IoTs streams into a smaller finite field

to enhance repetition and avoid the floating operations round errors issues. After a

thorough evaluation under the same conditions, both of our techniques were superior

to existing models mathematically, meaning the entropy was halved; and empirically,

we achieved a ratio of 3.8:1 to 4.5:1. However, we discovered that the two new proposed

models in this chapter varied - the Gaussian-based MD1 is a generic model, whereas

the N-Split MD2 is a dataset driven model.



Chapter 5

Cloud-based Protected IoTs Size

Re-reduction

This chapter answers the fourth research question discussed in Section 1.2. Although

our privacy preserving size reduction models proposed in Chapter 4 reduce the size of

the transmitted Internet of Things (IoTs) streams significantly, the unexpected volume

of these compressed streams required endless storage and data management space

which poses a unique challenge. Therefore, this chapter investigates the question: can

the incoming protected compressed IoTs readings be blindly re-compressed without

neither revealing their privacy nor decompressing them? Section 5.1.2 introduces the

main contributions of this chapter which is pre-processing the compressed streams

by finding their similarities. Section 5.2 briefly highlights the key-related works and

why they are ineffective by applying them directly due to the high dissimilarities

among the streams. Section 5.3 explains in detail our novel model including the

design, similarity measurement, group interleaving, differential calculation, rotation,

dynamic run length and entropy coding. The evaluation of various characteristics

of our model (including a theoretical entropy and empirical ratio improvement,

performance and cohesion analysis among the subgroups) are introduced in Section

5.5. Section 5.7 presents detailed experimental examinations of the model, including

test bed scenarios and a wide range of protected compressed IoTs readings, its possible

reduction (i.e. re-compress) ratio, the actual IoTs protected compressed high streams

123
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after decompression, and a comparison with available techniques. Section 4.7 finally

summarises this chapter.

5.1 Introduction

Due to the lack of outage management, automation, poor real-time analysis and

deficiencies of the classic power grid of the past century, a new infrastructure

called ‘smart grid’ is recently being investigated around the world. It will

automatically collect periodic waveform readings using Phasor Measurement Units

(PMUs) every second (e.g. power consumption of a premises) and transmit them

to operational centres, such as cloud servers, using various techniques [78]. The

considerable advantages are high efficiency, outage management automation, accuracy

in continuous-dynamic electricity distribution and billings, and sustainability in

climate change mitigation. To that end, nations around the globe, standardisation

assemblies, companies and research entities are working around the clock to regulate

this field.

However, the unusual volume of the periodically transmitted data from millions

of premises is posing unforeseen bandwidth and storage requirement challenges.

For instance, in 2009 and 2011, both the United States and China respectively

launched the largest electric grid modernisation investment in their history [131]. The

collected waveforms data from one of these projects called ‘Western Interconnection

Synchrophasor Program’ (WISP) that has been recently deployed, where 300 PMUs

have been distributed on the west coast of the United States for 15 months, was 100

Terabyte - in other words, more than 220 Gigabytes per day [79]. Therefore, the size

reduction of IoTs smart meter readings will have a strong impact on minimising the

required bandwidth and utilities communication infrastructure.

The proposed compression methods for readings from IoTs smart meter waveforms

can be categorised into two groups - lossy and lossless [30]. Lossy compression

is dependent on some information loss while preserving the main features of the
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waveforms signal. Consequently, the decompressed signal is somewhat dissimilar

to the original. This type of compression was acceptable in the classical grid

model - much research been done in this field can be grouped into transformation

techniques[31, 33, 119], parametric coding [32] and mixed [121]. This is due to its

ability of achieving a higher compression ratio while losing some data. However, lossy

compression is recently not recommended for two reasons: (1) after the rise of smart

grids and the potential use of their remotely collected readings in billings and financial

purposes, and (2) to preserve the privacy and authenticity of the transmitted readings,

recent models are utilising steganography to conceal the private information randomly

inside these readings [2, 3]. Therefore, losing any bit of these readings is unacceptable.

5.1.1 Motivations

Contrary to lossy, lossless compression is obligated to recover the same waveform

signal as the original with zero loss. Due to these restrictions, some work was done in

this category, such as in [8, 112, 120] . However, according to a recent state-of-the-art

study [30], this path is far from being as mature, in relation to image, voice and

video lossless compressions. Surprisingly, all this research was undertaken to compress

the transmitted streams from the premises to the operation centres, such as public

or private cloud servers, but little attention has been paid to the multi-incoming

compressed streams after their arrival. Especially, due to some regulations, these

streams should be stored for a certain number of years. This means there is an

exponential increase in the cost of storage space and an increased burden of available

data management.

One of the main limitations for any lossless compression is that less similarity

in waveform readings means less likelihood of compression. In information theory,

the mathematical benchmark called entropy (i.e. the minimum number of bits

required to represent a value after compression) (see 5.5). The entropy level relies

on the redundancy among the samples. This becomes worse in the compressed smart

waveform meter readings, because the similarity is already exploited. Therefore,
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Figure 5.1: The main scenario of our proposed technique where the multi-incoming
compressed streams are categorised by their similarity in features followed by
interleaving and lossless size reduction.

the main question that drives this chapter is, can the multi-incoming IoTs

smart meter protected compressed streams be re-compressed? In other

words, can the size of received compressed streams be reduced without

decompression?

5.1.2 Contributions

In this chapter, a new lossless compression algorithm for waveform IoTs readings of

already compressed data is proposed. The main target is pre-processing the protected

compressed streams in such a way as to improve the theoretical entropy and invest

it. This is effectively achieved using K-means clustering as similarity measurement

to classify the compressed streams into subgroups. The streams in every subgroup

has been interleaved followed by the first derivative to reduce the values and increase

the redundancy. After that, rotation mechanisms have been applied to rearrange

the readings in a more consecutive format. Finally, Dynamic-Run Length (D-RLE)

and entropy coding are performed. We proved that it is possible to re-compress the
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already compressed streams up to 50% of their size without privacy disclosure by

re-compressing nor with losing any bits. To the best of our knowledge, there is no

other work that tackles this issue in the field of IoTs.

The rest of this chapter is organised as follows. Section 5.2 summarises the relevant

work. Section 5.3 introduces our algorithm in different stages. Then, evaluation of

the various characteristics of our technique is introduced in Section 5.5. Section 5.7

discusses our performed experiments and the obtained results. Section 5.8 finally

draws our conclusions.

5.2 Related Work

Most of the existing research was conducted on gathering waveforms readings targeted

on lossy compression. This is because (i) the samples were not being directly

transmitted and utilised for crucial purposes, such as real-time diagnoses and billings

in the classical grid system, and (2) the efficiency of the transformation technique

called ‘wavelet transform’ that assists in representing waveform signals in a few values

(i.e. with losing some bits from every sample). The lossy compression studies can be

classified based on the techniques used into transformation, parametric coding and

mixed.

As with the work of Santoso et al. [31], transformation models used by employing

discrete wavelet decomposition to identify most of the signal energy in low-frequency

coefficients by using dbX and allowing others to be neglected. Further work was

undertaken using various wavelet families such as B-Spline [116] and Sluntlet [115].

Secondly, parametric coding models, such as the work of Michel et al. [32], utilised

damped sinusoids models to elicit the main features of the signal before compression.

Finally, mixed transformation and parametric models, such as the work proposed by

Moises et al. [121], employed fundamental harmonic and transient coding together.

Contrarily, studies in lossless compression is sparse due to the imposed constraints

and the nature of waveforms readings. The lossless compression can be categorised

based on the technique utilised into the dictionary, entropy and mixed based models.
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Figure 5.2: An overview for the steps undertaken in our model where the similarity
measurement technique is used to split the compressed streams. Then, the grouping
and size reduction steps are performed in parallel to exploit the power of the cloud.

Dictionary-based techniques essentially rely on general compressors (e.g. GZIP,

ZIP and LZO) where a dictionary is constructed, and more frequent tokens will be

represented in fewer bits, whereas more bits are assigned to less frequent samples.

For instance, Omer and Dogan [7] employed the Lempel-Ziv to compress a stream

of waveforms readings. The accomplished compression ratio was 2.5:1 bin-to-bin.

However, dictionary algorithms are mainly designed for letters with English characters

where the number of choices is limited. This is unsuitable for waveforms signals due

to their floating-point nature. This means every real number has thousands of forms

because of its floating values.

Entropy-based techniques are mainly statistical models - these are designed based

on screening the probability of every token within a stream and assigning fewer bits
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for a higher probability and vice versa. For instance, the work of K. Jan et al. [9]

where Arithmetic Coding (AC) was employed to replace the input tokens with a single

floating-point value. The accomplished compression ratio was 2.6:1. Z. Dahai et al.

[5] also introduced a model that enhances Huffman coding by pre-processing the data

utilising higher order delta modulation. The enhancement went from 1.7 to 2.3:1.

Moreover, J. Tate [8] recently proposed a model that utilises Golomb-Rice coding

after pre-processing the samples with several methods, such as frequency compensated

difference. The accomplished compression ratio was 2.8:1.

Mixed techniques are more sophisticated algorithms using both dictionary and

statistical mechanisms. This permits exploitation of both the frequency of repetition

and its probability within a stream of samples. For instance, K. Jan et al. [113]

proposed a model that enhances the LZMA algorithm to minimise the redundancy

in waveforms readings. This is achieved by utilising prediction techniques based

on differential encoding after optimising the interval selection. The accomplished

compression was 2.6:1. K. Jan and T. Tomas [9] also proposed a model that enhances

BZIP2 by employing an efficient block-sorting Burrow-Wheeler algorithm and delta

modulation. The achieved compression ratio was 2.9:1.

All the above models were conducted on original stream readings and so they

exploited the existing high redundancy probabilities among them. However, to the

best of our knowledge, there is no existing lossless compression work that targeted

already compressed streams.

5.3 Methodology

The main challenge that drives this model is whether multi-incoming compressed

streamed be re-compressed? Various of the existing lossless compression algorithms

(based on Huffman, Lempel-Ziv or AC) have been directly applied on several

compressed streams obtained from Chapter 4 (see Figs. 5.8 and 5.9). The

compression ratio was very poor from 0.5 to 1.1 due to the streams that were

already compressed. Consequently, the only possible way available is to exploit
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the similarities of these compressed streams and design an interlocking friendly

compression algorithm. Therefore, K-means clustering has been used as a similarity

measurement to classify the compressed streams into subsets. The streams in every

subset has been interlocked followed by the first derivative to reduce the space of values

and increase the redundancy. After that, two rotation stages have been applied to

rearrange the readings in a more consecutive format before employing the developed

D-RLE. Finally, entropy coding is performed.

5.3.1 Similarity Measurement - K-means

Based on our preliminary results, mixing all compressed streams will result in a poor

re-compression ratio due to the dissimilarity in streams characteristics which increase

the noise. Therefore, a well-known unsupervised learning technique called K-means

[132] is used as a similarity measurement to classify n observations into K groups. The

main idea is that, let’s assume (x1, x2, ..., xn) are the n incoming compressed streams

where each stream is a d-dimensional vector. K-means will partitions the n streams

into K(≤ n) groups (G1, G2, .., Gk) by summation of distance functions of each point

in the group to K centre. The objective is depicted in Eq 5.1

k∑
i=1

σi∑
j=1

(‖xi − μj‖)2 (5.1)

where σi is the data points in the ith group, μj is the centre of the ith group and

‖xi − μj‖ is the Euclidean distance between xi and μj .

The algorithm started by selecting cluster centres μj . The distance between each

reading point xi and μj is then calculated. Next, the reading point xi is assigned

to μj based on the best minimum distance. After that, a new cluster centre μj is

recalculated as shown in Eq. 5.2

μi =

(
1

σi

) σi∑
j=1

xi (5.2)
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where σi represents the reading points in ith cluster. The distance between xi and μ

is then recalculated. The assignment process will be repeated (see Eq 5.3), until no

further data points need to be reassigned.

Gi =
{
xp : ‖xp −mi‖2 ≤ ‖xp −mj‖2 ∀j , 1 ≤ j ≤ k

}
(5.3)

The most crucial part is how centroid points are chosen. Therefore, to avoid the

exponential time complexity of standard algorithm, the idea proposed by Arthur and

Vassilvitskii [133] has been used by utilising a heuristic to find the centroid seeds for

the algorithm as follows. Only one random centre μ is uniformly chosen from among

the readings. Then, the distance between xi and the closest centre (i.e. chosen one)

is computed. Next, one of readings is chosen to be the new centre μ using a weighted

distribution probability (see Eq. 5.4). These steps are repeated until k centres are

chosen.

d2 (xi, μp)∑
{j,xj∈�p} (xj , μp)

(5.4)

where �p is the group of all observations nearest to centroid. μp and xi are

belonging to �p.

5.3.2 Parallel Size Reduction

After completing the similarity measurement process, each resultant group is combined

and its size will be reduced using the following steps. These steps are not dependent

and so designed to run in parallel to exploit the power of cloud.

Readings Interlocking

Let’s assume Gi is one of the resultant groups. It has 1, 2, ..., n vectors that represents

multiple compressed streams as shown in Eq. 5.5.

Gm,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

cm,1 cm,2 · · · cm,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.5)
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Therefore, these streams will be overlapped to exploit the similar features (see Eq.

5.6).

a(1, 1), b(2, 1), ..., c(m, 1) (5.6)

To avoid any sharp exponential deviations in the overlapped readings and increase

the redundancy, the first derivative is applied as shown Eq 5.7.

fd = [Υ(2)−Υ(1)Υ(3)−Υ()2)...Υ(Λ)−Υ(Λ− 1)] (5.7)

where Υ represents data points in the combined stream an Λ is the latest value.

Rotation

Rotation Stage 1: Based on experimental observations, the resultant values,

after applying the first derivative, reflects that there is high redundancy, but in

a very scattered format that impedes any size reduction attempts. Consequently,

Burrow-Wheeler Transform (BWT) is employed to reshuffle the samples resulting in

a long consecutive and identical sequence. Originally, BWT was proposed by Michael

Burrows and David Wheeler [124] to rearrange text streams into a format that boosts

its compressibility by utilising mechanisms, such as Move-To-Front (MTF) and Run

Length (RLE). The beauty of this algorithm is that zero additional overheads were

needed to reverse it. Basically, the data (i.e. 1 to n) is rotated lexicographically. Lets

assume Ω is the textual or numerical of a symbols group form (i.e. numerical in our

algorithm) to be compressed.

Ω = Ω1,Ω2, ...,Ωn (5.8)

Iteratively, the vector Ω is rotated to the left which results in a new 2D matrix

called β, as shown in Eq. 5.9
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β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω1 Ω2 Ω3 · · · Ωn

Ω2 Ω3 · · · Ωn Ω1

Ω3 · · · Ωn Ω1 Ω2

...
...

. . .
...

Ωn Ω1 Ω2 · · · Ωn − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.9)

From Eq. 5.9, it is obvious that each rotation of Ω is represented as a row in β.

These rows are then sorted in ascending order which will generate a new version of

the matrix called β̃. Only the last column C of β and the original block index I are

kept to be used for retrieving the original order.

For a clear understanding, a portion of the resultant first derivative values are

presented in Table 5.1. These samples have been replaced by characters (i.e. represent

Ω) for the sake of simplicity. β is generated by rotating Ω for n (i.e. elements number)

times as shown in Eq. 5.10

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

$ a b a a b a

a $ a b a a b

b a $ a b a a

a b a $ a b a

a a b a $ a b

b a a b a $ a

a b a a b a $

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

where $ represents the start of data. The rows of β will then be sorted which

results in a new form β̃ as depicted in Eq. 5.11
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Table 5.1: Conversion from numeric to characters

ω 309 501 309 309 501 309

Ch a b a a b a

β̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a $ a b a a b

a a b a $ a b

a b a a b a $

a b a $ a b a

b a a b a $ a

b a $ a b a a

$ a b a a b a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)

The last column C and the index I (e.g. 3 in this example) represent the output.

C and I are the crucial parameters used by the decoder to recover the original

form. This is achieved by building a temporary n×n matrix (where n is the elements

number) and C represents its last column. By sorting this column, the first column

is retrieved. Next, all successive pairs are recovered using those two columns and the

resultant matrix is like β̃. Subsequently, by using the index I, retrieving the original

form will be easy.

Rotation Stage 2: Despite the resultant BWT values precisely gathering

identical symbols in the long runs, these values still sharply vary from very low (e.g.

20 and 21) to much higher figures (e.g. 4000 to 6000). Consequently, MTF transform

is employed to boost the influence of any entropy based encoder (e.g. Arithmetic

Coding) to achieve the highest compression rate. MTF is a lightweight mechanism

introduced by Ryabko [125] to enhance the low values (e.g. close to zero) probability

while minimising the high values in a given list of data. The basic idea is that the data

list symbols are substituted by their positions in a unique list. Therefore, the long

sequential identical symbols will be substituted by as many zeros, whereas a posterior

(i.e. not regularly used) symbols will be exchanged for larger values.
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Table 5.2: MTF of L = [b, b, a, a, a, a, a, a] and u = [a, b]

Li u ϑ

b a, b 1

b b, a 0

a b, a 1

a a, b 0

a a, b 0

a a, b 0

a a, b 0

a a, b 0

Let’s assume L is an obtained list from the BWT process and u is the unique

symbols of L (i.e. u ∈ L). Then, the summary of MTF process can be depicted in

the following steps. (a) L is used to populate u. (b) Every item Li of vector L is

substituted as its the symbol numbers preceding it in u. (c) Latter output is built

as a list ϑ by collecting the resultant codes of step 2. The recovery process is the

opposite of these steps.

For a clear illustration, assume the BWT resultant list L = [b, b, a, a, a, a, a, a] and

its unique list u = [a, b] (see Table 5.2). The initial token L0 is b, and it is preceded by

one symbol in u. Therefore, the digit one is produced in ϑ and the symbol b is moved

to the front of u = [b, a]. The next token L1 is b, which is the first in u, and so the

produced value is zero with no need to update u. These steps are continued until the

last token is reached, so the resultant output will look like: ϑ = [1, 0, 1, 0, 0, 0, 0, 0].

Dynamic Run Length

Hypothetically, the MTF output includes a series of identical sequential tokens.

Consequently, to exploit this fact, a simple mechanism called Run Length (RLE)

[126] is employed before the entropy encoding. RLE focuses on substituting the

similar consecutive symbols by their count. Allow s to represent a symbol appearing

as n in sequential times in a vector V . The n cases are then substituted by ns.

The consecutive n appearances of the symbol are called ‘run length’. For instance,

the sequential zeros in ϑ = [1, 0, 1, 0, 0, 0, 0, 0] will be ϑ = [1, 0, 1, 0#5]. However,

the observation was that a naive implantation of RLE is not always useful and may
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Figure 5.3: Graphical representation of the consistency among various compressed
streams combined (or K-means) clusters. Obviously, six and eight clusters are the
best in terms of the cohesion.

increase rather than decrease. This is due to its static nature where each consecutive

symbol is replaced even in the case if no repeated tokens occurs. RLE is improved to

be a dynamic without the extra overhead based on the thresholds t = t1, t2, .., tn that

monitor the consecutive occurrences of the symbols in a given vector. Only one bit is

added at the beginning of the resultant encoded stream to indicate whether D-RLE

encoding process was employed or not.

Entropy Coding

To achieve the highest possible compression ratio, an entropy coding mechanism called

Arithmetic Coding (AC) is ultimately employed in our model. AC is a widely-known

variable length statistical coding by which repeatedly occurred values are represented

with fewer bits and less frequently appearing tokens are symbolised with higher bits

number [126]. AC proved its superiority in most respects to other well-known entropy

algorithms such as Huffman coding. This is due to its succinct representation of
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Figure 5.4: Graphical representation for Arithmetic encoding steps for a message
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the entire message in a single value as a fraction n where (0.0 ≤ n < 1.0), whereas

other algorithms working on separating the input into isolated component tokens and

substituting each with a unique code.

The general idea is that after choosing a specific interval, the symbols list will be

scanned and based on its tokens probabilities the ultimate interval will be narrowed.

AC core steps are summarised as follows.

1. The current interval is specified as (0,1).

2. The following two steps are repeated for each token Si in the data vector.

a) The current interval is divided into subintervals under the condition that

their sizes are proportional to the tokens probabilities.

b) A subinterval for Si is chosen which will represent the new current interval.

3. After processing the entire data vector, the result should be any value that

distinctly identifies the present interval (i.e. any value in the current interval).
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Table 5.3: The message m probability distribution

Symbol Probability Accumulative range

a 0.2 (0.0,0.2)

b 0.3 (0.2,0.5)

c 0.1 (0.5,0.6)

d 0.2 (0.6,0.8)

e 0.1 (0.8,0.9)

f 0.1 (0.9,1.0)

Interestingly, the deeper scanned values in the data vectors are, the smaller current

interval is obtained. The resultant output is a single measure called ‘tag value’ that

does not include the individual tokens codes.

To demonstrate the AC coding mechanism, let’s assume that an entire message

M has a probability distribution as given in Table 5.3. For brevity, a fraction of that

message m̃ = (b, a, c, c, f) is encoded. The probability boundary is between (0, 1). To

begin with, due to the occurrence of symbol b′, the tag value should be in the range

(0.2, 0.5). After that, the token ‘a′ is appeared, so the present interval between (0, 0.2)

that will be used to calculate the lower and upper appeared in the equations 5.12 and

5.13.

wn = ln−1 + (wn−1 − ρn−1)× Fx(xn−1) (5.12)

ρn = wn−1 + (ρn−1 − ρn−1)× Fx(x) (5.13)

w and ρ represent the lower and upper boundaries of the nth token. Fx is the frequency

accumulation. The resultant tag values of symbols sequence ‘ba’ are (0.2, 0.26). This

will accumulatively continue for the full message. The ultimate tag values output

has been summed up in Fig. 5.4. The average of both the final upper and lower

tags wn+ρn
2 = 0.23354+0.2336

2 = 0.23357 represents the compressed value and will be

transformed into binary.

The decoder side requires both the average value and the message probabilities.

Subsequently, it proceeds through similar steps but in an inverse manner where the

probability accumulation is used to find the symbols.
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5.4 Decompression and Recovery

The recovery process is almost similar to the steps stated above, but in an opposite

manner. It begins by Arithmetic decoding followed by D-RLE if needed based on the

conditions mentioned in Section 5.3.2. Then, MTF and BWT are applied respectively.

The output represents the derivative values and so their inverse process is employed

to reconstruct the actual symbols. These symbols are the compressed streams in an

interlocking way. From that, they are disunited to their single compressed streams

and so their original format is recovered in a lossless format.

Fig. 5.7 in Section 5.7 presents instances of various compressed streams before

and after the size reduction process which clearly proves that the compressed streams

are totally retrieved with zero loss.

5.5 Evaluation

Various matrices are used to examine the effectiveness of our lossless size reduction

model of the multi-incoming protecting compressed streams on cloud level from both

theoretical and experimental angles.

5.5.1 Silhouette Measurement

To validate the coherence of the used similarity measurement clustering techniques,

a mathematical model called Silhouette is used. It is a graphical representation

technique that was proposed by Peter J. Rousseeuw [134] that proves consistency

within data clusters and clearly reflects the correlation of the objects within that

group. The Silhouette model produces a value in the range of −1 to 1 in which the

higher the value, the more the object is well matched to that group and vice versa.

For clarity, let’s assume n vectors are clustered into K groups using any similarity

measurement model, for instance K-means. For each group G, x(i) represents the

average dissimilarity (i.e. distance ) of i within the group the lesser the value, the

better the matching. Also, let y(i) be the lowest dissimilarity of i within the group.
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Figure 5.5: Comparison between the consistency among the clusters by changing
two parameters. These are the number of clusters and the similarity measurement
technique (i.e. K-means vs Rand).

Hereby, silhouette s can be defined as follows.

s(i) =
y(i)− x(i)

max{x(i), y(i)} (5.14)

s(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1− x(i)

y(i) , if x(i) < y(i)

0, if x(i) = y(i)

x(i)
y(i) − 1 if x(i) > y(i)

(5.15)

From 5.14 and 5.15, it can be derived that −1 ≤ s(i) ≤ 1.

5.5.2 Theoretical Entropy

The so-called entropy of a signal in the information theory field represents the lowest

bit-rate (the optimum compression is assumed) needed for transmitting this signal

[127]. Consequently, to monitor the influence of pre-processing the compressed streams
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in our model, the theoretical entropy is measured for every smart grid compressed

stream before and after employing our model. After that, quantitative calculation

comparison is performed between the theoretical entropy and the accomplished size

reduction ratio.

Let’s assume a compressed incoming stream consisting of the symbol points

d[1], d[2], ..., d[N ]. The optimum likelihood entropy in bits is calculated as

H(d) � −
∑

i∈R(d)
p̂(i) log2(p̂(i)) (5.16)

p̂(i) � 1

N

N∑
n=1

δi(d[n]) (5.17)

δi(d[n]) �

⎧⎪⎪⎨⎪⎪⎩
1, if d[n] = i

0, else

(5.18)

where p̂(i) is the experimental probability of i ∈ R and R(d) represents the range

of d.

The smallest entropy (or optimum case) happens when all d symbols are equal,

which results in Hmin = −1 log2(1) = 0.
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Figure 5.6: Comparison between the average entropy calculated from the compressed
streams before and after aggregation and processing.
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On the other hand, the worst-case (or maximum entropy) happens when each

symbol in R occurs at the similar frequency 1/R, in which |R| reflects the original

elements in R (see Eq. 5.19).

Hmax = −
∑
i∈R

1

|R| log2(
1

|R|) = log2 |R|. (5.19)

5.6 Experimental Ratio

The Compression Ratio (CRi) is the essential benchmark to empirically measure any

proposed compression model. Lets symbolise the original compressed streams block O

(i.e. its unit in bit or byte) and the resultant re-compressed symbols R. Consequently,

the experimental CRi in the results section is measured and defined in Eq. 5.20.

CRi =
O

R
(5.20)

To produce the multi-compressed streams dataset, a widely-known leading power

quality storage standard for electric waveforms power system utilised in most of the

smart grids, is called the Power Quality Data Interchange Format (PQDIF) defined

by the IEEE1159 working group [128], has been employed. Every reading represented

as 16 bit and the typical suggested block size used is about 1500 readings. Our generic

Gaussian-based size reduction explained in Chapter 4 is employed here and has proven

to give the best lossless compression ratio.

5.7 Implementations

5.7.1 Datasets

The Laboratory for Advanced System Software collected and published a detailed

smart meters datasets as a part of project called ‘Smart’ [75, 76]. These datasets have

been thoroughly used in our experiments. The datasets entries represent a periodical

readings per minutes from three houses for more than three months. The entries can be

classified into: (i) power consumption as watts and heat index, and (ii) environmental
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(b) Recovered form of compressed streams after disaggregation and decompression.

(a) Original Multi-incoming compressed streams (built in bytes).

Figure 5.7: Four examples of compressed watts consumptions readings collected from
different homes: (a) Direct plot of single compressed streams form, and (b) plot of
these streams after disaggregation and recovery.

features as inside and outside temperature, inside and outside humidity, and wind

chill. Additionally, a detailed electricity consumption (i.e. per minutes) from about

400 anonymous premises for (24× 30× 3) hours is provided. According to the spatial

and temporal aggregations definition, these symbols are temporal due to their separate

periodical collection from every individual premise by equipping it with a smart meter.

Our generic Gaussian based compression (see Chapter 4) is applied on every

single stream, to generate the multi-incoming compressed streams as explained in

the evaluation in Section 5.5. The compressed streams are laid out as the bed-test in

all our experiments.

5.7.2 Experiments and Results

Our prime executed experiments will be done at the operation centres or cloud level

after receiving an overwhelming amount of protected IoTs compressed streams from

huge number of remote end-points. The experiments can be categorised into (a)

similarity measurements, interleaving and size reduction processes, and (b) an original
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Figure 5.8: Compression ratio after re-compressing single incoming streams directly
using various well-known lossless compressors both dictionary-based (Lempel-Ziv [7])
and entropy-based (Huffman [5] and AC[9])
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Figure 5.9: Average compression ratio after re-compression the multi-incoming
compressed streams all together which was very poor. This is because enforcing all
together will result in a high noise.

format recovery and disuniting. Both categories are designed in such a way that can

be done in parallel to take advantage of cloud power.

To obtain unbiased outcomes, all compressed streams mentioned above have been

employed in our model. Identically, many well-known lossless compression algorithms

have been applied directly on the multi-compressed streams as shown in Figs 5.8 and

5.9 to accurately provide a clear comparison and prove that these streams can not be

re-compressed using traditional models.
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For brevity in this chapter, the results have been summarised as follows. Firstly,

Fig 5.8 and 5.9 show the exact CRi (0.5 to 1.3) of single and collective (i.e. all together)

multi-incoming compressed streams after applying many-known lossless algorithms

from both entropy and dictionary fields such as Huffman [5], Arithmetic Coding [9]

and Lempel-Ziv [7]. Secondly, Fig 5.3 highlights the examination process of our

similarity measurement technique, K-means, to select the best K number (i.e. 6

and 8 are the best in the case of 56 streams) using the Silhouette benchmark. Also,

Fig. 5.5 reflects the superiority as a graphical comparison (i.e. using Silhouette

benchmark) between our similarity measurement using K-means against an agnostic

random grouping. Thirdly, Fig 5.10 emphasises a possible enhancement on the CRi

level by changing various parameters in our algorithm, such as static RLE, D-RLE,

agnostic similarity measurement, and K-means similarity measurement in relation to

the number of clusters. Each of which these groups contain 56 compressed streams.

Fourthly, Fig 5.11 shows the average of CRi ratio obtained from the above four groups

(i.e. 8 K-means clusters + D-RLE is the best). Fifth, Table 5.4 presents the exact CRi

achieved from the four groups shown in Fig 5.11. Finally, Fig 5.7 shows an example

of a plot of various original compressed streams before and after the aggregation and

size reduction process.

5.7.3 Discussion

It is obvious, from the experiments, that it is unlikely to re-compress the

multi-incoming compressed streams by simply applying known algorithms. This is

because the redundancy in these streams is already exploited and re-applying the

same algorithms will have little effect if not worse (revisit Fig 5.8 and 5.9 ). On the

contrary, imposing all compressed streams together is also not useful due to the huge

dissimilarity in their features. In other words, forcing all streams together will boost

the noise and, therefore, decrease the chances of a size reduction.

By exploiting the possible similarities in various compressed streams using

similarity measurement techniques, our model achieved up to 2:1 size reduction level.
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Figure 5.10: 4 groups of achieved re-compression ratio of multi-incoming compressed
streams by changing the similarity measurement technique, number of clusters and
RLE. Every group contains 56 compressed streams.
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Figure 5.11: The average of re-compression ratio of the four groups examined in
Fig.5.10 which shows the best combination of our technique parameters.

This means every 1 Gigabyte byte can be reduced to 500 Megabytes. This has been

emphasised theoretically by comparing the entropy before and after our technique (see

Fig. 4.6) and experimentally as presented in Fig. 5.10.
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Table 5.4: Compression ratio

No Cluster No Static RLE (Rand) Static RLE (Kmeans) D-RLE (Rand) D-RLE (Kmeans)

1 2 1.03 0.40 1.30 0.75
2 2 1.08 0.31 1.36 0.73
3 2 1.12 1.46 1.31 1.77
4 2 1.01 1.52 1.30 1.73

5 4 1.07 1.53 .35 1.81
6 4 1.10 1.38 1.30 1.76
7 4 1.18 1.53 1.33 1.81
8 4 1.12 1.63 1.31 1.83

9 6 1.08 1.59 1.39 1.90
10 6 1.12 1.43 1.33 1.90
11 6 1.20 1.55 1.35 1.98
12 6 1.17 1.67 1.33 1.98

13 8 1.05 1.69 1.40 2.11
14 8 1.16 1.55 1.44 2.13
15 8 1.23 1.67 1.35 2.10
16 8 1.29 1.77 1.42 2.19

17 10 1.10 1.63 1.36 1.94
18 10 1.15 1.43 1.40 1.95
19 10 1.21 1.60 1.38 2.04
20 10 1.19 1.70 1.40 2.03

21 12 1.04 1.51 1.31 1.85
22 12 1.11 1.41 1.33 1.89
23 12 1.20 1.58 1.36 1.97
24 12 1.10 1.66 1.42 2.04

Avg 1.13 1.55 1.36 1.92

5.8 Chapter Summary

In this chapter, a novel lossless parallel compression algorithm was introduced to prove

the possibility of reducing the size of already compressed waveform IoTs readings. The

target was through pre-processing the data to enhance the entropy. This is successfully

achieved by employing K-means clustering as similarity measurements to classify the

compressed streams into subsets to reduce the noise of dissimilar compressed streams.

The tokens of every subset have been interlocked followed by the first derivative to

reduce the space of values and boost the redundancy. After that, rotation mechanisms

have been applied to rearrange the symbols in a more consecutive format before

employing dynamic RLE. Finally, entropy coding is performed. Both mathematical
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and empirical experiments proved the possibility of enhancing the entropy, which

almost reduced by half, and the resultant size reduction (i.e. up to 50%). To the best

of our knowledge, there is no other work that tackles this issue in the field of IoTs

streams.



Chapter 6

Conclusion

In this chapter, a holistic overview summary is presented, concentrating on the core

thesis challenges and the research questions derived from these challenges. The main

contributions achieved by answering the research questions are summarised along with

the core findings of this thesis. Section 6.1 highlights the main research goals and

restates the research questions. The contributions are reintroduced in Section 6.2.

Section 6.3 discusses some of the interesting findings of our research. Finally, Section

6.4 highlights the potential paths that can be followed to further develop using this

thesis work.

6.1 Research Aims

The Internet of Things (IoTs) sensor streams have become a vital category upon which

many applications rely. For example, smart meters collecting household power and

gas consumptions periodically every second and then transmit them wirelessly through

various channels and public hops to the operation centres [17]. For the unprecedented

volume of large streams and for real-time analysis, the operation centres are employing

third-party cloud servers where various entities process the data on a real-time basis

for billings and dynamic managements. There are many crucial projects that are

working towards making the world a more convenient place, such as with climate

change, transportation, healthcare and many more. Despite the clear benefits of these

149
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applications, they pose the unique challenges [18], such as how can we have a suitable

balance between: (1) guaranteeing the streams security (i.e. privacy, authenticity and

integrity) while not hindering the direct operations on those streams, (2) handling the

data management issues, such as the size during the transmission and storage. These

challenges become more complicated in cases where the streams should reside on the

third-party cloud servers.

Therefore, the main targets of this thesis are to introduce congruous algorithms

that ensure the security (i.e. privacy, authenticity and integrity) of dynamic-high IoTs

streams in the cloud environment, while providing better data management (as in size

reduction). On the other hand, they allow direct operations on third-party servers

without security disclosure.

To overcome the above unique challenges and achieve the stated goals, we formed

the following research questions:

• RQ-1. How can the privacy of the sensitive information and the

authenticity of the transmitted IoTs sensor streams be ensured

without hindering direct operations at intermediate hops or cloud?

• RQ-2. How can any alteration to the transmitted information

be detected and recovered without hindering direct operations at

intermediate hops or cloud?

• RQ-3. How can the size of the protected transmitted streams which

contains the encrypted hidden information be blindly reduced without

any security disclosure?

• RQ-4. Can the multi-incoming protected compressed IoTs sensor

streams be re-reduced without privacy or authenticity disclosure?

6.2 Research Contributions

To address the research questions explained in Section 1.2, and to bridge the gap

between security techniques and data management models, this thesis introduced a
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novel framework that consists of several new techniques to the area of high IoTs

(sensors and smart meters) data streams. The detail list of these contributions is as

follows.

• Privacy preserving of confidential information and authenticity of

gathered IoTs streams while not hindering direct operations on the

data

To ensure the privacy of confidential information and the authenticity of the

transmitted readings at the same time, steganography is employed to embed

the sensitive information randomly inside the transmitted readings. The main

merit of steganography is that it adds another layer of security, requires much

lower processing capabilities without changing or increasing the form of original

data. However, steganography has two main issues: (1) authentication problem

where the adversaries can retrieve the embedded information once they know

of its existence, and (2) capacity and distortion issue on the source used for

hiding. Therefore, to overcome the first limitation, two mathematical security

models were designed and implemented for employing the key to (1) encrypt the

confidential information, (2) shuffle the coefficients into a random hierarchy,

and (3) randomly generate an order used in the embedding process. To

broaden hiding capacity, insertion of the private information and to maximise

the randomisation, two signal processing techniques (i.e. the Walsh-Hadamard

and Discrete Wavelet Transform) were exploited to transform the readings from

their spatial to the frequency domain to classify and gather most of the readings

features sensitivity in a few coefficients allowing others to be freely utilised to

embed more data. Two new models are proposed in this chapter that vary

in their simplicity (Walsh-Hadamard based stenography) vs. security (Wavelet

based stenography). Both techniques are neither increasing nor changing the

form of the transmitted readings. This means only data owners can recover the

seal, whereas others are just monitoring the protected form of the IoTs readings.
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• Manipulation detection, remedy, and recovery while not hindering

direct operations on the data nor changing the form of the readings

Error detection and correction algorithms (BCH) is employed with

steganography to guarantee a strong level of reliability and integrity of the

transmitted protected data. To conquer the main issue of error detection and

correction codes that is increasing or changing the original data form, a novel

hybrid model that combines advanced steganographic (stego) algorithms with

error detection and correction techniques (BCH syndrome codes) have been

designed. This allows us to (a) detect and recover any loss from the hidden

confidential information without privacy disclosure, and (b) remedy the received

normal readings by employing the corrected version of the secret hidden data.

To randomise hiding process, minimise the distortion and boost the detection

or recovery, a three-dimensional (3D) wavelet is used to decompose normal IoTs

readings into a set of coefficients. To strengthen the security, a key is utilised to

generate a randomly selected 3D order used in the hiding process. To accurately

measure the detection and recovery capabilities, random noise levels that mimic

the real world scenario in a wireless environment are applied to the transmitted

readings. The recovered sensitive information and stego readings are extensively

measured using BER, PRD and RMS. It was clear from the experiments that

our technique has robust recovery capabilities (i.e. BER =0, PRD < 1% and

RMS < 0.01%). This was achieved without increasing nor changing the form of

the transmitted IoTs protected readings.

• Hidden information preserving IoTs streams size reduction without

privacy and authenticity disclosure

Two novel lossless compression algorithms of IoTs streams were introduced.

These algorithms were created to ensure the reduction of the volume of protected

readings at intermediate hops without disclosing hidden secrets. The first

Gaussian-based model target is representing IoTs sensor readings in a few

parameters regardless of the irregularity in the signal. This is successfully
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accomplished by employing Gaussian approximation. The margin between

the approximated and the actual waveform is measured. In other words, the

compression will be for margin space only rather than the entire stream of

waveform readings. The margin space values are finally reduced. The second

model target (N-Split) is minimising the randomness in the IoTs streams into

a smaller, finite field to enhance duplications and avoid the floating operations

round errors issues. After a thorough evaluation, under the same conditions,

both our techniques were superior to existing models mathematically, meaning

the entropy was halved and empirically, meaning the achieved ratio was 3.8:1 to

4.5:1.

• Cloud-based hidden features preserving IoTs compressed streams size

re-reduction

This research answers the question: can the compressed, multiple incoming

readings of protected IoTs sensors be re-compressed? The answer was yes

by pre-processing the compressed streams in such a way that improves the

theoretical entropy and exploits it. This is successfully achieved by using

similarity measurement, such as using K-means clustering, to classify the

compressed streams into subgroups. The streams in every resultant subgroup

have been interleaved followed by the first derivative to minimise the values

and increase the redundancy. After that, two-steps rotations were applied to

rearrange the readings in a consecutive format before applying dynamic run

length. Finally, entropy coding is performed. Both mathematical and empirical

experiments proved a significant improvement in the entropy of the compressed

streams (almost reduced by half) and the resultant compression ratio is more

than 50%. To the best of our knowledge, there is no other work that tackles this

issue in the IoTs smart devices streams field.
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6.3 Key Findings

This thesis discovers several key findings that can be summarised in the following

manner:

1. The continuity of the IoTs sensor streams represents a crucial feature that

renders them appropriate to be a credible host for other information. Therefore,

IoTs continuous smart device (e.g. meter or sensor) streams have been employed

as a host for sensitive information. It has also been proven from the findings

that the resultant protected IoTs streams can still be directly utilised in their

preserved form without revealing the hidden information contained within them.

2. Signal processing techniques, such as the Fast Walsh-Hadamard Transform and

Discrete Wavelet, showed very promising results in terms of boosting the hiding

randomisation and reducing the distortion impact. This effect can be minimised

to almost zero when a few crucial frequency domain coefficients, that contain

most of the signal features to be rebuilt accurately, were avoided.

3. The integration of BCH syndrome codes with advanced steganographic

algorithms revealed a new discovery (see Section 3.5). By combining error

detection and correction techniques with most of the previously proposed

steganography algorithms, that used the widely-known hiding positions - Least

Significant Bits (LSB), failed to recover the corrupted hidden bits. Therefore,

the hiding positions and coefficients are chosen carefully to achieve the best BER

(the accuracy in the recovery of the hidden secret information) and PRD/RMS

(the remedy precision of the normal readings).

4. Curve-fitting functions are very flexible mathematical models that can be used

to represent the IoTs streams in few parameters. Therefore, the Gaussian

approximation function is employed in this thesis to approximate the signal.

However, to avoid losing any signal features, the margin between the original

and the approximated signal should be calculated and further used.
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5. This thesis proves that is possible to re-compress multi-incoming IoTs protected

compressed streams by identifying their similarity and categorise them into

subgroups which then are treated separately.

6.4 Limitations and Future Work

Several problems have been solved in this thesis to bridge the gap between privacy,

authenticity, integrity and data management of IoTs sensor streams in cloud

environment. However, introduced solutions are just representing a few steps towards

the ultimate stable solution in this field. Therefore, to facilitate further developments

on top of our solutions, this section concludes with few limitations of the proposed

techniques and highlights several suggestions for future research work.

1. In Chapter 2, steganography was used as an underlying layer to ensure privacy

and authenticity while not disrupting direct operations on the IoTs streams.

The authentication issue (once somebody knows where you hide, they can just

retrieve it) in setganography has been solved by two mathematical models that

use a secret key to generate random scrambled matrix orders for hiding. Two

end-points should share this secret key. However, there are two issues that need

be solved in order to render this solution as more robust: (a) in the cases where

this key was updated, how can this secret key be shared over an insecure channel

in the IoTs field? and (b) in the cases where more than one legitimate party

wants to access the hidden information at the operation centres, how can an

access control (based on roles) model be developed around the steganographic

technique to control who can access what?

2. In Chapter 3, a hybrid model of BCH syndrome codes with advance

steganography has been developed to prove that even though the transmitted

bits through the channel are equal to its capacity and without changing the form

of transmitted streams, the detection and correction is still possible. However,

the selection of hiding positions was made based on the obtained Bit Error Rate
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(BER) after applying various noise levels onto the transmitted streams. Future

researchers may consider to address the question: can our achieved BER be

improved by employing other error detection and correction schemes that are

not relying on polynomials and Galois fields?

3. In Chapter 4, Gaussian approximation function was employed to represent the

IoTs streams by a few parameters. The drawback is that this function is using

Trust Region approximation to evaluate its parameters for every chosen IoTs

stream block that causes extra process overhead. Therefore, the question we

pose is how can Gaussian parameters be predetermined or at least pre-calculated

to work on various IoTs streams blocks?

4. Continuing with Chapter 4, the IoTs protected streams were compressed at the

streams origin without losing any bits or hidden features. However, the streams

should be decompressed without privacy disclosure at the cloud or at operation

centres for it to be used for analysis. This leads us to another developmental

question: can we learn anything from the compressed protected IoTs streams

without decompression? The answer to this question could be revolutionary in

the IoTs field. This is because huge amounts of processing power and time will

be saved in the case that these streams can be somehow meaningful in their

compressed format.

5. In Chapter 5, a re-compression of already compressed IoTs protected streams

proved to be possible by identifying block similarities among the IoTs

compressed streams and to treat them separately. However, in our model

we relied on the compressed streams from its origin using our Gaussian-based

algorithm from Chapter 4. In other words, all the streams were compressed

using similar compressors at the source. This raises another question for

further investigation: can the IoTs streams that were compressed use different

mechanisms at the source still be re-compressed?

To conclude, being involved in research that created algorithms to boost privacy,
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authenticity and efficiency of high Internet of Things streams in a cloud environment

was extremely exciting - we discovered something innovative and revolutionary that

it will be interesting to see where further studies can take this work. However, our

research represents just a few steps towards a reliable and efficient IoTs applications

in cloud environment. This journey is still long because of many other issues including

but not limited to the highlighted limitations that should be addressed.
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of sum-product decoding of low-density parity-check codes using a gaussian
approximation. Information Theory, IEEE Transactions on, 47(2):657–670,
2001.

[124] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Digital SRC Research Report, (124), 1994.

[125] B Ryabko. Data compression by means of a book stack. Problems of Information
Transmission, 16(4):265–269, 1980.

[126] David Salomon. Data Compression: The Complete Reference. Springer-Verlag
New York, 2004.



BIBLIOGRAPHY 169

[127] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(4):623–656, Oct 1948.

[128] Ieee recommended practice for the transfer of power quality data. IEEE Std
1159.3-2003, pages 1–119, 2004.

[129] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,
and Jeannie Albrecht. Smart*: An open data set and tools for enabling research
in sustainable homes. SustKDD, August, 2012.

[130] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,
and Jeannie Albrecht. Smart project. http://traces.cs.umass.edu/index.php/
Smart/Smart, 2012.

[131] Ross Anderson and Shailendra Fuloria. Who controls the off switch? In Smart
Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, pages 96–101. IEEE, 2010.

[132] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[133] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied
Mathematics, 2007.

[134] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.





Glossary

Aggregator refers to an action performed by a machine that is
responsible of collecting the data before transmission to
the cloud.

brute-force is a cryptanalytic attack by a trial-and-error of all possible
combinations to reveal the meaning of encrypted hidden
information.

codeword refers to a new block of bits comprising both the message
and generated control bits.

intruder refers to an illegitimate party who tries to reveal the
meaning of hidden secret information.

spectrum scarcity a situation in which there are a shortage in the available
spectra due to large number of requested channels to be
allocated.

stream is a set of readings (decimal) that have been measured by
an IoTs device over a short period of time (e.g. minute).

third-party refers to a public cloud service provider who is not the
owner of transmitted data.

vector space refers to the one-dimensional space in which the obtained
coefficients formed.

white space refers to frequencies assigned to broadcasting services but
not in use.
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